
Published as a workshop paper at MLGenX 2025

DRUGAGENT: MULTI-AGENT LARGE LANGUAGE
MODEL-BASED REASONING FOR DRUG-TARGET IN-
TERACTION PREDICTION

Yoshitaka Inoue
University of Minnesota
National Library of Medicine
National Cancer Institute
inoue019@umn.edu

Tianci Song
University of Minnesota
song0309@umn.edu

Xinling Wang
Northeastern University
wang.xinl@northeastern.edu

Augustin Luna∗
National Library of Medicine
National Cancer Institute
augustin@nih.gov

Tianfan Fu∗

Nanjing University
futianfan@gmail.com

ABSTRACT

Advancements in large language models (LLMs) allow them to address diverse
questions using human-like interfaces. Limitations in their training prevent them
from answering accurately in scenarios that could benefit from multiple perspec-
tives. Multi-agent systems allow the resolution of questions to enhance result
consistency and reliability. While drug-target interaction (DTI) prediction is im-
portant for drug discovery, existing approaches face challenges due to complex
biological systems and the lack of interpretability needed for clinical applications.
DrugAgent is a multi-agent LLM system combining multiple specialized per-
spectives with transparent reasoning. Our system adapts and extends existing
multi-agent frameworks by (1) applying coordinator-based architecture, (2) inte-
grating domain-specific data sources, including ML predictions, knowledge graphs,
and literature evidence, and (3) incorporating Chain-of-Thought (CoT) and ReAct
(Reason+Act) frameworks for transparent reasoning.
We conducted comprehensive experiments using a kinase inhibitor dataset, where
our multi-agent LLM method outperformed the non-reasoning multi-agent model
(GPT-4o mini) by 45% in F1 score (0.514 vs 0.355). Through ablation studies, we
demonstrated the contributions of each agent, with the AI agent being the most
impactful, followed by the KG agent and search agent. Most importantly, our
approach provides detailed, human-interpretable reasoning for each prediction
by combining evidence from multiple sources - a critical feature for biomedical
applications where understanding the rationale behind predictions is essential for
clinical decision-making and regulatory compliance. Code is available at https:
//anonymous.4open.science/r/DrugAgent-B2EA.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in solving a wide range
of problems using human-friendly inputs (Wei et al., 2022a). However, these models still face
limitations when confronted with tasks outside their training scope or those requiring real-time

∗These authors contributed equally as co-last authors.

1

https://anonymous.4open.science/r/DrugAgent-B2EA
https://anonymous.4open.science/r/DrugAgent-B2EA


Published as a workshop paper at MLGenX 2025

data access and specialized domain knowledge. To address these challenges, there is a growing
interest in Multi-Agent systems (Du et al., 2023) that utilize several agents to talk to each other
and make a final decision incorporating external tools such as Knowledge Graphs (KG) (Shu et al.,
2024), and Retrieval-Augmented Generation (RAG) (Lewis et al., 2020). These systems offer a
more robust and reliable approach to problem-solving by leveraging diverse information sources and
specialized capabilities. In this paper, we propose a multi-agent system that integrates unstructured
text, structured knowledge graphs, and machine learning predictions.

Our research applies this multi-agent approach to the challenge of drug-target interaction (DTI)
prediction, a strategy that can reduce the time, cost, and risk associated with drug development (Ab-
basi Mesrabadi et al., 2023).

Pharmaceutical research faces high failure rates due to the complexity of biological systems and the
diversity of biomedical information sources (Chen et al., 2024b; Wu et al., 2022b). While recent
advances in artificial intelligence have helped address these challenges (Vamathevan et al., 2019), the
effective integration of heterogeneous data sources remains a major research area.

We propose a multi-agent system architecture where each agent specializes in a specific aspect of
the drug discovery process. Our architecture includes five agents: Coordinator, AI, KG, Search, and
Reasoning Agent. The Coordinator Agent manages communication and data formatting between
agents. The AI Agent employs the DeepPurpose package to predict DTI scores from molecular
structures and protein sequences. The KG Agent calculates path-based interaction scores from
biomedical knowledge graphs. The Search Agent analyzes search results to extract evidence and
score interactions through keyword matching. Each specialist agent provides both scores and
reasoning for their outputs - the AI Agent explains its ML-based prediction, the KG Agent describes
discovered path relationships (e.g., ‘3-hop connection via LYN’), and the Search Agent provides
literature-based evidence. The Reasoning Agent then integrates this evidence through CoT and ReAct
frameworks to generate final scores with step-by-step explanations.

The architecture we developed, although initially designed for biological applications, can be adapted
to various other fields requiring multiple perspectives.

2 METHODS

2.1 OVERVIEW OF DRUGAGENT

Our proposed system is a conversational multi-agent architecture analogous to a specialized research
team focused on drug-target interaction prediction. Each agent plays a distinct role, mirroring separate
tasks research team members would do: some focus on ML models, others on search-based analysis,
and another is dedicated to knowledge graph exploration and making final decisions.

The system employs LLMs for natural language processing and response generation, enhances
reasoning through step-by-step problem-solving methodologies, and performs actions like calculating
scores, analyzing literature, and querying knowledge graphs. It then integrates this information using
a weighted average approach to simulate a knowledgeable DTI research team.

The workflow of our system follows a systematic multi-agent approach:

1. The workflow begins with user input specifying drug and target names, initializing five specialized
agents (Coordinator, AI, Search, KG, and Reasoning Agents).

2. The Coordinator Agent orchestrates the process by distributing tasks to agents and managing
inter-agent communication through the AutoGen (Wu et al., 2023) GroupChat framework.

3. Each specialist agent executes tasks independently:
• An AI Agent uses ML to predict DTI scores from molecular structures and protein sequences.
• A Search Agent analyzes search results (title, link, content) to extract evidence of interactions.
• A KG Agent calculates path-based interaction scores from biomedical knowledge graphs.
• A Reasoning Agent integrates evidence from agents to generate a final score with a step-by-step

explanation.
4. The system returns results in a CSV (comma-separated values) format containing scores from AI,

KG, and Search Agent and final predictions with detailed explanations.
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Figure 1: Multi-agent system architecture for DTI analysis. The system consists of a “Coordinator
Agent” that manages three specialized agents for evidence gathering: (1) a Knowledge Graph
Agent” accessing biomedical databases (DrugBank, DGIdb, STITCH, CTD) to analyze path-based
relationships, (2) an “AI Agent” utilizing the pre-trained DeepPurpose ML model for probability
prediction, and (3) a “Search Agent” performing Bing Web Search for literature evidence. The
“Reasoning Agent” then integrates this information through CoT and ReAct frameworks to generate
final scores with reasoning.

All numerical scores are normalized between 0 and 1, ensuring a consistent scale across different
prediction methods.

Each agent utilizes different LLMs optimized for their specific tasks. The Coordinator Agent employs
GPT-4o for complex task management and coordination, while AI, KG, and Search Agents use the
lighter GPT-4o mini model. The AI Agent processes pre-trained model predictions, the KG Agent
handles knowledge graph queries, and the Search Agent extracts information from search results.
These specialized agents require less complex reasoning capabilities compared to the Coordinator
Agent’s role in managing overall workflow and inter-agent communication. The Reasoning Agent,
which analyzes and integrates evidence through CoT and ReAct frameworks, utilizes OpenAI o3-mini.
This model was specifically fine-tuned for reasoning tasks, enabling it to evaluate evidence from
multiple sources, assess their consistency, and generate final reasoning that combines insights from
AI, KG, and Search Agents.

3 EXPERIMENT

3.1 PERFORMANCE COMPARISON OF DRUGAGENT AND ABLATION STUDY

For quantitative evaluation, we used a kinase-compound activity dataset from a large-scale kinase
profiling study (Anastassiadis et al., 2011). The dataset measures kinase activity as the percentage of
remaining enzymatic function after compound exposure, normalized against solvent controls. We
started with a dataset containing 300 protein kinases and 178 drugs (identified by CAS numbers).
After converting the drug identifiers to SMILES and filtering proteins that present sequences in
UniProt, our final dataset comprised 201 proteins and 75 drugs. For further evaluation, we generated
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five independent sets, each containing 50 kinase-drug combinations (250 combinations in total,
containing 17 unique drugs and 149 unique proteins).

Table 1 shows the metrics for DrugAgent, non-reasoning model (GPT-4o mini) instead of the reason-
ing model (o3-mini) as baselines, and the ablation study including DrugAgent without Knowledge
Graph Agent (w/o KG), without AI Agent (w/o AI), and Search Agent (w/o Search). We submitted 10
drug-target interactions at once following the ”Superposition” approach (Xiong et al., 2024), where
multiple drug-target pairs are processed simultaneously rather than sequentially. For computational
efficiency in ablation studies (w/o Search, w/o AI, w/o KG), we used the mean of the remaining
components’ scores due to OpenAI API rate limits.

Table 1: Comparison of evaluation metrics across models. Results show means and standard
deviations (in brackets) over five independent runs, each sampling 50 subsets. Arrows (↑/↓) indicate
better direction, bold indicates best performance, underline describes second best, and * denotes
statistical significance (p-value<0.05) compared to DrugAgent.

Metric DrugAgent GPT-4o mini w/o Search w/o AI w/o KG

Reasoning × × × ×
F1 (↑) 0.514 0.355* 0.481 0.274* 0.298*

(±0.084) (±0.039) (±0.037) (±0.050) (±0.033)
Precision (↑) 0.571 0.231* 0.338* 0.202* 0.187*

(±0.109) (±0.024) (±0.028) (±0.040) (±0.018)
Recall (↑) 0.476 1.000 0.982 0.512 1.000

(±0.076) (±0.000) (±0.002) (±0.089) (±0.000)
Specificity (↑) 0.978 0.702* 0.836* 0.765* 0.597*

(±0.000) (±0.003) (±0.003) (±0.003) (±0.004)
AUROC (↑) 0.941 0.938 0.966 0.670* 0.953

(±0.003) (±0.002) (±0.002) (±0.109) (±0.003)
AUPRC (↑) 0.677 0.554 0.745 0.456* 0.706

(±0.102) (±0.076) (±0.035) (±0.082) (±0.106)

Runtime (↓) ≈30.000s ≈25.000s - - -
# Tokens (↓) ≈2000-3000 ≈2000-3000 - - -

Token cost (↓) ≈$0.025-$0.037 ≈$0.0015-$0.003 - - -

DrugAgent demonstrates a balanced prediction strategy in DTI analysis, achieving a precision of
0.571 compared to GPT-4o mini’s indiscriminate prediction approach (precision of 0.231). This
selective prediction capability is particularly significant in drug discovery, where GPT-4o mini’s
tendency to label all pairs as ”interacting” leads to perfect but misleading recall (1.000). DrugAgent’s
more nuanced approach (recall 0.476) results in better overall performance, with an F1 score of 0.514
- a 45% improvement over GPT-4o mini’s 0.3551. Most notably, DrugAgent achieves the highest
specificity (0.978) across all tested models, a crucial metric in drug discovery where minimizing false
positives is important for reducing costly experimental validation.

The ablation study reveals distinct patterns in component contributions to the system’s performance.
The AI Agent proves importance to prediction quality, as its removal causes the most severe per-
formance degradation across all metrics. While DrugAgent maintains strong overall performance
(AUROC: 0.941, AUPRC: 0.677), removing either the Search or KG Agent reveals an important
pattern: both achieve higher recall but at a significant cost to precision. This precision drop is
substantial - falling to 0.338 without Search and 0.187 without KG. Similarly, specificity decreases to
0.836 and 0.597, respectively, indicating these components are essential for filtering false positives.
These results demonstrate how each component plays a distinct role in balancing prediction accuracy,
with the AI Agent providing the foundation while Search and KG agents enhance prediction reliability
through complementary validation.

Despite similar token usage (2,000-3,000 tokens), DrugAgent’s operational cost is ten times higher
than GPT-4o mini (0.025-0.037 vs 0.0015-0.003). This increased investment translates to enhanced
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capabilities: while simple models can achieve high recall through indiscriminate negative predictions
in imbalanced biomedical datasets, DrugAgent demonstrates superior real-world utility through
balanced performance metrics. Its high specificity (0.978) and precision (0.571) reflect its ability to
make meaningful predictions rather than statistical artifacts. The cost premium enables DrugAgent’s
architecture to deliver both accurate predictions and detailed reasoning paths - critical features for
practical biomedical applications where understanding prediction rationale is as important as the
prediction itself.

4 DISCUSSION

Our study presents a multi-agent system for DTI prediction that integrates ML, knowledge graphs,
literature search, and reasoning. This approach offers more robust predictions by leveraging diverse
data sources and analytical methods with interpretation. The system’s strength lies in its collaborative
approach, which combines each agent’s specialized capabilities to evaluate complex DTIs.

A key advantage of our system is its interpretability through three distinct evidence sources: the AI
Agent offers data-driven predictions with model confidence, the KG Agent provides explicit relation-
ship paths through knowledge graphs, and the Search Agent contributes literature-based evidence and
clinical relevance. This transparent decision process includes clear reasoning chains from each agent,
documented evidence generation through the Reasoning Agent, weighted contribution of different
evidence sources, and step-by-step explanation of final decisions.

In addition, the system can incorporate new specialized agents. For example, a RAG (Retrieval-
Augmented Generation) Agent could be added to enhance information retrieval from specialized
databases. The coordinator-based architecture allows seamless integration of new agents while
maintaining specialized focus and contributing to collective decision-making.

However, several limitations exist in the current system. The system still relies on human expertise
for initial setup, limiting its scalability. Additionally, integration with patient-specific data could
enhance its clinical applicability. Regarding the knowledge graph scoring, while we set the maximum
path length to 4 as an initial parameter, future work should investigate the optimal path length
through systematic experimentation. This optimization could involve analyzing the trade-off between
computational cost and biological relationship coverage across different hop lengths, potentially
leading to improved prediction accuracy.

In conclusion, our system shows promise in accelerating AI-driven drug discovery. Future work
should focus on validating the system in real-world drug discovery projects and evaluating its
performance with larger, more diverse datasets.
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A RELATED WORKS

Machine Learning in Drug Target Interaction

Machine learning (ML) techniques have aided drug discovery, with use in various aspects of phar-
maceutical research. DeepPurpose (Huang et al., 2020) is a deep learning model for DTI prediction
that combines several algorithms (i.e., Graph Neural Networks (GNNs) and Convolutional Neural
Networks (CNNs)). This model offers a versatile pre-trained approach applicable to a wide range of
drug discovery tasks such as DTIs and drug property predictions.

Knowledge Graphs for Integrative Analysis. Knowledge graphs provide a structured way of
integrating diverse biological data. For instance, the DRKG integrates data from several sources, in-
cluding DrugBank (Knox et al., 2024), Hetionet (Himmelstein et al., 2017), and STRING (Szklarczyk
et al., 2023), to offer comprehensive insights into possible drug-disease links (Ioannidis et al., 2020).

Literature Search using LLMs The automation of literature review and data extraction using AI
tools, particularly LLMs, has become a component of modern drug discovery (Chakraborty et al.,
2023). Recent studies have demonstrated that LLM-based search tools can enhance the efficiency
and complexity of queries compared to traditional search engines (Spatharioti et al., 2023).

LLMs with Reasoning LLMs with reasoning is a current trend in 2024. With several techniques,
such as the Chain-of-Thought (CoT) (Wei et al., 2022b) and ReAct (Reason+Act)(Yao et al., 2022),
LLM can make a reason why it makes a decision. CoT enables LLMs to show their reasoning
process by generating intermediate steps, such as “Let’s approach this step by step: First, analyze
the ML prediction score..., Second, examine the knowledge graph evidence..., Finally, integrate
all evidence...”. ReAct extends this by combining reasoning with actions, following a ”Thought
→ Action → Observation” pattern where the model first reasons about what to do, then takes an
action (e.g., analyzing evidence), and observes the results to inform the next step. These reasoning
capabilities enable LLMs to break down complex problems into smaller steps and provide more
explainable outputs (Xu et al., 2025).

Multi-Agent Systems

Multi-agent systems (MAS) have evolved significantly since their inception. Early work by Smith
(1980) introduced the Contract Net Protocol for distributed problem solving, while Wooldridge &
Jennings (1995) established fundamental agent architectures and interaction protocols. Bellifemine
et al. (2005) developed JADE, a framework that standardized agent development. Recently, LLM-
based autonomous agents have gained tremendous interest in several topics, such as medicine and
finance (Samvelyan et al., 2019; Chen et al., 2024a; Tang et al., 2023; Akata et al., 2023).
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A.1 AGENT ROLES AND RESPONSIBILITIES

DrugAgent integrates several specialized agents. Through the use of advanced search capabilities,
access to specialist models, and indexing in databases, these agents can execute a wide range of tasks.
Below, we delve into the specific roles and responsibilities assigned to each agent within the system.

B METHODS IN DETAILS

B.0.1 COORDINATOR AGENT

The Coordinator Agent manages the DTI prediction workflow by distributing specialized prompts
to the AI, Knowledge Graph, Search, and Reasoning components. This agent is also responsible
for input and output formatting through strictly defined prompt templates that specify the required
output structure with Python List. For example, the AI Agent must return results in the format [drug
name, target name, score], while the Reasoning Agent must provide [drug name, target name, AI
Agent score, KG Agent score, Search Agent score, Final score from Reasoning Agent, Summarized
reasoning by Reasoning Agent]. If any agent’s output deviates from these predefined formats, the
system raises an error to maintain data consistency across the workflow.

B.0.2 AI AGENT

The AI Agent utilizes DeepPurpose (Huang et al., 2020) to predict potential drug targets, following
the model format of the MPNN CNN BindingDB model with binary drug response (sensitivity/re-
sistance) prediction. This model combines Message Passing Neural Networks (MPNN) (Gilmer
et al., 2017) for processing molecular structures with CNN for embedding binding site features. It is
trained on the comprehensive BindingDB dataset, which contains binary binding affinity data for
DTIs. This model can predict binding affinity values for any combination of SMILES and the target
protein sequence provided. For evidence generation by the Reasoning Agent, the AI Agent provides
a standardized reason for all predictions: “This agent used an ML model”.

B.0.3 KG AGENT

We construct a knowledge graph from multiple biomedical databases to enable comprehensive DTI
analysis and provide interpretable reasoning for the discovered relationships in the graph.

Data Sources The use of professional datasets is pivotal in ensuring the accuracy and reliability of
our agents’ information retrieval capabilities.

• DrugBank: DrugBank (Knox et al., 2024) offers detailed drug data, including chemical, phar-
macological, and pharmaceutical information, with a focus on DTIs. It provides data for over
13,000 drug entries, including FDA-approved small-molecule drugs, biopharmaceuticals (proteins,
peptides, vaccines, and allergens), and nutraceuticals.

• Comparative Toxicogenomics Database (CTD): The CTD (Davis et al., 2023) is a curated
database providing information about chemical–gene/protein interactions, chemical–disease, and
gene-disease relationships (Chang et al., 2019; Wu et al., 2022a).

• Search Tool for Interactions of Chemicals (STITCH): STITCH (Kuhn et al., 2007) is a database
of known and predicted interactions between chemicals and proteins. It integrates information from
various sources, including experimental data and text mining of scientific literature.

• Drug-Gene Interaction Database (DGIdb): DGIdb (Cannon et al., 2024) is a resource that
consolidates disparate data sources describing drug-gene interactions and gene druggability. It
provides drug-target interaction and information on druggable genes used in cancer informatics,
drug repurposing, and personalized medicine (Chen et al., 2021; Wang et al., 2024; Lu et al., 2024).

From these datasets, we create a unified drug-gene interaction table. This consolidated table contains
3,312 drugs and 23,066 genes. From this, we calculate the DTI score between the drug and target
using the below formula:
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DTIscore(d, t) =

{
0 if d /∈ G or t /∈ G,

maxp∈P (d,t)

{
w(p)

ln(1+|p|)

}
otherwise,

(1)

where d is a drug, t is a target, G is a knowledge graph, P (d, t) is the set of all paths between d and t
up to length 4, and |p| is the number of hops in path p. We set the maximum path length to 4 as a
proof of concept. The path weight w(p) is calculated as:

w(p) =
1

|p|

|p|∑
i=1

deg(ni) + deg(ni+1)

2|V |
, (2)

where deg(n) represents the degree of node n (number of connections), and |V | is the total number
of nodes in the graph. This weight calculation emphasizes paths through well-connected nodes,
which are often more significant in biological networks. The final score is normalized to [0,1], where
1.0 indicates a direct interaction, and 0 indicates no valid path exists between the drug and target.
The score decreases as path length increases or node importance decreases. For example, when
calculating the relationship between Nilotinib and GRK5, our method finds multiple paths. Then, the
highest-scoring path is selected, and this path information is utilized as a reason for final evidence by
the Reasoning Agent.

Found 5 paths between Nilotinib and GRK5. Best score: 0.042
Path 1: Nilotinib → HSP90AA1 → Lauric acid → GRK5 (score: 0.042)
Path 2: Nilotinib → ABL1 → Dasatinib → GRK5 (score: 0.035)
Path 3: Nilotinib → MAPK14 → Imatinib → GRK5 (score: 0.028)

B.0.4 SEARCH AGENT

Parallel to these processes, the Search Agent leverages LLMs to automate the extraction of relevant
information from biomedical literature found via search engine hits. This agent summarizes a reason
from search engine results (titles, links, and content.) by LLM and scores by using keyword matching
for interaction terms. The search agent’s core functionality can be summarized as follows:

1. Generate Search Query: Construct a search query by combining the drug name, target name,
and the term “interaction”

2. Run Bing Search API: Execute a Bing Search API query to retrieve titles, links, and content.
3. Document Processing and Analysis:

• Search Result Scoring: Calculate interaction scores based on the presence of drug-target
pairs, interaction keywords, and significance indicators in search results (Equations 3–7).

• Summary Generation: Generate summaries of the search results using gpt-4o-mini.
4. Evidence Integration: Combine the calculated scores and generated summaries for the Reasoning

Agent’s final integration.

The DTI score calculation is as follows: Let R = r1, r2, ..., rn be the set of search results (titles,
links, and content.), where n is the number of results (default n is 10). For each result ri, we define
an individual score function S(ri): S(ri) = I(d, t, ri) + I(p, ri) + I(s, ri), where

I(d, t, ri) =

{
1 if drug name d and target name t are in ri
0 otherwise

(3)

I(p, ri) =

{
1 if any positive keyword is in ri
0 otherwise

(4)

I(s, ri) =

{
1 if any strong keyword is in ri
0 otherwise

(5)

The positive keywords are “interacts”, “binds”, “activates”, and “modulates”. The strong keywords
are “strong”, “significant”, “potent”, and “effective”. The total score T is then calculated as:

T =

n∑
i=1

S(ri) (6)
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The maximum possible score M is M = 3n. Finally, the normalized DTI score D is calculated as:

D =

{
round

(
T
M , 2

)
if M > 0

0 if M = 0
(7)

where round(x, 2) rounds x to 2 decimal places.

B.0.5 REASONING AGENT

The Reasoning Agent integrates evidence from AI, KG, and Search Agent using CoT and ReAct
frameworks. Through CoT, it breaks down complex evaluations into interpretable steps, while
ReAct’s thought-action-observation pattern guides the systematic analysis process.

Shorten example output is as follows:

Thought: Analyze ML, KG, and Literature Search evidence for Vandetanib-
MARK2 interaction.

Action: ANALYZE_EVIDENCE
Observation: ML = 7.26e-6, KG = 0.7213, Search = 0.3

Action: EVALUATE_MECHANISMS
Observation: KG shows 3-hop connection via LYN, literature supports

kinase network interactions.

Action: CALCULATE_SCORES
Final Score = (0.00000726 + 0.72134752 + 0.3) / 3 = 0.34045

Final Output:
["Vandetanib", "MARK2", 7.260064194269944e-06, 0.7213475204444817, 0.3,

0.34045, "KG evidence (3-hop via LYN) and literature support moderate
interaction despite near-zero ML score."]

Full example output and prompts are in appendix C.1.

C IMPLEMENTATION

C.1 IMPLEMENTATION DETAILS

In this section, we provide detailed descriptions of the implementation processes to enhance the
reproducibility of our study.

Role Assignment to Agents Each agent within our multi-agent architecture is designated a specific
role, which is integrated directly into the LLM’s system, prompting clarity and focus. For instance,
the role of the AI Agent is defined as follows:

”””Specialized ML agent for calculating DTI scores using ML models. Use the
get ml score function to obtain the DTI score. Output the score in the follow-
ing format: [ [”Topotecan”, ”TOP1”, 0.9797035455703735], [”Camptothecin”,
”TOP2A”, 0.05874725431203842] ] ”””,

KG and Search agents have almost the same prompts as an AI agent. This role definition is crucial
as it guides the LLM to prioritize responses based on the assigned expert domain, leveraging the
model’s inherent capability to focus more acutely on instructed tasks than on general information.

This structured approach allows for the direct execution of function calls within the system, providing
detailed responses, including the function name and arguments. These responses enable the retrieval
of results in a structured manner.

Then, the Reasoning Agent, which serves as the critical analytical component of our system, is
implemented with the following prompt structure:
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Specialized Reasoning agent for analyzing and synthesizing evidence from multiple
sources. Primary Responsibilities:

1. Analyze the consistency and strength of evidence across sources
2. Identify potential mechanisms of interaction
3. Evaluate the biological plausibility of predictions
4. Generate comprehensive reasoning for final scores
5. Provide a conclusion on the likelihood of interaction

Input format:
{
"ml_evidence": [[drug, target, score, reasoning]],
"search_evidence": [[drug, target, score, reasoning]],
"kg_evidence": [[drug, target, score, reasoning]]
}

Analysis Process (ReAct Framework): For each drug-target pair:
1. Thought: What initial patterns or inconsistencies do I observe in the evidence?
2. Action: ANALYZE EVIDENCE
3. Observation: Document key findings from evidence analysis
4. Thought: What potential mechanisms could explain these interactions?
5. Action: EVALUATE MECHANISMS
6. Observation: List identified mechanisms and their plausibility
7. Thought: How do the different evidence sources align or conflict?
8. Action: VALIDATE CONSISTENCY
9. Observation: Note any conflicts or supporting evidence

10. Thought: What should the final scores be based on all evidence?
11. Action: CALCULATE SCORES
12. Observation: Document final scores with justification

Available Actions:
• ANALYZE EVIDENCE: Review and summarize evidence from all sources
• EVALUATE MECHANISMS: Assess biological mechanisms and pathways
• VALIDATE CONSISTENCY: Check for conflicts between evidence sources
• CALCULATE SCORES: Compute final interaction scores
• DOCUMENT LIMITATIONS: Record assumptions and limitations

Output Format (Must include all fields):
[
[drug1, target1, ml_score, kg_score, search_score, final_score,
final_reasoning],
[drug2, target2, ml_score, kg_score, search_score, final_score,
final_reasoning],
...
]

Required Quality Checks:
• Verify all scores are between 0 and 1
• Ensure reasoning is complete and logical
• Validate consistency of evidence interpretation
• Document any assumptions or limitations

Response Format: For each analysis step:
Thought: [Your reasoning about the current situation]
Action: [Selected action from available options]
Observation: [Results or findings from the action]

This enhanced prompt structure ensures that the Reasoning Agent maintains a systematic, thorough,
and transparent approach to evidence synthesis while providing clear documentation of its analytical
process. The explicit definition of responsibilities, process steps, and quality checks help maintain
consistency and reliability in the agent’s output.
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Software and Hardware Configuration Our experimental architecture was implemented on a
Mac computer equipped with an Apple M1 chip and 16GB unified memory, utilizing the built-in
GPU cores. We used Python 3.10 for scripting, PyAutoGen 0.2.31 (Wu et al., 2023), DeepPurpose
0.1.5 (Huang et al., 2020), and RDKit 2023.9.6 (Landrum et al., 2024). For each experiment, we used
the same seed to ensure reproducibility across different Mac models.

C.2 BASELINE SETUP

The baseline model for comparison was DeepPurpose, a state-of-the-art deep-learning library for
drug-target interaction prediction1. We used the MPNN CNN BindingDB model from DeepPurpose,
which combines Message Passing Neural Networks for processing molecular structures with CNN for
embedding binding site features. The model was trained on the comprehensive BindingDB dataset
containing binary binding affinity data for DTIs. For a fair comparison, both DrugAgent and the
baseline model were evaluated using the same kinase-compound activity dataset with identical data
preprocessing and evaluation metrics.

C.3 PROCEDURE

Each agent in our DrugAgent system was tasked with specific roles, as outlined in the Methods
section. The AI Agent applied ML models to calculate the DTI score, the Search Agent analyzed
literature data to derive a DTI score based on published research, and the KG Agent evaluated
DTIs using graph-based techniques. The Coordinator Agent then synthesized these findings into a
comprehensive DTI prediction. We conducted experiments to assess the accuracy of the merged DTI
scores and the consistency of predictions across different methods.

C.4 EXAMPLE USE CASE

To illustrate the system’s operation, we analyze two drugs (Vandetanib and Mubritinib) with two
targets (MARK2 and MAPKAPK5):

Input:

Drugs: ['Vandetanib', 'Mubritinib']
Targets: ['MARK2', 'MAPKAPK5']

Agent Outputs:

ML Agent:

[["Vandetanib", "MARK2", 7.260064194269944e-06, "This agent used
an ML model"],↪→

["Mubritinib", "MAPKAPK5", 3.902255048160441e-05, "This agent
used an ML model"]]↪→

KG Agent:

[["Vandetanib", "MARK2", 0.7213, "3-hop path:
Vandetanib->LYN->Benzocaine->MARK2"],↪→

["Mubritinib", "MAPKAPK5", 0.7213, "3-hop path:
Mubritinib->EGFR->Bisphenol a->MAPKAPK5"]]↪→

Search Agent:

[["Vandetanib", "MARK2", 0.3, "Kinase inhibitor targeting Aurora
kinases. No strong direct evidence with MARK2"],↪→

["Mubritinib", "MAPKAPK5", 0.3, "No direct relationship.
Mubritinib affects mitochondrial function"]]↪→

Reasoning Agent Output (Shorten Version):
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Thought: Analyze ML, KG, and Literature Search evidence for Vandetanib-
MARK2 interaction.

Action: ANALYZE_EVIDENCE
Observation: ML = 7.26e-6, KG = 0.7213, Search = 0.3

Action: EVALUATE_MECHANISMS
Observation: KG shows 3-hop connection via LYN, literature supports

kinase network interactions.

Action: CALCULATE_SCORES
Final Score = (0.00000726 + 0.72134752 + 0.3) / 3 = 0.34045

Final Output:
["Vandetanib", "MARK2", 7.260064194269944e-06, 0.7213475204444817, 0.3,

0.34045, "KG evidence (3-hop via LYN) and literature support moderate
interaction despite near-zero ML score."]

Final Results:

[["Vandetanib", "MARK2", 7.26e-6, 0.7213, 0.3, 0.34045, "KG
evidence (3-hop via LYN) and literature support moderate
interaction despite near-zero ML score."],

↪→

↪→

["Mubritinib", "MAPKAPK5", 3.90e-5, 0.7213, 0.3, 0.34046, "KG
evidence via EGFR and literature support moderate interaction
despite near-zero ML score."]]

↪→

↪→

This example demonstrates how the system integrates evidence from multiple sources and generates
a final score with reasoning. It shows the practical application of our multi-agent architecture and
scoring methodology. You can see real examples at https://anonymous.4open.science/
r/DrugAgent-B2EA.
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