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Abstract

Automated detection of nanoscale defects in materials imagery is challenging due
to scarce labels, high morphological variability, and strict latency requirements in
inline inspection. We present UFSMatAD, a unified, parameter-efficient framework
for few-shot, multi-class anomaly detection in SEM and wafer AOI images. UFS-
MatAD replaces decoder feed-forward networks with Adapter Blocks configured
with two bottleneck sizes and uses deterministic routing at inference to ensure
stable optimization and predictable latency. A lightweight reconstruction head pro-
duces pixel-level maps and image-level scores. With the backbone frozen and only
the decoder and head trainable, UFSMatAD matches transformer and diffusion
baselines while substantially reducing trainable parameters and computational cost,
and it remains robust under SEM-to-AOI domain shift. These results indicate that
deterministic adapter mixtures provide a practical, scalable path to generalizable
and resource-efficient industrial inspection.

1 Introduction

Automated defect detection is central to modern materials science and manufacturing, where micro-
scopic irregularities degrade performance, reduce yield, and compromise safety in industrial and
biomedical applications. Scanning Electron Microscopy (SEM) provides nanometer-scale resolution
to capture defects, such as voids, beads, cracks, and films, in nanofibrous and composite materials [1].
Yet interpreting SEM images at scale remains difficult due to morphological variability, operator bias,
and the high cost of expert annotations, motivating anomaly detection (AD) frameworks that can
generalize across material types.

Traditional approaches relied on hand-crafted features to model normal structures and flag devi-
ations [1]]. Although sometimes effective on small datasets, they struggle with high intra-class
variability and do not scale to production pipelines. Recent deep methods leverage CNNs and
transformers for SEM classification and segmentation; dimensionality reduction (e.g., SVD/NMF)
can improve efficiency and interpretability by reducing redundancy and revealing latent structure [2].
Large vision models tailored to materials, such as MatSAM [3]], further suggest that domain-aware
prompting can enable zero- or few-shot microstructure extraction in microscopy. However, three
practical challenges persist: (i) data scarcity and imbalance—few labeled anomalies per class; (ii)
generalization across categories and domains—defects vary widely in shape, scale, and texture, and
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deployment data often shift from development data; and (iii) efficiency and deployment—dense
attention and large feed-forward blocks raise latency and memory, complicating inline inspection.

Many AD systems adopt a single-class paradigm that trains one model per defect type or product [4-
8ll. While straightforward, this approach is costly to maintain across many classes. Multi-class AD
(MCAD) systems such as UniAD [9], HVQ-Trans [10], and DiAD [11] aim to unify categories using
transformers or diffusion models, but their parameter and FLOP budgets can be high at deployment.
Mixture-of-Experts variants (e.g., MOEAD [12]) reduce average compute by activating subsets of
experts. Yet, stochastic routing can introduce training variance and unpredictable inference cost,
which is undesirable in real-time inspection.

This work. We propose UFSMatAD, a unified, parameter-efficient framework for few-shot, multi-
class AD in SEM and wafer AOI images. UFSMatAD replaces decoder feed-forward networks with
Adapter Blocks, each of which uses exactly two bottleneck adapters. During training we allow soft
competition between the two adapters; at inference we use deterministic top-1 routing to ensure
stable behavior and predictable latency. A lightweight reconstruction head produces pixel-level maps
and image-level scores. To minimize footprint, the backbone is frozen and only the decoder (with
two adapters per block) and the head are trainable. In all experiments, we report both trainable
and overall parameters, together with FLOPs, to make deployment costs explicit. Empirically,
UFSMatAD achieves competitive accuracy relative to transformer and diffusion baselines while
substantially reducing the trainable parameter budget and compute, and it maintains robustness under
the SEM— AOI domain shift.

Position in the ecosystem. UFSMatAD complements domain-tailored segmentation with large
models (e.g., MatSAM [3]]) by providing a lightweight detector/segmenter for low-label, multi-class
AD under deployment constraints [9-H11]]. By freezing the backbone and adapting only small adapter
pathways with deterministic routing, UFSMatAD targets inline inspection scenarios with strict latency
and memory ceilings.

Contributions.

* A unified few-shot MCAD framework for SEM and wafer AOI that replaces decoder FFNs
with Adapter Blocks (two bottlenecks per block) and employs deterministic routing at
inference for predictable latency.

* A lightweight reconstruction head for joint pixel- and image-level scoring; only the decoder
and head are trainable, and we report trainable vs. overall parameters to clarify deployment
costs.

» Comprehensive evaluation across nanofiber SEM and wafer-style AOI benchmarks showing
competitive accuracy with substantially reduced trainable parameters and compute, and
robustness under cross-domain deployment.

2 Related Work

Unsupervised anomaly detection (AD) is central to industrial inspection and materials science,
where reliable detection of micro/nano-scale defects directly impacts yield and safety. In wafer
manufacturing, targets span unpatterned defects (scratches, particles) and patterned defects (opens,
shorts, line contamination); the field has transitioned from manual inspection to machine vision and
deep learning to meet accuracy and throughput requirements |13} [14].

2.1 Sparse and Embedding-Based AD

Early SEM AD relied on local patch models and sparse dictionaries (e.g., nanofibers with beads/films),
which worked on narrow domains but were brittle under morphology shifts [[1]. Embedding-based AD
leverages ImageNet features with nonparametric memory or density modeling, such as PatchCore and
DifferNet [15} [16]. These methods perform well on natural-image benchmarks but remain sensitive
to domain shifts between natural textures and SEM/wafer imagery, limiting transferability without
domain adaptation.
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Figure 1: Overview of UFSMatAD. (1) A frozen backbone extracts multi-scale features. (2) A
denoising decoder refines tokens by replacing FFNs with an adapters block; mild training-time
feature jittering (spatial + Fourier) improves robustness. (3) Pixel-level anomalies are localized via
reconstruction error and then bilinearly upsampled and Gaussian-smoothed. (4) Image-level scores
combine peak and coverage statistics using a weighted max—mean—TopK aggregation.

2.2 Dimensionality Reduction in Deep Pipelines

SEM classification studies show that SVD/NMF can compress high-dimensional representations and
improve efficiency while preserving discriminative power across CNN backbones [2]]. Reported gains
include reductions in speed and energy. However, these pipelines target classification and do not
yield the pixel-level residual maps required by reconstruction-style AD.

2.3 Foundation Models and Prompting for Microscopy

Prompt-driven adaptations of SAM for materials microscopy (MatSAM) demonstrate broad general-
ization across OM/SEM datasets via shape-aware prompt fusion and domain-aware post-processing,
rivaling or surpassing UNet/TransUNet on several segmentation tasks [3]. Yet such approaches are
optimized for segmentation rather than anomaly detection, and their dense attention and prompt
generation can hinder inline latency at scale.

2.4 Single-Class vs. Multi-Class AD

Synthesis- and reconstruction-based single-class pipelines (e.g., DREM and masked/diffusion vari-
ants) often require per-class training [4-8], and transformer/diffusion backbones introduce large
FFNs and global attention that raise compute cost [[10} [11]]. Multi-class AD (MCAD) frameworks
such as UniAD [9] unify categories with a single model, improving scalability but still inheriting
heavy decoder blocks that stress real-time deployment.

2.5 MoE-Based Methods

MOoEAD reduces compute by replacing decoder FFNs with sparsely activated experts for multi-
class AD [12], but its stochastic routing and load-balancing can cause training instability and
non-deterministic latency. We instead use lightweight Adapter Blocks with deterministic fusion
(two bottleneck sizes by default), yielding stable optimization, predictable latency, and a small
trainable footprint while supporting unified AD across SEM nanofibers and wafer-style AOI via a
reconstruction head for pixel maps and an image-level score.



3 Proposed Method

3.1 Overview

We propose UFSMatAD, a parameter-efficient framework that replaces decoder feed-forward net-
works (FFNs) with adapter blocks and performs end-to-end, reconstruction-based anomaly scoring.
We use lightweight adapters with sparse, per-token routing via a hard Gumbel-Softmax, yield-
ing stable optimization and predictable latency—properties critical for inline SEM/AOI inspection.
The model follows a compact backbone — denoising decoder — unified reconstruction—scoring
pipeline, aligned with recent efficient unified AD designs that combine mild feature perturbations,
neighbor-masked attention, and a reconstruction objective.

3.2 Stage 1: Multi-scale Feature Extraction
Given an input image I € RHEXWX3 4 frozen backbone extracts spatial features:

X = Backbone(I), X € RCrsxH'xW" (1)
After resizing/concatenation, features are tokenized and projected to width D:

Fi, = TokenizeProj(X), Fi, e RIXP. L — H'W'. )

3.3 Stage 2: Denoising Decoder with Adapter block

Feature perturbations. To enhance robustness across devices and domains (e.g., SEM—AOI), we
inject mild perturbations before decoding:

Fin = Fin + € + —F_l(ef@]:(Fin))y (3)

where €, ~ N (0, 0%) (spatial noise) and € jitters high-frequency bands in the Fourier domain; F and
F~1 denote the (inverse) Fourier transform and ® is the Hadamard product.

Neighbor-Masked Attention (NMA). Inspired by UniAD [9]], we use NMA, in which a learnable
query attends only to local neighborhoods, thereby reducing leakage from anomalous regions. We
mask a fixed h,, X w,, window on the h x w token grid around each query (a small window in all
experiments), suppressing identity copying while preserving nonlocal context:

FU = NMA(q, Fin, Fin), )
F® = LN(FWY + Fy,), Q)
FG) = NMA(F®, F*, F*), (6)
F® = LN(F® + F@). (7

Here F* is the previous block output; attention and adapter weights are shared across blocks to keep
the decoder compact, with per-block LayerNorms.

Adapter block. Each adapter is a normalized bottleneck with LayerNorm at the input and output
and a learnable scale s; by default, we use two bottleneck widths d € {16, 32} to trade coarse vs.
fine refinements with negligible compute overhead:

U=LN (F(4>) , ®)
hy, = GELU(WY“)U) . W R ©)
Vi = ng) Dropout(hg), W;k) eR%*D (10)
A (F<4>) = 51 LN(y) . (11)



Sparse routing via Gumbel-Top1 (training). A linear gate produces per-token adapter logits; a
hard Gumbel-Softmax selects exactly one adapter per token:

G =FHW, e REXK, (12)
Z = GumbelSoftmax(G /7, hard = True) € {0, 1}7**, (13)
T
AAdapterBlock(F(4)) - [Ak*(l)(FYl)) e Ak*(L)(F(I,4))] 3 (14)

where k* (i) = arg maxy, Z; , and gradients use the straight-through estimator. The decoder block
output is

Faec = F(4) + AAdapterBlock(F(4)) . (15)
3.4 Unified Reconstruction and Scoring

Reconstruction head. Decoder outputs are projected back to the backbone channel space and
reshaped:

F = OutProj(Fye.) € RCmxH W' (16)
Training objective: MSE + cosine dissimilarity. Let (-,-) denote the channel-wise inner product
and || - || the £ norm along channels. We minimize
2 . (A,B)
Licc = HX—F|2 +a(1—cos(X,F)), cos(A,)B) = —————"—— (17)
—_— [All2 [IBll2 + €
MSE

where o > 0 balances spatial fidelity and semantic alignment; averages are taken over spatial
locations and the batch.

Pixel map and post-processing. We compute a pixel-level anomaly map using only reconstruction

magnitude:
o112
Spix = /|| X—F|];. (18)

The map is upsampled to input resolution via bilinear interpolation and lightly Gaussian-smoothed to
stabilize AUROC thresholds.

Image-level score. We aggregate peak and coverage statistics with fixed convex weights:

3
Simg = w1 max(Spix) + wemean(Spix) + ws TopKMean(Spix), Zwl =1. (19
i=1

Training and inference. Training. We train on normal images only. Inputs are tokenized and
projected to Fy,, then mildly perturbed with spatial Gaussian noise and Fourier-band jitter. The
denoising decoder (NMA + Adapter Block with Gumbel-Top! routing; Sec. [3.3) processes these
perturbed tokens and produces reconstructions. Parameters are optimized end to end using the
reconstruction objective L. (Eq. .

Inference. At test time, we disable all perturbations and run the same model deterministically on
both normal and anomalous images. We report the pixel-wise anomaly map Sy« (Eq. and the
image-level score Simg (Eq.[T9).

4 Experiments

4.1 Benchmarks and Metrics

We evaluate UFSMatAD on (i) Nanofiber SEM Defect [1]], a high-resolution SEM set with
beads/voids/film-like defects under scarce labels and large morphology variance, and (ii) Wafer AOI
(Texture-AD) [17], wafer-style texture anomalies with pixel-level masks across 14 subclasses and
> 14k samples. We report AUROC (%) at image (AUROCI) and pixel (AUROCYP) levels; anomaly
maps come from decoder reconstructions, bilinearly upsampled and Gaussian-smoothed (o ~1.0)
unless noted. Unless noted, training uses normal-only images; few-shot refers to the number of
normal support samples per category.



Table 1: Few-shot anomaly detection on NanoFiber SEM [1]] and Wafer AOI [[17]. We report AUROC
(%) at the image level (AUROCI) and pixel level (AUROCp) under 1/2/4-shot settings.

Dataset Metric Few-1 Few-2  Few-4
NanoFiber SEM  AUROCi 74.20 76.40 77.00
AUROCp 74.90 90.00 97.50

Wafer AOI AUROCi 74.20 76.40 80.00
AUROCp 80.10 82.30 85.40

Table 2: Results on Nanofiber SEM Defect [1]] (4-shots) and Wafer AOI [17]] (4-shots). We report
AUROC (%) at image level (AUROC:) and pixel level (AUROCYp). The last column is the average of
the four AUROC numbers. In tables, the best score is bold and the second best is underlined.

NanoFiber SEM (few-shot) Wafer AOI (few-shot) Avg.

Method AUROCi  AUROCp  AUROCi AUROCp AUROC
UniAD [9] 75.0 96.3 78.8 84.8 83.7
DiAD [11] 74.6 95.6 79.0 85.0 83.6
MoEAD [12] 76.7 97.2 79.8 85.2 84.7
UFSMatAD (ours)  77.0 975 80.0 85.4 85.0

4.2 Training Protocol and Implementation

All images are resized to 224 x 224 and normalized with ImageNet statistics. The encoder backbone
is frozen; only the decoder and reconstruction head are trainable, and our adapter block replaces every
Transformer FFN. The decoder has four layers, eight heads, and a hidden size of 256; Neighbor-
Masked Attention (NMA) is used in both self- and cross-attention (Sec. [3.3). Attention and adapter
weights are shared across layers to keep the decoder compact; LayerNorms are per-block. Adapter
configuration: two bottlenecks (d € {16, 32}). The AdapterRouter is trained with Gumbel-Top1;
at inference, we use deterministic routing (no perturbations) for predictable latency. Optimization:
AdamW (Ir 2x 10~%, weight decay 10~*), StepLR with y=0.1 every 800 epochs, gradient clipping
(max-norm 0.1), up to 500 epochs with validation every 25 epochs, batch size 128 on a single
RTX 4090. Objective: hybrid reconstruction

L= ||Frec - Falign”% + 04(1 - COS(FFEC7 Falign))u a=0.5.

Robustness augmentation: Gaussian noise in the spatial domain and Fourier high-frequency jittering
(¢=0.3) during training only; both are disabled at test time.

4.3 Experiments Results

Evaluation protocol. We compare UFSMatAD to embedding-, reconstruction-, diffusion-, and
MoE-based AD baselines. All results report AUROC (%) at the image level (AUROC1) and pixel
level (AUROCYp), averaged over three seeds. In tables, the best score is bold and the second best is
underlined.

Few-shot behavior across domains. Table|l|summarizes 1/2/4-shot performance on NanoFiber
SEM [1] and Wafer AOI [17]. On NanoFiber SEM, UFSMatAD already performs well with a
single support (few-1: 74.2 AUROCi / 74.9 AUROCp). Adding one more support (few-2) yields
a large localization gain (AUROCp 74.9 — 90.0) with a modest AUROC: increase, indicating that
extra spatial cues mainly help pixel-wise mapping. With few-4, AUROCp reaches 97.5, suggesting
near-saturation under very limited supervision. On Wafer AOI, results are competitive at few-1
(74.2 AUROC: / 80.1 AUROCYpP) and improve steadily as shots increase (AUROCp 80.1 — 85.4
from few-1 to few-4). Compared to NanoFiber SEM, wafer gains are more gradual, consistent
with structured grid-like patterns where improvements accrue with additional exemplars. Overall,
UFSMatAD maintains stable image-level detection while scaling pixel-level localization effectively
as shots increase.



Table 3: Compute vs. accuracy with trainable parameters only (frozen EfficientNet backbone).
FLOPs are per forward pass at 2242, Average AUROC is the mean of {NanoFiber SEM AUROCi,
NanoFiber SEM AUROCp, Wafer AUROCIi, Wafer AUROCp} from Table

Method Parameters (M) FLOPs (G) Average AUROC (%)
UniAD [9] 7.7 4.30 83.7
DiAD [[11] 1300 >2200 83.6
MOoEAD [12] 4.9 2.18 84.7
UFSMatAD (ours) 1.3 1.90 85.0

Notes: Counts report trainable decoder/head only; backbones are frozen. UFSMatAD uses two adapters
(d=16, 32), hidden 256; trainable ~1.3M; forward FLOPs ~1.9G. DiAD’s diffusion transformer is substantially
heavier; literature reports ~1.3B trainable params and >2.2T FLOPs.

Table 4: Adapter width ablation (4-shot). Trainable counts only (frozen backbone). FLOPs are per
forward pass at 2242,

NanoFiber SEM (few-shot) Wafer AOI (few-shot) Avg. AUROC (%)
Adapters (d) Params (M) FLOPs (G) AUROCi AUROCp AUROCi AUROCp

{16, 32} (default) 1.30 1.90 71.0 97.5 80.0 85.4 85.0
{16, 32,64, 128} 1.42 1.93 772 97.6 80.2 85.6 85.2

Benchmark comparison (4-shot). Table [Z] compares 4-shot results on both datasets. UFSMatAD
attains the best score on all four metrics and the cross-dataset average. On NanoFiber SEM, it
improves image AUROC over UniAD by +2.0 (77.0 vs. 75.0) and edges out the strongest baseline
on pixel AUROC by +0.3 (97.5 vs. 97.2 for MoEAD). On Wafer AO], it provides consistent gains of
0.2 in both image AUROC (80.0 vs. 79.8) and pixel AUROC (85.4 vs. 85.2) relative to MoEAD.
The mean AUROC reaches 85.0, exceeding MoEAD (84.7), UniAD (83.7), and DiAD (83.6), while
using a frozen backbone with only the decoder and head trainable (=~1.3M params) and deterministic
routing for predictable latency.

4.4 Computational Efficiency and Reproducibility

Trainable scope. Unless stated otherwise, the EfficientNet backbone is frozen; counts in Table
refer to trainable decoder+head parameters. UFSMatAD trains ~1.3M parameters with two adapters
(d=16, 32, hidden 256), compared to 4.9M (MoEAD), 7.7M (UniAD), and ~1,300M (DiAD).

Compute. FLOPs are measured per forward pass at 2242. UFSMatAD requires ~1.90G vs. 2.18 G
(MoEAD), 4.30 G (UniAD), and > 2,200 G (DiAD). For UFSMatAD, forward+backward is ~5.7 G
per image under the default two-adapter setting.

Determinism. At test time we disable perturbations and use deterministic routing (no stochastic
gates), so inference is deterministic. All metrics are the mean over three training seeds affecting only
initialization and data shuffling.

Reproducibility package. We release code and exact configs (YAML), dataset versions/splits,
and full hyperparameters; hardware and counting rules are documented (single RTX 4090; frozen
backbone; trainable counts; measured FLOPS).

4.5 Adapter Width Ablation

We compare two adapter configurations under the 4-shot protocol: a lightweight {16, 32} setting
versus an expanded {16, 32,64, 128} variant. The larger setting increases frainable parameters by
~9% (1.30—1.42 M) and forward FLOPs by ~1.6% (1.90—1.93 G), yielding only a +0.2 average
AUROC gain (Table E]) To prioritize efficiency and predictable latency, we adopt {16, 32} for all
main results.
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Figure 2: NanoFiber SEM examples. Top: input; middle: ground-truth mask; bottom: UFSMatAD
anomaly map (pixelwise score from the decoder reconstruction), bilinearly upsampled, lightly
Gaussian-smoothed, normalized to [0, 1], shown as blue—red (red = more anomalous).
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Figure 3: Wafer AOI visualization (14 classes). Top: input; middle: ground-truth mask; bottom:
UFSMatAD anomaly map (pixelwise score from the decoder reconstruction), bilinearly upsampled,
lightly Gaussian-smoothed, normalized to [0, 1], blue—red (red = more anomalous).

5 Visualization

We provide qualitative results on NanoFiber SEM and Wafer AOI. Each triplet shows the input
image, the ground-truth mask, and the predicted anomaly heatmap produced by our reconstruction
head with the same light post-processing used in evaluation (bilinear upsampling and Gaussian
smoothing). As illustrated in Fig. 2} UFSMatAD yields sharp, well-localized heatmaps that align with
annotated defects, capturing both localized nanoscale irregularities (e.g., broken fibers, voids) and
wafer-scale process defects (e.g., line scratches, pattern misalignments) without excessive activations
on repetitive backgrounds. This behavior is consistent with our decoder design: neighbor-masked
attention (NMA) constrains attention to local neighborhoods, and the deterministic Mixture-of-
Adapters fusion used at inference (Sec. [3.3)), together promoting stable localization under few-shot
supervision. We also include typical failure cases in the supplement: (i) very faint, line-like scratches
under strong illumination drift and (ii) extremely low-SNR SEM regions, where errors manifest as
slightly diffuse maps rather than missed detections. All visualized heatmaps use the same bilinear
upsampling and light Gaussian smoothing as in evaluation for consistency.



6 Conclusion

We presented UFSMatAD, a unified and parameter-efficient framework for few-shot, multi-class
anomaly detection across SEM nanofibers and wafer-style AOI. UFSMatAD replaces decoder FFNs
with a deterministic Mixture-of-Adapters and employs NMA in a compact denoising decoder, yielding
predictable latency and stable optimization with a frozen backbone (trainable parameters ~1.3M).
Experiments show competitive or state-of-the-art AUROC at both image and pixel levels while
using substantially fewer trainable parameters and FLOPs than recent unified AD baselines. Results
further indicate distinct adaptation profiles across irregular SEM textures and structured wafer
grids, consistent with our lightweight reconstruction scoring and mild, training-time robustness
perturbations.

Limitations and future work. UFSMatAD can under-emphasize faint subpixel line defects under
illumination drift, produce slightly diffuse maps in very low-SNR SEM regions, and degrade under
domain shift or rare morphologies. Future work includes frequency-aware priors with self-supervised
denoising, uncertainty calibration, temporal consistency for SEM video, multimodal fusion with pro-
cess metadata/spectroscopy (e.g., EBSD/EDS), and broader cross-domain tests with active sampling.
Beyond 2D, we will extend to materials 3D datasets (micro-CT, XRM, FIB-SEM) via volumetric
backbones and voxel-level metrics, enforcing slice consistency and handling anisotropic spacing with
memory-efficient patch inference and sparse attention.
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