
Under review as a conference paper at ICLR 2021

META GRADIENT BOOSTING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta-optimization is an effective approach that learns a shared set of parameters
across tasks for parameter initialization in meta-learning. A key challenge for meta-
optimization based approaches is to determine whether an initialization condition
can be generalized to tasks with diverse distributions to accelerate learning. To
address this issue, we design a meta-gradient boosting framework that uses a base
learner to learn shared information across tasks and a series of gradient-boosted
modules to capture task-specific information to fit diverse distributions. We evaluate
the proposed model on both regression and classification tasks with multi-mode
distributions. The results demonstrate both the effectiveness of our model in
modulating task-specific meta-learned priors and its advantages on multi-mode
distributions.

1 INTRODUCTION

While humans can learn quickly with a few samples with prior knowledge and experiences, artificial
intelligent algorithms face challenges in dealing with such situations. Learning to learn (or meta-
learning) (Vilalta & Drissi, 2002) emerges as the common practice to address the challenge by
leveraging transferable knowledge learned from previous tasks to improve learning on new tasks
(Hospedales et al., 2020).

An important direction in meta-learning research is meta-optimization frameworks (Lee & Choi, 2018;
Nichol & Schulman, 2018; Rusu et al., 2019), a.k.a., model-agnostic meta-learning (MAML) (Finn
et al., 2017). Such frameworks learn initial model parameters from similar tasks and commit to
achieving superior performance on new tasks that conform to the same distribution through fast
adaptation. They offer excellent flexibility in model choices and demonstrate appealing performance
in various domains, such as image classification (Li et al., 2017; Finn et al., 2017), language modeling
(Vinyals et al., 2016), and reinforcement learning (Fernando et al., 2018; Jaderberg et al., 2019).

Generally, such frameworks define a target model Fθ and a meta-learnerM. The learning tasks
T = {T train, T test} are divided into training and testing tasks, where T are generated from the
meta-datasetD, i.e., T ∼ P (D). Each task contains a support set DS and a query set DQ for training
and evaluating a local model. The initialization of the model parameter θ is learned by the meta
learner, i.e., θ ←M(T train). We denote the meta-learned parameter as φ so that θ ← φ. For each
task, the model obtains locally optimal parameter θ̂ by minimizing the loss L(Fθ(DS)). The meta
parameter φ will be updated across all training tasks by minimizing the loss ΣT∈T train(L(Fθ̂(D

Q))).
Generally, it takes only a small number of epochs to learn locally optimal parameters across training
tasks so that meta-learned parameter φ can quickly converge to an optimal parameter for new tasks.

Most methods assume some transferable knowledge across all tasks and rely on a single shared
meta parameter. However, the success of the meta-learners are limited within similar task families,
and the single shared meta parameter cannot well support fast learning on diverse tasks (e.g., a
large meta-dataset) or task distributions (e.g., T are generated from multiple meta-datasets) due to
conflicting gradients for those tasks (Hospedales et al., 2020). Recent efforts have studied multiple
initial conditions to solve the above challenges. Some employ probabilistic models (Rusu et al., 2019;
Finn et al., 2018; Yoon et al., 2018) while others incorporate task-specific information (Lee & Choi,
2018; Vuorio et al., 2019; Alet et al., 2018). The former learns to obtain an approximate posterior
of an unseen task yet needs sufficient samples to get reliable data distributions; the latter conducts
task-specific parameter initialization using multiple meta-learners yet requires expensive computation
and cannot transfer knowledge across different modes of task distributions.

1

Under review as a conference paper at ICLR 2021

In this work, we aim to resolve the above challenges from a novel perspective by proposing a meta
gradient boosting framework. Gradient boosting (Friedman, 2001) aims to build a new learner towards
the residuals of the previous prediction result for each step. We call the learner for each step as weak
learner and make predictions based on summing up the weak learners. Recent research (Badirli et al.,
2020; Olson et al., 2018) has demonstrated the potential of decomposing deep neural nets into an
ensemble of sub-networks with each achieving low training errors. We propose to use the first or
first few weak learners as the base learner, followed by a series of gradient boosting modules to cope
with a diverse array of tasks—the base learner is responsible for inferring transferable knowledge by
learning across all tasks; the gradient-boosting modules are designed to make task-specific updates to
the base learner. Compare with existing work, which uses multiple initial conditions, our approach
does not require specifying a set of initialization conditions and thus has better flexibility in dealing
with multi-mode tasks. Our proposed framework is also more efficient than its counterparts as it does
not require a large number of gradient boosting modules. We evaluate the proposed framework on
few-shot learning scenarios for both regression and classification tasks. The experimental results
show the well performance of the proposed framework, which demonstrates the model’s ability in
learning with very few cases.

2 RELATED WORK

Meta-learning has the potential of replicating human ability to learn new concepts from one or very
few instances. It has recently drawn increasing attention, given its broad applicability to different
fields (Hospedales et al., 2020). Pioneers (Finn et al., 2017; Nichol & Schulman, 2018) in this topic
propose optimization algorithms with learned parameters to automate the exploitation to the structures
of learning problems. However, most of them initialize the same set of model parameters for all tasks,
which may have different distributions, thus resulting in over-fitting.

Recent studies either model the mixture of multiple initial conditions via probabilistic modeling
(Finn et al., 2018; Yoon et al., 2018) or incorporate task-specific knowledge (Lee & Choi, 2018;
Alet et al., 2018), to address the above issues. Yoon et al. (2018) and Finn et al. (2018) use
variational approximation to enable probabilistic extensions to MAML. But it is unclear how to
extend MAML for a wide range of task distributions. Rusu et al. (2019) consider multiple conditions
by borrowing the idea of variational autoencoders (Kingma & Welling, 2014), which encodes inputs to
a low-dimensional latent embedding space and then decodes the learned latent code to generalize task-
specific parameters. Another line of research defines a set of initialization modules and incorporate
task-specific information to select task-specific modules; this way, it can identify the mode of tasks
sampled from a multimodal task distribution and adapt quickly through gradient updates (Vuorio et al.,
2019). Yao et al. (2019) propose a Hierarchically Structured Meta-Learning (HSML) framework to
perform soft clustering on tasks. HSML first learns the inputs and then obtains clustering results by
the hierarchical clustering structure. HSML tailors the globally shared parameter initialization for
each cluster via a parameter gate to initialize all tasks within the clusters. The above approaches have
common limitations in 1) requiring sufficient data samples to generalize task distribution thus may
fail in few-shot cases; 2) being computationally expensive, due to the globally stored initialization
modules; 3) facing challenges in exhaustively listing every possible initial condition.

Two closely-related topics to meta-learning are modular approaches (Andreas et al., 2016) and multi-
task learning (Zhang & Yang, 2017). Modular approaches are similar to meta-learning in that the
input signal gives relatively direct information about a good structural decomposition of the problem.
For example, Alet et al. (2018) adopt the modular structure and parameter adaptation method for
learning reusable modules. Multi-task learning aims to learn a good shared-parameter or make the
parameter for each task as similar as possible (Wang et al., 2020). For example, Zhang et al. (2018)
propose two task networks that share the first few layers for the generic information before applying
different prediction layers to different tasks. These approaches differ from meta-learning in requiring
fine-tuning the models over all training samples and thus cannot adapt well to new tasks.

Our framework Meta Gradient Booting (MGB) neural network is based on the idea of gradient
boosting (Friedman, 2001), which aims to build a new learner towards the residuals of the previous
prediction result for each step. The learner for each step is called weak learner, and the prediction
is based on the summation of weak learners. Weak learners may vary from traditional decision
trees (Chen & Guestrin, 2016) to neural networks (Tannor & Rokach, 2019; Badirli et al., 2020).

2

Under review as a conference paper at ICLR 2021

Algorithm 1 Training of MGB
1: Randomly initialize global parameter φ
2: while Not done do
3: for T ∈ T do
4: for (x, y) ∈ DS do
5: Initialize fθ0 by θ0 ← φ
6: for k ∈ range(K) do
7: θ ← θ − βL(y,Fθ)
8: end for
9: end for

10: Get updated parameter θ̂
11: for (x, y) ∈ DQ do
12: Calculate predictions Fθ̂(x)
13: Calculate task loss L(y,Fθ̂)
14: end for
15: end for
16: Update φ by φ← φ− γLmeta
17: end while

...

Feature

Target

φ

θ0

∇Loss

...

Feature

θ1

∇Loss

Outputs

Hid
Task 1

Task T

Base Learner Gradient Boost
Module

Feature

∇Loss

Feature

Local
Update

G
lo

ba
l U

pd
at

e

...

Figure 1: Example of the model with only
one gradient-boosting module. Green lines
are for local update and red lines are for global
update.

A recent study (Badirli et al., 2020) proposes a general framework for gradient boosting on neural
networks, which work for both regression and classification tasks. It uses the deep layers of neural
nets as a bagging mechanism in a similar spirit to random forest classifier (Veit et al., 2016). After only
slight tuning, deep neural nets can perform well on a wide range of small real-world datasets (Olson
et al., 2018). These findings demonstrate the potential of decomposing deep neural nets into an
ensemble of sub-networks each achieving low training errors. In our framework, we use the first
weak learner or the first few weak learners as the base learner for learning the shared initialization
parameter across tasks. The output for each weak learner is then aggregated to the inputs for the next
step for constructing an end-to-end learning strategy until the last gradient boosting module. This
way, the base learner serves as transferable knowledge, and the gradient boosting modules following
it are trained for task-specific predictions.

3 METHOD

We explore the problem in the context of supervised learning, where input-output pairs are available in
both training and validation sets. Similar to previous meta-optimization based approaches (Finn et al.,
2017; Nichol & Schulman, 2018), we assume the tasks are generated from an underlying distribution
T ∼ P (D), where D is the meta-dataset, which is either a uni-mode dataset or multi-mode datasets.
Given a set of tasks T = {T train, T test}, each task T ∈ T contains a support dataset DS and a
query dataset DQ, both representing input-output pairs (x, y). We aim to learn a meta-learnerM to
guide the initialization for a target model Fθ so that the target model can quickly adapt and perform
well on a given new task. We propose a Meta Gradient Boosting (MGB) framework as the target
modelFθ, which consists of several weak learners and can be represented asFθ ∼ ΣKk=0fθk . The first
weak learner fθ0 or the first few weak learners are regarded as the base learner for learning the shared
information across tasks; the weak learners are gradient boosting modules for capturing task-specific
information. The meta learner aims to learn transferable knowledge and provides initialization details
for the base learner so that the model can quickly adapt to task-specific predictions with a few
gradient-boosting steps. Figure 1 shows an example of our MGB framework under K = 1, where we
update the model locally for task-specific predictions and update the meta-learner globally for all
tasks.

3.1 LOCAL LEARNING: TASK-ADAPTIVE UPDATING VIA GRADIENT-BOOSTING

Gradient boosting machines hold out optimization in the function space (Friedman, 2001). In
particular, the target model is an addition Fθ = ΣKk=0αkfθk , where K is the number of adaptions

3

Under review as a conference paper at ICLR 2021

(gradient boosts), fθ0 is the first weak learner, which provides initial prediction of the inputs, fθk
are the function increments (gradient boosting modules), and αk is the boosting rate. In each step,
the new gradient boosting module is formulated in a greedy way. To start, the base-learner fθ0
minimizes a prediction loss L(y, fθ0) to predict the outputs ŷ ← fθ0(x). Then, at gradient boosting

step k, the gradient boost module fθk minimizes the loss L(gk, fθk), where gk = −∂L(y,F
k−1
θ (x))

∂Fk−1
θ (x)

,

Fkθ = Σk∗=0α∗fθ∗ denotes the ensemble of functions at gradient step k, and gk is the negative
gradient along with the observed data. Traditional boosting frameworks learn each weak learner
greedily; therefore, only parameters of k-th weak learner are updated at boosting step k while all
the parameters of previous k − 1 weak learners remain unchanged. This together with the single
shared meta parameter make it easy for the model to stuck in a local minimum. The fixed boosting
rate αk further aggravates the issue. In response, we construct the gradient boosting neural network
in a cascading structure (He et al., 2016). Similar to Badirli et al. (2020), at each step k, we take the
concatenation of the inputs x and the hidden layer of the previous weak learner hk−1 = σθk−1

(x) as
the inputs for the current step gradient boost module, i.e., gk ← fθk([hk−1, x]). But our approach
differs in optimizing the gradient boosting neural networks in a macroscopic view—for each step k,
we learn the ensemble of the weak learners Fkθ by minimizing the loss function

arg min
θ
L(y,Fkθ)→ arg min

θ
L(y, α0fθ0(x) + ΣKk=1αkfθk(hk−1, x)), (1)

We update parameters of both weak learners and gradient boost module via back-propagation.
Generally, the parameter θ of Fθ is locally updated via θ ← θ − βL(y,Fθ), where β is the task
learning rate. The boosting rate αk can be set in various forms—in the simplest case, we can use an
increasing or decreasing boosting rate, e.g. αk = αk−1/c (c is a constant), to decrease or increase
the contribution of the base learner. We will discuss model performance under different settings of
the boosting rate later. Both the boosting rate and the number of gradient boost modules affect the
sharing ability and prediction performance of the base learner. Hochreiter et al. (2001) found that the
gradient for the earlier weak learners decays with the increasing number of gradient boost modules.
On balance, we use the base learner of our proposed gradient boosting framework as a weak learner
and a series of gradient boosting modules as strong learners for a specific task.

3.2 GLOBAL LEARNING: META-OPTIMIZATION FOR TRANSFERABLE KNOWLEDGE LEARNING

The learning and updating strategy of the gradient boosting framework ensure a weak base learner.
Since the base learner could be the first weak learner or the first few weak learners, we use fθ0
to represent for both conditions for ease of illustration. We take the meta-optimization approach
for initializing the base learner so that the model can provide an initial guess for the prediction
based on the transferable knowledge over a wide arrange of tasks. Specifically, we learn a global
sharing parameter φ s.t. θ0 ← φ. Similar to other MAML-based approaches (Finn et al., 2017;
Lee & Choi, 2018), we minimize the expected loss on the local query set DQ for tasks T ∈ T train
in meta optimization. Since the meta-gradient may involve higher-order derivatives, which are
computationally expensive for deep neural nets, MAML Finn et al. (2017) takes one-step gradient
descent for meta-optimization. Following the above, we obtain updated model parameters θ̂ after
updating the target model Fθ for K steps on the local support set DS . Global learning aims at
minimizing the loss

arg min
φ

Lmeta → arg min
φ

ΣT∈T trainΣ(x,y)∈DQL(y,Fθ̂) (2)

The global sharing parameter φ is updated via φ← φ− γLmeta, where γ is the global learning rate.
The pseudocode of the training process is described in Algorithm 1.

4 EXPERIMENTS

We test our proposed framework on few-shot learning scenarios and compare it with three other
meta-learning approaches: MAML (Finn et al., 2017), Multimodal Model-Agnostic Meta-Learning
(MMAML) (Vuorio et al., 2019), and Meta-learning with Latent Embedding Optimization (LEO)
Rusu et al. (2019). Both MMAML and LEO model a mixture of multiple initial conditions. MMAML
modulates its meta-learned prior parameters according to the identified mode to enable more efficient

4

Under review as a conference paper at ICLR 2021

(a) Sinusoid function (b) Linear function (c) Quadratic function (d) Absolute value
function

Figure 2: Performance on 4-mode regression tasks with one step of global learning. Blue lines show
the real distribution. Red nodes stand for the real values of the support set samples.

adaptation; LEO solves the problem via probabilistic modeling that learns a stochastic latent space
with an information bottleneck, conditioned on the input data, from which the high-dimensional
parameters are generated. We compare the results on both regression and classification tasks.

4.1 REGRESSION TASKS

Setups We adopt the simple regression task with similar settings to Finn et al. (2018). In the 1D
regression problem, we assume different tasks correspond to different underlying functions, and we
aim to predict the outputs for new tasks by learning on very few samples. To construct a multi-mode
task distribution, we set up four functions (sinusoidal, linear, quadratic, and abstract value functions)
and treat them as discrete task modes. The function settings are detailed in Appendix A.1. Uni-mode
training tasks are generated from a single function. For each task, input-output pairs are generated
from the given function with randomly initialized parameters (e.g., the slope for the linear function).
We generate multi-mode training tasks by first selecting the function type for each task and then
initializing random parameters for the function to generate samples. Similar to the settings in Finn
et al. (2017), we use two hidden layers of size 40, followed by ReLU as the activation function.

Learning from multi-mode distributions (e.g., the above four distributions) is challenging. First,
the function values may vary across those distributions. For example, the output of the quadratic
function can range from zero to dozens (see Figure 2) while the other three functions are more
likely to produce outputs within [-10,10]. Second, the few-shot samples that sit on a line might be
generated from non-linear functions, which make it difficult to learn the real modality from such
samples. Updating more steps for task-specific models could solve the first challenge yet may cause
over-fitting. The second challenge can be mitigated by producing a set of models for task learning.
Our proposed MGB can well handle the two challenges by a series of task-specific gradient boost
modules and providing flexibility in updating the framework.

Results We use Mean Absolute Error (MAE) as the evaluation metric to evaluate models’ per-
formance in training on one-mode (sinusoidal function), two-mode (sinusoidal function and linear
function) or four-mode (all the four functions) tasks. To ensure a fair comparison, the same basic
settings of the network structure are configured for all the compared methods, and the results are
learned within certain training epochs. Detailed settings are in A.3. Overall, the proposed MGB
framework shows competitive and stable performance on multi-mode regression tasks. The results
(shown in Table 1) reveal that it is more difficult to capture task-specific patterns on multi-mode
tasks—the MAE is larger when more modes are considered. This makes sense considering the
randomness in choosing functions and function parameters for all models. The results also show
that incorporating task identities can significantly improve the performance of multi-mode learning.
MAML has the highest error in all settings, which suggests that MAML does not perform as well on
multi-mode tasks as on uni-mode tasks. Our model shows more stable performance in all settings
when compared with LEO and MMAML. Performance comparison of our model with one, two,
and five gradient boosting modules (corresponding to MGB-1, MGB-2, and MGB-5, respectively)
suggests that the performance improves when more gradient boosting modules are used; however, the
effect decreases as the number gradient boosting modules increases.

5

Under review as a conference paper at ICLR 2021

Table 1: Results on Regression Tasks (MAE)

Method
1 Mode 2 Modes 4 Modes

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

MAML 1.234±0.174 1.054±0.077 1.548±0.223 1.356±0.109 2.044±0.472 1.698±0.267
LEO 0.957±0.123 0.789±0.042 1.127±0.175 0.899±0.084 1.234±0.248 1.095±0.163
MMAML 0.638±0.053 0.526±0.027 0.783±0.096 0.709±0.048 1.016±0.181 0.920±0.099

MGB-1 0.674±0.009 0.524±0.013 0.999±0.103 0.906±0.038 1.213±0.173 0.928±0.084
MGB-2 0.629±0.004 0.512±0.005 0.822±0.032 0.734±0.021 1.046±0.106 0.899±0.027
MGB-5 0.615±0.005 0.476±0.005 0.704±0.042 0.672±0.077 0.985±0.089 0.825±0.043

Table 2: Results on Classification Tasks (Accuracy)

Method
2 Modes 3 Modes 4 Modes

5-way 20-way 5-way 20-way 5-way 20-way

1-shot 5-shot 1-shot 1-shot 5-shot 1-shot 1-shot 5-shot 1-shot

MAML 0.6381 0.7524 0.4296 0.5235 0.6481 0.2986 0.4223 0.5172 0.2415
LEO 0.6676 0.7689 0.4318 0.5129 0.6413 0.3106 0.3948 0.4757 0.2301
MMAML 0.6797 0.7738 0.4521 0.5536 0.6728 0.3534 0.4812 0.5528 0.3149

MGB-1 0.6394 0.7579 0.4228 0.5241 0.6435 0.3002 0.4277 0.5209 0.2533
MGB-2 0.6501 0.7633 0.4270 0.5503 0.6750 0.3459 0.4531 0.5374 0.2682
MGB-5 0.6834 0.7830 0.4426 0.5611 0.6897 0.3568 0.4725 0.5530 0.2956

4.2 CLASSIFICATION TASKS

Setups We evaluate the proposed framework (Finn et al., 2017) on n-way few-shot image clas-
sification tasks. We use four datasets to constitute multi-mode tasks: Omniglot Lake et al. (2011),
miniImageNet Ravi & Larochelle (2016), FC100 Oreshkin et al. (2018), and CUB Wah et al. (2011).
Details about those datasets can be found in the supplementary material A.2. We follow train-test
splitting methods as described in Finn et al. (2017); Vuorio et al. (2019) and train models on tasks
with two modes (Omniglot and miniImageNet), three modes (Omniglot, miniImageNet, and FC100),
and four modes (all four datasets) tasks. The weak-learner uses CNN modules for learning the image
embedding and fully-connected layers for classification. Similar to previous work Finn et al. (2017);
Vuorio et al. (2019), we configure each CNN module with 3 × 3 convolutions, followed by 2 × 2
max-pooling and batch normalization (Ioffe & Szegedy, 2015). Since the embedding module can
significantly affect classification results (Sun et al., 2019), to ensure a fair comparison, we use the
same embedding module for all compared methods. The detailed settings are described in A.3.

Results We consider 1-shot and 5-shot learning for 5-way classification and 1-shot learning for
20-way classification. We evaluate the performance of our MGB framework with one (MGB-1), two
(MGB-2), or five (MGB-5) gradient boosting modules. The resulting performance is shown in table 2.
Overall, the proposed MGB performs well on multi-mode tasks. Compared with MMAML, our
method works better on most scenarios except on 1-shot 20-way classifications, where MMAML can
store more parameters. Similar to the regression tasks, MGB with more gradient boosting modules
shows better performance while MGB-1 can make only a slight improvement over MAML because
images contain more complex information than real numbers. More modes of tasks increase the
performance gap between MAML and the other methods, which suggest the other methods (which
consider multiple conditions) can handle multi-mode tasks better than MAML. Under the same
experimental settings, i.e., with the same image embedding modules, LEO does not perform well on
tasks with more modes, partially because it is largely impacted by the quality of the learned image
embedding—first, LEO’s learning strategy (Rusu et al., 2019) pretrains the dataset-specific image
embedding (Qiao et al., 2018) before meta-learning; then, LEO uses an encoder-decoder structure to
generate parameters for the classifier from the learned embedding.

6

Under review as a conference paper at ICLR 2021

5 DISCUSSION

Our experimental results on both regression and classification tasks suggest our method can adapt
to the optimal results with few gradient boosting modules. In this section, we take a further step to
discuss i) the configuration of gradient boosting modules and ii) the sharing ability of the base learner
during the back-propagation through meta-gradient boosting modules. The results are presented for
5-way 1-shot image classification with 4-mode tasks.

5.1 CONFIGURATION OF GRADIENT BOOSTING MODULES

Settings for the weak learner Our MGB framework consists of a series of weak learners, where
the first or the first few weak learners serve as the base learner to be shared among tasks. Type and
dimension of the weak learner are two key factors that may affect the final results. Vuorio et al.
(2019) find that LSTM models perform better than linear models in regression tasks. Sun et al. (2019)
show the choice of feature extractor for images has a strong correlation with the final results, and
using pre-trained network or network structure can improve the results significantly. For example, it
improves the accuracy by about 6% (Mishra et al., 2018; Oreshkin et al., 2018) to use ResNet-12 as
the feature extractor. Here, we use four convolutional layers for learning from images to ensure a fair
comparison. The dimension of the weak learner includes the number of hidden layers and the number
of neurons in each layer. Figure 3 (a) shows the performance of the model trained on a 4-modes
classification dataset under different settings of the two parameters above. The results show a deeper
model or a larger neuron size gives better performance, while the network may need more time to
learn with a larger neuron size.

(a) (b) (c)

Figure 3: Model performance under different settings on (a) the dimension of the weak learner, (b)
the number of gradient boosting modules, and (c) the updating strategy for gradient boosting modules
on 4-modes image classification tasks.

Settings for gradient boosting modules The number of gradient boosting modules and the updat-
ing strategy for the gradient boosting modules are two vital factors that may affect the final results.
Since the prediction is based on the summation of a series of weak learners, more gradient boosting
modules will reduce the contribution of each weak learner. According to the results shown in Figure 3
(b), the model with only one gradient boost module cannot well handle multi-mode tasks; more gradi-
ent boost modules can help improve the results while taking more time to learn the task information.
The traditional gradient boost module greedily updates the whole framework at each step, but we can
let the added weak learner grasp more information from the inputs by updating several times in each
step. We can further adjust the contribution of the base learner and gradient boosting modules to the
final results by allowing them to update for different times in each step. Intuitively, if we fine-tune
on the base learner (i.e., updating multiple times on the base learner), the model may get stuck in
a local optimal and decrease the impact of gradient boosting modules on the model performance;
conversely, if we conduct more updates on the gradient boosting modules, the model may need more
training epochs from all training tasks to grasp the general sharing information that helps the model in
fast-adaptation. The results under different settings of the updating times for base learner and gradient
boosting modules are shown in Figure 3 (c). We can see the updating strategy significantly affects
model performance, and updating more steps on gradient modules improves the model’s robustness.
The performance tends to become unstable if we conduct more updates for the base learner (i.e., the
yellow line in Figure 3 (c)), which observation aligns with our analysis above.

7

Under review as a conference paper at ICLR 2021

5.2 SHARING ABILITY OF THE BASE LEARNER

The base learner of our MGB framework is shared across tasks for capturing the general sharing
knowledge. Three factors may affect the sharing ability of the base learner: 1) which part to share; 2)
how to share; 3) how the shared base learner contributes to MGB. We discuss these three components
as follows.

Single weak learner v.s. Multiple weak learners Instead of choosing a single weak learner as the
base learner, we can choose the first few weak learners as the base learner. We present the results of
MGB with one, two, or three weak learners as the base learner and one gradient boosting module in
Figure 4 (a). Generally, when more weak learners are used as the base learner (which is more than
the number of gradient boost modules), MGB faces difficulties in capturing multi-mode patterns and
thus achieves degraded generalization performance.

(a) (b) (c)

Figure 4: Model performance under different settings for the base learner with respect to (a) the
number of weak learners, (b) the sharing strategy of the base learner, and (c) the choice for the
boosting rate α on 4-modes image classification tasks.

Static base learner v.s. Dynamic base learner The base learner is initialized using the global
sharing parameter φ. It can be either static (if we keep its parameter unchanged) or dynamic (if we
update the base learner during the training of gradient boost modules). We compare the versions of
MGB that use a static base learner and a dynamic base learner, respectively. In both versions, we
append one gradient boost module to the base learner and update it multiple times during each step.
The results (shown in Figure 4 (b)) reveal that keeping the shared information (i.e. using static base
learner) can improve the stability of the model.

Boosting rate α The boosting rate (α) is probably the most vital component for the MGB frame-
work because it directly indicates the contribution of each weak learner to the final prediction. We
test the performance of MGB under various settings of the boosting rate α, where the rate is either
decayed (i.e. αk = αk−1/c, where c is a constant), automatically learned, or equally contributed
(i.e. α∗ = 0 for all base learners), respectively. The result suggests that using the automatically
learned α or equally contributed α leads to more stable performance, while a decayed α results in
more time in task learning. This supports our analysis that our gradient boosting modules help learn
task information.

6 CONCLUSION

In this work, we propose a novel direction for solving the problem faced by previous meta-
optimization approaches, i.e., using the same initialization for diverse tasks. We present a meta
gradient boosting framework that contains a series of weak learners to make predictions, using a
base learner to grasp shared information across all tasks. We have conducted extensive experiments
to evaluate the model’s ability to capture meta information and the task-specific information on
regression and classification tasks. Our experimental results show the effectiveness of our framework
in learning multi-mode tasks. Our results reveal the necessity of selecting the weak learner carefully
according to task types. An example is that CNNs outperform simple fully connected (FC) layers on
image classification problems while FC layers can perform better on regression tasks. In future work,
we will extend our framework by considering multi-modal problems, e.g., learning from images, texts
and numerical values, and study how to choose appropriate weak learners for specific applications.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kaelbling. Modular meta-learning. arXiv preprint
arXiv:1806.10166, 2018.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 39–48,
2016.

Sarkhan Badirli, Xuanqing Liu, Zhengming Xing, Avradeep Bhowmik, and Sathiya S Keerthi.
Gradient boosting neural networks: Grownet. arXiv preprint arXiv:2002.07971, 2020.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Chrisantha Fernando, Jakub Sygnowski, Simon Osindero, Jane Wang, Tom Schaul, Denis Teplyashin,
Pablo Sprechmann, Alexander Pritzel, and Andrei Rusu. Meta-learning by the baldwin effect. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1313–1320,
2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
Advances in Neural Information Processing Systems, pp. 9516–9527, 2018.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859–865, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. stat, 1050:1, 2014.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of
simple visual concepts. In Proceedings of the annual meeting of the cognitive science society,
volume 33, 2011.

Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric and
subspace. In International Conference on Machine Learning, pp. 2927–2936, 2018.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-shot
learning. arXiv preprint arXiv:1707.09835, 2017.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network
acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech and Language
Processing, 2013.

9

Under review as a conference paper at ICLR 2021

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In International Conference on Learning Representations, 2018.

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2:2, 2018.

Matthew Olson, Abraham Wyner, and Richard Berk. Modern neural networks generalize on small
data sets. In Advances in Neural Information Processing Systems, pp. 3619–3628, 2018.

Boris Oreshkin, Pau Rodriguez Lopez, and Alexandre Lacoste. Tadam: Task dependent adaptive
metric for improved few-shot learning. In Advances in Neural Information Processing Systems, pp.
721–731, 2018.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-shot image recognition by predicting
parameters from activations. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7229–7238, 2018.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. ICLR, 2019.

Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. Meta-transfer learning for few-shot
learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
403–412, 2019.

Philip Tannor and Lior Rokach. Augboost: gradient boosting enhanced with step-wise feature
augmentation. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pp. 3555–3561. AAAI Press, 2019.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. In Advances in neural information processing systems, pp. 550–558,
2016.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630–3638, 2016.

Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic meta-
learning via task-aware modulation. Advances in Neural Information Processing Systems, pp.
1–12, 2019.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM Computing Surveys (CSUR), 53(3):1–34, 2020.

Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning.
International Conference on Machine Learning, pp. 7045–7054, 2019.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems,
pp. 7332–7342, 2018.

Yabin Zhang, Hui Tang, and Kui Jia. Fine-grained visual categorization using meta-learning opti-
mization with sample selection of auxiliary data. In Proceedings of the european conference on
computer vision (ECCV), pp. 233–248, 2018.

Yu Zhang and Qiang Yang. A survey on multi-task learning. arXiv preprint arXiv:1707.08114, 2017.

10

Under review as a conference paper at ICLR 2021

A IMPLEMENTATION DETAILS

A.1 SETTINGS FOR REGRESSION TASKS

Dataset details We use four functions for generating toy regression tasks: sinusoidal function,
linear function, quadratic function, and absolute value function. For each task T ∈ T , the selected
function generates input-output pairs with randomly initialized parameters. The tasks T are generated
from an underlying distribution T ∼ P (D), where the meta-dataset D is the function set. Depending
on the choice of the function set, we evaluate our model on uni-mode training (i.e. the tasks are
generated from a single function with different random initialized parameters) and multi-mode
training. To ensure each function can generate a variety of tasks, we define the four functions with
three variables as follows:

• Sinusoidal function: v2 · sin(x+ v1) + v3

• Linear function: v2 · (x+ v1) + v3

• Quadratic function: v21 · x+ v2 · x+ v3

• Absolute value function: v2 · |x+ v1|+ v3

where v1, v2, and v3 are sampled uniformly from ranges [0, π], [-3,3], and [-3,3], respectively. The
inputs are within [-5,5], and the outputs are perturbed with Gaussian noise with the standard deviation
of 0.3. We sample 10 batches of 50 tasks for uni-mode and multi-mode training tasks, respectively.

Model details Following Finn et al. (2017), we use two fully-connected layers of size 40 as the
weak learner for regression tasks. The activation function is Leaky ReLU (Maas et al., 2013), which
provides good and stable results over the four functions. By default, the MGB framework includes
one weak learner as the base learner and three gradient boosting modules. We update ten times for
both the base learner and gradient boosting modules. Both the task learning rate β and the meta
learning rate γ are set to 0.01. We apply an automatic learning strategy to the boosting rate (α), which
is initialized to be 0.5. When constructing the gradient boosting neural network, we use a cascading
structure (He et al., 2016) to make the network faster and stable. We use batch normalization(Ioffe &
Szegedy, 2015) for the input for gradient boosting modules. Recall that at each step k, we take the
concatenation of the inputs x and the hidden layer of the previous weak learner hk−1 = σθk−1

(x) as
the inputs of gradient boost module at the current step, i.e., gk ← fθk([hk−1, x]). Specifically, we
use shortcut layers to map the input x to a latent layer hx with same shape as the hidden layer of the
previous weak learner; then, we concatenate hx and hk−1, which are both batch normalized, as the
input for the current gradient boost module. We also test the impact of forwarding [hk−1, hk−2] to
gradient boost modules and find it only has a slight impact on model performance. In the default
settings, we use [hk−1, x] as the input for each gradient boost module. Generally, it takes around one
hundred epochs before getting acceptable results.

A.2 SETTINGS FOR CLASSIFICATION TASKS

Dataset details We use four datasets to evaluate multi-mode few-shot learning tasks: Om-
niglot (Lake et al., 2011), miniImageNet (Ravi & Larochelle, 2016), FC100 (Oreshkin et al., 2018),
and CUB (Wah et al., 2011). Details about the datasets are listed in Table 3. We divide tasks in
each dataset into train, validation or test tasks. Omniglot is a dataset of 1623 handwritten characters
from 50 different alphabets, where we use the characters from the first 30 alphabets, the following
10 alphabets, and the last 10 alphabets as training, validating, and testing tasks, respectively. The
miniImageNet dataset is a subset of the ImageNet1. Following Finn et al. (2017), we divide 100
classes into 64, 16, and 20 classes for meta-training, meta-validation, and meta-testing, respectively.
Fewshot-CIFAR100 (FC100) is based on the widely applied CIFAR 100 dataset2. Similar to (Ore-
shkin et al., 2018), we divide 100 classes into 60 training classes, 20 validation classes, and 20 testing
classes. As for the Caltech-UCSD Birds 200 dataset, i.e., the CUB dataset, we follow the settings
in Vuorio et al. (2019) and use 140, 30 and 30 classes for training, validation, and testing, respectively.
We generate uni-mode training tasks from one dataset. For each n-way m-shot learning task, we

1http://www.image-net.org/
2https://www.cs.toronto.edu/˜kriz/cifar.html

11

http://www.image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html

Under review as a conference paper at ICLR 2021

Table 3: Basic information of the image datasets
Dataset Number of classes Samples per class Image channel Image size

Omniglot 1623 20 1 28×28
miniImageNet 100 600 3 84×84

FC100 100 600 3 32×32
CUB 200 >40 3 84×84

randomly draw n classes from the dataset and m samples from each class to form the support set.
Then, we select from the unselected samples as the query set. We generate multi-mode training tasks
by repeatedly run random selection of a dataset and drawing task samples for this dataset. In general,
we use 10 batches of 50 tasks to train the model for both uni-mode tasks and multi-mode tasks. We
resize the image for each dataset into 84×84 so that the model can share across the four datasets.
Besides, we map images in Omniglot dataset to a layer with three channels so that they can be learned
by the sharing model.

Model details The weak-learner uses CNN modules for learning the image embedding and fully-
connected layers for classification. Similar to Finn et al. (2017), we configure each CNN module
as 4 layers with 3 × 3 convolutions, followed by batch normalization (Ioffe & Szegedy, 2015),
Leaky ReLU nonlinearity (Maas et al., 2013), and 2 × 2 max-pooling. The results of the CNN
module are first mapped to a latent layer with 200 neurons and then predicted by a classifier with
two fully-connected layers. The MGB framework, by default, includes one weak learner as the base
learner and two gradient boosting modules. We update five times for both the base learner and the
gradient boosting modules. The boosting rate (α) for each gradient boost module is automatically
learned and is initialized as 0.5. The task learning rate β and the meta learning rate γ are set to
0.001 and 0.005, respectively. Similar to the settings for regression tasks, we use shortcut layers
for the input x and a hidden layer of the previous weak learner as the input for the current gradient
boost module. The model needs thousands of training epochs to obtain fair results. The results we
presented for discussion are averaged for every tens of epochs.

A.3 SETTINGS FOR COMPARED METHODS

We compare our work with three compatitve baselines: MAML (Finn et al., 2017), LEO (Rusu et al.,
2019), and MMAML (Vuorio et al., 2019).

• MAML is one of the pioneer frameworks for meta optimization. For each task, the parameter
θ of the task model Fθ is initialized by the global sharing parameter φ and is updated by
learning from the support set DS . The meta parameter φ will be updated by learning from
the loss on the query set L(DQ).

• LEO use an external encoder-decoder to initialize the parameter θ of the task model Fθ. The
external encoder-decoder framework has three parts: an encoder gφe , a relation network gφr ,
and a decoder gφd . For each task, the inputs are mapped to the latent code z by gφe and gφr ;
θ is initialized based on gφd and the latent code z. When learning on a task, the latent code
z is first updated by the loss on support set (i.e., z ← z − β∇zL(DS)) and then decoded to
obtain the parameter θ. Parameters of the encoder-decoder, i.e. φe, φi, and φr, are updated
globally by the query set loss on all tasks.

• MMAML first uses a modulation network to obtain the mode information of a sampled
task and then uses this mode information to initialize the task model Fθ. The modulation
network uses a task encoder gφh to obtain a task embedding vector v (v ← gφh(x)), which
is then used to provide the modulation vectors τ for the parameters of the task model Fθ
(via τ i = giφg (v)). Suppose we have I modules in the task model Fθ, and each module
has parameter θi, then each module will be updated as θi ← θi � τ i. For each task, the
task model is first initialized by a meta parameter φm, i.e., θ ← φm; then, each module
of the task learner is adapted by θi ← θi � τ i, according to the outputs of the modulation
network.The parameter θ is locally updated for each task, and the meta-parameters (φm, φh,
and φg) are updated across all tasks.

12

Under review as a conference paper at ICLR 2021

We choose the task learner Fθ and configure the settings (including activation function, task learning
rate β, and meta learning rate γ) for the compared methods in the same way as we configure our
method on both regression and classification tasks. In particular, LEO uses pretrained embedding as
input to statistically generate means and variances for the predictor in its encoder-decoder structure.
The predictor can be regarded as one fully-connected layer that takes the pretrained embedding (Qiao
et al., 2018) as input. The weights of the predictor are sampled from a distribution specified by the
means and variances generated by LEO. Since LEO cannot be updated via classic back-propagation,
we use similar measures as presented by Rusu et al. (2019). But we additionally use our strategy for
generating the embeddings.

13

	Introduction
	Related Work
	Method
	Local learning: task-adaptive updating via gradient-boosting
	Global learning: meta-optimization for transferable knowledge learning

	Experiments
	Regression tasks
	Classification tasks

	Discussion
	Configuration of gradient boosting modules
	Sharing ability of the base learner

	Conclusion
	Implementation Details
	Settings for regression tasks
	Settings for classification tasks
	Settings for compared methods

