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ABSTRACT

Bayesian Optimization (BO) has been recognized for its effectiveness in optimiz-
ing expensive and complex objective functions. Recent advancements in Latent
Bayesian Optimization (LBO) have shown promise by integrating generative mod-
els such as variational autoencoders (VAEs) to manage the complexity of high-
dimensional and structured data spaces. However, existing LBO approaches of-
ten suffer from the value discrepancy problem, which arises from the reconstruc-
tion gap between latent and input spaces. This value discrepancy problem propa-
gates errors throughout the optimization process, which induces suboptimal opti-
mization outcomes. To address this issue, we propose a Normalizing Flow-based
Bayesian Optimization (NF-BO), which utilizes normalizing flow as a generative
model to establish one-to-one mappings between latent and input spaces. To deal
with sequence-based inputs, we introduce SeqFlow, an autoregressive sequence-
specialized normalizing flow model designed to maintain one-to-one mappings
between the input and latent spaces. Moreover, we develop a token-level adap-
tive candidate sampling strategy that dynamically adjusts the exploration proba-
bility of each token based on the token-level importance in the optimization pro-
cess. Through extensive experiments, our NF-BO method demonstrates superior
performance in molecule generation tasks, significantly outperforming traditional
optimization methods and existing LBO approaches.

1 INTRODUCTION

Bayesian optimization (BO; Kushner 1962; 1964) has been broadly applied across various areas
such as chemical design (Griffiths & Hernández-Lobato, 2020; Wang & Dowling, 2022), material
science (Ament et al., 2021), and hyperparameter optimization (Wang et al., 2018; Wu et al., 2019).
BO aims to probabilistically estimate an expensive or black-box objective function using a surrogate
model to find the optimal point with minimal evaluation calls. Although BO is effective in continu-
ous spaces, its application to discrete input space still remains challenging (Oh et al., 2019; Deshwal
& Doppa, 2021). Latent Bayesian Optimization (LBO) (Gómez-Bombarelli et al., 2018; Tripp et al.,
2020) addresses this challenge by performing BO in a latent space using generative models such as
Variational AutoEncoders (VAEs) (Kingma & Welling, 2014). LBO performs optimization in con-
tinuous spaces by mapping the discrete input into continuous latent spaces with the VAEs (Kusner
et al., 2017; Jin et al., 2018; Samanta et al., 2019).

Figure 1: Visualization of value discrep-
ancy problem.

However, the reconstruction of VAE is not always per-
fect, leading to value discrepancy problem. The value
discrepancy problem indicates that even if existing data
is encoded to find its corresponding latent, decoded out-
put may not produce the expected results. Furthermore,
during the optimization process, these models often re-
encode the searched data into the latent space since
models are retrained on new searched data. This makes
the value discrepancy problem worse and makes the
searching challenging. Figure 1 shows the value dis-
crepancy problem by presenting score distributions be-
fore and after reconstruction using a pretrained SELF-
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Figure 2: (a) Most existing LBO approaches suffer from the value discrepancy problem y ‰ ŷ
induced by the reconstruction gap, pθpqϕpxqq ‰ x. This results in that the latent representation z
corresponds to different evaluation values y and ŷ due to the reconstruction error, where x ‰ x̂.
(b) Our NF-BO effectively addresses the value discrepancy problem by employing a normalizing
flow model that ensures one-to-one mapping between z and x via the invertible flow and inverse
processes, g and g´1, i.e., g´1pgpxqq “ x. So, the latent representation z is consistently associated
with the same evaluation value y.

IES VAE (Maus et al., 2022), focusing on the top 1,000 data points with the highest objective values
from a dataset of 10,000.

To address these problems, we propose a Normalizing Flows-based Bayesian optimization, referred
to as NF-BO, which leverages an invertible function for discrete sequence data. This approach
ensures a one-to-one mapping between the input and latent spaces, effectively solving the value
discrepancy problem. Figure 2 shows this concept, showing the value discrepancy problem in (a)
and how our NF-BO model addresses it using flow and inversion (b).

Additionally, during the local search of NF-BO, we introduce a token-level adaptive candidate sam-
pling method. This method enhances the efficiency of the search process by dynamically adapting
the sampling density according to the importance of each token at each center point. By focusing on
areas with higher potential impact, it helps to discover optimal solutions more effectively.

Contributions of our research are as follows:

• We propose the NF-BO method, which addresses the value discrepancy problem in latent
Bayesian optimization by utilizing normalizing flows to establish injective mappings from
input spaces to latent spaces, ensuring accurate reconstruction from latent spaces back to
input spaces.

• To the best of our knowledge, our NF-BO is the first work to integrate normalizing flows
into latent Bayesian optimization, offering a novel approach to overcoming challenges in
this domain.

• We propose a Token-level Adaptive Candidate Sampling (TACS), enhancing the efficiency
of the local search by adjusting the candidates regarding the token-level importance.

• Our extensive experiments on multiple benchmarks demonstrate the superiority of the pro-
posed method in optimizing high-dimensional and structured data, consistently outperform-
ing latent Bayesian optimization and traditional optimization methods.

2 RELATED WORKS

Latent Bayesian Optimization. Latent Bayesian Optimization (LBO) (Gómez-Bombarelli et al.,
2018; Eissman et al., 2018; Tripp et al., 2020; Griffiths & Hernández-Lobato, 2020; Grosnit et al.,
2021; Siivola et al., 2021) has emerged as an effective approach to overcome the limitations of
traditional Bayesian Optimization (BO), particularly in high-dimensional or discrete input spaces.
By mapping discrete sequences into continuous latent representations, typically using Variational
Autoencoders (VAEs) (Kingma & Welling, 2014; Higgins et al., 2017), LBO enables efficient opti-
mization of complex problems. For a comprehensive review of these developments, see (González-
Duque et al., 2024). To improve this mapping, prior works have proposed novel architectures to
improve reconstruction quality (Kusner et al., 2017; Jin et al., 2018; Lu et al., 2018; Samanta et al.,
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2019) or considered uncertainty for increased robustness (Notin et al., 2021; Verma et al., 2022). In
particular, LaMBO (Stanton et al., 2022) introduced a masked language model-based architecture,
and LaMBO-2 (Gruver et al., 2024) developed a diffusion-based approach to extend prior methods.

Recent LBO works, such as LOL-BO (Maus et al., 2022) have introduced the concept of trust re-
gions (Eriksson et al., 2019) in the latent space. ROBOT (Maus et al., 2023) have emphasized the
importance of incorporating diversity measures to further support diverse solutions. CoBO (Lee
et al., 2023) implements a novel loss function to enhance the alignment between the latent space and
the objective function. However, these region-based methods still encounter the value discrepancy
problem, where the output value from the decoded input is inconsistent with the original value.

Normalizing Flows. Normalizing Flows (NFs) (Rezende & Mohamed, 2015) are a class of gen-
erative models that transform a simple, known probability distribution into a more complex one
and vice versa. Each layer in these models is designed to be invertible, with a tractable Jacobian
determinant, which facilitates efficient computation and flexible modeling of complex data distri-
butions. Early NF methods (Dinh et al., 2015; 2017; Kingma & Dhariwal, 2018; Ho et al., 2019;
Durkan et al., 2019) have demonstrated their effectiveness in generating high-quality images using
coupling-based techniques, ensuring tractability and scalability.

More recently, NFs have also been developed not only for generating images but also for expanding
their applicability to a wider range of data types. For instance, methods like (Ziegler & Rush, 2019)
specifically addressed the challenges in modeling discrete data by integrating NFs within a VAE
framework, jointly learning latent distributions and improving the expressivity of the latent space.
Another approach (Sidheekh et al., 2022) leverages vector quantization to enhance the modeling of
complex data distributions on low-dimensional manifolds, while preserving exact density evaluation.
To the best of our knowledge, our work is the first to apply NFs in the context of LBO to deal with
the value discrepancy problem by introducing a method termed SeqFlow in Section 4.2.

3 PRELIMINARIES

Bayesian optimization. Bayesian optimization (BO) has widely been applied to optimize black-
box (unknown) objective functions where the evaluations are expensive. Let X and x be the input
space and a solution, respectively. The goal of BO is to find the optimal solution x˚ that maximizes
a black-box objective function f , which can be formulated as:

x˚ “ argmax
xPX

fpxq. (1)

Since f is unknown, BO typically constructs a probabilistic surrogate model f̂ to approximate the
true function f . With the surrogate model, BO searches for the optimal points with an acquisition
function α as follows:

x̃ “ arg max
xPXcand

αpx; f̂ ,Dq, (2)

where D “ tpxpiq, ypiqquNi“1 represents the accumulated data, x̃ is a data point selected based on
the acquisition function, and Xcand Ď X is a candidate set. In trust region-based local Bayesian
optimization such as TuRBO (Eriksson et al., 2019), Xcand is selected within a trust region that is
often centered at a current optimal point (e.g., anchor point). The trust region limits the search space
to promising small regions, thereby easing the difficulty of optimization.

Normalizing Flows. Normalizing Flows (NFs) (Rezende & Mohamed, 2015) are a class of gen-
erative models for modeling the data distributions ppxq through a sequence of invertible transforma-
tions, offering exact density evaluation and sample generation. NFs are formulated as follows:

z “ gpv; θq, v “ g´1pz; θq, (3)

where g and g´1 denote the forward and inverse transformation, parameterized by θ, ensuring that
each mapping is bijective and differentiable. The determinant of Jacobian |det Jgpvq|´1 of the
transformation computes the change in volume induced by g, which is important for density cal-
culations. The training of these flows involves minimizing the following negative log-likelihood:

L “ ´Ev„V rlog ppvqs “ ´Ev„V

„

log ppvq ` log

ˇ

ˇ

ˇ

ˇ

det
Bg

Bv

ˇ

ˇ

ˇ

ˇ

ȷ

. (4)
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This ensures that the model accurately captures the underlying data distribution, allowing efficient
generation.

4 METHODS

We propose Normalizing Flow-based Bayesian Optimization (NF-BO), which leverages Normal-
izing Flows (NFs) as a generative model combined with adaptive candidate sampling for effective
optimization. To begin with, we introduce Latent Bayesian optimization (LBO) and the value dis-
crepancy problem induced by incomplete reconstruction of the generative model used in LBO (Sec-
tion 4.1). Next, we present an autoregressive NF model, SeqFlow, specifically tailored for sequence
generation, which addresses the value discrepancy problem by completely reconstructing the in-
puts (Section 4.2). Additionally, we propose Token-level Adaptive Candidate Sampling (TACS),
which constructs a diverse candidate set within trust regions (Section 4.3). Finally, we delineate the
overall process of our NF-BO (Section 4.4).

4.1 PROBLEM STATEMENT

Although BO has shown its effectiveness in various optimization tasks, it has difficulty performing
over the discrete domain, such as chemical design (Griffiths & Hernández-Lobato, 2020; Wang &
Dowling, 2022). To address this issue, recent works (Gómez-Bombarelli et al., 2018; Tripp et al.,
2020) have applied Latent Bayesian Optimization (LBO), which leverages BO within a continuous
space by mapping the discrete input space into a continuous latent space. The latent Bayesian
optimization can be formulated as:

z˚ “ argmax
zPZ

fppθpzqq, (5)

where Z is a latent space and pθ : Z ÞÑ X is the decoder parameterized by θ. LBO uses an
encoder-decoder structure to map complex inputs into an effective representation in the latent space
and then performs a search in this latent space. Note that the formulation assumes the decoder pθ is
deterministic. LBO searches for the optimal points using acquisition function α as follows:

x̃ “ pθpz̃q,

s.t. z̃ “ arg max
zPZcand

αpz; f̂ ,Dq,
(6)

where D “ tpxpiq, zpiq, ypiqquNi“1 represents the accumulated data, x̃ is the next evaluation point,
Zcand indicates a candidate set, and f̂ : Z ÞÑ Y is a surrogate model for the composite function
f ˝ pθ : Z ÞÑ Y .

Value Discrepancy Problem. LBOs generally learn a surrogate model in the latent space and
construct the data tpxpiq, zpiq, ypiqquNi“1, where ypiq “ fpxpiqq, zpiq “ qϕpxpiqq, with the encoder
qϕ, assuming complete reconstruction xpiq “ pθpqϕpxpiqqq and identical function values, i.e., ypiq “

fpxpiqq “ fppθpzpiqqq (Tripp et al., 2020; Maus et al., 2022; Lee et al., 2023; Chen et al., 2024).
However, in practice, there exists a reconstruction gap in VAE and it results in the discrepancy
between the function values evaluated at input data x and its reconstruction x̂ as follows:

x ‰ x̂ where x̂ :“ pθpqϕpxqq, and fpxq ‰ fpx̂q. (7)

This value discrepancy problem propagates errors throughout the optimization process, leading to
suboptimal optimization results. In general, the generative models in LBO are desirable if they ex-
hibit the following properties: (i) Perfect reconstruction ensures that any point in the input space
can be accurately mapped to the latent space and vice versa. This resolves the value discrepancy
problem, ensuring that the generated data accurately reflects the characteristics of the original data,
thereby minimizing error propagation during optimization and leading to improved optimization
performance. (ii) Exact likelihood evaluation enables model updates based on the quality of data
generated by the model. The density of generated samples can be used for learning better representa-
tion and developing efficient exploration algorithms in complex or high-dimensional data structures.
For these reasons, we introduce a new LBO built on normalizing flows.
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Figure 3: Overall pipeline of SeqFlow. Given the input space of a sequence discrete values x,
SeqFlow first maps the discrete values x to continuous representation v and efficiently transforms
them via autoregressive transformations tgiuK´1

i“0 to a latent representation z0 in the encoding phase
(top pathway). In the decoding phase (bottom pathway), SeqFlow reconstructs x from z0 through
the inverse of transformations. SeqFlow ensures the perfect reconstruction of the discrete input.

4.2 SEQFLOW

To address the value discrepancy problem in existing LBOs, we study Normalizing Flow-based
Bayesian Optimization (NF-BO), using NF’s desirable capability in modeling the data distribution
via a one-to-one mapping from the input space to the latent space. To efficiently perform NF-BO on
a long sequence of discrete data, we propose a novel discrete Sequence-specialized autoregressive
normalizing Flow model (SeqFlow).

SeqFlow learns the distribution ppxq of the sequence of discrete data x “ rx1, . . . ,xLs , where
x P NL is a sequence of token indices, using two components: (i) a mapping function between
the continuous representation v P RLˆF and a discrete input x and (ii) a density model ppvq (i.e.,
normalizing flow). Here, L represents the number of tokens in a sequence and F is the embedding
dimension. The mapping function from the continuous representation v P RLˆF to a discrete input
x is defined as:

xi “ argmax
j

sim pvi, ejq , (8)

where simp¨, ¨q is the cosine similarity, ej P RF is an embedding vector of j-th token in the vo-
cabulary set V and all embeddings are normalized such that }ej}2 “ 1 for all j, and xi represents
the index of the token whose embedding vector ej is most similar to the continuous representation
vector vi. Initially, every e P R|V|ˆF is initialized from a normal distribution. Based on the density
model ppvq and the mapping function, we define the likelihood of input discrete sequence ppxq as
follows:

ppxq “

ż

ppvq

L
ź

i

ppxi|viq dv,

ppxi|viq “ δxi,apviq,where apviq “ argmax
j

simpvi, ejq,

(9)

where δ is the Kronecker delta function and apviq is the index of the most similar embedding
vector to vi. However, directly calculating Eq. (9) is intractable. So, we introduce the variational
distribution qpvi|xiq (Ho et al., 2019) and optimize the likelihood ppxq by maximizing the evidence
lower bound (ELBO), which is derived as:

log ppxq ě Ev1„qpv1|x1q,...,vL„qpvL|xLq

«

log ppvq `

L
ÿ

i

plog ppxi|viq ´ log qpvi|xiqq

ff

. (10)

We define the distribution qpvi|xiq as an isotropic Gaussian distribution centered at the embedding
of xi, i.e., N pexi , σ

2Iq. Additionally, we employ rejection sampling from qpvi|xiq to sample only
feasible vi values for which ppxi|viq “ 1. The constrained version of qpvi|xiq is defined as:

q1pvi|xiq “

#

qpvi|xiq

Z if ppxi|viq “ 1

0 if ppxi|viq “ 0
, (11)

where Z is a normalization constant. We accept a sample vi with probability q1
pvi|xiq

qpvi|xiq{Z . Through
the constrained sampling within the domain where the condition holds, we effectively make the
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practical sampling distribution qpvi|xiq closer to ppvi|xiq. The example of the distribution q1 is
depicted in the Appendix G.

We employ a negative log likelihood to maximize log ppvq, which serves as a normalizing flow
loss that enhances the model’s ability to generate valid continuous representations v. The Negative
Log-Likelihood LNLL is defined as follows:

LNLL “ ´ log ppvq “ ´ log ppzq ´

K´1
ÿ

k“0

log

ˇ

ˇ

ˇ

ˇ

det
Bgk

Bzk`1

ˇ

ˇ

ˇ

ˇ

, (12)

where gk represents k-th transformation in the flow sequence g and zk`1 is the output of the k-th
transformation.

Also, we implement similarity loss that maximizes the cosine similarity between vi and exi
for xi:

Lsim.pv, eq “ ´
1

L

L
ÿ

i“1

simpvi, exi
q `

1

L

L
ÿ

i“1

simpvi, ej |j ‰ xiqq, (13)

where ej is a random embedding not corresponding to the token xi. The contrastive loss can be
conceptualized as a special case of orthogonal regularization, which promotes diversity and inde-
pendence among the token embeddings. To train our SeqFlow model, we combine the similarity
loss with the Negative Log-Likelihood (NLL) loss of normalizing flows. The final loss of our model
is given by:

LNF-BO “ LNLL ` λLsim.pv, eq. (14)

Autoregressive Normalizing Flows. To effectively represent a long sequence of discrete values,
we adopt an autoregressive normalizing flows Ziegler & Rush (2019). Our model defines the flow
for encoding:

v “ g´1pz; θq, z “ gpv; θq, (15)
where g, g´1 are entire flow and its inverse transformation, respectively. To be specific, autore-

gressive NF is composed of K series of autoregressive transformation blocks and each block for
k P t0, . . . ,K ´ 1u operates as follows:

zk`1
i “ pgkq

´1`
zki ; z

k`1
ăi , θk

˘

, and zki “ gk
`

zk`1
i ; zk`1

ăi , θk
˘

, (16)

where zki denotes i-th token output vector of the k-th block. The initial input to the first block is
z0 “ z, and the output of the final block is zK “ v. Our autoregressive block pgkq

´1 consists of
several coupling layers, which aggregate information from the previous tokens. This helps the flow
model to capture the long-range dependencies within the sequence for effective sequence modeling.
More details on the architecture of the autoregressive normalizing flow model is in the Appendix H.

Injectivity of our SeqFlow. The SeqFlow ensures injectivity through the invertibility of the trans-
formation function g. This function maps the embedding ex to a latent representation z, and the
decoding process hpzq serves as the left inverse of this encoding, as stated in Proposition 1. This
guarantees that for every input x, the operation hpgpex; θqq will precisely reconstruct x.
Proposition 1. Let x ÞÑ z be an encoding process defined by z “ gpv; θq “ gpex; θq, where
ex “ rex1

, ex2
, . . . , exL

s denotes the embedding of x, and g is an invertible function parameterized
by θ. Then the decoding process x “ hpzq is the left inverse of the encoding process, meaning for
all x, hpgpex; θqq “ x, where hpzq “

“

argmaxj simpg´1pz; θqi, ejq
‰L

i“1
.

This approach allows the SeqFlow model to establish a one-to-one correspondence between x and z,
ensuring all information is preserved during encoding and decoding. This is crucial for applications
that demand exact input reconstruction, such as discrete sequence optimizations.

Moreover, the reliability of the decoding function hpzq ensures that any generated latent variable ac-
curately reverts to its corresponding input sequence. This capacity is essential for resolving the value
discrepancy problem often observed in other latent-based optimization models, where reconstructed
outputs might not match the original inputs. This enhancement increases the overall efficacy of the
optimization process, making SeqFlow a robust framework for handling discrete sequence optimiza-
tion tasks.
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4.3 TOKEN-LEVEL ADAPTIVE CANDIDATE SAMPLING

In this section, we present a Token-level Adaptive Candidate Sampling (TACS) to improve the can-
didate sampling process of trust region-based local search BO methods (Eriksson et al., 2019; Maus
et al., 2022; Lee et al., 2023). These local search BO methods search next query points constrained
in promising areas centered around an anchor points, derived from the best input found in the data
history.

In practice, sampling the full posterior function from the GP posterior distribution is infeasible. To
address this, previous trust region-based approaches utilize Thompson sampling on a finite set of
candidate points Zcand by perturbing a subset of dimensions of an anchor point (Eriksson et al.,
2019). However, they select a subset of dimensions to be perturbed uniformly, which can lead to
suboptimal exploration. When applied to our SeqFlow, it samples a subset of latent tokens uniformly
for perturbation, ignoring their varying importance, which results in suboptimal search performance.

To address this, we propose Token-level Adaptive Candidate Sampling (TACS), which samples can-
didates regarding the importance of each latent token. Specifically, we sample a subset of latent
tokens of an anchor point for perturbation from a token-level probability distribution, defined by
the relative importance of each token. This allows TACS to perform a dense search over important
tokens while sparsely exploring less important ones with limited resources.

To identify important tokens at the anchor point px, zq, we utilize the Pointwise Mutual Information
(PMI) between each token zi and the sequence x.

ωipzq “ PMIpx, zi|z´iq “ log
ppx|zq

ppx|z´iq
“ log

ppx|zq

Ezi„N p0,Iqpppx|zqq
,

ppx|zq “ ppx|vq “

L
ź

i

ppxi|viq,

(17)

where z´i “ tz1, z2, . . . , zi´1, zi`1, . . . , zLu. A Monte Carlo approximation is employed to es-
timate ppx|z´iq, and to stabilize computations, a small constant ϵ is added to the binary values of
ppxi|viq. This PMI score ωipzq measures the impact of latent token zi on the sequence x, enabling
efficient exploration along the most important dimensions. Using the PMI score, we define the
token-level sampling probability πipzq after normalizing the logarithm of the token-level density:

πipzq “ min pκsipzq, 1q , sipzq “
exp pωipzq{τq

ř

j exp pωjpzq{τq
, (18)

where κ is a constant scaling factor, and τ indicates the temperature. The softmax with temperature
τ allows for flexible adjustment in focusing on the importance of different tokens. For example, if
τ has a higher value, the candidate set is uniformly sampled, disregarding the token-level impor-
tance. Conversely, a lower τ concentrates sampling more densely on the tokens with the highest
importance.

4.4 OVERALL BAYESIAN OPTIMIZATION PROCESS

In this section, we present our NF-BO-based overall optimization process, which is illustrated in
Figure 4. For each iteration, the NF-BO framework begins by training the SeqFlow model with
the loss function LNF-BO as defined in Eq. (14), using the dataset D “

␣

pxpiq, ypiqq
(

. For training
the SeqFlow model, we sample variational vector v following the distribution q1, as described in
Eq. (11). After training the SeqFlow, we construct the latent vector zpiq corresponding to the input
xpiq and then use it to train the surrogate model f̂ . Then, we select anchor points zanc based on
their corresponding objective values y and generate trust regions centered on them. To perform
local search, the candidate set Zcand is drawn within the trust region, using the Token-level Adaptive
Candidate Sampling (TACS) method. Finally, the acquisition function α determines next query point
z̃ followed by decoding and evaluating it to update the best score.

This procedure is iterated until the allocated oracle budget T is expended, continuously refining
the search for an optimal solution and enhancing the efficacy of the SeqFlow framework within the
Bayesian optimization landscape. For better understanding, the pseudocode for NF-BO is provided
in the Appendix F.
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Figure 4: Overview of NF-BO. We employ our novel normalizing flows, SeqFlow, as a mapping
function between discrete input space and continuous latent space. Each discrete input token xi is
represented by its corresponding embedding vector vi from the vocabulary set V . A surrogate model
is then trained using the latent representation z encoded by the flow model g and the associated func-
tion value y to emulate the objective function. To enhance the efficiency of trust region-based local
search, we propose a Token-level Adaptive Candidate Sampling (TACS). In TACS, candidates
for the acquisition function are generated by perturbing tokens, sampled according to a token-level
sampling probability π, specified in Eq. (18). Given these candidates and the surrogate model, we
select the next query points z̃ by the acquisition function. Next, the inverse model g´1 generates
the embedding ṽ and searches the most similar embedding in the vocabulary set V and return the
corresponding index as a x̃.

5 EXPERIMENTS

5.1 TASKS

We validate our NF-BO across various benchmarks focusing on de novo molecular design tasks.
Initially, we conduct experiments on the Guacamol benchmarks (Brown et al., 2019), specifically
targeting seven challenging tasks where optimal solutions are not readily found. For these bench-
marks, we evaluate NF-BO and the baselines under three different settings, each varying the number
of initial data points and the additional oracle budget: (100, 500), (10,000, 10,000), and (10,000,
70,000). Subsequently, we evaluate our method on the PMO benchmarks (Gao et al., 2022), which
consists of 23 tasks, including albuterol similarity, amlodipine MPO, etc.

5.2 BASELINES

In the Guacamol benchmark, we use LSBO, TuRBO-L (Eriksson et al., 2019), W-LBO (Tripp et al.,
2020), LOLBO (Maus et al., 2022), CoBO (Lee et al., 2023), and PG-LBO (Chen et al., 2024) as the
baselines. In the PMO benchmarks, we compare our method with 25 molecular design algorithms.
These include generative models (e.g., GANs and VAEs), machine learning models (e.g., Reinforce-
ment Learning), and optimization algorithms (e.g., MCTS and GA). More detailed explanations of
the baselines are in Appendix J.

5.3 IMPLEMENTATION DETAILS

We employ Thompson sampling (Eriksson et al., 2019) as the acquisition function, and our surrogate
model is a sparse variational Gaussian process (Snelson & Ghahramani, 2005) enhanced with a deep
kernel (Wilson et al., 2016). For the Guacamol and PMO benchmarks, we pretrain using 1.27M
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Figure 5: Optimization results of NF-BO on Guacamol benchmarks comparing performance with
baselines under two oracle budget settings: (100, 500) (left) and (10,000, 10,000) (right). The shaded
regions indicate the standard error over 5 trials.

Table 1: PMO results across various methods and assembly. The table presents scores and rankings
for 6 evaluation metrics illustrating the comparative performance of each method. Score is the sum
of all 23 tasks constituting the PMO benchmark computed to summarize the overall performance.

Top-1 Top-10 Top-100 AUC Top-1 AUC Top-10 AUC Top-100
Methods Assembly Score (Rank) Score (Rank) Score (Rank) Score (Rank) Score (Rank) Score (Rank)

Bayesian Optimization
NF-BO SELFIES 18.095 (1) 17.692 (1) 17.037 (1) 15.539 (1) 14.737 (1) 13.423 (2)
GP BO Fragments 15.345 (7) 14.940 (6) 14.365 (6) 13.798 (5) 13.156 (5) 12.122 (6)

VAE BO SELFIES 11.423 (17) 9.788 (19) 7.622 (22) 10.589 (17) 8.887 (19) 6.899 (22)
VAE BO SMILES 10.926 (21) 9.435 (21) 7.623 (21) 10.197 (19) 8.587 (21) 6.909 (21)

JT-VAE BO Fragments 10.296 (23) 8.671 (24) 7.037 (24) 9.973 (22) 8.358 (24) 6.740 (23)

Reinforcement Learning
REINVENT SMILES 16.772 (2) 16.654 (2) 16.297 (2) 14.711 (2) 14.196 (2) 13.445 (1)
REINVENT SELFIES 16.059 (5) 15.889 (4) 15.377 (3) 14.077 (4) 13.471 (4) 12.475 (5)

MolDQN Atoms 7.143 (26) 6.495 (26) 5.435 (26) 6.332 (26) 5.620 (26) 4.528 (26)

Genetic Algorithm
Graph GA Fragments 16.244 (4) 15.946 (3) 15.342 (4) 14.356 (3) 13.751 (3) 12.696 (3)
STONED SELFIES 14.257 (8) 14.201 (8) 14.017 (7) 13.256 (7) 13.024 (6) 12.518 (4)

SMILES GA SMILES 13.123 (11) 12.997 (9) 12.824 (9) 12.357 (10) 12.054 (8) 11.598 (7)
SynNet Synthesis 13.105 (12) 12.279 (12) 10.768 (15) 12.425 (9) 11.498 (9) 9.914 (9)
GA+D SELFIES 11.942 (16) 11.696 (15) 11.230 (13) 9.387 (24) 8.964 (18) 8.280 (15)

Hill Climbing
LSTM HC SMILES 16.754 (3) 15.880 (5) 14.621 (5) 13.611 (8) 12.223 (7) 10.365 (8)
LSTM HC SELFIES 13.770 (9) 12.894 (10) 11.657 (12) 11.441 (14) 10.246 (15) 8.595 (13)
DoG-Gen Synthesis 15.633 (6) 14.772 (7) 13.653 (8) 12.721 (8) 11.456 (10) 9.635 (12)
MIMOSA Fragments 12.524 (15) 12.223 (13) 11.717 (11) 11.378 (15) 10.651 (13) 9.708 (11)

unlabeled Guacamol and 250K ZINC datasets, respectively, following the previous settings. We
employ 1,000 initial data points and an additional 9,000 oracle calls following the PMO benchmarks.

5.4 RESULTS ON GUACAMOL BENCHMARKS

We compare the optimization results of our NF-BO with six LBO baselines in two experimental
settings: 500 and 10K additional oracle budgets on two Guacamol tasks. Figure 5 of the main, while
other experimental results on five tasks are in the Appendix B. The experimental results demonstrate
that our proposed NF-BO consistently outperforms other VAE-based LBO methods in all tasks and
settings.

5.5 RESULTS ON PMO BENCHMARKS

We also conduct experiments to demonstrate the effectiveness of our NF-BO against 25 baseline
models, including various generative models and optimization algorithms, across 23 PMO bench-
mark tasks. Our evaluation metrics included Top-1, Top-10, and Top-100 scores, as well as the Area
Under the Curve (AUC) for these metrics, all based on Oracle calls. The experimental results are

9
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Figure 7: Comparison of performance with and without TACS in Guacamol benchmarks. The
shaded regions indicate the standard error over 5 trials.

in Table 1. The scores for each individual task are detailed in Appendix A. The table shows that
our NF-BO achieves the best performance with 1st rank on five out of six metrics. In particular,
NF-BO significantly enhances the performance of VAE BO, which also uses SELFIES, improving
its average rank from 19th to 1st.

6 ANALYSIS

In this section, we provide the analysis of our NF-BO on the Guacamol. Experiments were imple-
mented with 10,000 initial data points and an additional oracle budget of 10,000.

6.1 CANDIDATE DIVERSITY WITH TACS IMPLEMENTATION

We evaluate the proportion of distinct samples within a set of 1,000 candidates generated in two
different Guacamol tasks with and without TACS. Each experimental setup was subjected to Monte
Carlo approximation 10 times to estimate expectation in Eq. (17), and we conducted five independent
experiments averaging the results. We use a pre-trained SeqFlow model and 10 different anchor
points to generate trust regions.

In Figure 6, the result with TACS has a higher ratio of distinct samples compared to those without
TACS, underscoring its effectiveness in enhancing the diversity of the candidate pool. This implies
TACS improves the exploration capacity of the BO, which is crucial for optimization performance.
We provide optimization performances with different temperatures in TACS in Appendix C.

6.2 ABLATION STUDY

Figure 6: Comparison of distinct
sample ratios with and without
TACS in two Guacamol tasks.

Figure 7 our ablation studies that illustrates the effectiveness of
our Token-level Adaptive Candidate Sampling (TACS) strat-
egy, shows its impact on performance across these tasks in
the Guacamol benchmark. From the analysis, it is evident
that the incorporation of TACS significantly enhances perfor-
mance, confirming its benefit in optimizing the search process.

7 CONCLUSION

In conclusion, the proposed NF-BO method, which lever-
ages normalizing flows, makes a significant improvements in
the domain of Bayesian optimization, especially for handling
molecular data. This approach not only addresses the value
discrepancy problem through precise one-to-one mappings between input and latent spaces but also
enhances the effectiveness of the search process with a novel token-level adaptive candidate sam-
pling strategy. Our comprehensive evaluations across diverse benchmarks have demonstrated the
superiority of NF-BO over traditional methods and other LBO techniques, confirming its potential
to reshape the landscape of optimization strategies in various scientific and engineering applica-
tions.

10
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REPRODUCIBILITY STATEMENT

For reproducibility, we elaborate on the overall pipeline of our work in Section 4. We also provide
the illustration of our overall pipeline and pseudocode of NF-BO in our main paper and appendix,
respectively. To reproduce the experimental results, we will make our codes publicly available if the
paper gets accepted.

ETHICS STATEMENT

Our main contribution, NF-BO, aims to design molecules with desired properties, e.g., Amlodipine
MPO in the Guacamol task. However, this could lead to unintended consequences, such as the
creation of harmful substances like illicit drugs, requiring the exercise of extreme caution.
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Table 2: Detailed results on PMO benchmarks. The table presents scores and standard deviations
across 6 evaluation metrics, with each score representing the mean of 5 independent runs. Addition-
ally, the sum for each column is computed to summarize the overall performance.

Top-1 Top-10 Top-100 AUC Top-1 AUC Top-10 AUC Top-100

albuterol similarity 1.000 ˘ 0.000 0.967 ˘ 0.011 0.847 ˘ 0.035 0.862 ˘ 0.014 0.817 ˘ 0.010 0.708 ˘ 0.021
amlodipine mpo 0.802 ˘ 0.028 0.798 ˘ 0.024 0.788 ˘ 0.013 0.688 ˘ 0.023 0.672 ˘ 0.021 0.642 ˘ 0.020

celecoxib rediscovery 0.799 ˘ 0.164 0.699 ˘ 0.076 0.634 ˘ 0.063 0.605 ˘ 0.069 0.546 ˘ 0.031 0.481 ˘ 0.024
deco hop 0.725 ˘ 0.006 0.724 ˘ 0.007 0.724 ˘ 0.007 0.685 ˘ 0.004 0.675 ˘ 0.003 0.662 ˘ 0.003

drd2 1.000 ˘ 0.000 1.000 ˘ 0.000 0.999 ˘ 0.001 0.932 ˘ 0.004 0.875 ˘ 0.005 0.788 ˘ 0.004
fexofenadine mpo 0.854 ˘ 0.012 0.854 ˘ 0.012 0.852 ˘ 0.012 0.797 ˘ 0.008 0.784 ˘ 0.008 0.756 ˘ 0.007

gsk3b 0.990 ˘ 0.015 0.952 ˘ 0.041 0.903 ˘ 0.069 0.820 ˘ 0.032 0.754 ˘ 0.010 0.664 ˘ 0.028
isomers c7h8n2o2 1.000 ˘ 0.000 0.841 ˘ 0.076 0.619 ˘ 0.160 0.916 ˘ 0.005 0.748 ˘ 0.062 0.525 ˘ 0.126

isomers c9h10n2o2pf2cl 0.946 ˘ 0.028 0.935 ˘ 0.008 0.933 ˘ 0.007 0.881 ˘ 0.010 0.842 ˘ 0.009 0.757 ˘ 0.009
jnk3 0.894 ˘ 0.052 0.884 ˘ 0.061 0.866 ˘ 0.076 0.709 ˘ 0.036 0.649 ˘ 0.037 0.574 ˘ 0.040

median1 0.422 ˘ 0.022 0.419 ˘ 0.023 0.409 ˘ 0.021 0.352 ˘ 0.007 0.340 ˘ 0.006 0.307 ˘ 0.004
median2 0.313 ˘ 0.022 0.311 ˘ 0.021 0.305 ˘ 0.019 0.269 ˘ 0.013 0.260 ˘ 0.011 0.244 ˘ 0.010

mestranol similarity 0.758 ˘ 0.058 0.758 ˘ 0.058 0.758 ˘ 0.058 0.629 ˘ 0.028 0.607 ˘ 0.024 0.570 ˘ 0.018
osimertinib mpo 0.880 ˘ 0.010 0.878 ˘ 0.010 0.872 ˘ 0.012 0.838 ˘ 0.004 0.828 ˘ 0.005 0.788 ˘ 0.005
perindopril mpo 0.678 ˘ 0.034 0.678 ˘ 0.034 0.677 ˘ 0.034 0.598 ˘ 0.028 0.586 ˘ 0.027 0.560 ˘ 0.026

qed 0.948 ˘ 0.000 0.948 ˘ 0.000 0.948 ˘ 0.000 0.943 ˘ 0.000 0.941 ˘ 0.000 0.931 ˘ 0.000
ranolazine mpo 0.844 ˘ 0.012 0.843 ˘ 0.011 0.838 ˘ 0.009 0.723 ˘ 0.012 0.698 ˘ 0.010 0.647 ˘ 0.008

scaffold hop 0.769 ˘ 0.172 0.767 ˘ 0.170 0.733 ˘ 0.141 0.646 ˘ 0.087 0.629 ˘ 0.087 0.608 ˘ 0.085
sitagliptin mpo 0.764 ˘ 0.075 0.757 ˘ 0.079 0.722 ˘ 0.090 0.578 ˘ 0.032 0.516 ˘ 0.029 0.427 ˘ 0.025

thiothixene rediscovery 0.639 ˘ 0.121 0.623 ˘ 0.100 0.602 ˘ 0.084 0.524 ˘ 0.061 0.496 ˘ 0.048 0.459 ˘ 0.037
troglitazone rediscovery 0.476 ˘ 0.040 0.475 ˘ 0.039 0.473 ˘ 0.039 0.386 ˘ 0.020 0.375 ˘ 0.019 0.352 ˘ 0.018

valsartan smarts 0.998 ˘ 0.001 0.996 ˘ 0.002 0.974 ˘ 0.012 0.633 ˘ 0.041 0.594 ˘ 0.037 0.514 ˘ 0.033
zaleplon mpo 0.593 ˘ 0.016 0.584 ˘ 0.016 0.561 ˘ 0.016 0.524 ˘ 0.011 0.504 ˘ 0.011 0.460 ˘ 0.010

Sum 18.095 17.692 17.037 15.539 14.737 13.423

A DETAILED RESULTS ON PMO BENCHMARKS

We conducted experiments to demonstrate the effectiveness of our NF-BO across 23 PMO bench-
mark tasks. The full experimental results, including detailed scores and standard deviations for each
task, are provided in Table 2. The evaluation metrics we used include Top-1, Top-10, and Top-100
scores, as well as the Area Under the Curve (AUC) for these metrics, all based on oracle calls. Our
main findings show that NF-BO consistently achieves competitive performance across various tasks.
Additionally, the AUC scores show comparable results in terms of further highlighting NF-BO’s ro-
bustness. These results suggest that NF-BO not only excels at identifying the best solutions but also
maintains consistent performance across different tasks.

B ADDITIONAL RESULTS ON GUACAMOL BENCHMARKS

As referenced in Section 5.4, we compare our NF-BO with six LBO baselines across seven tasks
in the Guacamol benchmarks. In this section, we present the results of the remaining tasks for the
(100, 500) and (10,000, 10,000) oracle settings, which were not covered in the main section, along
with the results for the (10,000, 70,000) oracle settings. Figures 8, 9, and 10 display the results for
the (100, 500), (10,000, 10,000), and (10,000, 70,000) oracle settings, respectively. In the case of
PG-LBO (Chen et al., 2024), we were unable to include results for the (10,000, 10,000) and (10,000,
70,000) settings due to infeasibility caused by excessive experimental time.
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Figure 8: Optimization results on Guacamol benchmarks under 500 additional oracle settings. Note
that in the valt task, the y-axis is represented on a log scale, and for this task, we also added two
nonzero data points in the initial dataset of 100 for all methods. The shaded regions indicate the
standard error over 5 trials.

Figure 9: Optimization results on Guacamol benchmarks under 10K additional oracle settings. The
shaded regions indicate the standard error over 5 trials.
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Figure 10: Optimization results on Guacamol benchmarks under 70K additional oracle settings. The
shaded regions indicate the standard error over 5 trials.
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C DISTINCT SAMPLE RATIO WITH VARIOUS TACS TEMPERATURE

The distinct sample ratio quantifies the diversity of generated candidates by measuring the pro-
portion of distinct samples within the total candidates. In Figure 11, we explore how varying the
temperature parameter in TACS affects this ratio on the Guacamol benchmark. Lower temperatures
generally promote exploration by sampling impactful tokens within the input sequences in the latent
space, increasing the diversity of candidates.

Figure 11: Distinct sample ratio with various TACS temperatures on Guacamol benchmarks.

The experimental setup follows the same configuration as detailed in the analysis section of the
paper. As a result, we observe that for six of the seven tasks (excluding Rano), the distinct sample
ratio increases as the temperature decreases, indicating that lower temperatures encourage a broader
exploration of distinct candidates.

D ANALYSIS OF POINTWISE MUTUAL INFORMATION IN SEQFLOW

Figure 12: Pointwise Mutual Information (PMI) value ωi between each latent token zi and sequence
x.

We analyzed the Pointwise Mutual Information (PMI) values of each latent token zi across different
points in the sequence. The PMI values, denoted as ωipzq “ PMIpx, zi|z´iq, were calculated at 10
different points, and Monte Carlo methods were employed 10 times to ensure accuracy. The x-axis
in Figure 12 represents the token index i in the latent z, while the y-axis measures the PMI value
between each zi and x. Different colors stacked in the figure represent the cumulative PMI values
measured from various points.

As observed in Figure 12, there is a trend where the PMI values decrease as the token index increases.
This tendency reflects the autoregressive nature of our model used, where earlier tokens tend to
influence a larger part of the sequence, exerting significant impacts on subsequent tokens. This
shows that early tokens in our model are important to the sequence generation and optimization
processes.
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E PROOF OF LEFT INVERTIBILITY OF SEQFLOW

Proposition 1. Let x ÞÑ z be an encoding process defined by z “ gpv; θq “ gpex; θq, where
ex “ rex1

, ex2
, . . . , exL

s denotes the embedding of x, and g is an invertible function parameterized
by θ. Then the decoding process x “ hpzq is the left inverse of the encoding process, meaning for
all x, hpgpex; θqq “ x, where hpzq “

“

argmaxj simpg´1pz; θqi, ejq
‰L

i“1
.

Proof. To prove that the decoding process hpzq is the left inverse of the encoding process, we need
to demonstrate that hpgpex; θqq “ x for all x.

Each input xi in the sequence is mapped to a unique embedding vi “ exi
in RF and all embeddings

are normalized such that }ej}2 “ 1 for all j, making this mapping injective. Given any embedding
vi, the original input xi can be uniquely recovered using the maximal cosine similarity measure,
where xi “ argmaxj simpvi, ejq and simpvi, ejq “ vJ

i ej .

The function g, constructed as a composition of invertible transformation blocks of normalizing
flows g “ gK´1 ˝ ¨ ¨ ¨ ˝ g0, ensures that the mapping from v to z and back from z to v via g´1 is
invertible.

Since both individual mappings x ÞÑ v and v ÞÑ z are left invertible, their composition, represented
by x ÞÑ z, is also left invertible. Therefore, for z “ gpex; θq, recovering x is feasible through
xi “ hpzqi “ argmaxj sim

``

g´1pz; θq
˘

i
, ej

˘

, for each index i.

It follows that hpgpex; θqq “ x for all x, validating that hpzq is the left inverse of gpex; θq.

F PSEUDOCODE OF NF-BO

This section provides the pseudocode of NF-BO frameworks on Algorithm 1. topk in the algorithm
refers to selecting the top k data points with the highest objective values from the dataset D. The
number of data k is specified in Table 3.

Algorithm 1 NF-BO
Input: black-box objective function f , SeqFlow model g, embedding dictionary e, surrogate model
f̂ , acquisition function α, token-level importance ω, oracle budget T , number of query points Nq ,
initial data D “ tpxpiq, ypiqquni“1

1: for t “ 1, 2, ..., T do
2: Dtr Ð CONCAT pDr´Nq :s, topkpDqq

3: Train g, e with LNF-BO,Dtr ▷ Eq. (14)
4: Train f̂ on Dtr if t ‰ 1 else D
5: pxanc, yancq Ð sample based on y values from D
6: zanc Ð gpexanc q

7: Zcand Ð Draw Nq candidate points with TACS in trust region centered on zanc ▷ Eq. (18)
8: Z̃ Ð argmaxptαpz; f̂q|z P Zcanduq

9: X̃ Ð

!

x|x “ targmaxj simpvi, ejq|i “ 1, . . . , Lu,v “ g´1pzq, z P Z̃
)

10: Dnew Ð

!

px, fpxqq |x P X̃
)

11: D Ð CONCAT pD,Dnewq

12: end for
13: px˚, z˚, y˚q Ð argmaxpx,z,yqPD y
14: return x˚
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Figure 13: Rejection Sampling Distribution Visualization. Voronoi cells represent different re-
gions, and color intensity indicates the likelihood of accepting a sample.

G REJECTION SAMPLING VISUALIZATION: FEASIBLE REGIONS IN LATENT
SPACE

Figure 13 illustrates the simplified example of constrained sampling distribution q1pvi|xiq based on
Eq. (11). In the figure, the Voronoi cells represent the spatial partitioning of the input space. For
a simple and clear description, this space is based on random points. Each cell is shaded based on
an isotropic Gaussian distribution centered at the cell’s origin. The shading intensity reflects the
probability of accepting a sample based on the condition ppxi|viq “ 1. Darker regions indicate
higher Gaussian values, and hence higher likelihoods of sample acceptance. Light sky blue areas
indicate regions with lower density compared to the darker regions. This visualization demonstrates
the selective nature of our sampling method, focusing only on feasible solutions during optimization.

H ARCHITECTURE DETAILS

Each autoregressive block gk includes several coupling layers gk,l. The transformation of each layer
operates as follows:

zk,li “ gk,l
´

zk,l`1
i ;Apzk,Lăi q, θk,l

¯

. (19)

For each block gk, the input is represented by zk,0 “ zk, and the output of the final layer in each
block sets the initial condition for the next block, zk,L “ zk`1,0. The final output after the last layer
of the last block is zK,L “ v. Each coupling layer further refines the data representation, informed
by previous tokens. The function A, which we implemented as an LSTM, aggregates information
from prior tokens, enhancing the model’s ability to capture long-range dependencies of sequence
data.

I IMPLEMENTATION DETAILS

In our experiments, parameters were adjusted based on the specific requirements of each benchmark
setting. For (the batch size of trust regions, the number of query points Nq per trust region), we
set these parameters to (5, 10) for the Guacamol benchmark with an additional oracle call setting of
500. For other settings, these parameters were adjusted to (10, 100).

We explored the temperature τ for the Token-level Adaptive Candidate Sampling (TACS) across the
values {400, 200, 100} to find the optimal setting. The sequence length L was determined based on
the longest sequence in the initial dataset. For details on the other fixed parameters, please refer to
Table 3.
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Table 3: Fixed parameters for all tasks and settings.

Parameter Value

Scaling factor κ in TACS 0.1¨ Sequence length L
Standard deviation σ of variational distribution q 0.1

# of topk data for training 1000
Coefficient of similarity loss Lsim 1

Typically, the anchor point within a trust region is selected based on the current best observed value
from the accumulated data. However, in our approach, we enhance exploration by sampling anchor
points based on their objective values. We apply a softmax function to the objective values of the
data points to determine their probabilities of being selected as anchor points. This probability
is defined as: ppxpiqq “

exppypiq
{τ 1

q
ř

j exppypjq{τ 1q
where ypiq is the objective value of point i, and τ 1 is the

temperature parameter set to 0.1, facilitating a more explorative selection by emphasizing higher
objective values. This method ensures that points with higher objective values are more likely to be
selected, promoting a diverse exploration of the solution space.

J BASELINES

In the Guacamol benchmark, we use the following LBO methods as the baselines:

• LSBO: searches the entire latent space without any modifications.
• TuRBO-L (Eriksson et al., 2019): employs a trust region strategy, focusing the search on

promising areas around the current best score.
• W-LBO (Tripp et al., 2020): utilizes weighted retraining to better adapt the model based

on promising new data.
• LOLBO (Maus et al., 2022): integrates joint training between the surrogate and generative

models to optimize performance.
• CoBO (Lee et al., 2023): uses Lipschitz regularization to enhance the correlation between

the latent space and the objective function, aiming to improve the model’s predictive align-
ment with desired outcomes.

• PG-LBO (Chen et al., 2024): applies pseudo-labeling techniques to predict labels of unla-
beled data points, potentially uncovering valuable areas of the search space.

K ADDITIONAL EXPERIMENTAL RESULTS

Analysis of SeqFlow for value discrepancy problem. We presented an ablation study of our gen-
erative model (SeqFlow) to demonstrate the impact of the value discrepancy problem. We compare
NF models by applying different mapping functions: Eq. (8), (9) (ours) and BiLSTM (TextFlow
(Ziegler & Rush, 2019)). Both models utilize a same Normalizing Flow (NF) framework. However,
TextFlow does not ensure the accurate reconstruction of the inputs since it applies BiLSTM to the
mapping function. The optimization results are in Table 4. Please note that we do not apply TACS
solely to compare generative models. From the table, our SeqFlow model achieves better perfor-
mance with fewer parameters compared to the baseline model. SeqFlow and TextFlow use the same
NF model, but TextFlow includes more components and therefore has more parameters. Although
TextFlow has more parameters, our SeqFlow model resolves the value discrepancy problem, result-
ing in higher optimization performance. This shows that addressing the value discrepancy problem
is important in effective Bayesian optimization.

Measurements of the value discrepancy between actual and latents. To demonstrate that our
SeqFlow effectively addresses the value discrepancy problem, we measure the ratio of instances
where y ‰ ŷ, comparing the score of the input data y and the reconstructed data ŷ. We use top 1,000
data points from 10,000 initial data points across all Guacamol tasks. The experimental results are
in Table 5. From the table, our SeqFlow model accurately reconstructs every data point, unlike the
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Table 4: Optimization results according to different generative models. Each score represents the
mean and standard deviation of 5 independent runs.

Methods SeqFlow (Ours) TextFlow (Ziegler & Rush, 2019)
BO NF-BO w/o TACS NF-BO w/o TACS

Base Model Autoregressive NF Autoregressive NF
Mapping Functions Eq. (8, 9) BiLSTM

Complete Reconstruction O X
# Params 31M 54M

adip 0.778 ˘ 0.016 0.716 ˘ 0.017
med2 0.372 ˘ 0.012 0.347 ˘ 0.010

TextFlow model, which indicates that our SeqFlow model is appropriate NF model to address the
value discrepancy problem.

Table 5: Quantitive measurement of value discrepancy. We measure the ratio of y ‰ ŷ.

Model SeqFlow TextFlow (Ziegler & Rush, 2019)

adip 0.000 0.548
med2 0.000 0.609
osmb 0.000 0.630
pdop 0.000 0.502
rano 0.000 0.814
zale 0.000 0.750
valt 0.000 0.001

Exploration abilities of TACS according to the number of initial points. To verify the explo-
ration abilities and effectiveness of our TACS, we conduct an ablation study of TACS using 1 initial
data point and 10,000 initial data points in Table 6. Each experiment is repeated 5 times and we
report the average and standard deviation of the results. From the table, NF-BO with TACS con-
sistently shows better optimization results compared to NF-BO without TACS when using 1 initial
data point. Moreover, NF-BO with TACS is shown to be robust to the number of initial points by
comparing the optimization results between NF-BO w/ TACS (init 1) and NF-BO w/ TACS (init
10K). This suggests that TACS has strong exploration capabilities. Interestingly, in some tasks like
Adip, NF-BO w/ TACS (init 1) performs better than NF-BO w/ TACS (init 10K), which highlights
the effectiveness of TACS under low-data scenarios. We maintained the TACS temperature at 400,
consistent with our main experiments.

Table 6: Performance on low-data scenarios with 1 initial data. Bold values indicate the highest
performance among methods with only 1 initial data point. Each score represents the mean and
standard deviation of 5 independent runs.

Method NF-BO w/o TACS (init 1) NF-BO w/ TACS (init 1) NF-BO w/ TACS (init 10K)

adip 0.765 ˘ 0.038 0.818 ˘ 0.051 0.809 ˘ 0.059
med2 0.306 ˘ 0.014 0.307 ˘ 0.027 0.380 ˘ 0.014
osmb 0.848 ˘ 0.037 0.855 ˘ 0.007 0.897 ˘ 0.016
pdop 0.564 ˘ 0.045 0.623 ˘ 0.043 0.759 ˘ 0.023
rano 0.846 ˘ 0.019 0.848 ˘ 0.021 0.941 ˘ 0.006
valt 0.198 ˘ 0.443 0.786 ˘ 0.439 0.995 ˘ 0.004
zale 0.586 ˘ 0.013 0.589 ˘ 0.033 0.760 ˘ 0.012

Choice of TACS temperature. To choose the TACS temperature in our main experiments, we
initially conduct a simple search for the TACS temperature on one of the Guacamol tasks within the
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range [400, 200, 100]. Based on this search, we fix the temperature at 400 for all benchmarks and
tasks.

To further demonstrate the robustness of the TACS temperature, we provide a sensitivity analysis
in Table 7. This analysis is performed across seven Guacamol tasks, with results averaged over
five runs per task and summed. Both the oracle budget and the number of initial data were set to
10,000. From the table, TACS temperatures above 200 consistently show better optimization results
compared to not using TACS, highlighting the robustness of our approach to the choice of TACS
temperature across all tasks.

Table 7: Sensitivity analysis of TACS temperature on 7 Guacamol tasks. Each task’s performance is
averaged over five trials.

TACS Temperature τ Score sum on 7 Guacamol tasks

8 (w/o TACS) 5.495
2000 5.495 (+0.000)
1000 5.523 (+0.028)
400 5.544 (+0.049)
200 5.565 (+0.070)
100 5.481 (-0.014)
50 5.453 (-0.042)
20 5.418 (-0.077)

Sensitivity analysis for coefficient λ to similarity loss. We conduct a sensitivity analysis to evalu-
ate the performance across different λ values. These experiments are carried out on seven Guacamol
tasks, with the results in Table 8. The table demonstrates that our NF-BO model maintains compet-
itive performance across various λ settings. Also, tasks such as osmb and rano show robustness to
variations in λ.

Table 8: Sensitivity of λ on model performance. Each score represents the mean and standard
deviation of 5 independent runs.

Coefficient λ 0.1 1 10

adip 0.783 ˘ 0.024 0.809 ˘ 0.059 0.771 ˘ 0.023
med2 0.366 ˘ 0.018 0.380 ˘ 0.014 0.367 ˘ 0.012
osmb 0.895 ˘ 0.004 0.897 ˘ 0.016 0.900 ˘ 0.009
pdop 0.768 ˘ 0.033 0.759 ˘ 0.023 0.785 ˘ 0.028
rano 0.938 ˘ 0.004 0.941 ˘ 0.006 0.940 ˘ 0.005
valt 0.989 ˘ 0.006 0.995 ˘ 0.004 0.975 ˘ 0.031
zale 0.737 ˘ 0.014 0.760 ˘ 0.012 0.752 ˘ 0.013

Illustration of the value discrepancy problem on Guacamol tasks. We additionally include
illustrations similar to those presented in the main paper (see Figure 1) for five additional Guacamol
tasks, which are shown in Figure 14.

L DISCUSSION WITH LAMBO AND LAMBO-2

In contrast to our model, where the decoder is formulated as our problem statement’s decoder
x “ pθpzq (Eq. 6), the decoders in methods like LaMBO (Stanton et al., 2022) and LaMBO-2 (Gru-
ver et al., 2024) (e.g., MAE) operate differently since they utilize the original x in the decoder to
restore inputs for unmasked input tokens, thus cannot define the value discrepancy problem, which
is defined as Equation (7). Instead, these models elegantly align the latent space and input space by
repeatedly decoding or encoding new candidates. One key difference between LaMBO, LaMBO-
2 and ours is that our method does not need additional encoding and decoding of all candidates.
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Figure 14: Visualizations of the value discrepancy problem across 5 Guacamol tasks.

Our method decodes only the latent vector chosen by the acquisition function thanks to one-to-one
mapping between the input and latent space.

M GLOSSARY OF NOTATION

Table 9: Glossary of notation.

x Sequence of discrete data, each xi is a token index from V , where x P NL

v Continuous representation corresponding to discrete data x, where v P RLˆF

L Number of tokens in a sequence
F Dimension of the embedding space
ej Embedding vector of the j-th token in the vocabulary set V , where ej P RF

V Vocabulary set containing all possible tokens
simp¨, ¨q Cosine similarity function used to measure the similarity between two vectors
apviq Function that returns the index of the most similar embedding vector to vi

ppxi|viq Conditional probability of the token index xi given the continuous vector vi

δxi,apviq Equals 1 if xi is the index returned by apviq and 0 otherwise
x˚ Optimal value of the optimization
f Objective function
y Objective value of input x
z Latent vector of input x

x̃, ỹ, z̃ Next query data selected by the acquisition function
g Flow transformation
g Sequence of flow transformations

ωipzq Pointwise mutual information of x and zi
πipzq Token-level sampling probability on the latent z
κ Constant scaling factor varied by sequence length
τ Temperature parameter for Token-level Adaptive Candidate Sampling (TACS)
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