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ABSTRACT

We theoretically study lifelong reinforcement learning (RL) with linear representa-
tion in a regret minimization setting. The goal of the agent is to learn a multi-task
policy based on a linear representation while solving a sequence of tasks that may
be adaptively chosen based on the agent’s past behaviors. We frame the problem as
a linearly parameterized contextual Markov decision process (MDP), where each
task is specified by a context and the transition dynamics is context-independent,
and we introduce a new completeness-style assumption on the representation which
is sufficient to ensure the optimal multi-task policy is realizable under the linear
representation. Under this assumption, we propose an algorithm, called UCB Life-
long Value Distillation (UCBlvd), that provably achieves sublinear regret for any
sequence of tasks while using only sublinear planning calls. Specifically, forK task
episodes of horizon H , our algorithm has a regret bound Õ(

√
(d3 + d′d)H4K)

based on O(dH log(K)) number of planning calls, where d and d′ are the feature
dimensions of the dynamics and rewards, respectively. This theoretical guarantee
implies that our algorithm can enable a lifelong learning agent to learn to internalize
experiences into a multi-task policy and rapidly solve new tasks.

1 INTRODUCTION

Recently, there has been a surging interest in designing lifelong learning agents that can continuously
learn to solve multiple sequential decision making problems in their lifetimes (Thrun & Mitchell,
1995; Khetarpal et al., 2020; Silver et al., 2013; Xie & Finn, 2021). This scenario is in particular
motivated by building multi-purpose embodied intelligence, such as robots working in a weakly
structured environment (Roy et al., 2021). Typically, curating all tasks beforehand for such problems
is nearly infeasible, and the problems the agent is tasked with may be adaptively selected based on the
agent’s past behaviors. Consider a household robot as an example. Since each household is unique, it
is difficult to anticipate upfront all scenarios the robot would encounter. Moreover, the tasks the robot
faces are not independent and identically distributed (i.i.d.). Instead, what the robot has done before
can affect the next task and its starting state; e.g., if the robot fails to bring a glass of water and breaks
it, then the user is likely to command the robot to clean up the mess. Thus, it is critical that the agent
continuously improves and generalizes learned abilities to different tasks, regardless of their order.

In this work, we theoretically study lifelong reinforcement learning (RL) in a regret minimization
setting (Thrun & Mitchell, 1995; Ammar et al., 2015), where the agent needs to solve a sequence
of tasks using rewards in an unknown environment while balancing exploration and exploitation.
Motivated by the embodied intelligence scenario, we suppose that tasks differ in rewards, but share
the same state and action spaces and transition dynamics (Xie & Finn, 2021).To be realistic, we make
no assumptions on how the tasks and initial states are selected1; generally we allow them to be chosen
from a continuous set by an adversary based on the agent’s past behaviors. Once a task is specified

1We adopt a stricter definition of lifelong RL here to distinguish it from multi-task RL, while there are
existing works on lifelong RL (e.g. Brunskill & Li (2014); Lecarpentier et al. (2021)) assuming i.i.d. tasks.
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and revealed, the agent has one chance (i.e., executing one rollout from its current state) to complete
the task and then it moves to the next task.

The agent’s goal is to perform near optimally for the tasks it faces, despite the online nature of the
problem. This means that the accumulated regret of the learner compared with the best policy for
each task should be sublinear in its lifetime. We assume that there is no memory constraint; this
is usually the case for robotics applications where real-world interactions are the main bottleneck
(Xie & Finn, 2021). Nonetheless, we require that the agent eventually learns to make decisions
without frequent deliberate planning, because planning is time consuming and creates undesirable
wait time for user-interactive scenarios. In other words, the agent needs to learn a multi-task policy,
generalizing from not only past samples but also past computation, to solve new tasks.

Formally, we consider an episodic setup based on the framework of contextual Markov decision
process (CMDP) (Abbasi-Yadkori & Neu, 2014; Hallak et al., 2015). It repeats the following steps:
1) At the beginning of an episode, the agent is set to an initial state and receives a context specifying
the task reward, both of which can be arbitrarily chosen. 2) When needed, the agent uses its past
experiences to plan for the current task. 3) The agent runs a policy in the environment for a fixed
horizon in an attempt to solve the assigned task and gains experience from its policy execution. The
agent’s performance is measured as the regret with respect to the optimal policy of the corresponding
task. We require that, for any task sequence, both the agent’s overall regret and number of planning
calls to be sublinear in the number of episodes.

While lifelong RL is not new, the realistic need of simultaneously achieving 1) sublinear regret and
2) sublinear number of planning calls for 3) a potentially adversarial sequence of tasks and initial
states makes the setup considered here particularly challenging. To our knowledge, existing works
only address a strict subset of these requirements; especially, the computation aspect is often ignored.
Most provable works in lifelong RL make the assumption that the tasks are finitely many (Ammar
et al., 2015; Zhan et al., 2017; Brunskill & Li, 2015), or are i.i.d. (Ammar et al., 2014; Brunskill &
Li, 2014; Abel et al., 2018a;b; Lecarpentier et al., 2021), while others considering similar setups to
ours do not provide regret guarantees (Isele et al., 2016; Xie & Finn, 2021). On the technical side, the
closest lines of work are Modi & Tewari (2020); Abbasi-Yadkori & Neu (2014); Hallak et al. (2015);
Modi et al. (2018); Kakade et al. (2020) for contextual MDP and Wu et al. (2021); Abels et al. (2019)
for the dynamic setting of multi-objective RL, which study the sample complexity for arbitrary task
sequences; however, they either assume the problem is tabular or require a model-based planning
oracle with unknown complexity. Importantly, none of the existing works properly addresses the need
of sublinear planning calls, which creates a large gap between the abstract setup and practice need.

In this paper, we aim to establish a foundation for designing agents meeting these three practically
important requirements, a problem which has been overlooked in the literature. As the first step, here
we study lifelong RL with linear representation. We suppose that the contextual MDP is linearly
parameterized (Yang & Wang, 2019; Jin et al., 2020) and the agent needs to learn a multi-task
policy based on this linear representation. To make this possible, we introduce a new completeness-
style assumption on the representation which is sufficient to ensure the optimal multi-task policy is
realizable under the linear representation. Under these assumptions, we propose the first provably
efficient lifelong RL algorithm, Upper Confidence Bound Lifelong Value Distillation (UCBlvd,
pronounced as “UC Boulevard”), that possesses all three desired qualities. Specifically, forK episodes
of horizon H , we prove a regret bound Õ(

√
(d3 + d′d)H4K) using Õ(dH log(K)) planning calls,

where d and d′ are the feature dimensions of the dynamics and rewards, respectively.

From a high-level viewpoint, UCBlvd uses a linear structure to identify what to transfer and operates
by interleaving 1) independent planning for a set of representative tasks and 2) distilling the planned
results into a multi-task value-based policy. UCBlvd also constantly monitors whether the new
experiences it gained are sufficiently significant, based on a doubling schedule, to avoid unnecessary
planning. On the technical side, UCBlvd’s design is inspired by single-task LSVI-UCB (Jin et al.,
2020), however, we introduce a novel distillation step based on QCQP, along with a new completeness
assumption, to enable computation sharing across tasks; we also extend the low-switching cost
technique (Abbasi-Yadkori et al., 2011; Gao et al., 2021; Wang et al., 2021) for single-task RL to the
lifelong setup to achieve sublinear number of planning calls.

Notation. Throughout the paper, we use lower-case letters for scalars, lower-case bold letters for
vectors, and upper-case bold letters for matrices. The Euclidean-norm of x is denoted by‖x‖2. We
denote the transpose of a vector x by x>. For any vectors x and y, we use 〈x,y〉 to denote their
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inner product. We denote the Kronecker product by A ⊗B. Let A ∈ Rd×d be a positive definite
and ν ∈ Rd. The weighted 2-norm of ν with respect to A is defined by‖ν‖A :=

√
ν>Aν. For a

positive integer n, [n] denotes the {1, 2, . . . , n}. For a real number α, we denote {α}+ = max{α, 0}.
Finally, we use the notation Õ for big-O notation that ignores logarithmic factors.

2 PRELIMINARIES

We formulate lifelong RL as a regret minimization problem in contextual MDP (Abbasi-Yadkori &
Neu, 2014; Hallak et al., 2015) with adversarial context and initial state sequences. We suppose that
a context determines the task reward but does not affect the dynamics. Such a context dependency is
common for the lifelong learning scenario where an embodied agent consecutively solves multiple
tasks. Below we give the formal problem definition.

Finite-horizon contextual MDP. We consider a finite-horizon contextual MDP denoted by M =
(S,A,W, H,P, r), where S is the state space,A is the action space,W is the task context space,H is
the horizon (length of each episode), P = {Ph}Hh=1 are the transition probabilities, and r = {rh}Hh=1
are the reward functions. We allow S andW to be continuous or infinitely large, while we assume
A is finite such that maxa∈A can be performed easily. For h ∈ [H], rh(s, a, w) denotes the reward
function whose range is assumed to be in [0, 1], and Ph(s′|s, a) denotes the probability of transitioning
to state s′ upon playing action a at state s. In short, a contextual MDP can be viewed as an MDP
with state space S ×W and action space A where the context part of the state remains constant in an
episode.2 To simplify the notation, for any function f , we write Ph[f ](s, a) := Es′∼Ph(.|s,a)[f(s

′)].

Policy and value functions. In a finite-horizon contextual MDP, a policy π = {πh}Hh=1 is a sequence
where πh : S×W → A determines the agent’s action at time-step h. Given π, we define its state value
function as V πh (s, w) := E[

∑H
h′=h rh′

(
sh′ , πh′(sh′ , w), w)|sh = s

]
and its action-value function

as Qπh(s, a, w) := rh(s, a, w) + Ph[V πh+1(., w)](s, a), where QπH+1 = 0. We denote the optimal
policy as π∗h(s, w) := supπ V

π
h (s, w), and let V ∗h := V π

∗

h and Q∗h := Qπ
∗

h denote the optimal value
functions. Lastly, we recall the Bellman equation of the optimal policy:

Q∗h(s, a, w) = rh(s, a, w) + Ph[V ∗h+1(., w)](s, a), V ∗h (s, w) = max
a∈A

Q∗h(s, a, w). (1)

Interaction protocol of lifelong RL. The agent interacts with a contextual MDP M in episodes.
For presentation simplicity, we assume that the reward functions r are known, while the transition
probabilities P are unknown and must be learned online; we will discuss how reward learning can be
naturally incorporated in Section 4.3. At the beginning of episode k, the agent receives a task context
wk ∈ W and is set to an initial state sk1 , both of which can be adversarially chosen. The agent can
use past experiences to plan for the current task, if needed. Then the agent executes its policy πk: at
each time-step h ∈ [H], it observes the state skh, plays an action akh = πkh(s

k
h, w

k), observes a reward
rkh := rh(s

k
h, a

k
h, w

k), and goes to the next state skh+1 according to Ph(.|skh, akh). Let K be the total
number of episodes. The agent’s goal is to achieve sublinear regret, where the regret is defined as

RK :=
∑K
k=1 V

∗
1 (s

k
1 , w

k)− V πk

1 (sk1 , w
k). (2)

As the comparator policy above (namely π∗ that defines V ∗1 ) also knows the task context, achieving
sublinear regret implies that the agent would attain near task-specific optimal performance on average.

Linear Model Representation. We focus on MDPs with linear transition kernels and reward
functions (Jin et al., 2020; Yang & Wang, 2019) that are encapsulated in the following assumption.
Assumption 1 (Linear MDPs). M = (S,A, H,P, r,W) is a linear MDP with feature maps φ :

S × A → Rd and ψ : S × A × W → Rd′ . That is, for any h ∈ [H], there exist a vector
ηh and d measures µh := [µh

(1), . . . , µh
(d)]> over S such that Ph(.|s, a) =

〈
µh(.),φ(s, a)

〉
and rh(s, a, w) =

〈
ηh,ψ(s, a, w)

〉
, for all (s, a, w) ∈ S × A × W . Without loss of generality,∥∥φ(s, a)∥∥

2
≤ 1,

∥∥ψ(s, a, w)∥∥
2
≤ 1,

∥∥µh(s)∥∥2 ≤ √d, and ‖ηh‖2 ≤
√
d′ for all (s, a, w, h) ∈

S ×A×W × [H].

In real-world problems, we can use the context to model the task specification of a problem. For
example, if we want to design household robots to assist humans with a series of tasks like cooking,
cleaning, washing dishes, lawn mowing, vacuuming, we can treat the the context as a natural language

2In general, a context-dependent dynamics would take the form Ph(s
′|s, a, w).
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instruction that the human user would give to the robot, and we can view the representations ψ and φ
as the embedding of a deep neural network model that has been pre-trained.
Example 1 (Weighted Rewards). An interesting and common special case is ψ(s, a, w) = φ(s, a)⊗
ρ(w), for some mapping ρ : W → Rm. In this case, it holds that d′ = md and rh(s, a, w) =〈
ρ(w), rh(s, a)

〉
, where rh(s, a) = Ahφ(s, a) ∈ Rm, for some Ah ∈ Rm×d, is the vector reward

functions at time-step h. We can view rh(s, a, w) as a weighted reward with weights ρ(w) that
depend on task w. This setting is closely related to Multi-Objective RL studied for tabular case in Wu
et al. (2021), which studies the case where ρ(w) = w ∈ Rm along with tabular S and A.

3 A WARM-UP ALGORITHM FOR LIFELONG RL
We first present a warm-up algorithm based on linear representation, termed Lifelong Least-Squares
Value Iteration (Lifelong-LSVI), in Algorithm 1, which is a straightforward extension of the single-
task LSVI-UCB algorithm proposed by Jin et al. (2020) to the lifelong learning setting. The motivation
of this warm-up algorithm is to give intuitions on how the problem structure in Assumption 1 can be
used to achieve small regret and discuss the computational difficulty in lifelong learning.

We will show that Lifelong-LSVI has a sublinear regret bound, which matches the minimax optimal
rate in the special case studied by Wu et al. (2021) in terms of number of objectives, m (see Example
1). However, we will also show that Lifelong-LSVI is not computationally efficient, in the sense
that the number of planning calls it requires grows linearly with the number of episodes, which
would mean the overall computational complexity grows quadratically. This high computation cost is
because the agent never learns to internalize the task solving skills but requires going though all past
experiences for planning every time a new task arrives. Importantly, we will discuss why it cannot be
made computationally efficient in an easy manner without further assumptions on the representation.
This drawback motivates our new completeness assumption and our main algorithm, UCBlvd, which
is provably efficient in terms of both regret and number of planning calls, in Section 4.

We remark that Lifelong-LSVI is only a warm-up algorithm that guides the reader to understand the
mechanisms used for addressing the problem, motivates the need for UCBlvd, and shows what regret
bound is possible when computational complexity is not a concern (though being impractical).

3.1 ALGORITHMIC NOTATIONS

To begin, we introduce the template and the notations that will be used commonly in presenting the
warm-up algorithm, Lifelong-LSVI, and later our main algorithm, UCBlvd. For each algorithm, first
we will define an algorithm-specific action-value function Qkh : S ×A×W → R, which determines
the agent’s policy at time-step h in episode k; then we present the full algorithm and its analysis
using the quantities below, which are defined with respect to each algorithm’s definition of Qkh.

Given {Qkh}h∈[H], we define state value functions and their backups as

V kh (s, w) := min

{
max
a∈A

Qkh(s, a, w), H

}
, θkh(w) :=

∫
S
V kh+1(s

′, w)dµh(s
′), (3)

Thanks to the linear MDP structure in Assumption 1, it holds that

Ph
[
V kh+1(., w)

]
(s, a) =

〈
θkh(w),φ(s, a)

〉
. (4)

Let λ > 0 be a constant. We define the λ-regularized least squares estimator of θkh(w) as

θ̃
k

h(w) :=
(
Λk
h

)−1 k−1∑
τ=1

φτhV
k
h+1(s

τ
h+1, w), where Λk

h := λId +

k−1∑
τ=1

φτhφ
τ
h
>
, (5)

and θ̃
k

h(w) is the solution to minθ∈Rd

∑k−1
τ=1(〈θ,φ(sτh, aτh)〉 − V kh+1(s

τ
h+1, w))

2 + λ‖θ‖22, φτh :=

φ(sτh, a
τ
h), and Id ∈ Rd×d is the identity matrix.

3.2 DETAILS OF LIFELONG-LSVI AND ITS THEORETICAL GUARANTEES

We define the upper confidence bound (UCB) style action-value function of Lifelong-LSVI as follows:

Qkh(s, a, w) := rh(s, a, w) +

〈
θ̃
k

h(w),φ(s, a)

〉
+ β

∥∥φ(s, a)∥∥
(Λk

h)
−1 , (6)
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Algorithm 1: Lifelong-LSVI

1 Set: QkH+1(., ., .) = 0, ∀k ∈ [K]
2 for episodes k = 1, . . . ,K do
3 Observe the initial state sk1 and the task context wk.
4 for time-steps h = H, . . . , 1 do
5 Compute θ̃

k

h(w
k) as in (5) using Qkh+1 defined in (6).

6 for time-steps h = 1, . . . ,H do
7 Compute Qkh(s

k
h, a, w

k) for all a ∈ A as in (6).
8 Play akh = argmaxa∈AQ

k
h(s

k
h, a, w

k) and observe skh+1 and rkh.

where QkH+1 = 0 and θ̃
k

h(w) and Λk
h are defined in (5). Here, β is an exploration factor that will be

appropriately chosen in Theorem 1. At episode k, given wk, Lifelong-LSVI first performs planning
backward in time based on past data to compute θ̃

k

h(w
k) in (5) using Qkh+1 defined in (6) (Lines 4-

5). Then, in execution, it uses θ̃
k

h(w
k) to compute Qkh(s

k
h, a, w

k) for the current state and all a ∈ A
(Line 7) and executes the action with the highest value (Line 8).

We show that Lifelong-LSVI achieves sublinear regret for our lifelong RL setup. The complete proof
is reported in Appx. A, which follows the ideas of LSVI-UCB (Jin et al., 2020).
Theorem 1. Let T = KH . Under Assumption 1, there exists an absolute constant c > 0 such that
for any fixed δ ∈ (0, 0.5), if we set λ = 1 and β = cH

(
d+
√
d′
)√

log(dd′T/δ) in Algorithm 1,

then with probability at least 1− 2δ, it holds that RK ≤ Õ
(√

(d3 + dd′)H3T
)

.

Before introducing our main algorithm in Section 4, we make a few remarks on the regret and number
of planning calls of Lifelong-LSVI. First, Theorem 1 implies that for the special case studied by Wu
et al. (2021) (Example 1), the regret bound of Lifelong-LSVI becomes Õ(

√
md3H3T ). This rate

is optimal in terms of its dependency on m, as shown in Wu et al. (2021). Furthermore, this rate
matches the LSVI-UCB’s regret dependencies on d and H for the single-task setting (Jin et al., 2020).

While Lifelong-LSVI has a decent regret guarantee, it requires computing θ̃
k

h(w
k) for all h ∈ [H],

whenever a distinct new task wk arrives. Since the number of unique tasks may be as large as K, the
total number of planning calls required in Lifelong-LSVI is K in the worst case.

Unfortunately, the number of planning calls of Lifelong-LSVI cannot be easily improved, because
under Assumption 1 alone, the optimal Q-function Q∗h(s, a, w) of the CMDP can be nonlinear in the
representation ψ. As a result, for any algorithm that represents its policy linearly based on both ψ
and φ, in general it is necessary to recompute the coefficients for every new w to be optimal. For
Lifelong-LSVI specifically, this nonlinear dependency shows up in θ̃

k

h(w) of Qkh(s, a, w) in (6).

In the next section, we discuss how placing a completeness-style assumption, which ensures
Q∗h(s, a, w) can be linearly parameterized by ψ, would circumvent the issue of non-linear de-
pendency of the action-value functions on w, and consequently would enable computation sharing to
decrease the number of planning calls to O(dH log(K)).

4 UCB LIFELONG VALUE DISTILLATION (UCBLVD)
In this section, we present our main algorithm, UCB Lifelong Value Distillation (UCBlvd), in
Algorithm 2. Under new completeness-style assumption that we will introduce in Section 4.1,
we show that UCBlvd shares the same regret bound as Lifelong-LSVI but significantly reduces
the number of planning calls to be logarithmic in K. In contrast to Lifelong-LSVI which learns
individual action-value function for each wk, UCBlvd learns a single action-value function for all
w ∈ W based on ψ(s, a, w) to enable computation sharing across tasks, which is made possible by
the extra completeness-style assumption. In general, in order to directly extend Lifelong-LSVI to only
use feature ψ(s, a, w) ∈ Rd′ with d′ ≥ d, we need a context-dependent dynamics structure, which
would eventually increase the regret. UCBlvd maintains the same order of regret as Lifelong-LSVI
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by separating the planning into a novel two-step process: 1) independent planning with φ for a set
of representative task contexts and 2) distilling the planned results into a multi-task value function
parameterized by ψ. In addition, UCBlvd runs a doubling schedule to decide whether replanning is
necessary, which makes the total number of planning calls logarithmic in K.
4.1 ENABLING COMPUTATION SHARING

As lifelong RL with Assumption 1 alone would require replanning in every episode in general (see
Section 3), here we introduce new structural assumptions on ψ to enable computation sharing across
tasks. First, we define the following class of functions

F =

{
f : f(s, w) = min

{
max
a∈A

{
〈ν,ψ(s, a, w)〉+ β

∥∥φ(s, a)∥∥
Λ−1

}+

, H

}
,ν ∈ Rd′ ,Λ ∈ Sd

++, β ≥ 0

}
,

where Sd++ denotes the set of symmetric positive definite matrices. We now state our main
completeness-style assumption.
Assumption 2 (Completeness). For any f ∈ F and h ∈ [H], there exists a vector ξfh ∈ Rd′ with∥∥∥ξfh∥∥∥ ≤ H√d′ such that Ph

[
f(., w)

]
(s, a) = 〈ξfh,ψ(s, a, w)〉.

This assumption says that the backups of functions in F are captured by the feature ψ with bounded
parameters. The definition of F closely models the structure of action-value function used by
Lifelong-LSVI in (6), except 〈θ̃

k

h(w),φ(s, a)〉 there is replaced by functions linear in ψ(s, a, w). We
will see that the action-value function used by UCBlvd defined in the next section is contained in
F . In addition, by setting β = 0 in F and (1), we see Q∗h(s, a, w) is linearly realizable by ψ under
Assumption 2. We note that a similar notion of this assumption is mentioned in previous work for
single-task settings under the name of “optimistic closure” (Wang et al., 2020).

Inspired by Example 1, we now introduce the next assumption on the structure of ψ.
Assumption 3 (Mappings). We assume ψ(s, a, w) = φ(s, a)⊗ ρ(w), for some mapping ρ :W →
Rm, i.e., d′ = md. We assume that there is a known set {w(1), w(2), . . . , w(n)} of n ≤ m task
contexts such that ρ(w) ∈ Span({ρ(w(j))}j∈[n]) for all w ∈ W . That is, for any w ∈ W , there exist
coefficients {cj(w)}j∈[n] such that ρ(w) =

∑
j∈[n] cj(w)ρ(w

(j)). We assume
∑
j∈[n]

∣∣cj(w)∣∣ ≤ L
for all w ∈ W and some L <∞.

Note that, for finite-dimensional representations, such set {ρ(w(j))}j∈[n] always exists. We assume
that this set {w(1), w(2), . . . , w(n)} is known to the algorithm

4.2 DETAILS OF UCBLVD

We define the UCB style action-value function of UCBlvd as follows:

Qkh(s, a, w) :=

{
rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥
(Λk

h)
−1

}+

. (7)

The parameter ξ̂
k

h is computed by solving the convex quadratically constrained quadratic program
(QCQP) in (8), which is defined on a set of representative task contexts {w(1), w(2), . . . , w(n)} in
Assumption 3 and state-action pairs D :=

{
(s, a) : φ(s, a) are d linearly independent vectors.

}
.

ξ̂
k

h, {θ̂
k(j)

h }j∈[n] = argmin
ξ,{θ(j)}

j∈[n]

∑
j∈[n]

∑
(s,a)∈D

(
〈θ(j),φ(s, a)〉 − 〈ξ,ψ(s, a, w(j))〉

)2
(8)

s.t.
∥∥∥∥θ(j) − θ̃kh(w(j))

∥∥∥∥
Λk

h

≤ β, ∀j ∈ [n] and ‖ξ‖2 ≤ H
√
md,

where θ̃
k

h(w) and Λk
h are defined in (5). In Appx. B.3, we will show that the action-value function in

(7) is an optimistic estimate of the optimal action-value function.

UCBlvd also uses the linear dependency of Qkh on ψ to reduce calls of the planning step in (8). The
agent triggers replanning only when it has gathered enough new information compared to the last
update at episode k̃. This is measured by tracking the variations in Gram matrices {Λk

h}h∈[H] (Line
4 for Algorithm 2). Finally, when executing the policy at episode k, the agent chooses the action
according to Qk̃h in Line 10.
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Algorithm 2: UCBlvd (UCB Lifelong Value Distillation)

1 Set: QkH+1(., ., .) = 0, ∀k ∈ [K], k̃ = 1
2 for episodes k = 1, . . . ,K do
3 Observe the initial state sk1 and the task context wk.

4 if ∃h ∈ [H] such that log detΛk
h − log detΛk̃

h > 1 then
5 k̃ = k
6 for time-steps h = H, . . . , 1 do

7 Compute ξ̂
k̃

h as in (8).

8 for time-steps h = 1, . . . ,H do
9 Compute Qk̃h(s

k
h, a, w

k) for all a ∈ A as in (7).
10 Play akh = argmaxa∈AQ

k̃
h(s

k
h, a, w

k) and observe skh+1 and rkh.

4.3 THEORETICAL ANALYSIS OF UCBLVD

We present our main theoretical result which shows UCBlvd achieves sublinear regret in lifelong RL
using sublinear number of planning calls, for any sequence of tasks. The proof is given in Appx. B.
Theorem 2. Let T = KH . Under Assumptions 1, 2, and 3, the number of planning calls in Algorithm
2 is at most dH log(1 + K

dλ ), and there exists an absolute constant c > 0 such that for any fixed
δ ∈ (0, 0.5), if we set λ = 1 and β = cH(d +

√
md)

√
log(mdT/δ) in Algorithm 2, then with

probability at least 1− 2δ, it holds that RK ≤ Õ
(
L
√
(d3 +md2)H3T

)
.

Theorem 2 shows that UCBlvd has the same regret bound as Lifelong-LSVI in Theorem 1, but
reduces the number of planning calls from K to dH log(1 +K/dλ). As we discussed before, this is
made possible by the unique QCQP-based distillation step of UCBlvd in (8). If we were to simply

perform least-squares regression to fit 〈ψ(s, a, w), ξ̂
k

h〉 to {〈φ(s, a), θ̃
k

h(w
(j))}j∈[n] for distillation,

we cannot guarantee the required optimism, because 〈φ(s, a), θ̃
k

h(w)〉 computed based on finite
samples can be an irregular function that cannot be modelled by ψ(s, a, w).
Remark 1. If the rewards are unknown, we can adopt a slightly different completeness assumption
with an extra bonus in terms of ψ, and then combine tools from linear bandits (Abbasi-Yadkori et al.,
2011) and our proof of Theorem 2. Because reward learning affects the radius of the confidence
intervals for θkh(w), the number of planning calls and regret would increase by factors of O(m) and
O(
√
m) 3, respectively, compared to those in Theorem 2. See Appx. C for details.

Remark 2. It is possible to eliminate the assumption that ψ(s, a, w) = φ(s, a)⊗ρ(w). In this case,
our analysis would instead require a set {w(1), w(2), . . . , w(n)} of n tasks such that ψ(s, a, w) ∈
Span({ψ(s, a, w(j))}j∈[n]) for all (s, a, w) ∈ S × A ×W . In Appx. D, we provide details of this
relaxation, and show that this version still enjoys the same planning calls and regret as in Theorem 2.
Remark 3. We can eliminate Assumptions 1 and 3 and instead design a computation-sharing
version of Lifelong-LSVI under a sightly different completeness assumption with a class F , whose
exploration bonus is β

∥∥ψ(s, a, w)∥∥
Λ̃
−1 . This assumption naturally includes settings with linear MDP

in which dynamics also change with task context, i.e., for all h ∈ [H], it holds that Ph(.|s, a, w) =
〈µh(.),ψ(s, a, w)〉 for d′ unknown measures [µ(1)

h , . . . , µ
(d′)
h ]>. Under this assumption, a slightly

modified version of Lifelong-LSVI would use Qkh(s, a, w) = {rh(s, a, w) + 〈ν̃kh,ψ(s, a, w)〉 +
β
∥∥ψ(s, a, w)∥∥

(Λ̃
k
h)
−1}+, where ν̃kh = (Λ̃

k

h)
−1∑k−1

τ=1ψ
τ
h.min{maxa∈AQ

k
h+1(s

τ
h+1, a, w

τ ), H},

Λ̃
k

h = λId′ +
∑k−1
τ=1ψ

τ
hψ

τ
h
>, ψτh = ψ(sτh, a

τ
h, w

τ ), and β = Õ(d′). However, in Appx. E, we show
how these new algorithm and assumption result in Õ(mdH) number of planning calls and a regret

3While for both settings in this remark and Remark 3, the action-value functions contain exploration bonus
in terms of ψ, the regret here is better by a factor of

√
m and this is because the multiplicative factor β here

saves a factor
√
m compared to that in Remark 3.
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scaling with Õ(
√
m3d3) for settings with ψ(s, a, w) = φ(s, a)⊗ ρ(w). These are worse than the

number of planning calls and regret in Theorem 2 of UCBlvd by a factor of O(m).
Remark 4. A natural follow-up relaxation of Assumption 2 is when the equality holds up to an error of
ζ. In Appx. F, we show that this relaxation results in a regret Õ

(√
mdTζ +

√
λ(d3 +md2)H3T

)
and the same number of planning calls as that in Theorem 2. When ζ is sufficiently small, i.e.,
ζ = O(

√
d2H3/mT ), UCBlvd will still enjoy a regret of the same order as that in Theorem 2.

4.4 PROOF SKETCH OF THEOREM 2

Because the proof of planning calls’ upper bound follows standard arguments in low switching cost
analysis of Abbasi-Yadkori et al. (2011), in this section, we focus on the proof sketch for the regret
bound. We start by introducing the high probability event E1, which is the foundation of our analysis:

E1(w) :=

{∥∥∥∥θkh(w)− θ̃kh(w)∥∥∥∥
Λk

h

≤ β,∀(h, k) ∈ [H]× [K]

}
. (9)

The following lemma highlights the importance of the carefully designed planning step in (8), which
ensures good estimators for ξ

V ∗h+1

h without the need of bonus term
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 . This step

saves a factor O(m) in planning calls and regret.

Lemma 1. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 2 and
conditioned on events {E1(w)}w∈W̃ defined in (9), for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],

it holds that
∣∣∣∣〈ξ̂kh,ψ(s, a, w)〉 − Ph[V kh+1(., w)](s, a)

∣∣∣∣ ≤ 2Lβ
∥∥φ(s, a)∥∥(Λk

h)
−1 .

As the final step in the regret analysis, we use Lemma 1 to prove the optimistic nature of UCBlvd, i.e.,
Qkh(s, a, w

k) ≥ Q∗h(s, a, wk) for all (s, a, h, k) ∈ S ×A× [H]× [K]. Then following the standard
analysis of single-task LSVI-UCB we derive the regret bound in Theorem 2.

4.5 EXPERIMENTS

We implemented our main algorithm UCBlvd on synthetic environments and compared its perfor-
mance with the warm-up algorithm Lifelong-LSVI, which is viewed as an idealized baseline ignoring
the computational complexity. In all the experiments, the same setting, task sequences and feature
mappings were used for both UCBlvd and Lifelong-LSVI. Figure 1a depicts per-episode rewards for
the main setup considered throughout the paper, and Figure 1b shows those for the setup in Remark 2.
The plots verify that Lifelong-LSVI and UCBlvd statistically perform almost the same while UCBlvd
uses much smaller numbers of planning calls (1000 vs ∼ 20). We remark that Lifelong-LSVI has
an overall computation complexity of O(K2), which makes it not practical for the lifelong learning
setting, as its planning complexity increases linearly with the number of samples. The details on the
parameters of simulations are deferred to Appx. H.

Pe
r-

ep
is

od
e

re
w

ar
d

Episode, k

(a) Setting of Theorem 2, d = 5, m = 5, d′ = 25

Pe
r-

ep
is

od
e

re
w

ar
d

Episode, k

(b) Setting of Remark 2, d = 5, d′ = 10

Figure 1: UCBlvd vs Lifelong-LSVI. The experimental results include 50 seeds.

8



Published as a conference paper at ICLR 2023

5 RELATED WORK

We consider the regret minimization setup of lifelong RL under the contextual MDP framework,
where the agent receives tasks specified by contexts in sequence and needs to achieve a sublinear
regret for any task sequence. Below, we contrast our work with related work in the literature.

Lifelong RL. Generally lifelong RL studies how to learn to solve a streaming sequence of tasks
using rewards. While it was originally motivated by the need of endless learning of robots (Thrun &
Mitchell, 1995), historically many works on lifelong RL (Ammar et al., 2014; Brunskill & Li, 2014;
Abel et al., 2018a;b; Lecarpentier et al., 2021) assume that the tasks are i.i.d. (similar to multi-task
RL; see below). There are works for adversarial sequences, but most of them assume finite number
of tasks (Brunskill & Li, 2015; Ammar et al., 2015; Zhan et al., 2017) or are purely empirical (Xie &
Finn, 2021). The work by Isele et al. (2016) uses contexts to enable zero-shot learning like here, but
it (as well as most works above) does not provide formal regret guarantees.4 Brunskill & Li (2015)
and Xie & Finn (2021) assume the task identity is latent, which requires additional exploration; in
this sense, their problem is harder than the setup here where the task context is revealed. Extending
the setup here to consider latent context is an important future direction.

Contextual MDP and multi-objective RL. Our setup is closely related to the exploration problem
studied in the contextual MDP literature, though contextual MDP is originally not motivated from
the lifelong learning perspective. A similar mathematical problem appears in the dynamic setup of
multi-objective RL (Wu et al., 2021; Abels et al., 2019), which can be viewed as a special case of
contextual MDP where the context linearly determines the reward function but not the dynamics.
Most contextual MDP works allow adversarial contexts and initial states, but a majority of them
focuses on the tabular setup (Abbasi-Yadkori & Neu, 2014; Hallak et al., 2015; Modi et al., 2018;
Modi & Tewari, 2020; Levy & Mansour, 2022; Wu et al., 2021), whereas our setup allows continuous
states. Kakade et al. (2020) and Du et al. (2019) allow continuous state and action spaces, but the
former assumes a planning oracle with unclear computational complexity and the latter focuses on
only LQG problems. While generally contextual MDP allows both the reward and the dynamics to
vary with contexts, we focus on the effects of context-independent dynamics similar to Kakade et al.
(2020); Wu et al. (2021). In particular, the recent work of Wu et al. (2021) is the closest to ours, but
they study the sample complexity in the tabular setup with linearly parameterized rewards. In view of
Example 1, their proposed algorithm has a regret bound Õ(

√
min{m,|S|}H|S||A|K). However,

they need linear number of planning calls. On the contrary, our algorithm, UCBlvd, allows continuous
states, nonlinear context dependency, and has both sublinear regret and number of planning calls.

Multi-task RL. Another closely related line of work is multi-task RL. Compared to our setting,
multi-task RL assumes that there are beforehand known finite tasks and/or they are i.i.d. samples from
a fixed distribution. For example, in Yang et al. (2020); Hessel et al. (2019); Brunskill & Li (2013);
Fifty et al. (2021); Zhang & Wang (2021); Sodhani et al. (2021), tasks are assumed to be chosen from
a known finite set, and in Yang et al. (2020); Wilson et al. (2007); Brunskill & Li (2013); Sun et al.
(2021), tasks are sampled from a fixed distribution. By contrast, our setting provides guarantees on
regret and number of planning calls for adversarial task sequences.

6 DISCUSSION

In this paper, we frame lifelong RL as contextual MDPs and identify a new completeness-style
assumption to enable provably efficient lifelong RL with linear representation. We propose UCBlvd,
an algorithm that simultaneously satisfies the practical need of achieving 1) sublinear regret and
2) sublinear number of planning calls for 3) any sequence of tasks and initial states. Specifically,
for K task episodes of horizon H , we prove that UCBlvd has a regret bound Õ(

√
(d3 + d′d)H4K)

based on Õ(dH log(K)) number of planning calls, where d and d′ are the feature dimensions of the
dynamics and rewards, respectively. We believe that our results would inspire new research directions
in the literature of CMDP and multi-objective RL, as existing work to our knowledge does not cover
the computation-sharing aspect of lifelong RL. That said, our work’s limitations motivate further
investigations in the following directions: 1) extension to more general class of MDPs, potentially
using general function approximation/representation tools, 2) establishing an information-theoretic
lower bound on the number of planning calls/computation complexity.

4Ammar et al. (2015) give regret bounds but only for linearized value difference; Brunskill & Li (2015) show
regret bounds only for finite number of tasks.
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A PROOFS OF SECTION 3

To prove Theorem 1, we will use the high probability event E2 defined in Lemma 3 to prove the UCB
nature of Lifelong-LSVI in Lemma 4, which is the key to controlling the regret. We first state the
following lemma that will be used in the proof of Lemma 3.

Lemma 2. Under the setting of Theorem 1, let cβ be the constant in the definition of β. Then, for a
fixed w, there is an absolute constant c0 independent of cβ , such that for all (h, k) ∈ [H]× [K], with
probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

φτh.
(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)
−1

≤ c0H
(
d+
√
d′
)√

log((cβ + 1)dd′T/δ),

where c0 and cβ are two independent absolute constants.

Proof. We note that ‖ηh‖2 ≤
√
d′ (Assumption 1),

∥∥θkh(w)∥∥2 ≤ H
√
d (Lemma 18), and∥∥∥∥(Λk

h

)−1∥∥∥∥ ≤ 1
λ . Thus, Lemmas 19 and 21 together imply that for all (h, k) ∈ [H] × [K], with

probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)
−1

≤ 4H2

d
2
log

(
k + λ

λ

)
+ d′ log(1 + 4d′/ε) + d log(1 + 4Hd/ε) + d2 log

(
1 + 8B2

√
d

λε2

)
+ log

(
1

δ

)+
8k2ε2

λ
.

If we let ε = dH
k and β = cβ(d+

√
d′)H

√
log(dT/δ), then, there exists an absolute constant C > 0

that is independent of cβ such that∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)
−1

≤ C(d′ + d2)H2 log
(
(cβ + 1)dd′T/δ

)
.

Lemma 3. Let the setting of Theorem 1 holds. The event

E2(w) :=

{∥∥∥∥θkh(w)− θ̃kh(w)∥∥∥∥
Λk

h

≤ β,∀(h, k) ∈ [H]× [K]

}
. (10)

holds with probability at least 1− δ for a fixed w.

Proof.

θkh(w)− θ̃
k

h(w) = θ
k
h(w)−

(
Λk
h

)−1 k−1∑
τ=1

φτhV
k
h+1(s

τ
h+1, w)

=
(
Λk
h

)−1Λk
hθ

k
h(w)−

k−1∑
τ=1

φτhV
k
h+1(s

τ
h+1, w)


= λ

(
Λk
h

)−1
θkh(w)︸ ︷︷ ︸

q1

−
(
Λk
h

)−1k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)

︸ ︷︷ ︸
q2

.
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Thus, in order to upper bound
∥∥∥∥θkh(w)− θ̃kh(w)∥∥∥∥

Λk
h

, we bound‖q1‖Λk
h

and‖q2‖Λk
h

separately.

From Lemma 18, we have

‖q1‖Λk
h
= λ

∥∥∥θkh(w)∥∥∥
(Λk

h)
−1
≤
√
λ
∥∥∥θkh(w)∥∥∥

2
≤ H
√
λd. (11)

Thanks to Lemma 2, for all (w, h, k), with probability at least 1− δ, it holds that

‖q2‖Λk
h
≤

∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)
−1

≤ c0H
(
d+
√
d′
)√

log((cβ + 1)dd′T/δ),

(12)

where c0 and cβ are two independent absolute constants.

Combining (11) and (12), for all (w, h, k), with probability at least 1− δ, it holds that

∥∥∥∥θkh(w)− θ̃kh(w)∥∥∥∥
Λk

h

≤ cH
(
d+
√
d′
)√

λ log(dd′T/δ)

for some absolute constant c > 0.

Lemma 4. Let W̃ = {w1, w2, . . . , wK}. Under the setting of Theorem 1 and conditioned on
events {E2(w)}w∈W̃ defined in (10), and with Qkh computed as in (6), it holds that Qkh(s, a, w) ≥
Q∗h(s, a, w) for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K].

Proof. We first note that conditioned on events {E2(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ ×
[H]× [K], it holds that∣∣∣∣∣rh(s, a, w) +

〈
θ̃
k

h(w),φ(s, a)

〉
−Qπh(s, a, w)− Ph

[
V kh+1(., w)− V πh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣rh(s, a, w) +
〈
θ̃
k

h(w),φ(s, a)

〉
− rh(s, a, w)− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
θ̃
k

h(w),φ(s, a)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
θ̃
k

h(w)− θ
k
h(w),φ(s, a)

〉∣∣∣∣∣
≤
∥∥∥∥θ̃kh(w)− θkh(w)∥∥∥∥

Λk
h

∥∥φ(s, a)∥∥(Λk
h)
−1

≤ β
∥∥φ(s, a)∥∥(Λk

h)
−1 , (Lemma 3)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because QkH+1(., ., .) =
Q∗H+1(., ., .) = 0 and thus conditioned on events {E2(w)}w∈W̃ , defined in (10), for all (s, a, w, k) ∈
S ×A× W̃ × [K], we have

∣∣∣∣rH(s, a, w) +
〈
θkH(w),ψ(s, a)

〉
−Q∗H(s, a, w)

∣∣∣∣ ≤ β∥∥φ(s, a)∥∥(Λk
H)
−1 .
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Therefore, conditioned on events {E2(w)}w∈W̃ , for all (s, a, w, k) ∈ S ×A× W̃ × [K], we have

Q∗H(s, a, w) ≤ rH(s, a, w) +
〈
θkH(w),φ(s, a)

〉
+ β

∥∥φ(s, a)∥∥
(Λk

H)−1 = QkH(s, a, w).

Now, suppose the statement holds at time-step h+1 and consider time-step h. Conditioned on events
{E2(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

0 ≤ rh(s, a, w) +
〈
θkh(w),φ(s, a)

〉
−Q∗h(s, a, w)− Ph

[
V kh+1(., w)− V ∗h+1(., w)

]
(s, a) + β

∥∥φ(s, a)∥∥(Λk
h)
−1

≤ rh(s, a, w) +
〈
θkh(w),φ(s, a)

〉
−Q∗h(s, a, w) + β

∥∥φ(s, a)∥∥(Λk
h)
−1 .

(Induction assumption)

Therefore, conditioned on events {E2(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A × W̃ × [H]× [K],
we have

Q∗h(s, a, w) ≤ rh(s, a, w) +
〈
θkh(w),φ(s, a)

〉
+ β

∥∥φ(s, a)∥∥(Λk
h)
−1 = Qkh(s, a, w).

This completes the proof.

A.1 PROOF OF THEOREM 1

Let δkh = V kh (s
k
h, w

k)− V πk

h (skh, w
k) and ξkh+1 = E

[
δkh+1|skh, akh

]
− δkh+1. Conditioned on events

{E2(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

Qkh(s, a, w)−Qπ
k

h (s, a, w) = rh(s, a, w) +
〈
θkh(w),φ(s, a)

〉
−Qπ

k

h (s, a, w) + β
∥∥φ(s, a)∥∥

(Λk
h)
−1

≤ Ph
[
V kh+1(., w)− V π

k

h+1(., w)
]
(s, a) + 2β

∥∥φ(s, a)∥∥
(Λk

h)
−1 . (13)

Note that δkh ≤ Qkh(s
k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, combining (13), Lemma 3, and a union
bound over W̃ , we conclude that for all (h, k) ∈ [H]× [K], with probability at least 1− δ, it holds
that

δkh ≤ ξkh+1 + δkh+1 + 2β
∥∥∥φ(skh, akh)∥∥∥

(Λk
h)
−1
.

Now, we complete the regret analysis

RK =

K∑
k=1

V ∗1 (s
k
1 , w

k)− V π
k

1 (sk1 , w
k)

≤
K∑
k=1

V k1 (sk1 , w
k)− V π

k

1 (sk1 , w
k) (Lemma 4)

=

K∑
k=1

δk1

≤
K∑
k=1

H∑
h=1

ξkh + 2β

K∑
k=1

H∑
h=1

∥∥∥φ(skh, akh)∥∥∥
(Λk

h)
−1

≤ 2H
√
T log(dT/δ) + 2Hβ

√
2dK log(1 +K/λ)

≤ Õ
(√

λ(d3 + dd′)H3T
)
.

The third inequality is true because of the following: we observe that {ξkh} is a martingale difference
sequence satisfying |ξkh|≤ 2H . Thus, thanks to Azuma-Hoeffding inequality, we have

P

 K∑
k=1

H∑
h=1

ξkh ≤ 2H
√
T log(dT/δ)

 ≥ 1− δ. (14)
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In order to bound
∑K
k=1

∑H
h=1

∥∥∥φkh∥∥∥
(Λk

h)
−1

, note that for any h ∈ [H], we have

K∑
k=1

∥∥∥φkh∥∥∥
(Λk

h)
−1
≤

√√√√K

K∑
k=1

∥∥∥φkh∥∥∥2
(Λk

h)
−1

(Cauchy-Schwartz inequality)

≤

√√√√√√2K log

det
(
ΛK
h

)
det
(
Λ1
h

)
 (15)

≤

√
2dK log

(
1 +

K

dλ

)
. (16)

In inequality (15), we used the standard argument in regret analysis of linear bandits (Abbasi-Yadkori
et al., 2011, Lemma 11) as follows:

n∑
t=1

min
(
‖yt‖2V−1

t
, 1
)
≤ 2 log

detVn+1

detV1
where Vn = V1 +

n−1∑
t=1

yty
>
t . (17)

In inequality (16), we used Assumption 1 and the fact that det(A) =
∏d
i=1 λi(A) ≤ (trace(A)/d)d.

B PROOFS OF SECTION 4

We start by introducing the high probability event E1, which is the foundation of our analysis in the
following lemma.
Lemma 5. Follow the setting of Theorem 2. The event

E1(w) :=

{∥∥∥∥θkh(w)− θ̃kh(w)∥∥∥∥
Λk

h

≤ β,∀(h, k) ∈ [H]× [K]

}
. (18)

holds with probability at least 1− δ for a fixed w.

Proof of Lemma 5 is given in Appx. B.1.

B.1 PROOF OF LEMMA 5

First, we state the following lemma that will be used in the proof of Lemma 5.
Lemma 6. Under the setting of Lemma 5, let cβ be a constant in the definition of β. Then, for a
fixed w, there is an absolute constant c0 independent of cβ , such that for all (h, k) ∈ [H]× [K], with
probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

φτh.
(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)
−1

≤ c0H
(
d+
√
md
)√

log((cβ + 1)mdT/δ),

where c0 and cβ are two independent absolute constants.

Proof. We note that
∥∥∥∥ηh + ξ̂kh∥∥∥∥

2

≤ (1 +H)
√
md and

∥∥∥∥(Λk
h

)−1∥∥∥∥ ≤ 1
λ . Thus, Lemmas 19 and 22

together imply that for all (h, k) ∈ [H]× [K], with probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)
−1

≤ 4H2

d
2
log

(
k + λ

λ

)
+md log(1 + 8H

√
md/ε) + d2 log

(
1 + 32L2β2

√
d

λε2

)
+ log

(
1

δ

)+
8k2ε2

λ
.
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If we let ε = dH
k and β = cβ(d +

√
md)H

√
log(dT/δ), then, there exists an absolute constant

C > 0 that is independent of cβ such that∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)
−1

≤ C(md+ d2)H2 log
(
(cβ + 1)mdT/δ

)
.

Now, we begin the formal proof of Lemma 5:

θkh(w)− θ̃
k

h(w) = θ
k
h(w)−

(
Λk
h

)−1 k−1∑
τ=1

φτhV
k
h+1(s

τ
h+1, w)

=
(
Λk
h

)−1Λk
hθ

k
h(w)−

k−1∑
τ=1

φτhV
k
h+1(s

τ
h+1, w)


= λ

(
Λk
h

)−1
θkh(w)︸ ︷︷ ︸

q1

−
(
Λk
h

)−1k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)

︸ ︷︷ ︸
q2

.

Thus, in order to upper bound
∥∥∥∥θkh(w)− θ̃kh(w)∥∥∥∥

Λk
h

, we bound‖q1‖Λk
h

and‖q2‖Λk
h

separately.

From Lemma 18, we have

‖q1‖Λk
h
= λ

∥∥∥θkh(w)∥∥∥
(Λk

h)
−1
≤
√
λ
∥∥∥θkh(w)∥∥∥

2
≤ H
√
λd. (19)

Thanks to Lemma 6, for all (w, h, k), with probability at least 1− δ, it holds that

‖q2‖Λk
h
≤

∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)
−1

≤ c0H
(
d+
√
md
)√

log((cβ + 1)mdT/δ), (20)

where c0 and cβ are two independent absolute constants.

Combining (19) and (20), for all (h, k) ∈ [H]× [K], with probability at least 1− δ, it holds that

∥∥∥∥θkh(w)− θ̃kh(w)∥∥∥∥
Λk

h

≤ cH
(
d+
√
md
)√

λ log(mdT/δ)

for some absolute constant c > 0.

B.2 PROOF OF LEMMA 1

Thanks to Assumption 2 and conditioned on events {E1(w)}w∈W̃ , one set of solution for (8) is{
θkh

(
w(j)

)}
j∈[n]

and ξ
V k
h+1

h with corresponding zero optimal objective value. Therefore, it holds

that 〈
θ̂
k(j)

h ,φ(s, a)

〉
=

〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
, ∀(j, (s, a)) ∈ [n]×D. (21)
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Let
(
s(i), a(i)

)
be the i-th element of D and {c′i(s, a)}i∈[d] be the coefficients such that

φ(s, a) =
∑
i∈[d]

c′i(s, a)φ
(
s(i), a(i)

)
.

For any triple (s, a, j) ∈ S ×A× [n], we have

〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
=

〈
ξ̂
k

h,φ(s, a)⊗ ρ
(
w(j)

)〉
=

〈
ξ̂
k

h,
∑
i∈[d]

c′i(s, a)φ
(
s(i), a(i)

)
⊗ ρ

(
w(j)

)〉

=
∑
i∈[d]

c′i(s, a)

〈
ξ̂
k

h,ψ
(
s(i), a(i), w(j)

)〉
(Assumption 3)

=
∑
i∈[d]

c′i(s, a)

〈
θ̂
k(j)

h ,φ
(
s(i), a(i)

)〉
(Eqn. (21))

=

〈
θ̂
k(j)

h ,φ(s, a)

〉
. (22)

For any (s, a, w) ∈ S ×A×W , it holds that

Ph
[
V kh+1(., w)

]
(s, a) =

〈
θkh(w),φ(s, a)

〉
(Eqn. (4))

=

〈
ξ
V k
h+1

h ,ψ(s, a, w)

〉
(Assumption 2)

=
∑
j∈[n]

cj(w)

〈
ξ
V k
h+1

h ,ψ
(
s, a, w(j)

)〉
(Assumption 3)

=
∑
j∈[n]

cj(w)Ph
[
V kh+1

(
., w(j)

)]
(s, a) (Assumption 2)

=
∑
j∈[n]

cj(w)

〈
θkh

(
w(j)

)
,φ(s, a)

〉
. (23)
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Finally, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A × W̃ × [H] × [K], it
holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
−
〈
θkh(w),φ(s, a)

〉∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θkh

(
w(j)

)
,φ(s, a)

〉)∣∣∣∣∣∣
(Assumption 3 and Eqn. (23))

≤

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θ̂
k(j)

h ,φ(s, a)

〉)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̂
k(j)

h − θ̃
k

h

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̂
k(j)

h − θ̃
k

h

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣
(Eqn. (22))

≤ 2Lβ
∥∥φ(s, a)∥∥(Λk

h)
−1 . (Lemma 5)

B.3 PROOF OF OPTIMISTIC NATURE OF UCBLVD

Lemma 7. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 2 and
conditioned on events {E1(w)}w∈W̃ defined in (9), and with Qkh computed as in (7), it holds that

Qkh(s, a, w) ≥ Q∗h(s, a, w) for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K].

Proof. We first note that conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ ×
[H]× [K], it holds that∣∣∣∣∣rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
−Qπh(s, a, w)− Ph

[
V kh+1(., w)− V πh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
− rh(s, a, w)− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
≤ 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 , (Lemma 1)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because QkH+1(., ., .) =
Q∗H+1(., ., .) = 0 and thus conditioned events {E1(w)}w∈W̃ , defined in (9), for all (s, a, w, k) ∈
S ×A× W̃ × [K], we have

∣∣∣∣∣rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
−Q∗H(s, a, w)

∣∣∣∣∣ ≤ 2Lβ
∥∥φ(s, a)∥∥(Λk

H)
−1 .
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Therefore, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, k) ∈ S ×A× W̃ × [K], we have

Q∗H(s, a, w) ≤ rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥
(Λk

H)−1

=

{
rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥
(Λk

H)−1

}+

= QkH(s, a, w),

where the first equality follows from the fact that Q∗H(s, a, w) ≥ 0. Now, suppose the statement
holds at time-step h + 1 and consider time-step h. Conditioned on events {E1(w)}w∈W̃ , for all

(s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

0 ≤ rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
−Q∗h(s, a, w)− Ph

[
V kh+1(., w)− V ∗h+1(., w)

]
(s, a) + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1

≤ rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
−Q∗h(s, a, w) + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 .

(Induction assumption)

Therefore, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A × W̃ × [H]× [K],
we have

Q∗h(s, a, w) ≤ rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1

=

{
rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1

}+

= Qkh(s, a, w),

where the first equality follows from the fact that Q∗h(s, a, w) ≥ 0. This completes the proof.

B.4 PROOF OF THEOREM 2

First, we bound the number of times Algorithm 2 updates ξ̂
k

h, i.e., number of planning calls. Let P
be the total number of updates and kp be the episode at which, the agent did replanning for the p-th

time. Note that detΛ1
h = λd and detΛK

h ≤ trace(ΛK
h /d)

d ≤
(
λ+ K

d

)d
, and consequently:

detΛK
h

detΛ1
h

=

P∏
p=1

detΛ
kp
h

detΛ
kp−1

h

≤
(
1 +

K

dλ

)d
,

and therefore

H∏
h=1

detΛK
h

detΛ1
h

=

H∏
h=1

P∏
p=1

detΛ
kp
h

detΛ
kp−1

h

≤
(
1 +

K

dλ

)dH
. (24)

Since 1 ≤ detΛkp
h

detΛkp−1
h

for all p ∈ [P ], we can deduce from (24) that

∃h ∈ [H] such that e <
detΛk

h

detΛk̃
h

happens for at most dH log
(
1 + K

dλ

)
number of episodes k ∈ [K]. This concludes that the number

of planing calls in UCBlvd is dH log
(
1 + K

dλ

)
.
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Now, we prove the regret bound. Let δkh = V k̃h (s
k
h, w

k) − V π
k

h (skh, w
k) and ξkh+1 =

E
[
δkh+1|skh, akh

]
− δkh+1. Conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A ×

W̃ × [H]× [K], we have

Qk̃h(s, a, w)−Qπ
k

h (s, a, w) = rh(s, a, w) +

〈
ξ̂
k̃

h,ψ(s, a, w)

〉
−Qπ

k

h (s, a, w) + 2Lβ
∥∥φ(s, a)∥∥

(Λk̃
h)
−1

≤ Ph
[
V k̃h+1(., w)− V π

k

h+1(., w)
]
(s, a) + 4Lβ

∥∥φ(s, a)∥∥
(Λk̃

h)
−1 .

(25)

Note that δkh ≤ Qk̃h(s
k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, combining (25), Lemma 5, and a union
bound over W̃ , we conclude that for all (h, k) ∈ [H]× [K], with probability at least 1− δ, it holds
that gives

δkh ≤ ξkh+1 + δkh+1 + 4Lβ
∥∥∥φ(skh, akh)∥∥∥

(Λk̃
h)
−1
.

Note that for any positive semi-definite matrices A, B, and C such that A = B + C, we have:

det(A) ≥ det(B), det(A) ≥ det(C), (26)

and for any x 6= 0 ((Abbasi-Yadkori et al., 2011, Lemm. 12)):

‖x‖2A
‖x‖2B

≤ det(A)

det(B)
and

‖x‖2B−1

‖x‖2A−1

≤ det(A)

det(B)
. (27)

Now, we complete the regret analysis following similar steps as those of Theorem 1’s proof:

RK =

K∑
k=1

V ∗1 (s
k
1 , w

k)− V π
k

1 (sk1 , w
k)

≤
K∑
k=1

V k̃1 (sk1 , w
k)− V π

k

1 (sk1 , w
k) (Lemma 7)

=

K∑
k=1

δk1

≤
K∑
k=1

H∑
h=1

ξkh + 4Lβ

K∑
k=1

H∑
h=1

∥∥∥φ(skh, akh)∥∥∥(
Λk̃

h

)−1

≤
K∑
k=1

H∑
h=1

ξkh + 4Lβ

K∑
k=1

H∑
h=1

∥∥∥φ(skh, akh)∥∥∥
(Λk

h)
−1

√√√√detΛk
h

detΛk̃
h

(Eqn. (27))

≤ 2H
√
T log(dT/δ) + 8HLβ

√
2dK log(1 +K/λ)

≤ Õ
(
L
√
λ(d3 +md2)H3T

)
.

B.5 DISCUSSION ON THE TIME COMPLEXITY OF UCBLVD AND LIFELONG-LSVI

In what follows, we clarify on how the time complexity of UCBlvd compares to that of Lifelong

LSVI. When we compute
(
Λk
h

)−1
by the Sherman-Morrison formula, the computational complexity

of Lifelong-LSVI is dominated by Line 5 in computing maxa∈AQkh+1(s
τ
h+1, a) for all τ ∈ [k]. This

takes O(d2|A|K) per step, which gives a total runtime O(d2|A|HK2). In UCBlvd, every planning
call takes Õ(md2|A|K+m3d3), where the second term is the time-complexity of thE convex QCQP
with m+ 1 constraints and 2md variables. This gives a total runtime of Õ(H2(md3|A|K +m3d4)).
Therefore, UCBlvd enjoys a smaller time complexity by a factor of K compared to that of Lifelong-
LSVI, which is a significant reduction in practical scenarios where K >> d′ = md.
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Algorithm 3: UCBlvd with Unknown Rewards

1 Set: QkH+1(., ., .) = 0, ∀k ∈ [K], k̃ = 1
2 for episodes k = 1, . . . ,K do
3 Observe the initial state sk1 and the task context wk.

4 if ∃h ∈ [H] such that detΛk

h

detΛk̃

h

> e or det
˜Λ

k

h

det
˜Λ

k̃

h

> e then

5 k̃ = k
6 for time-steps h = H, . . . , 1 do
7 Compute ξ̂

k

h as in (30).

8 for time-steps h = 1, . . . ,H do
9 Compute Qk̃h(s

k
h, a, w

k) for all a ∈ A as in (28).
10 Play akh = argmaxa∈AQ

k̃
h(s

k
h, a, w

k) and observe skh+1 and rkh.

C DETAILS OF REMARK 1: UCBLVD WITH UNKNOWN REWARDS

In order for our analysis to go through, we need a slightly different completeness assumption as
below:

Assumption 4. Given feature maps φ : S ×A → Rd and ψ : S ×A×W → Rd′ , consider function
class

F =

{
f : f(s, w) = min

{
max
a∈A

{
〈ν,ψ(s, a, w)〉+ β

∥∥φ(s, a)∥∥
Λ−1 + β̃

∥∥ψ(s, a, w)∥∥
Λ̃
−1

}+

, H

}
,ν ∈ Rd

′
,Λ ∈ Sd++, Λ̃ ∈ Sd

′

++, β ≥ 0, β̃ ≥ 0
}
.

Then for any f ∈ F , and h ∈ [H], there exists a vector ξfh ∈ Rd′ with
∥∥∥ξfh∥∥∥ ≤ H√d′ such that

Ph
[
f(., w)

]
(s, a) = 〈ξfh,ψ(s, a, w)〉.

C.1 OVERVIEW

Let ψτh = ψ(sτh, a
τ
h, w

τ ). UCBlvd with unknown rewards works with the following action-value
functions:

Qkh(s, a, w) =

{〈
η̃kh + ξ̂

k

h,ψ(s, a, w)

〉
+ β

∥∥φ(s, a)∥∥
(Λk

h)
−1 + β̃

∥∥ψ(s, a, w)∥∥
(Λ̃

k
h)
−1

}+

, (28)

where

η̃kh =

(
Λ̃
k

h

)−1 k−1∑
τ=1

ψτh.r
τ
h and Λ̃

k

h = λImd +

k−1∑
τ=1

ψτhψ
τ
h
>
, (29)

and

ξ̂
k

h,

{
θ̂
k(j)

h

}
j∈[n]

= argmin
ξ,{θ(j)}

j∈[n]

∑
j∈[n]

∑
(s,a)∈D

(〈
θ(j),φ(s, a)

〉
−
〈
ξ,ψ

(
s, a, w(j)

)〉)2

(30)

s.t.
∥∥∥∥θ(j) − θ̃kh (w(j)

)∥∥∥∥
Λk

h

≤ β, ∀j ∈ [n] and ‖ξ‖2 ≤ H
√
md,

D =
{
(s, a) : φ(s, a) are d linearly independent vectors.

}
, and θ̃

k

h(w) and Λk
h are defined in (5).
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We note that compared to (7), action-value function defined in (28) involves an extra term〈
η̃kh,ψ(s, a, w)

〉
+ β̃
∥∥ψ(s, a, w)∥∥

(Λ̃
k
h)
−1 . This term is in fact an upper bound on rh(s, a, w). Specif-

ically, from Theorem 2 in Abbasi-Yadkori et al. (2011), we know that for β̃ =
√
λmd, it holds that∥∥∥ηh − η̃kh∥∥∥

Λ̃
k
h

≤ β̃, ∀(h, k) ∈ [H]× [K]. (31)

Theorem 3. Let T = KH . Under Assumptions 1, 3, and 4, the number of planning calls in Algorithm
3 is at most dH log

(
1 + K

dλ

)
+mdH log

(
1 + K

mdλ

)
, and there exists an absolute constant c > 0

such that for any fixed δ ∈ (0, 0.5), if we set λ = 1, β = cH (md)
√

log(mdT/δ) and β̃ =
√
md in

Algorithm 3, then with probability at least 1− 2δ, it holds that

RK ≤ 2H
√
T log(dT/δ) + 4H

√
K
(
Lβ
√

2d log(1 +K/λ) + β̃
√
2md log(1 +K/λ)

)
≤ Õ

(
L
√
m2d3H3T

)
.

C.2 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM 3

Lemma 8. Let cβ be a constant in the definition of β. Then, under Assumptions 1, 3, and 4, for a
fixed w, there is an absolute constant c0 independent of cβ , such that for all (h, k) ∈ [H]× [K], with
probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

φτh.
(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)
−1

≤ c0mdH
√
log((cβ + 1)mdT/δ),

where c0 and cβ are two independent absolute constants.

Proof. We note that
∥∥∥∥η̃kh + ξ̂kh∥∥∥∥

2

≤ H
√
md + K/λ and

∥∥∥∥(Λk
h

)−1∥∥∥∥ ≤ 1
λ and

∥∥∥∥∥
(

Λ̃
k

h

)−1∥∥∥∥∥ ≤ 1
λ .

Thus, Lemmas 19 and 23 together imply that for all (h, k) ∈ [H] × [K], with probability at least
1− δ it holds that∥∥∥∥∥∥

k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)
−1

≤ 4H2

d
2
log

(
k + λ

λ

)
+md log(1 + 8H

√
md/ε) + d2 log

(
1 + 32L2β2

√
d

λε2

)

+m2d2 log

(
1 + 8β̃2

√
md

λε2

)
+ log

(
1

δ

)+
8k2ε2

λ
.

If we let ε = dH
k and β = cβ(md)H

√
log(mdT/δ), then, there exists an absolute constant C > 0

that is independent of cβ such that∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w)− Ph[V kh+1(., w)](s

τ
h, a

τ
h)
)∥∥∥∥∥∥

2

(Λk
h)
−1

≤ C(m2d2)H2 log
(
(cβ + 1)mdT/δ

)
.

Lemma 9. Under Assumptions 1, 3, and 4, if we let β = cmdH
√
λ log(mdT/δ) with an absolute

constant c > 0, then the event

E3(w) :=

{∥∥∥∥θkh(w)− θ̃kh(w)∥∥∥∥
Λk

h

≤ β, ∀(h, k) ∈ [H]× [K]

}
. (32)

holds with probability at least 1− δ for a fixed w.
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Proof. The proof follows the same steps as those of Lemma 5, except that it uses Lemma 8 instead
of Lemma 6 due to different structure of action-value functions Qkh in this section.

Lemma 10. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 3 and
conditioned on events {E3(w)}w∈W̃ defined in (32), for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],
it holds that ∣∣∣∣∣

〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣ ≤ 2Lβ
∥∥φ(s, a)∥∥(Λk

h)
−1 .

Proof. The proof follows the exact same steps as those of Lemma 1’s proof.

Lemma 11. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 3 and
conditioned on events {E3(w)}w∈W̃ defined in (32), and with Qkh computed as in (28), it holds that

Qkh(s, a, w) ≥ Q∗h(s, a, w) for all (s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K].

Proof. We first note that conditioned on events {E3(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ ×
[H]× [K], it holds that∣∣∣∣∣

〈
η̃kh + ξ̂

k

h,ψ(s, a, w)

〉
−Qπh(s, a, w)− Ph

[
V kh+1(., w)− V πh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
η̃kh + ξ̂

k

h,ψ(s, a, w)

〉
− rh(s, a, w)− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
≤

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣+ β̃
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 (Eqn. (31))

≤ 2Lβ
∥∥φ(s, a)∥∥(Λk

h)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1 , (Lemma 10)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because QkH+1(., ., .) =
Q∗H+1(., ., .) = 0 and thus conditioned events {E3(w)}w∈W̃ , defined in (32), for all (s, a, w, k) ∈
S ×A× W̃ × [K], we have

∣∣∣∣∣
〈
η̃kH + ξ̂

k

H ,ψ(s, a, w)

〉
−Q∗H(s, a, w)

∣∣∣∣∣ ≤ 2Lβ
∥∥φ(s, a)∥∥(Λk

H)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
H

)−1 .

(33)

Therefore, conditioned on events {E3(w)}w∈W̃ , for all (s, a, w, k) ∈ S ×A× W̃ × [K], we have

Q∗H(s, a, w) ≤
〈
η̃kH + ξ̂

k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥(Λk
H)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
H

)−1

=

{〈
η̃kH + ξ̂

k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥(Λk
H)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
H

)−1

}+

= QkH(s, a, w),

where the first equality follows from the fact that Q∗H(s, a, w) ≥ 0. Now, suppose the statement
holds at time-step h + 1 and consider time-step h. Conditioned on events {E3(w)}w∈W̃ , for all

24



Published as a conference paper at ICLR 2023

(s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

0 ≤
〈
η̃kh + ξ̂

k

h,ψ(s, a, w)

〉
−Q∗h(s, a, w)− Ph

[
V kh+1(., w)− V ∗h+1(., w)

]
(s, a)

+ 2Lβ
∥∥φ(s, a)∥∥(Λk

h)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

≤
〈
η̃kh + ξ̂

k

h,ψ(s, a, w)

〉
−Q∗h(s, a, w) + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1 .

(Induction assumption)

Therefore, conditioned on events {E3(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A × W̃ × [H]× [K],
we have

Q∗h(s, a, w) ≤
〈
η̃kh + ξ̂

k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

=

{〈
η̃kh + ξ̂

k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 + β̃

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

}+

= Qkh(s, a, w),

where the first equality follows from the fact that Q∗h(s, a, w) ≥ 0. This completes the proof.

C.3 PROOF OF THEOREM 3

First, we bound the number of times Algorithm 3 updates ξ̂
k

h, i.e., number of planning calls. Let P
be the total number of policy updates and kp be the episode at, the agent did replanning for the p-th

time. Note that detΛ1
h = λd and detΛK

h ≤ trace(ΛK
h /d)

d ≤
(
λ+ K

d

)d
, and consequently:

detΛK
h

detΛ1
h

=

P∏
p=1

detΛ
kp
h

detΛ
kp−1

h

≤
(
1 +

K

dλ

)d
,

and therefore

H∏
h=1

detΛK
h

detΛ1
h

=

H∏
h=1

P∏
p=1

detΛ
kp
h

detΛ
kp−1

h

≤
(
1 +

K

dλ

)dH
. (34)

We similarly have

H∏
h=1

det Λ̃
K

h

det Λ̃
1

h

=

H∏
h=1

P∏
p=1

det Λ̃
kp
h

det Λ̃
kp−1

h

≤
(
1 +

K

mdλ

)mdH
. (35)

Since 1 ≤ detΛkp
h

detΛkp−1
h

for all p ∈ [P ], we can deduce from (34) and (35) that

∃h ∈ [H] such that e <
detΛk

h

detΛk̃
h

or e <
det Λ̃

k

h

det Λ̃
k̃

h

(36)

happens for at most dH log
(
1 + K

dλ

)
+ mdH log

(
1 + K

mdλ

)
number of episodes k ∈ [K].

This concludes that number of planning calls in Algorithm 3 is at most dH log
(
1 + K

dλ

)
+

mdH log
(
1 + K

mdλ

)
.

Now, we prove the regret bound. Let δkh = V k̃h (s
k
h, w

k) − V π
k

h (skh, w
k) and ξkh+1 =

E
[
δkh+1|skh, akh

]
− δkh+1. Conditioned on events {E3(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A ×
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W̃ × [H]× [K], we have

Qk̃h(s, a, w)−Qπ
k

h (s, a, w) =

〈
η̃k̃h + ξ̂

k̃

h,ψ(s, a, w)

〉
−Qπ

k

h (s, a, w) + 2Lβ
∥∥φ(s, a)∥∥

(Λk̃
h)
−1 + β̃

∥∥ψ(s, a, w)∥∥
(Λ̃

k̃
h)
−1

≤ Ph
[
V k̃h+1(., w)− V π

k

h+1(., w)
]
(s, a) + 4Lβ

∥∥φ(s, a)∥∥
(Λk̃

h)
−1 + 2β̃

∥∥ψ(s, a, w)∥∥
(Λ̃

k̃
h)
−1
.

(37)

Note that δkh ≤ Qk̃h(s
k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, combining (37), Lemma 9, and a union
bound over W̃ , we conclude that for all (h, k) ∈ [H]× [K], with probability at least 1− δ, it holds
that gives

δkh ≤ ξkh+1 + δkh+1 + 4Lβ
∥∥∥φ(skh, akh)∥∥∥

(Λk̃
h)
−1

+ 2β̃
∥∥∥ψ(skh, akh, wk)∥∥∥

(Λ̃
k̃
h)
−1
.

Now, we complete the regret analysis following similar steps as those of Theorem 1’s proof:

RK =

K∑
k=1

V ∗1 (s
k
1 , w

k)− V π
k

1 (sk1 , w
k)

≤
K∑
k=1

V k̃1 (sk1 , w
k)− V π

k

1 (sk1 , w
k) (Lemma 11)

=

K∑
k=1

δk1

≤
K∑
k=1

H∑
h=1

ξkh + 4Lβ

K∑
k=1

H∑
h=1

∥∥∥φ(skh, akh)∥∥∥(
Λk̃

h

)−1 + 2β̃

K∑
k=1

H∑
h=1

∥∥∥ψ(skh, akh, wk)∥∥∥(
Λ̃

k̃
h

)−1

≤
K∑
k=1

H∑
h=1

ξkh + 4Lβ

K∑
k=1

H∑
h=1

∥∥∥φ(skh, akh)∥∥∥
(Λk

h)
−1

√√√√detΛk
h

detΛk̃
h

+ 2β̃

K∑
k=1

H∑
h=1

∥∥∥ψ(skh, akh, wk)∥∥∥(
Λ̃

k
h

)−1

√√√√det Λ̃
k

h

det Λ̃
k̃

h

(Eqn. (27))

≤ 2H
√
T log(dT/δ) + 4H

√
K
(
Lβ
√
2d log(1 +K/λ) + β̃

√
2md log(1 +K/λ)

)
≤ Õ

(
L
√
λm2d3H3T

)
.

D DETAILS OF REMARK 2: RELAXATION OF ASSUMPTION 3

In this section, we replace Assumption 3 with the following assumption:

Assumption 5. There is a known set {w(1), w(2), . . . , w(n)} of n ≤ d′ tasks such that ψ(s, a, w) ∈

Span

({
ψ(s, a, w(j))

}
j∈[n]

)
for all (s, a, w) ∈ S ×A×W . This implies that for any (s, a, w) ∈

S ×A×W , there exist coefficients {cj(s, a, w)}j∈[n] such that

ψ(s, a, w) =
∑
j∈[n]

cj(s, a, w)ψ
(
s, a, w(j)

)
. (38)

Moreover,
∑
j∈[n]

∣∣cj(s, a, w)∣∣ ≤ L for all (s, a, w) ∈ S ×A×W .

Define the concatenated mapping ψ̃ : S × A × W → Rd+d′ such that
ψ̃(s, a, w) =

[
φ(s, a)>,ψ(s, a, w)>

]>
. For any w ∈ W , define D(w) ={

(s, a) : ψ̃(s, a, w) are d+ d′ linearly independent vectors.
}

. Given Assumption 5, we mod-
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Algorithm 4: Modified UCBlvd

1 Set: QkH+1(., ., .) = 0, ∀k ∈ [K], k̃ = 1
2 for episodes k = 1, . . . ,K do
3 Observe the initial state sk1 and the task context wk.

4 if ∃h ∈ [H] such that detΛk

h

detΛk̃

h

> e then

5 k̃ = k
6 for time-steps h = H, . . . , 1 do
7 Compute ξ̂

k

h as in (39).

8 for time-steps h = 1, . . . ,H do
9 Compute Qk̃h(s

k
h, a, w

k) for all a ∈ A as in (7).
10 Play akh = argmaxa∈AQ

k̃
h(s

k
h, a, w

k) and observe skh+1 and rkh.

ify the planning step of UCBlvd to the following:

ξ̂
k

h,

{
θ̂
k(j)

h

}
j∈[n]

= argmin
ξ,{θ(j)}

j∈[n]

∑
j∈[n]

∑
(s,a)∈D(w(j))

(〈
θ(j),φ(s, a)

〉
−
〈
ξ,ψ

(
s, a, w(j)

)〉)2

(39)

s.t.
∥∥∥∥θ(j) − θ̃kh (w(j)

)∥∥∥∥
Λk

h

≤ β, ∀j ∈ [n] and ‖ξ‖2 ≤ H
√
d′.

The only change we make in Algorithm 2 is in Line 9, in which ξ̂
k

h is now computed as defined in
(39). We present this modification in Algorithm 4 for completeness.
Theorem 4. Let T = KH . Under Assumptions 1, 2, and 5, the number or planning calls in
Algorithm 4 is at most dH log

(
1 + K

dλ

)
and there exists an absolute constant c > 0 such that for

any fixed δ ∈ (0, 0.5), if we set λ = 1 and β = cH
(
d+
√
d′
)√

λ log(dd′T/δ) in Algorithm 4, then
with probability at least 1− 2δ, it holds that

RK ≤ 2H
√
T log(dT/δ) + 8HLβ

√
2dK log(K) ≤ Õ

(
L
√

(d3 + dd′)H3T
)
. (40)

Proof of Theorem 4 follows exactly the same steps as those of Theorem 2. The only difference is the
proof of Lemma 1, which we clarify in the proof of following lemma.

Lemma 12. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under Assumptions 1, 2, and

5, if we let β = cH
(
d+
√
d′
)√

λ log(dd′T/δ) with an absolute constant c > 0, then for all

(s, a, w, h, k) ∈ S ×A×W × [H]× [K] with probability at least 1− δ, it holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣ ≤ 2Lβ
∥∥φ(s, a)∥∥(Λk

h)
−1 .

Proof. We let ψ̃i(w) =
[
φ>i ,ψi(w)

>
]>

be the i-th element of D̃(w) ={
ψ̃(s, a, w) : (s, a) ∈ D(w)

}
and for any triple (s, a, w) ∈ S×A×W , we let {c′i(s, a, w)}i∈[d+d′]

be the coefficients such that
ψ̃(s, a, w) =

∑
i∈[d+d′]

c′i(s, a, w)ψ̃i(w),

which implies that

φ(s, a) =
∑

i∈[d+d′]

c′i(s, a, w)φi and ψ(s, a, w) =
∑

i∈[d+d′]

c′i(s, a, w)ψi(w). (41)
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Thanks to Assumption 2 and conditioned on events {E1(w)}w∈W̃ , one set of solution for (39) is{
θkh

(
w(j)

)}
j∈[n]

and ξ
V k
h+1

h with corresponding zero optimal objective value. Therefore, it holds

that 〈
θ̂
k(j)

h ,φi

〉
=

〈
ξ̂
k

h,ψi

(
w(j)

)〉
, ∀(i, j) ∈ [d+ d′]× [n]. (42)

Moreover, for any triple (s, a, j) ∈ S ×A× [n], we have〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
=

∑
i∈[d+d′]

c′i

(
s, a, w(j)

)〈
ξ̂
k

h,ψi

(
w(j)

)〉
(Eqn. (41))

=
∑

i∈[d+d′]

c′i

(
s, a, w(j)

)〈
θ̂
k(j)

h ,φi

〉
(Eqn. (42))

=

〈
θ̂
k(j)

h ,φ(s, a)

〉
. (43)

For any (s, a, w) ∈ S ×A×W , it holds that

Ph
[
V kh+1(., w)

]
(s, a) =

〈
θkh(w),φ(s, a)

〉
(Eqn. (4))

=

〈
ξ
V k
h+1

h ,ψ(s, a, w)

〉
(Assumption 2)

=
∑
j∈[n]

cj(s, a, w)

〈
ξ
V k
h+1

h ,ψ
(
s, a, w(j)

)〉
(Eqn. (38))

=
∑
j∈[n]

cj(s, a, w)Ph
[
V kh+1

(
., w(j)

)]
(s, a)〉 (Assumption 2)

=
∑
j∈[n]

cj(s, a, w)

〈
θkh

(
w(j)

)
,φ(s, a)

〉
. (44)

Finally, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A × W̃ × [H] × [K], it
holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣ (45)

=

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
−
〈
θkh(w),φ(s, a)

〉∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θkh

(
w(j)

)
,φ(s, a)

〉)∣∣∣∣∣∣ (Eqns. (38) and (23))

≤

∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θ̂
k(j)

h ,φ(s, a)

〉)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

〈
θ̂
k(j)

h − θ̃
k

h

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

〈
θ̂
k(j)

h − θ̃
k

h

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(s, a, w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣
(Eqn. (22))

≤ 2Lβ
∥∥φ(s, a)∥∥(Λk

h)
−1 . (Lemma 5)
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Algorithm 5: Standard Lifelong-LSVI with Computation Sharing

1 Set: QkH+1(., ., .) = 0, ∀k ∈ [K], k̃ = 1
2 for episodes k = 1, . . . ,K do
3 Observe the initial state sk1 and the task context wk.

4 if ∃h ∈ [H] such that det
˜Λ

k

h

det
˜Λ

k̃

h

> e then

5 k̃ = k
6 for time-steps h = H, . . . , 1 do
7 Compute Compute ν̃ k̃h as in (49).

8 for time-steps h = 1, . . . ,H do
9 Compute Qk̃h(s

k
h, a, w

k) for all a ∈ A as in (48).
10 Play akh = argmaxa∈AQ

k̃
h(s

k
h, a, w

k) and observe skh+1 and rkh.

E DETAILS OF REMARK 3

In this section, we only rely on the following two assumptions:

Assumption 6. Given a feature map ψ : S ×A×W → Rd′ , consider function class

F =

{
f : f(s, w) = min

{
max
a∈A

{
〈ν,ψ(s, a, w)〉+ β

∥∥ψ(s, a, w)∥∥
Λ−1

}+

, H

}
ν ∈ Rd

′
, β ≥ 0,Λ ∈ Sd

′

++

}
.

(46)

Then for any f ∈ F and h ∈ [H], there exists a vector νfh ∈ Rd′ with
∥∥∥νfh∥∥∥

2
≤ H
√
d′ such that

Ph
[
f(., w)

]
(s, a) = 〈ψ(s, a, w),νfh〉. (47)

Moreover, for every h ∈ [H], there exists a vector ηh such that rh(s, a, w) =
〈
ηh,ψ(s, a, w)

〉
.

Assumption 7. Without loss of generality,
∥∥ψ(s, a, w)∥∥

2
≤ 1 for all (s, a, w) ∈ S × A×W , and

‖ηh‖2 ≤
√
d′ for all h ∈ [H].

E.1 OVERVIEW

Let ψτh = ψ(sτh, a
τ
h, w

τ ). Standard Lifelong-LSVI with computation sharing works with the follow-
ing action-value functions:

Qkh(s, a, w) =

{
rh(s, a, w) +

〈
ν̃kh,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥
(Λ̃

k
h)
−1

}+

, (48)

where

ν̃kh =

(
Λ̃
k

h

)−1 k−1∑
τ=1

ψτh.min

{
max
a∈A

Qkh+1(s
τ
h+1, a, w

τ ), H

}
and Λ̃

k

h = λId′ +

k−1∑
τ=1

ψτhψ
τ
h
>
.

(49)

Theorem 5. Let T = KH . Under Assumptions 6 and 7, the number of planning calls in 5 is at most
d′H log

(
1 + K

d′λ

)
and there exists an absolute constant c > 0 such that for any fixed δ ∈ (0, 0.5), if

we set λ = 1 and β = cd′H
√

log(d′T/δ) in Algorithm 5, then with probability at least 1 − 2δ, it
holds that

RK ≤ 2H
√
T log(d′T/δ) + 4Hβ

√
2d′K log(K) ≤ Õ

(√
d′3H3T

)
.
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E.2 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM 5

Thanks to Assumption 6, we have

Ph
[
V kh+1(., w)

]
(s, a) =

〈
νkh,ψ(s, a, w)

〉
, (50)

where νkh = ν
V k
h+1

h .
Lemma 13. Let cβ be a constant in the definition of β. Then, under Assumption 7, there is an
absolute constant c0 independent of cβ , such that for all (h, k) ∈ [H]× [K], with probability at least
1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

ψτh.
(
V kh+1(s

τ
h+1, w

τ )− Ph[V kh+1(., w
τ )](sτh, a

τ
h)
)∥∥∥∥∥∥(

Λ̃
k
h

)−1

≤ c0d′H
√

log((cβ + 1)d′T/δ),

where c0 and cβ are two independent absolute constants.

Proof. We note that
∥∥∥ηh + ν̃kh∥∥∥

2
≤ (1 +H)

√
d′ and

∥∥∥∥∥
(

Λ̃
k

h

)−1∥∥∥∥∥ ≤ 1
λ . Thus, Lemmas 19 and 24

together imply that for all (h, k) ∈ [H]× [K], with probability at least 1− δ it holds that∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w

τ )− Ph[V kh+1(., w
τ )](sτh, a

τ
h)
)∥∥∥∥∥∥

2

(
Λ̃

k
h

)−1

≤ 4H2

d′
2
log

(
k + λ

λ

)
+ d′ log(1 + 8H

√
d′/ε) + d′

2
log

(
1 + 32L2β2

√
d′

λε2

)
+ log

(
1

δ

)+
8k2ε2

λ
.

If we let ε = dH
k and β = cβ(d

′+
√
d′)H

√
log(dT/δ), then, there exists an absolute constant C > 0

that is independent of cβ such that∥∥∥∥∥∥
k−1∑
τ=1

φτh

(
V kh+1(s

τ
h+1, w

τ )− Ph[V kh+1(., w
τ )](sτh, a

τ
h)
)∥∥∥∥∥∥

2

(
Λ̃

k
h

)−1

≤ C(d′ + d′
2
)H2 log

(
(cβ + 1)d′T/δ

)
.

Lemma 14. Under Assumptions 6 and 7, if we let β = cd′H
√
λ log(d′T/δ) with an absolute

constant c > 0, then the event

E4 :=

{∥∥∥νkh − ν̃kh∥∥∥
Λ̃

k
h

≤ β, ∀(h, k) ∈ [H]× [K]

}
. (51)

holds with probability at least 1− δ.

Proof.

νkh − ν̃kh = νkh −
(

Λ̃
k

h

)−1 k−1∑
τ=1

ψτhV
k
h+1(s

τ
h+1, w

τ )

=

(
Λ̃
k

h

)−1Λ̃
k

hν
k
h −

k−1∑
τ=1

ψτhV
k
h+1(s

τ
h+1, w

τ )


= λ

(
Λ̃
k

h

)−1
νkh︸ ︷︷ ︸

q1

−
(

Λ̃
k

h

)−1k−1∑
τ=1

ψτh

(
V kh+1(s

τ
h+1, w

τ )− Ph[V kh+1(., w
τ )](sτh, a

τ
h)
)

︸ ︷︷ ︸
q2

.

(Eqn. (50))
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Thus, in order to upper bound
∥∥∥νkh − ν̃kh(w)∥∥∥

Λ̃
k
h

, we bound‖q1‖Λ̃k
h

and‖q2‖Λ̃k
h

separately.

From Assumption 7, we have

‖q1‖Λk
h
= λ

∥∥∥νkh∥∥∥(
Λ̃

k
h

)−1 ≤
√
λ
∥∥∥νkh∥∥∥

2
≤ H
√
λd′. (52)

Thanks to Lemma 13, for all (h, k) ∈ [H]× [K], with probability at least 1− δ, it holds that

‖q2‖Λ̃k
h
≤

∥∥∥∥∥∥
k−1∑
τ=1

ψτh

(
V kh+1(s

τ
h+1, w

τ )− Ph[V kh+1(., w
τ )](sτh, a

τ
h)
)∥∥∥∥∥∥

(Λk
h)
−1

≤ c0d′H
√
log((cβ + 1)d′T/δ),

(53)

where c0 and cβ are two independent absolute constants.

Combining (52) and (53), for all (h, k) ∈ [H]× [K], with probability at least 1− δ, it holds that

∥∥∥νkh − ν̃kh∥∥∥
Λ̃

k
h

≤ cd′H
√
λ log(d′T/δ)

for some absolute constant c > 0.

Lemma 15. Let the setting of Lemma 14 holds. Conditioned on events E4 defined in (51), and
with Qkh computed as in (48), it holds that Qkh(s, a, w) ≥ Q∗h(s, a, w) for all (s, a, w, h, k) ∈
S ×A×W × [H]× [K].

Proof. We first note that conditioned on the event E4 , for all (s, a, w, h, k) ∈ S×A×W×[H]×[K],
it holds that∣∣∣∣rh(s, a, w) + 〈ν̃kh,ψ(s, a, w)〉−Qπh(s, a, w)− Ph

[
V kh+1(., w)− V πh+1(., w)

]
(s, a)

∣∣∣∣
=

∣∣∣∣rh(s, a, w) + 〈ν̃kh,ψ(s, a, w)〉− rh(s, a, w)− Ph
[
V kh+1(., w)

]
(s, a)

∣∣∣∣
=

∣∣∣∣〈ν̃kh,ψ(s, a, w)〉− Ph
[
V kh+1(., w)

]
(s, a)

∣∣∣∣
=

∣∣∣∣〈ν̃kh − νkh,ψ(s, a, w)〉∣∣∣∣
≤
∥∥∥ν̃kh − νkh∥∥∥

Λ̃
k
h

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

≤ β
∥∥ψ(s, a, w)∥∥(

Λ̃
k
h

)−1 , (Lemma 14)

for any policy π.

Now, we prove the lemma by induction. The statement holds for H because QkH+1(., ., .) =
Q∗H+1(., ., .) = 0 and thus conditioned on the event E4, defined in (51), for all (s, a, w, k) ∈
S ×A×W × [K], we have

∣∣∣∣rh(s, a, w) + 〈νkH ,ψ(s, a, w)〉−Q∗H(s, a, w)

∣∣∣∣ ≤ β∥∥ψ(s, a, w)∥∥(Λ̃
k
H

)−1 .

Therefore, conditioned on the event E4, for all (s, a, w, k) ∈ S ×A×W × [K], we have

Q∗H(s, a, w) ≤ rH(s, a, w) +
〈
νkH ,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥
(Λ̃

k
H)−1

=

{
rH(s, a, w) +

〈
νkH ,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥
(Λ̃

k
H)−1

}+

= QkH(s, a, w),
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where the first equality follows from the fact that Q∗H(s, a, w) ≥ 0. Now, suppose the statement
holds at time-step h+ 1 and consider time-step h. Conditioned on events E4, for all (s, a, w, h, k) ∈
S ×A×W × [H]× [K], we have

0 ≤ rh(s, a, w) +
〈
νkh,ψ(s, a, w)

〉
−Q∗h(s, a, w)− Ph

[
V kh+1(., w)− V ∗h+1(., w)

]
(s, a) + β

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

≤ rh(s, a, w) +
〈
νkh,ψ(s, a, w)

〉
−Q∗h(s, a, w) + β

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1 .

(Induction assumption)

Therefore, conditioned on events E4, for all (s, a, w, h, k) ∈ S ×A×W × [H]× [K], we have

Q∗h(s, a, w) ≤ rh(s, a, w) +
〈
νkh,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

=

{
rh(s, a, w) +

〈
νkh,ψ(s, a, w)

〉
+ β

∥∥ψ(s, a, w)∥∥(
Λ̃

k
h

)−1

}+

= Qkh(s, a, w),

where the first equality follows from the fact that Q∗H(s, a, w) ≥ 0. This completes the proof.

E.3 PROOF OF THEOREM 5

First, we bound the number of times Algorithm 5 updates ν̃kh. Let P be the total number of updates
and kp be the episode at which, the agent did replanning for the p-th time. Note that det Λ̃

1

h = λd
′

and det Λ̃
K

h ≤ trace(Λ̃
K

h /d
′)d
′ ≤

(
λ+ K

d′

)d′
, and consequently:

det Λ̃
K

h

det Λ̃
1

h

=

P∏
p=1

det Λ̃
kp
h

det Λ̃
kp−1

h

≤
(
1 +

K

d′λ

)d′
,

and therefore

H∏
h=1

det Λ̃
K

h

det Λ̃
1

h

=

H∏
h=1

P∏
p=1

det Λ̃
kp
h

det Λ̃
kp−1

h

≤
(
1 +

K

d′λ

)d′H
. (54)

Since 1 ≤ det
˜Λ

kp

h

det
˜Λ

kp−1

h

for all p ∈ [P ], we can deduce from (54) that

∃h ∈ [H] such that e <
det Λ̃

k

h

det Λ̃
k̃

h

happens for at most d′H log
(
1 + K

d′λ

)
number of episodes k ∈ [K]. This concludes that number of

planning calls in Algorithm 5 is at most d′H log
(
1 + K

d′λ

)
.

Now, we prove the regret bound. Let δkh = V k̃h (s
k
h, w

k) − V π
k

h (skh, w
k) and ξkh+1 =

E
[
δkh+1|skh, akh

]
− δkh+1. Conditioned on E4, for all (s, a, w, h, k) ∈ S × A × W × [H] × [K],

we have

Qk̃h(s, a, w)−Qπ
k

h (s, a, w) = rh(s, a, w) +
〈
θk̃h,ψ(s, a, w)

〉
−Qπ

k

h (s, a, w) + β
∥∥ψ(s, a, w)∥∥

(Λ̃
k̃
h)
−1

≤ Ph
[
V k̃h+1(., w)− V π

k

h+1(., w)
]
(s, a) + 2β

∥∥ψ(s, a, w)∥∥
(Λ̃

v
h)
−1 .

(55)
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Note that δk̃h ≤ Qkh(s
k
h, a

k
h, w

k) − Qπk

h (skh, a
k
h, w

k). Thus, (55) and Lemma 14 imply that for all
(h, k) ∈ [H]× [K], it holds that

δkh ≤ ξkh+1 + δkh+1 + 2β
∥∥∥ψ(skh, akh, wk)∥∥∥

(Λ̃
k
h)
−1
.

Now, we complete the regret analysis following similar steps as those of Theorem 1’s proof:

RK =

K∑
k=1

V ∗1 (s
k
1 , w

k)− V π
k

1 (sk1 , w
k)

≤
K∑
k=1

V k̃1 (sk1 , w
k)− V π

k

1 (sk1 , w
k) (Lemma 15)

=

K∑
k=1

δk1

≤
K∑
k=1

H∑
h=1

ξkh + 2β

K∑
k=1

H∑
h=1

∥∥∥ψ(skh, akh, wk)∥∥∥(
Λ̃

k̃
h

)−1

≤
K∑
k=1

H∑
h=1

ξkh + 2β

K∑
k=1

H∑
h=1

∥∥∥ψ(skh, akh, wk)∥∥∥(
Λ̃

k
h

)−1

√√√√det Λ̃
k

h

det Λ̃
k̃

h

(Eqn. (27))

≤ 2H
√
T log(d′T/δ) + 4Hβ

√
2λd′K log(1 +K/λ)

≤ Õ
(√

λd′3H3T

)
.

F DETAILS OF REMARK 4: A MISSPECIFIED SETTING

We first present a definition for an approximate completeness model.
Assumption 8 (ζ-Approximate Completeness). Given feature maps φ : S × A → Rd and ψ :

S ×A×W → Rd′ in Assumption 1, consider the function class

F =

{
f : f(s, w) = min

{
max
a∈A

{
〈ν,ψ(s, a, w)〉+ β

∥∥φ(s, a)∥∥
Λ−1

}+

, H

}
,ν ∈ Rd′ ,Λ ∈ Sd

++, β ≥ 0

}
.

For any f ∈ F and h ∈ [H], there exists a vector ξfh ∈ Rd′ with
∥∥∥ξfh∥∥∥ ≤ H

√
d′ such that for all

(s, a, w) ∈ S ×A×W ∣∣∣Ph [f(., w)] (s, a)− 〈ξfh,ψ(s, a, w)〉∣∣∣ ≤ ζ.
Theorem 6. Let T = KH . Under Assumptions 1, 8, and 3, the number of planning calls in Algorithm
2 is at most dH log(1 + K

dλ ), and there exists an absolute constant c > 0 such that for any fixed
δ ∈ (0, 0.5), if we set λ = 1 and β = cH(d +

√
md)

√
log(mdT/δ) in Algorithm 2, then with

probability at least 1− 2δ, it holds that

RK ≤ Õ
(√

mdTζ +
√

(d3 +md2)H3T
)
.

F.1 NECESSARY ANALYSIS FOR THE PROOF OF THEOREM 6

Let
(
s(i), a(i)

)
be the i-th element of D and {c′i(s, a)}i∈[d] be the coefficients such that

φ(s, a) =
∑
i∈[d]

c′i(s, a)φ
(
s(i), a(i)

)
.

Then, Lφ is a positive constant such that
∑
i∈[d]

∣∣c′i(s, a)∣∣ ≤ Lφ for all (s, a) ∈ S ×A.
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Lemma 16. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem 6 and
conditioned on events {E1(w)}w∈W̃ defined in (9), for all (s, a, w, h, k) ∈ S ×A×W̃ × [H]× [K],
it holds that∣∣∣∣〈ξ̂kh,ψ(s, a, w)〉 − Ph[V kh+1(., w)](s, a)

∣∣∣∣ ≤ (2L+ Lφ
√
md)ζ + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 .

Proof. Thanks to Assumption 8 and conditioned on events {E1(w)}w∈W̃ , one set of feasible parame-

ters for (8) is
{
θkh

(
w(j)

)}
j∈[n]

and ξ
V k
h+1

h such that∣∣∣∣∣
〈
θ̂
k(j)

h ,φ(s, a)

〉
−
〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉∣∣∣∣∣ ≤ ζ√md, ∀(j, (s, a)) ∈ [n]×D. (56)

For any triple (s, a, j) ∈ S ×A× [n], we have〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
=

〈
ξ̂
k

h,φ(s, a)⊗ ρ
(
w(j)

)〉
=

〈
ξ̂
k

h,
∑
i∈[d]

c′i(s, a)φ
(
s(i), a(i)

)
⊗ ρ

(
w(j)

)〉

=
∑
i∈[d]

c′i(s, a)

〈
ξ̂
k

h,ψ
(
s(i), a(i), w(j)

)〉
(Assumption 3)

≤
√
mdζ

∑
i∈[d]

c′i(s, a) +
∑
i∈[d]

c′i(s, a)

〈
θ̂
k(j)

h ,φ
(
s(i), a(i)

)〉
(Eqn. (56))

≤ Lφ
√
mdζ +

〈
θ̂
k(j)

h ,φ(s, a)

〉
.

Similarly, it holds that
〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
≥ −Lφ

√
mdζ +

〈
θ̂
k(j)

h ,φ(s, a)

〉
. Therefore, for any

(s, a, j) ∈ S ×A× [n], it holds that

∣∣∣∣∣
〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θ̂
k(j)

h ,φ(s, a)

〉∣∣∣∣∣ ≤ Lφ√mdζ. (57)

For any (s, a, w) ∈ S ×A×W , it holds that

Ph
[
V kh+1(., w)

]
(s, a) =

〈
θkh(w),φ(s, a)

〉
(Eqn. (4))

≤ ζ +
〈
ξ
V k
h+1

h ,ψ(s, a, w)

〉
(Assumption 8)

= ζ +
∑
j∈[n]

cj(w)

〈
ξ
V k
h+1

h ,ψ
(
s, a, w(j)

)〉
(Assumption 3)

≤ ζ

1 +
∑
j∈[n]

cj(w)

+
∑
j∈[n]

cj(w)Ph
[
V kh+1

(
., w(j)

)]
(s, a)

(Assumption 8)

≤ 2Lζ +
∑
j∈[n]

cj(w)

〈
θkh

(
w(j)

)
,φ(s, a)

〉
. (Assumption 3)

Similarly, it holds that Ph
[
V kh+1(., w)

]
(s, a) ≥ −2Lζ +

∑
j∈[n] cj(w)

〈
θkh

(
w(j)

)
,φ(s, a)

〉
.

Therefore, for any (s, a, w) ∈ S ×A×W , it holds that
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∣∣∣∣∣∣Ph
[
V kh+1(., w)

]
(s, a)−

∑
j∈[n]

cj(w)

〈
θkh

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣ ≤ 2Lζ. (58)

Finally, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A × W̃ × [H] × [K], it
holds that∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
≤ 2Lζ +

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θkh

(
w(j)

)
,φ(s, a)

〉)∣∣∣∣∣∣
(Assumption 3 and Eqn. (58))

≤ 2Lζ +

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

(〈
ξ̂
k

h,ψ
(
s, a, w(j)

)〉
−
〈
θ̂
k(j)

h ,φ(s, a)

〉)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̂
k(j)

h − θ̃
k

h

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣
≤ (2L+ Lφ

√
md)ζ +

∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̂
k(j)

h − θ̃
k

h

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
j∈[n]

cj(w)

〈
θ̃
k

h

(
w(j)

)
− θkh

(
w(j)

)
,φ(s, a)

〉∣∣∣∣∣∣
(Eqn. (57))

≤ (2L+ Lφ
√
md)ζ + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 . (Lemma 5)

As the final step in the regret analysis, we state the following lemma which uses Lemma 16 to prove
the optimistic nature of UCBlvd. Then following the standard analysis of single-task LSVI-UCB we
derive the regret bound for misspecified settings.

Lemma 17. Let W̃ = {wτ : τ ∈ [K]} ∪ {w(j) : j ∈ [n]}. Under the setting of Theorem
6 and conditioned on events {E1(w)}w∈W̃ defined in (9), and with Qkh computed as in (7), it
holds that (2L + Lφ

√
md)(H − h + 1)ζ + Qkh(s, a, w) ≥ Q∗h(s, a, w) for all (s, a, w, h, k) ∈

S ×A× W̃ × [H]× [K].

Proof. We first note that conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S ×A×W̃ ×
[H]× [K], it holds that∣∣∣∣∣rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
−Qπh(s, a, w)− Ph

[
V kh+1(., w)− V πh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
− rh(s, a, w)− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
=

∣∣∣∣∣
〈
ξ̂
k

h,ψ(s, a, w)

〉
− Ph

[
V kh+1(., w)

]
(s, a)

∣∣∣∣∣
≤ (2L+ Lφ

√
md)ζ + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 , (Lemma 16)

for any policy π.
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Now, we prove the lemma by induction. The statement holds for H because QkH+1(., ., .) =
Q∗H+1(., ., .) = 0 and thus conditioned events {E1(w)}w∈W̃ , defined in (9), for all (s, a, w, k) ∈
S ×A× W̃ × [K], we have

∣∣∣∣∣rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
−Q∗H(s, a, w)

∣∣∣∣∣ ≤ (2L+ Lφ
√
md)ζ + 2Lβ

∥∥φ(s, a)∥∥(Λk
H)
−1 .

Therefore, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, k) ∈ S ×A× W̃ × [K], we have

Q∗H(s, a, w) ≤ rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥
(Λk

H)−1 + (2L+ Lφ
√
md)ζ

=

{
rH(s, a, w) +

〈
ξ̂
k

H ,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥
(Λk

H)−1

}+

+ (2L+ Lφ
√
md)ζ

= QkH(s, a, w) + (2L+ Lφ
√
md)ζ,

where the first equality follows from the fact that Q∗H(s, a, w) ≥ 0. Now, suppose the statement
holds at time-step h + 1 and consider time-step h. Conditioned on events {E1(w)}w∈W̃ , for all

(s, a, w, h, k) ∈ S ×A× W̃ × [H]× [K], we have

0 ≤ rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
−Q∗h(s, a, w)− Ph

[
V kh+1(., w)− V ∗h+1(., w)

]
(s, a)

+ (2L+ Lφ
√
md)ζ + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1

≤ rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
−Q∗h(s, a, w) + (2L+ Lφ

√
md)(H − h+ 1)ζ + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1 .

(Induction assumption)

Therefore, conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A × W̃ × [H]× [K],
we have

Q∗h(s, a, w) ≤ rh(s, a, w) +
〈
ξ̂
k

h,ψ(s, a, w)

〉
+ (2L+ Lφ

√
md)(H − h+ 1)ζ + 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1

=

{
rh(s, a, w) +

〈
ξ̂
k

h,ψ(s, a, w)

〉
+ 2Lβ

∥∥φ(s, a)∥∥(Λk
h)
−1

}+

+ (2L+ Lφ
√
md)(H − h+ 1)ζ

= Qkh(s, a, w) + (2L+ Lφ
√
md)(H − h+ 1)ζ,

where the first equality follows from the fact that Q∗h(s, a, w) ≥ 0. This completes the proof.

F.2 PROOF OF THEOREM 6

The proof for establishing the upper bound on the number of planning calls for misspecified settings
follows exactly the steps as those in the proof of Theorem 2.

Now, we prove the regret bound. Let δkh = V k̃h (s
k
h, w

k) − V π
k

h (skh, w
k) and ξkh+1 =

E
[
δkh+1|skh, akh

]
− δkh+1. Conditioned on events {E1(w)}w∈W̃ , for all (s, a, w, h, k) ∈ S × A ×

W̃ × [H]× [K], we have

Qk̃h(s, a, w)−Qπ
k

h (s, a, w) = rh(s, a, w) +

〈
ξ̂
k̃

h,ψ(s, a, w)

〉
−Qπ

k

h (s, a, w) + 2Lβ
∥∥φ(s, a)∥∥

(Λk̃
h)
−1

≤ Ph
[
V k̃h+1(., w)− V π

k

h+1(., w)
]
(s, a) + (2L+ Lφ

√
md)ζ + 4Lβ

∥∥φ(s, a)∥∥
(Λk̃

h)
−1 .

(59)
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Note that δkh ≤ Qk̃h(s
k
h, a

k
h, w

k)−Qπk

h (skh, a
k
h, w

k). Thus, combining (59), Lemma 5, and a union
bound over W̃ , we conclude that for all (h, k) ∈ [H]× [K], with probability at least 1− δ, it holds
that gives

δkh ≤ ξkh+1 + δkh+1 + (2L+ Lφ
√
md)ζ + 4Lβ

∥∥∥φ(skh, akh)∥∥∥
(Λk̃

h)
−1
.

Now, we complete the regret analysis following similar steps as those of Theorem 1’s proof:

RK =

K∑
k=1

V ∗1 (s
k
1 , w

k)− V π
k

1 (sk1 , w
k)

≤ (2L+ Lφ
√
md)HKζ +

K∑
k=1

V k̃1 (sk1 , w
k)− V π

k

1 (sk1 , w
k) (Lemma 17)

= (2L+ Lφ
√
md)HKζ +

K∑
k=1

δk1

≤ (4L+ 2Lφ
√
md)HKζ +

K∑
k=1

H∑
h=1

ξkh + 4Lβ

K∑
k=1

H∑
h=1

∥∥∥φ(skh, akh)∥∥∥(
Λk̃

h

)−1

≤ (4L+ 2Lφ
√
md)HKζ +

K∑
k=1

H∑
h=1

ξkh + 4Lβ

K∑
k=1

H∑
h=1

∥∥∥φ(skh, akh)∥∥∥
(Λk

h)
−1

√√√√detΛk
h

detΛk̃
h

(Eqn. (27))

≤ (4L+ 2Lφ
√
md)HKζ + 2H

√
T log(dT/δ) + 8HLβ

√
2dK log(1 +K/λ)

≤ Õ
(
(L+ Lφ

√
md)HKζ + L

√
λ(d3 +md2)H3T

)
,

where the last two inequalities follow from the similar steps in the proof of Theorem 1.

G AUXILIARY LEMMAS

Notations. Nε(V) denotes the ε-covering number of the class V of functions mapping S to R with
respect to the distance dist(V, V ′) = sups

∣∣V (s)− V ′(s)
∣∣.

Lemma 18 (Bound on Weights θkh(w)). Under Assumption 1, for any set of action-value functions
{Qkh}h∈[H], and (w, h, k) ∈ W × [H]× [K], it holds that∥∥∥θkh(w)∥∥∥

2
≤ H
√
d.

Proof. Recall that V kh (s, w) = min
{
maxa∈AQ

k
h(s, a, w), H

}
and θkh(w) :=∫

S V
k
h+1(s

′, w)dµh(s
′). Thus, we have∥∥∥θkh(w)∥∥∥

2
=

∥∥∥∥∫
S
V kh+1(s

′, w)dµh(s
′)

∥∥∥∥ ≤ H√d.
Lemma 19 (Lemma D.4 in Jin et al. (2020)). Let {sτ}∞τ=1 be a stochastic process on state space
S with corresponding filtration {Fτ}∞τ=0. Let {φτ}∞τ=0 be an Rd-valued stochastic process where
φτ ∈ Fτ−1, and‖φτ‖ ≤ 1. Let Λk = λId +

∑k−1
τ=1 φτφ

>
τ . Then with probability at least 1− δ, for

all k ≥ 0 and V ∈ V such that sups∈S
∣∣V (s)

∣∣ ≤ H , we have∥∥∥∥∥∥
k∑
τ=1

φτ .
(
V (sτ )− E

[
V (sτ )|Fτ−1

])∥∥∥∥∥∥
2

Λ−1
k

≤ 4H2

(
d

2
log

(
k + λ

λ

)
+ log

(
Nε(V)
δ

))
+

8k2ε2

λ
.
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Lemma 20. For any ε > 0, the ε-covering number of the Euclidean ball in Rd with radius R > 0 is
upper bounded by (1 + 2R/ε)d.

Lemma 21. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V (.) = min

{
max
a∈A

〈
z,ψ(., a, w)

〉
+
〈
y,φ(., a)

〉
+ β

√
φ(., a)>Yφ(., a), H

}
,

where the parameters β ∈ R, z ∈ Rd′ , y ∈ Rd, and Y ∈ Rd×d satisfy 0 ≤ β ≤ B,‖z‖ ≤ z,‖y‖ ≤ y,
and‖Y‖ ≤ λ−1. Assume

∥∥φ(s, a)∥∥ ≤ 1 and
∥∥ψ(s, a, w)∥∥ ≤ 1 for all (s, a, w) ∈ S ×A×W . Then

log
(
Nε(V)

)
≤ d′ log(1 + 4z/ε) + d log(1 + 4y/ε) + d2 log

(
1 + 8B2

√
d

λε2

)
.

Proof. First, we reparametrize V by letting Ỹ = β2Y. We have

V (.) = min

{
max
a∈A

〈
z,ψ(., a, w)

〉
+
〈
y,φ(., a)

〉
+

√
φ(., a)>Ỹφ(., a), H

}
,

for ‖z‖ ≤ z, ‖y‖ ≤ y, and
∥∥∥Ỹ∥∥∥ ≤ B2

λ . For any two functions V1, V2 ∈ V with parameters(
z1,y1, Ỹ1

)
and

(
z2,y2, Ỹ2

)
, respectively, we have

dist(V1, V2) ≤ sup
(s,a)∈S×A

∣∣∣∣∣
[〈

z1,ψ(s, a, w)
〉
+
〈
y1,φ(s, a)

〉
+

√
φ(s, a)>Ỹ1φ(s, a)

]

−
[〈

z2,ψ(s, a, w)
〉
+
〈
y2,φ(s, a)

〉
+

√
φ(s, a)>Ỹ2φ(s, a)

]∣∣∣∣∣
≤ sup
ψ:‖ψ‖≤1,φ:‖φ‖≤1

∣∣∣∣∣
[〈

z1,ψ
〉
+
〈
y1,φ

〉
+

√
φ>Ỹ1φ

]
−
[〈

z2,ψ
〉
+
〈
y2,φ

〉
+

√
φ>Ỹ2φ

]∣∣∣∣∣
≤ sup
ψ:‖ψ‖≤1

∣∣∣∣〈z1 − z2,ψ
〉∣∣∣∣+ sup

φ:‖φ‖≤1

∣∣∣∣〈y1 − y2,φ
〉∣∣∣∣+ sup

φ:‖φ‖≤1

√∣∣∣∣φ> (Ỹ1 − Ỹ2
)
φ

∣∣∣∣
(because

∣∣∣√a−√b∣∣∣ ≤√|a− b| for a, b ≥ 0)

=
∥∥∥z1 − z2

∥∥∥+∥∥∥y1 − y2
∥∥∥+√∥∥∥Ỹ1 − Ỹ2

∥∥∥
≤
∥∥∥z1 − z2

∥∥∥+∥∥∥y1 − y2
∥∥∥+√∥∥∥Ỹ1 − Ỹ2

∥∥∥
F
. (60)

Let Cz and Cy be ε/2-covers of {z ∈ Rd′ : ‖z‖ ≤ z} and {y ∈ Rd : ‖y‖ ≤ y}, respectively, with
respect to the 2-norm, and CY be an ε2/4-cover of {Y ∈ Rd×d :‖Y‖F ≤

B2
√
d

λ }, with respect to
the Frobenius norm. By Lemma 20, we know

|Cz| ≤ (1 + 4z/ε)d
′
,
∣∣Cy∣∣ ≤ (1 + 4y/ε)d, |CY| ≤

(
1 + 8B2

√
d

λε2

)d2
.

According to (60), it holds that Nε(V) ≤|Cz|
∣∣Cy∣∣|CY|, and therefore

log
(
Nε(V)

)
≤ d′ log(1 + 4z/ε) + d log(1 + 4y/ε) + d2 log

(
1 + 8B2

√
d

λε2

)
.
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Lemma 22. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V (.) = min

{
max
a∈A

{〈
z,ψ(., a, w)

〉
+ 2Lβ

√
φ(., a)>Yφ(., a)

}+

, H

}
,

where the parameters β ∈ R, z ∈ Rd′ and Y ∈ Rd×d satisfy 0 ≤ β ≤ B,‖z‖ ≤ z, and‖Y‖ ≤ λ−1.
Assume

∥∥φ(s, a)∥∥ ≤ 1 and
∥∥ψ(s, a, w)∥∥ ≤ 1 for all (s, a, w) ∈ S ×A×W . Then

log
(
Nε(V)

)
≤ d′ log(1 + 4z/ε) + d2 log

(
1 + 8B2

√
d

λε2

)
.

Proof. First, we reparametrize V by letting Ỹ = β2Y. We have

V (.) = min

{
max
a∈A

〈
z,ψ(., a, w)

〉
+

√
φ(., a)>Ỹφ(., a), H

}
,

for‖z‖ ≤ z, and
∥∥∥Ỹ∥∥∥ ≤ B2

λ . For any two functions V1, V2 ∈ V with parameters
(
z1, Ỹ1

)
and(

z2, Ỹ2
)

, respectively, we have

dist(V1, V2) ≤ sup
(s,a)∈S×A

∣∣∣∣∣
[〈

z1,ψ(s, a, w)
〉
+

√
φ(s, a)>Ỹ1φ(s, a)

]
−
[〈

z2,ψ(s, a, w)
〉
+

√
φ(s, a)>Ỹ2φ(s, a)

]∣∣∣∣∣
≤ sup
ψ:‖ψ‖≤1,φ:‖φ‖≤1

∣∣∣∣∣
[〈

z1,ψ
〉
+

√
φ>Ỹ1φ

]
−
[〈

z2,ψ
〉
+

√
φ>Ỹ2φ

]∣∣∣∣∣
≤ sup
ψ:‖ψ‖≤1

∣∣∣∣〈z1 − z2,ψ
〉∣∣∣∣+ sup

φ:‖φ‖≤1

√∣∣∣∣φ> (Ỹ1 − Ỹ2
)
φ

∣∣∣∣
(because

∣∣∣√a−√b∣∣∣ ≤√|a− b| for a, b ≥ 0)

=
∥∥∥z1 − z2

∥∥∥+√∥∥∥Ỹ1 − Ỹ2
∥∥∥

≤
∥∥∥z1 − z2

∥∥∥+√∥∥∥Ỹ1 − Ỹ2
∥∥∥
F
. (61)

Let Cz be an ε/2-cover of {z ∈ Rd′ :‖z‖ ≤ z} with respect to the 2-norm, and CY be an ε2/4-cover
of {Y ∈ Rd×d :‖Y‖F ≤

B2
√
d

λ }, with respect to the Frobenius norm. By Lemma 20, we know

|Cz| ≤ (1 + 4z/ε)d
′
, |CY| ≤

(
1 + 8B2

√
d

λε2

)d2
.

According to (61), it holds that Nε(V) ≤|Cz||CY|, and therefore

log
(
Nε(V)

)
≤ d′ log(1 + 4z/ε) + d2 log

(
1 + 8B2

√
d

λε2

)
.

Lemma 23. For a fixed w, let V denote a class of functions mapping from S to R with following
parametric form

V (.) = min

{
max
a∈A

{〈
z,ψ(., a, w)

〉
+ 2Lβ

√
φ(., a)>Yφ(., a) + β̃

√
φ(., a, w)>Ỹφ(., a, w)

}+

, H

}
,
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where the parameters β, β̃ ∈ R, z ∈ Rd′ , Y ∈ Rd×d and Ỹ ∈ Rd′×d′ satisfy 0 ≤ β ≤ B,
0 ≤ β̃ ≤ B̃ ‖z‖ ≤ z,‖Y‖ ≤ λ−1 and

∥∥∥Ỹ∥∥∥ ≤ λ−1. Assume
∥∥φ(s, a)∥∥ ≤ 1 and

∥∥ψ(s, a, w)∥∥ ≤ 1

for all (s, a, w) ∈ S ×A×W . Then

log
(
Nε(V)

)
≤ d′ log(1 + 4z/ε) + d2 log

(
1 + 8B2

√
d

λε2

)
+ d′

2
log

(
1 + 8B̃2

√
d′

λε2

)
.

Proof. First, we reparametrize V by letting Z = β2Y and Z̃ = β̃2Ỹ. We have

V (.) = min

{
max
a∈A

〈
z,ψ(., a, w)

〉
+
√
φ(., a)>Zφ(., a) +

√
φ(., a)>Z̃φ(., a), H

}
,

for ‖z‖ ≤ z, ‖Z‖ ≤ B2

λ , and
∥∥∥Z̃∥∥∥ ≤ B̃2

λ . For any two functions V1, V2 ∈ V with parameters(
z1,Z1, Z̃1

)
and

(
z2,Z2, Z̃2

)
, respectively, we have

dist(V1, V2) ≤ sup
(s,a)∈S×A

∣∣∣∣∣
[〈

z1,ψ(s, a, w)
〉
+
√
φ(s, a)>Z1φ(s, a) +

√
ψ(s, a, w)>Z̃1ψ(s, a, w)

]

−
[〈

z2,ψ(s, a, w)
〉
+
√
φ(s, a)>Z2φ(s, a) +

√
ψ(s, a, w)>Z̃2ψ(s, a, w)

]∣∣∣∣∣
≤ sup
ψ:‖ψ‖≤1,φ:‖φ‖≤1

∣∣∣∣∣
[〈

z1,ψ
〉
+

√
φ>Z1φ+

√
ψ>Z̃1ψ

]
−
[〈

z2,ψ
〉
+

√
φ>Z2φ+

√
ψ>Z̃2ψ

]∣∣∣∣∣
≤ sup
ψ:‖ψ‖≤1

∣∣∣∣〈z1 − z2,ψ
〉∣∣∣∣+ sup

φ:‖φ‖≤1

√∣∣∣φ> (Z1 − Z2)φ
∣∣∣+ sup

ψ:‖φ‖≤1

√∣∣∣∣ψ> (Z̃1 − Z̃2
)
ψ

∣∣∣∣
(because

∣∣∣√a−√b∣∣∣ ≤√|a− b| for a, b ≥ 0)

=
∥∥∥z1 − z2

∥∥∥+√‖Z1 − Z2‖+
√∥∥∥Z̃1 − Z̃2

∥∥∥
≤
∥∥∥z1 − z2

∥∥∥+√‖Z1 − Z2‖F +

√∥∥∥Z̃1 − Z̃2
∥∥∥
F
. (62)

Let Cz be an ε/2-cover of {z ∈ Rd′ :‖z‖ ≤ z} with respect to the 2-norm, CZ be an ε2/4-cover of
{Z ∈ Rd×d : ‖Z‖F ≤

B2
√
d

λ }, and CZ̃ be an ε2/4-cover of {Z̃ ∈ Rd′×d′ :
∥∥∥Z̃∥∥∥

F
≤ B̃2

√
d

λ } with
respect to the Frobenius norm. By Lemma 20, we know

|Cz| ≤ (1 + 4z/ε)d
′
, |CZ| ≤

(
1 + 8B2

√
d

λε2

)d2
,
∣∣CZ̃∣∣ ≤

(
1 + 8B̃2

√
d′

λε2

)d′2
.

According to (62), it holds that Nε(V) ≤|Cz||CY|, and therefore

log
(
Nε(V)

)
≤ d′ log(1 + 4z/ε) + d2 log

(
1 + 8B2

√
d

λε2

)
+ d′

2
log

(
1 + 8B̃2

√
d′

λε2

)
.

Lemma 24. Let V denote a class of functions mapping from S to R with following parametric form

V (., .) = min

{
max
a∈A

{〈
z,ψ(., a, .)

〉
+ 2Lβ

√
ψ(., a, .)>Yψ(., a, .)

}+

, H

}
,

where the parameters β ∈ R, z ∈ Rd′ and Y ∈ Rd′×d′ satisfy 0 ≤ β ≤ B,‖z‖ ≤ z, and‖Y‖ ≤ λ−1.
Assume

∥∥ψ(s, a, w)∥∥ ≤ 1 for all (s, a, w) ∈ S ×A×W . Then

log
(
Nε(V)

)
≤ d′ log(1 + 4z/ε) + d′

2
log

(
1 + 8B2

√
d′

λε2

)
.
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Proof. First, we reparametrize V by letting Ỹ = β2Y. We have

V (., .) = min

{
max
a∈A

〈
z,ψ(., a, .)

〉
+

√
ψ(., a, .)>Ỹψ(., a, .), H

}
,

for‖z‖ ≤ z, and
∥∥∥Ỹ∥∥∥ ≤ B2

λ . For any two functions V1, V2 ∈ V with parameters
(
z1, Ỹ1

)
and(

z2, Ỹ2
)

, respectively, we have

dist(V1, V2) ≤ sup
(s,a,w)∈S×A×W

∣∣∣∣∣
[〈

z1,ψ(s, a, w)
〉
+

√
ψ(s, a)>Ỹ1ψ(s, a)

]

−
[〈

z2,ψ(s, a, w)
〉
+

√
ψ(s, a, w)>Ỹ2ψ(s, a, w)

]∣∣∣∣∣
≤ sup
ψ:‖ψ‖≤1

∣∣∣∣∣
[〈

z1,ψ
〉
+

√
ψ>Ỹ1ψ

]
−
[〈

z2,ψ
〉
+

√
ψ>Ỹ2ψ

]∣∣∣∣∣
≤ sup
ψ:‖ψ‖≤1

∣∣∣∣〈z1 − z2,ψ
〉∣∣∣∣+ sup

ψ:‖ψ‖≤1

√∣∣∣∣ψ> (Ỹ1 − Ỹ2
)
ψ

∣∣∣∣
(because

∣∣∣√a−√b∣∣∣ ≤√|a− b| for a, b ≥ 0)

=
∥∥∥z1 − z2

∥∥∥+√∥∥∥Ỹ1 − Ỹ2
∥∥∥

≤
∥∥∥z1 − z2

∥∥∥+√∥∥∥Ỹ1 − Ỹ2
∥∥∥
F
. (63)

Let Cz be an ε/2-cover of {z ∈ Rd′ :‖z‖ ≤ z} with respect to the 2-norm, and CY be an ε2/4-cover
of {Y ∈ Rd′×d′ :‖Y‖F ≤

B2
√
d′

λ }, with respect to the Frobenius norm. By Lemma 20, we know

|Cz| ≤ (1 + 4z/ε)d
′
, |CY| ≤

(
1 + 8B2

√
d′

λε2

)d′2
.

According to (63), it holds that Nε(V) ≤|Cz||CY|, and therefore

log
(
Nε(V)

)
≤ d′ log(1 + 4z/ε) + d′

2
log

(
1 + 8B2

√
d′

λε2

)
.

H DETAILS OF THE EXPERIMENTS

In all the experiments, we have chosen δ = 0.01, λ = 1, d = 5, and H = 5. The parameters
{ηh}h∈[H] are drawn from N (0, Id′). In order to tune parameters {µh(.)}h∈[H] and the feature
mappings φ such that they are compatible with Assumption 1, we consider that the feature space
{φ(s, a) : (s, a) ∈ S ×A} is a subset of the d-dimensional simplex, {φ ∈ Rd :

∑d
i=1 φi = 1,φi ≥

0,φi ≤ 1,∀i ∈ [d]}, and e>i µh(.) is an arbitrary probability measure over S for all i ∈ [d].

The results shown in Figure 2a depict averages over 50 realizations for the main setup considered
throughout the paper with m = 5 and the results shown in Figure 2b depict averages over 50
realizations, for the more general setup of Remark 2 with d′ = 10. For the results shown in Figure 2a,
the mappings ρ(w) are drawn fromN (0, Im) except for the n = m representative tasks {w(j)}j∈[m]

introduced in Assumption 3, for which we set ρ(w(j)) = ej for j ∈ [m]. For the results shown in
Figure 2b, the mappings ψ(s, a, w) are drawn from N (0, Id′) and we set ψ(s, a, w(j)) = ej for
j ∈ [d′], where {w(j)}j∈[d′] are n = d′ representative tasks introduced in Assumption 5 in Appx. D.
The parameters {ηh}h∈[H] are drawn from N (0, Id′), where d′ = m× d = 25 in Figure 2a. In our
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experiments, the exact same settings are used for both UCBlvd and Lifelong-LSVI in both Figures 2a
and 2b. We chose fairly large d, m, and d′ and by checking online, we noticed that the optimal value
of QCQP in (8) happens always to be zero. All these together suggest that the assumptions made in
the paper approximately hold. Figures 2a and 2b depict the average per-episode reward of UCBlvd
and state the average number of planning calls and compare them to those of baseline algorithm
Lifelong-LSVI, a direct extension of LSVI-UCB in Jin et al. (2020). The results emphasize the value
of UCBlvd in terms of requiring much smaller numbers of planning calls. The plots verify that the
performances of Lifelong-LSVI and UCBlvd are almost the same statistically, while UCBlvd uses
much smaller numbers of planning calls (1000 vs ∼ 20).

In Figure 3, we plot UCBlvd’s number of planning calls for different number of task episodes, K,
while the setting is same as that in 2a. In this figure, we empirically verify the logarithmic dependence
of number of planning calls on K as suggested by Theorem 2.
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(a) Setting of Theorem 2, d = 5, m = 5, d′ = 25
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(b) Setting of Remark 2, d = 5, d′ = 10

Figure 2: UCBlvd vs Lifelong-LSVI
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Figure 3: Setting of Theorem 2, d = 5, m = 5, d′ = 25
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