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Abstract

We present AuToMATo, a novel clustering algorithm based on persistent homology. While
AuToMATo is not parameter-free per se, we provide default choices for its parameters that
make it into an out-of-the-box clustering algorithm that performs well across the board.
AuToMATo combines the existing ToMATo clustering algorithm with a bootstrapping pro-
cedure in order to separate significant peaks of an estimated density function from non-
significant ones. We perform a thorough comparison of AuToMATo (with its parameters
fixed to their defaults) against many other state-of-the-art clustering algorithms. We find
not only that AuToMATo compares favorably against parameter-free clustering algorithms,
but in many instances also significantly outperforms even the best selection of parameters
for other algorithms. AuToMATo is motivated by applications in topological data analysis,
in particular the Mapper algorithm, where it is desirable to work with a clustering algorithm
that does not need tuning of its parameters. Indeed, we provide evidence that AuToMATo
performs well when used with Mapper. Finally, we provide an open-source implementation
of AuToMATo in Python that is fully compatible with the standard scikit-learn architecture.

1 Introduction

Clustering techniques play a central role in understanding and interpreting data in a variety of fields. The
idea is to divide a heterogeneous group of objects into groups based on a notion of similarity. This simi-
larity is often measured with a distance or a metric on a data set. There exist many different clustering
techniques (Anderberg), 1973} |Duda et al.| [2000), including hierarchical, centroid-based and density-based
techniques, as well as techniques arising from probabilistic generative models. Each of these methods is
proficient at finding clusters of a particular nature. Many of the most commonly used clustering algorithms
require a selection of parameters, a process which poses a considerable challenge when applying clustering
to real-world problems.

In this work, we present and implement AuToMATo (Automated Topological Mode Analysis Tool), a novel
clustering algorithm based on the topological clustering algorithm ToMATo (Chazal et al., 2013]). The latter
summarizes the prominences of peaks of a density function in a so-called persistence diagram. The user
then selects a prominence threshold 7 and retains all peaks whose prominence is above this threshold, which
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results in the final clustering. A simple heuristic to select 7 is to sort the peaks by decreasing prominence,
and to look for the largest gap between two consecutive prominence values (Chazal et all 2013). While
yielding reasonable results in general, this procedure is not very robust to small changes in the prominence
values.

A more robust and sophisticated method is to perform a bottleneck bootstrap on the persistence diagram
produced by ToMATo, which is precisely what AuToMATo does. That is, given a persistence diagram
obtained by running ToMATo on a point cloud, AuToMATo produces a confidence region for that diagram
with respect to the bottleneck distance, which translates into a choice of 7 that determines the final clustering.
While AuToMATo is not parameter-free per se, we provide default choices that make it perform well across
the board. Unless stated otherwise, AuToMATo will henceforth refer to our algorithm with its parameters
set to these defaults. We experimentally analyze the clustering performance of AuToMATo and we find
that it not only outperforms parameter-free clustering algorithms, but often also even the best choice of
hyperparameters for many parametric clustering algorithms. Parameter-free algorithms building on ToMATo
exist in the literature, for example, in|Cotsakis et al.| (2021) the final clustering is determined by fitting a curve
to the values of prominence, and in [Bois et al.| (2024)) significant values are separated from non-significant
ones by adapting the process that produces the persistence diagrams. Indeed, the former algorithm is one
of those that AuToMATo is shown to outperform.

We envision one important application of AuToMATo to be to the Mapper algorithm, introduced in [Singh
et al| (2007). Mapper constructs a graph that captures the topological structure of a data set. It relies on
many parameters, one of them being a clustering algorithm applied to various chunks of the data. Algorithms
that depend heavily on a good choice of a tunable hyperparameter are generally not good candidates for usage
with Mapper, as the best choice for the hyperparameter can vary significantly over the different chunks, and
manually choosing a different hyperparameter for each may not be possible in practice. Thus, most choices of
hyperparameter will generally perform badly on some of the subsets, leading to undesired results of Mapper.
Thus, AuToMATo can be seen as progress towards finding optimal parameters for Mapper, which is an active
area of research (Carriere et al., 2018} |Chalapathi et al.l |2021; [Rosen et al., |2023)). Running examples for
Mapper with AuToMATo, we see that it is indeed a good choice for a clustering algorithm in this application
when compared to parametric clustering algorithm such as DBSCAN.

2 Background

2.1 Persistence and the ToMATo clustering algorithm

Both ToMATo and AuToMATo rely on the theory of persistence (Edelsbrunner et al.| [2002; |[Zomorodian &
Carlsson, [2005; (Carlsson, [2014)) to quantify the prominence of peaks of (an estimate of) a density function,
and to build a hierarchy of peaks. Given a topological space X equipped with a density function f: X — R>,
the first step of persistence is to build a filtration from X.

Definition 2.1. Let X be a topological space, and let f: X — R be continuous. The superlevel set
filtration of (X, f) is the family of superlevel sets {X> | t € R}, where X, == f~' ([t,00)).

In the following, we assume for ease of exposition that all local extrema of f have distinct values. The idea
underlying ToMATo is to track the evolution of (the number of) connected components of X>; as ¢ ranges
from 400 to —oo. In that process, the number of connected components of X>; remains constant, unless ¢
passes through the value of a local extremum of f. As ¢ passes through the value of a local maximum, a new
connected component is “born” and added to the superlevel set X>;. Similarly, as ¢ passes through the value
of a local minimum, two connected components of X>; are merged into one. ToMATo builds a hierarchy of
local maxima of f by declaring that, as two components get merged, the component corresponding to the
local maximum with higher value absorbs the other one and persists, whereas the component corresponding
to the local maximum with lower value “dies”. Therefore, to each local maximum we associate a pair (b, d)
where b denotes the birth and d the death time, respectively. The evolution of the connected components
can be concisely recorded in a persistence diagram.

Definition 2.2. Let {(b;,d;)}; denote the birth and death times of connected components of the superlevel
set filtration {X >}, p associated to the density f: X — R. The associated persistence diagram, denoted



Published in Transactions on Machine Learning Research (10/2025)

by Dgm(X, f), is the multiset in the extended plane R’ = RU {£oo} consisting of the points {(b;,d;)}, C R’
(counted with multiplicity) and the diagonal A = {(z,z) |z € R} (where each point on A has infinite
multiplicity). For a given local maximum of f with birth time by and death time d; , we refer to the difference
d; — b; as its prominence or lifetime.

The reason for working in the extended plane is that, provided that f has a global maximum, the superlevel
set filtration X>; will have a connected component that never dies, that is, has death time equal to —oc.
See the red graph in Figure[I] for an illustration.

The persistence diagram Dgm(X, f) provides a summary of f. The points of Dgm(X, f) are in one-to-one
correspondence with the local maxima of f, and twice the L°°-distance of a point to the diagonal A (that
is, its Euclidean vertical distance) equals its prominence.

We now outline how the ToMATo clustering algorithm works. Given a point cloud X ToMATo relies on the
assumption that the points of X were sampled according to some unknown density function f. In a nutshell,
ToMATo infers information about the local maxima of f by applying the above procedure to an estimate of
f. ToMATo takes as input:

e A neighborhood graph G on the points of X. Chazal et al. mostly use the d-Rips graph and
the k-nearest neighbor graphﬂ

e A density estimator f . Each vertex v of G is assigned a non-negative value f (v) that corresponds
to the estimated density at v. Chazal et al. propose two possible density estimators: the truncated
Gaussian kernel density estimator and the distance-to-measure density, originally introduced in Biau
et al (2011) P

e A merging parameter 7 > 0. This is a threshold that the prominence of a local maximum of the
estimated density f must clear for that local maximum to be deemed a feature.

Given the inputs above, ToMATo proceeds as follows.

1. Estimate the underlying density function f at the points of X.

2. Apply a hill-climbing algorithm on G. Construct the neighborhood graph G on the points of
X, and construct a directed subgraph G’ of G as follows: at each vertex v of G, place a directed
edge from v to its neighbor with highest value of f , provided that that value is higher than f (v).
If all neighbors of v have lower values, v is a peak of f . This yields a collection of directed edges
that form a spanning forest of the graph G, consisting of one tree for each local maximum of f . In
particular, these trees yield a partition of the elements of X into pairwise disjoint sets that serves
as a candidate clustering on X.

3. Construct the persistence diagram. Construct the persistence diagram Dgm(G, f) associated
to the superlevel set filtration of f : G —R.

4. Merge non-significant clusters. Iteratively merge every cluster of prominence less than 7 of the
candidate clustering found in Step [2 into its parent cluster, that is, into the cluster corresponding
to the local maximum that it gets merged into in the superlevel set filtration of f : G — R. ToMATo
outputs the resulting clustering of points of X, in which every cluster has prominence at least 7 by
construction.

The reason why we can expect the persistence diagram of the approximated density to be “close” to the
original one stems from the stability of persistence diagrams under the bottleneck distance (explained in
Section [2.2]). This is illustrated in Figure

In practice, the user must run ToMATo twice. First, ToMATo is run with 7 = 400 which is equivalent
to computing the birth and death time of each local maximum of f and hence the persistence diagram

1Given a point cloud, both of these undirected graphs have the set of data points as their vertex set. In the case of the
J-Rips graph, two vertices are connected iff they are at a distance of at most ¢ apart, whereas in the k-nearest neighbor graph,
a data point is connected to another iff the latter is among the k-nearest neighbors of the first.

2For a smoothing parameter m € (0, 1), and a given data point x, its empirical (unnormalized) distance-to-measure density

is given by f(z) = (% ZyeNk(w) |z — y||2> : , where k = [mn], Ng(z) denotes the set of the k nearest neighbors of z, and
n is the cardinality of the data set.
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Figure 1: A function f: K — R, K C R, in red, and an estimate f of f in blue (left), with corresponding
persistence diagrams Dgm (K, f) and Dgm(G, f) consisting of the red and blue dots, respectively, together
with a dashed line separating noise from features (right).

Dgm(g, f) From the diagram Dgm(G, f) the user then determines a merging parameter 7 by visually
identifying a large gap in Dgm(G, f ) separating, say, C points corresponding to highly prominent peaks from
the rest of the points. Then, ToMATo is run a second time with 7 set to that value, which results in the
final clustering of X into C clusters.

2.2 The bottleneck bootstrap

The bottleneck bootstrap, introduced in |Chazal et al| (2017, Section 6), is used to separate significant
features in persistence diagrams from non-significant ones. While it may be used in more general settings,
we will restrict ourselves to the scenario of Section 211

We first review the bottleneck distance, which is the standard distance measure between persistence dia-
grams (Edelsbrunner & Harer} |2010; (Chazal et al., [2016]).

Definition 2.3. Let Dgm; and Dgm, be two persistence diagrams that have finitely many points off the
diagonal. Let 7 denote the set of bijections v: Dgm; — Dgm,. Given points x = (x1,22) and y = (y1,y2)
in R{ let ||z — ylloo = max{|z1 — y1],|z2 — y2|} denote their L -distance, where we set (+00) — (+00) =
(—00) — (—00) = 0. Then, the bottleneck distance between Dgm, and Dgm, is defined as

Weo(Dgmy, Dgm,) = irelf sup ||z — v(2)||co-

reDgm,

Note that a bijection v: Dgm; — Dgm, is allowed to match an off-diagonal point of Dgm; to the diagonal
of Dgms,, and vice versa.

We now outline the bottleneck bootstrap. It relies on the following theorem, which summarizes the relevant
results of |Chazal et al| (2017, Section 6).

Theorem 2.4 (Chazal et al|(2017)). Let X C RY be a sample consisting of n data points drawn according
to a probability density function f: K — [0,1], K C RY. Denote by D := Dgm(K, f) and D = Dgm(X, f)
the corresponding unknown and estimated, respectively, persistence diagrams of superlevel sets. Given a
confidence level o € (0,1), define qo by

P(vaWs(D,D) < qa) =1 — a.
Then a consistent estimator for q, s given by qn, which in turn is defined by
P(v/nWoo(D*,D) < Ga) =1 — a.

Here, D* = Dgm(X™, f) denotes the random persistence diagram constructed from a sample X* of size n
drawn according to the empirical measure P, on X, where P, is defined as the probability measure on X
that assigns the probability mass 1/n to each data point in X.
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In our setting, the theorem above is applied as follows. Given the sample X C RY, we estimate f and
the connectivity of K with a density estimator and a neighborhood graph, respectively (as explained in
Section . This allows us to compute D= Dgm(X, f), which, in turn, serves as an estimate of D. The
empirical measure P, on X serves as an approximation of the unknown probability measure f, and using
this, Theorem [2.4] allows us to approximate the distribution

F(z) = P(v/aWw (D, D) < 2)

with the distribution R PN
F(z2) = P(v/nW(D*,D) < 2),

where D* = Dgm(X*, f) is a random quantity. Note that X* may be thought of as a sample drawn from
X with replacement.

Like the distribution F', the distribution F s still not explicitly computable, but, unlike F', it can be
approximated by Monte Carlo as follows. We draw B samples X7,..., X5 of size n from P,, and for
each of these B samples, we compute the persistence diagram 5;“ = Dgm(X/, f) and the quantity T} =
\/ﬁWm(ﬁf7 15), 1 =1,...,B. Finally, we use the function

as an approximation of ﬁ, and hence of F. Using this, we set
Go =inf{z | F(z) >1—a}

to be our estimate of q,. This estimate is asymptotically consistent by Theorem that is, gu RUAN Qa-

In conclusion, the true, unknown persistence diagram D is at bottleneck distance of at most g, /y/n from D
with probability at least 1 —«. Hence, points of D that are at L>°-distance at most Qa/+/n from the diagonal
could be matched to the diagonal under the bottleneck distance, and thus a point of D is declared to be a
significant feature iff it is at L°°-distance of at least g, //n to the diagonal, that is, iff its prominence is at

least 2 - @u//n.

3 Methodology and implementation of AuToMATo

3.1 Methodology of AuToMATo

AuToMATo builds upon the ToMATo clustering scheme introduced in |Chazal et al.| (2013]) and implemented
in |Glisse| (2025)). AuToMATo automates the step of visual inspection of the persistence diagram by means
of the bottleneck bootstrap, thus promoting ToMATo to a clustering scheme that does not rely on human
input.

More precisely, given a point cloud X to perform the clustering on, AuToMATo takes as input

o an instance of ToMATo with fixed neighborhood graph and density function estimators;
« a confidence level a € (0,1); and
« a number of bootstrap iterations B € Zx>1.

Remark 3.1. We point out that our implementation of AuToMATo comes with default values for each of
the objects. Each of these values can, of course, be adjusted by the user. For details on these default values,
see Subsection [3.4.

To apply the bottleneck bootstrap as described in Section[2.2] AuToMATo generates B bootstrap subsamples
X{,..., X5 of X, each of the same cardinality as X, where X is the data set whose points are to be
clustered. Then the underlying ToMATo instance with 7 = +o00 and its neighborhood graph and density
function estimators is used to compute the persistence diagram for X and each of X7,..., X%, yielding
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persistence diagrams D and 23f7...,ﬁ*3, respectively. Using the bootstrapped diagrams ﬁf, e ,ZS*B, a
bottleneck bootstrap is performed on D. This yields a value g, that (asymptotically as n — o) satisfies

P(vVnWao(D,D) < o) =1 — o,

where D denotes the persistence diagram of the true, unknown density function from which X was sampled.
Thus, points of D of prominence at least 2-g, /+/n are declared to be significant features of D and AuToMATo
outputs its underlying ToOMATo instance with prominence threshold set to 7 = 2- g, /+/n. This procedure is
schematically depicted in Figure [2]

ToMATo PD ToMATo PD with threshold

v

Data set X

Bootstrap samples ToMATo PDs

X7, X5 H:Z

Figure 2: Schematic of the methodology of AuToMATo: from a data set X, the usual ToMATo persistence
diagram (with 7 = 400) is computed. Additionally, the analogous persistence diagrams are computed for
the bootstrap samples X7, ..., X5, which are created from X by drawing with replacement. Finally, the

bootstrap procedure (indicated by ®) is used to compute a prominence threshold for the original
persistence diagram.

When Computmg the values /nWe (D 13) i = 1,...,B, in the bottleneck bootstrap, we only consider
points in D* and D with finite lifetimes. The reason for this choice is that we consider peaks with infinite
lifetime to be significant a priori. Moreover, some of the bootstrapped diagrams among the Dl, .. DB
have a different number of points with infinite lifetime than the reference diagram D. In these cases, the
bottleneck distance of the bootstrapped diagram to the reference diagram is infinite, which heavily distorts
the distribution F (z). This choice is justified by experiments.

3.2 Implementation of AuToMATo

We implemented AuToMATo in Python, and all code with documentation is publicly availableﬂ For a
description of AuToMATo in pseudocode, see Algorithm The algorithm has a worst-case complexity of
O(B(nd + nlog(n) + N'®log N)), where d is the dimensionality of the data and N is the maximal number
of off-diagonal points across all relevant persistence diagrams (which is generally much smaller than n); see
below for details. Note that the factor of B can be significantly decreased through parallelization.

While the input parameters may be adjusted by the user, the implementation provides default values whose
choices we discuss presently.

Choice of ToMATo parameters: Our implementation of AuToMATo is such that the user can directly
pass parameters to the underlying ToMATo instance. If no such arguments are provided AuToMATo uses
the default choices for those parameters, as determined by the implementation of ToMATo given in |Glisse
(2025). In particular, AuToMATo uses the k-nearest neighbor graph and the (logarithm of the) distance-
to-measure density estimators by default, each with k = 10. Of course, the persistence diagrams produced

3The code is archived on Zenodo (doi.org/10.5281/zenodo.17279741) and developed openly on GitHub (github.com/
m-a-huber/automato_paper).
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Algorithm 1: AuToMATo

Input: point cloud X of n data points; instance tom, of ToMATo with neighborhood graph and
density function estimators, and prominence threshold 7; confidence level « € (0,1); number of
bootstrap iterations B € Z>1.

D + Dgm(tomy, (X)) ; // compute persistence diagram of point cloud
for =1 to B do
Let X be a subsample of X of size n, sampled with replacement;

D} + Dgm(tomqo (X)) ; // compute persistence diagram of subsample
di + /nWE(Ds, D) ; // compute bottleneck distance between finite points
end

Sort and reindex {D5,..., D5} such that d; < --- < dp;
k<« [(1-a) Bl;
(/I\a — dka

T 2-Gu/Vn;

Output: tom,(X); // copy of initial ToMATo instance with prominence threshold set to 7

by ToMATo, and hence the output of AuToMATo, depend on this choice. This can lead to suboptimal
clustering performance of AuToMATo; see Section [0}

Choice of a and B: By default, AuToMATo performs the bootstrap on B = 1000 subsamples of the
input point cloud, and sets the confidence level to @ = 0.35. The choice of this latter parameter means
that AuToMATo determines merely a 65% confidence region for the persistence diagram produced by the
underlying ToMATo instance. While in bootstrapping the confidence level is often set to, for instance,a =
0.05, the seemingly strange choice of & = 0.35 in the setting of AuToMATo is justified by experiments. The
value of 65% seems to be low enough to offset some of the negative influence of using possibly non-optimized
neighborhood graph and density estimators discussed in Section [0} while at the same time being high enough
to yield good results when these estimators are chosen suitably. We point out that the value o = 0.35
(as well as the value B = 1000) was decided on after running an early implementation of AuToMATo on
just a few synthetic data sets. In particular, the choice was made before conducting the experiments in
Section [d] AuToMATo is implemented in such a way that the parameter « can be adjusted after fitting and
the clustering is automatically updated.

Complexity analysis of Algorithm Recall from |Chazal et al.| (2013, Section 2) that, if an estimated
density and a neighborhood graph are provided, ToMATo has a worst-case time complexity in O(nlog(n) +
ma(n)), where n and m are the number of vertices and edges of the neighborhood graph, respectively, and
a denotes the inverse Ackermann function (note that n equals the number of data points). By default,
ToMATo (and hence AuToMATo) works with the k-nearest neighbor graph and distance-to-measure density
estimators, where the latter itself relies on the k-nearest neighbor graph (each with & = 10). Taking into
account the known complexity bound O(nd) for the creation of the k-nearest neighbor graph (where d is the
dimensionality of the data), and using the fact that m € O(n) for this graph, this leads to a worst-case time
complexity in O(nd+nlog(n)) for a single run of ToMATo. Creating the bootstrap samples X*,i=1,..., B,
has complexity in O(Bn); computing the values /nWi(D} D), i = 1,..., B, has worst-case complexity
O(BN!%1og(N)) (where N denotes the maximal number of off-diagonal points across all relevant persistence
diagrams), and sorting them has worst-case complexity in O(Blog(B)). Combined, this leads to a worst-case
complexity for AuToMATo in O(B(nd + nlog(n) + N*®log(N)) + Blog(B)). Using that B is a constant,
we obtain the runtime of O(B(nd + nlog(n) + N1-5log N)) claimed above.

We point out that the complexity of O(N1-®log(V)) for the computation of the bottleneck distance between
a pair of persistence diagrams is a theoretical worst-case scenario, whose validity was established in [Efrat
et al.| (2001). In practice, one typically allows for a small error in the computation of bottleneck distances
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which decreases the effective complexity (Kerber et al., 2017). Our implementation of AuToMATo makes
use of this by allowing for the smallest possible error as determined by the smallest positive double (see the
implementation in |Godi (2025) for details). Moreover, note that the factor B appearing in the complexity
of AuToMATo can be drastically decreased in practice through parallelization.

The Python package: Our Python package for AuToMATo consists of two separate modules; one for
AuToMATo itself, and one for the bottleneck bootstrap. Both are compatible with the scikit-learn archi-
tecture, and the latter may also be used as a stand-alone module for other scenarios. In addition to the
functionality inherited from the scikit-learn API, the implementation of AuToMATo comes with options of

e adjusting the parameter a of a fitted instance of AuToMATo which automatically updates the
resulting clustering without repeating the (computationally expensive) bootstrapping;

e plotting the persistence diagram and the prominence threshold found in the bootstrapping;

 setting a seed in order to make the creation of the bootstrap subsamples in AuToMATo deterministic,
thus allowing for reproducible results; and

« parallelizing the bottleneck bootstrap for speed improvements.

Finally, our implementation of AuToMATo contains a parameter that allows the algorithm to label points
as outliers. In a nutshell, a point is classified as an outlier if it is not among the nearest neighbors of more
than a specified percentage of its own nearest neighbors. This feature, however, is currently experimental
(and is thus turned off by default).

4 Experiments

4.1 Choice of clustering algorithms for comparison

We chose to compare AuToMATo with its default parameters against

e« DBSCAN and its extension HDBSCAN;

e hierarchical clustering with Ward, single, complete and average linkage;

o the FINCH clustering algorithm (Sarfraz et al., 2019); and

o a clustering algorithm building on ToMATo stemming from the Topology ToolKit (TTK)
suite (Tierny et al. 2018]); in the following, we will refer to this as the TTK—algom'thmﬂ

For DBSCAN, HDBSCAN and the hierarchical clustering algorithms mentioned above, we worked with their
implementations in scz’kz’t—learnﬂ For the FINCH clustering algorithm, we worked with the version available
on GitHubH Indeed, we subclassed that version in order to make it compatible with the scikit-learn API.
Similarly, we created a scikit-learn compatible version of the TTK-algorithm by combining code from TTK
with the description of the algorithm given in|Cotsakis et al.| (2021, Section 5.2). While we included DBSCAN
and HDBSCAN among the clustering algorithms to compare AuToMATo against because they are standard
choices, we chose to include the hierarchical clustering algorithms because they are readily available through
scikit-learn. Finally, we chose to include FINCH and the TTK-algorithm because, like AuToMATo, they are
out-of-the-box (indeed, parameter-free) methods and are thus especially interesting to compare AuToMATo
against.

4.2 Choice of data sets

The data sets on which we ran AuToMATo and the above clustering algorithms stem from the Clustering
Benchmarks suite (Gagolewskil, 2022)E| We chose this collection as it comes with a large variety of different
data sets, all of which are labeled by one or more ground truths, allowing for a fair and extensive comparison.
The collection contains five recommended batteries of data sets from which we selected those (data set,
ground truth)-pairs that we deemed reasonable for a general purpose parameter-free clustering algorithm.

4For the Topology ToolKit, see topology-tool-kit.github.io/| (BSD license).
Sscikit-learn.org/stable/modules/clustering.html
6github.com/ssarfraz/FINCH-Clustering (CC BY-NC-SA 4.0 license)

"Specifically, we worked with version 1.1.0 of the benchmarking suite (Gagolewski et al., [2022))
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For instance, we chose to include the data set named windows that is part of the wut-battery, but not the
data set named windows from the same battery (see Figure |§| in the appendix for an illustration). We chose
to include the windows data set because AuToMATo determines clusters depending on connectivity, and
topologically speaking, there is only one connected component in the olympic data set. Finally, we excluded
all instances where the ground truth contains data points that are labeled as outliers, as outliers creation is
currently an experimental feature in AuToMATo.

4.3 Methodology of the experiments

We min-max scaled each data set, fitted the clustering algorithms to them, and recorded the clustering
performance of each result by computing the Fowlkes-Mallows score (Fowlkes & Mallows, [1983)) of the
clustering obtained and the respective ground truth. While the Fowlkes-Mallows score was originally defined
for hierarchical clusterings only, it may be defined for general clusterings as follows. Given a clustering C'
found by an algorithm and a ground truth clustering G, one defines the Fowlkes-Mallows score as

TP TP
FMS = .
S \/TP+FP \/TP—i—FN’

where

e TP is the number of pairs of data points which are in the same cluster in C and in G;
o FP is the number of pairs of data points which are in the same cluster in G but not in C; and

e FN is the number of pairs of data points which are not in the same cluster in G but are in the same
cluster in C.

In other words, the Fowlkes-Mallows score is defined as the geometric mean of precision and recall of a
classifier whose relevant elements are pairs of points that belong to the same cluster in both C' and G. It
may attain any value between 0 and 1, and these extremal values correspond to the worst and best possible
clustering, respectively. We chose to use the Fowlkes-Mallows score as opposed to, for instance, mutual infor-
mation or any of the Rand indices, because the latter have been shown to exhibit biased behavior depending
on whether the clusters in the ground truth are mostly of similar sizes or not, see, for instance, [Romano
et al.| (2016)); to the best of our knowledge, the Fowlkes-Mallows score does not suffer from such drawbacks.
Moreover, we chose not to use any intrinsic measures of clustering performance since any such measure
implicitly defines a further clustering algorithm to compare AuToMATo against, whereas we are interested
in comparing AuToMATo against a predefined ground truth clustering.

We set the hyperparameters of the HDBSCAN, FINCH and the TTK-algorithm to their default values (as
per their respective implementations). In contrast to this, we let the distance threshold parameter for the
DBSCAN and the hierarchical clustering algorithms vary from 0.05 to 1.00 in increments of 0.05, with the
goal of comparing AuToMATo against the best and worst performing version of these clustering algorithms.
To account for the randomized component of AuToMATo, we ran it ten times, each time with a different
seed.

While we restricted ourselves to instances where the ground truth does not contain any points labeled as
outliers, some of the clustering algorithms in our list (DBSCAN and HDBSCAN) label some data points as
outliers. In order to prevent these algorithms from getting systematically low Fowlkes-Mallows scores because
of these outliers, we removed all the points labeled as outliers by these algorithms, and only computed the
Fowlkes-Mallows score on the remaining points, both for these clustering algorithms and for AuToMATo.
This of course gives an advantage to DBSCAN and HDBSCAN over AuToMATo.

In order to allow reproducibility, we chose a fixed seed for all our experiments, which can be found in our
codeﬂ We ran our experiments on a laptop with a 12th Gen Intel Core i7-1260P processor running at
2.10GHz.

8The code is archived on Zenodo (doi.org/10.5281/zenodo.17279741) and developed openly on GitHub (github.com/
m-a-huber/automato_paper).
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4.4 Results and interpretation

Table [1] shows the average Fowlkes-Mallows score of each algorithm across all benchmarking data sets; for
AuToMATo, it shows the average and the standard deviation across the ten runs. For those benchmarking
data sets that come with more than one ground truth, we included only the best score of the respective algo-
rithm. Similarly, we included only the best performing parameter selection for those algorithms that we ran
with varying distance thresholds (which, of course, skews the comparison in favor of those algorithms). As
Table [ shows, AuToMATo outperforms each clustering algorithm on average across all data sets, thus show-
ing that it is indeed a versatile and powerful out-of-the-box clustering algorithm. In particular, AuToMATo
outperforms the TTK-algorithm, which also build on ToMATo.

Table 1: Average clustering performance of AuToMATo vs. reference clustering algorithms

Algorithm Fowlkes-Mallows score
AuToMATo 0.855410.0228
DBSCAN 0.8457
Average linkage 0.8321
HDBSCAN 0.8209
Single linkage 0.8156
TTK clustering algorithm 0.8019
Complete linkage 0.7592
Ward linkage 0.5896
FINCH 0.5074

The scores of our experiments are reported in Tables [2] through [6] in Appendix [A:2] As an illustration,
Figure [3] shows that the best choice of parameter for DBSCAN sometimes outperforms AuToMATo, which
is to be expected. However, on most data sets where this is the case, the results from AuToMATo are still
competitive, and there is a significant number of instances where AuToMATo outperforms DBSCAN for all
parameter selections, in some cases by a lot.
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Figure 3: Fowlkes-Mallows score of AuToMATo and DBSCAN across benchmarking data sets. The shading
of “automato mean” indicates the standard deviation of the score across the ten runs.

5 Applications of AuToMATo in combination with Mapper
The goal of Mapper (Singh et al.,|2007)) is to approximate the Reeb graph of a manifold M based on a sample

from M. The input is a point cloud P with a filter function P — R; a collection of overlapping intervals
U = {Uy,...,U,} covering R; and a clustering algorithm. For each U; € U, Mapper runs the clustering

10
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algorithm on the data points in the preimage f~*(U;), creating a vertex for each cluster. Two vertices are
then connected by an edge if the corresponding clusters (in different preimages) have some data points in
common, yielding a graph that represents the shape of the data set.

We ran the Mapper implementation of giotto-tda (Tauzin et al., 2020) on a synthetic two-dimensional data
set consisting of noisy samples from two concentric circles (see Figure with projection onto the x-axis
as the filter function. We ran Mapper on the same interval cover with three different choices of clustering
algorithms: AuToMATo, DBSCAN, and HDBSCAN. As can be seen in Figure [4D] using DBSCAN, we see
many unwanted edges in the graph. HDBSCAN performs better, giving two cycles with some extra loops.
The output of Mapper with AuToMATo is exactly the Reeb graph of two circles.

N :.' '--.. .'/ I :..o""o ...
(a) (b) () (d)

Figure 4: (a) input data set; result of Mapper with (b) AuToMATo; (c) DBSCAN; (d) HDBSCAN

We further tested the combination of Mapper with AuToMATo on one of the standard applications of
Mapper: the Miller-Reaven diabetes data set, where Mapper can be used detect two strains of diabetes that
correspond to “flares” in the data set (see [Singh et al (2007, Section 5.1) for details)f| As can be seen in
Figure 5} AuToMATo performs well in this task; the graphs show a central core of vertices corresponding to
healthy patients, and two flares corresponding to the two strains of diabetes. We were not able to reproduce
this using DBSCAN or HDBSCAN; Figure [5] shows the output of Mapper with these algorithms with their
respective default parameters.

.
. 15
15 .
S
" , °
‘

Figure 5: Mapper applied to the diabetes data set with AuToMATo (left); DBSCAN (center); HDBSCAN
(right). Labels 0, 1 and 2 stand for “no ”, “chemical” and “overt diabetes”.

6 Discussion

We briefly outline some limitations of AuToMATo. AuToMATo comes with a choice of default values for its
parameters.

9The data set is available as part of the “locfit” R-package 1, 2024]).
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Optimizing the choice of the neighborhood graph and density estimators is an aspect of AuToMATo that we
plan to pursue in future work. Moreover, we plan to improve the currently experimental feature for outlier
creation in AuToMATo discussed at the end of Section [3.2] Finally, it is natural to ask whether the results
from |Carriere et al.| (2018)) on optimal parameter selection in the Mapper algorithm can be adapted to the
scenario where Mapper uses AuToMATo as its clustering algorithm.

Acknowledgments

The first author was supported by the Swiss National Science Foundation (project no. 209413).

References

Michael R. Anderberg. Index. In Cluster Analysis for Applications, Probability and Mathematical Statis-
tics: A Series of Monographs and Textbooks, pp. 355-359. Academic Press, 1973. doi: https://doi.org/
10.1016/B978-0-12-057650-0.50026-0. URL https://www.sciencedirect.com/science/article/pii/
B9780120576500500260

Gérard Biau, Frédéric Chazal, David Cohen-Steiner, Luc Devroye, and Carlos Rodriguez. A weighted k-
nearest neighbor density estimate for geometric inference. FElectronic Journal of Statistics, 5(none):204 —
237, 2011. doi: 10.1214/11-EJS606. URL https://doi.org/10.1214/11-EJS606.

Alexandre Bois, Brian Tervil, and Laurent Oudre. Persistence-based clustering with outlier-removing filtra-
tion. Frontiers in Applied Mathematics and Statistics, 10, 2024. doi: 10.3389/fams.2024.1260828.

Gunnar Carlsson. Topological pattern recognition for point cloud data. Acta Numerica, 23:289-368, 2014.

Mathieu Carriere, Bertrand Michel, and Steve Oudot. Statistical analysis and parameter selection for mapper.
Journal of Machine Learning Research, 19(12):1-39, 2018. URL http://jmlr.org/papers/v19/17-291.
htmll.

Nithin Chalapathi, Youjia Zhou, and Bei Wang. Adaptive covers for mapper graphs using information
criteria. In 2021 IEEE International Conference on Big Data (Big Data), pp. 3789-3800, 2021. doi:
10.1109/BigData52589.2021.9671324.

Frédéric Chazal, Leonidas J Guibas, Steve Y Oudot, and Primoz Skraba. Persistence-based clustering in
riemannian manifolds. Journal of the ACM (JACM), 60(6):1-38, 2013.

Frédéric Chazal, Steve Y. Oudot, Marc Glisse, and Vin De Silva. The Structure and Stability of Persis-
tence Modules. SpringerBriefs in Mathematics. Springer Verlag, 2016. URL https://hal.inria.fr/
hal-01330678.

Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry A. Wasser-
man. Robust topological inference: Distance to a measure and kernel distance. J. Mach. Learn. Res., 18:
159:1-159:40, 2017. URL http://jmlr.org/papers/vi8/15-484 . html.

Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine. Implementing persistence-based clustering
of point clouds in the topology toolkit. In Ingrid Hotz, Talha Bin Masood, Filip Sadlo, and Julien Tierny
(eds.), Topological Methods in Data Analysis and Visualization VI, pp. 343-357, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-83500-2.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd Edition). Wiley-
Interscience, USA, 2000. ISBN 0471056693.

Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. Discrete € Compu-

tational Geometry, 28(4):511-533, Nov 2002. ISSN 1432-0444. doi: 10.1007/s00454-002-2885-2. URL
https://doi.org/10.1007/s00454-002-2885-2,

12


https://www.sciencedirect.com/science/article/pii/B9780120576500500260
https://www.sciencedirect.com/science/article/pii/B9780120576500500260
https://doi.org/10.1214/11-EJS606
http://jmlr.org/papers/v19/17-291.html
http://jmlr.org/papers/v19/17-291.html
https://hal.inria.fr/hal-01330678
https://hal.inria.fr/hal-01330678
http://jmlr.org/papers/v18/15-484.html
https://doi.org/10.1007/s00454-002-2885-2

Published in Transactions on Machine Learning Research (10/2025)

H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Applied Mathematics. Amer-
ican Mathematical Society, 2010. ISBN 9780821849255. URL https://books.google.fr/books?id=
MDXa6gFRZuIC.

A. Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck matching and related problems. Algorithmica,
31(1):1-28, Sep 2001. ISSN 1432-0541. doi: 10.1007/s00453-001-0016-8. URL https://doi.org/10.
1007/s00453-001-0016-8.

Edward B Fowlkes and Colin L. Mallows. A method for comparing two hierarchical clusterings. Journal of
the American statistical association, 78(383):553-569, 1983.

M. Gagolewski et al. A benchmark suite for clustering algorithms: Version 1.1.0, 2022. URL https:
//github.com/gagolews/clustering-data-vl/releases/tag/v1.1.0. Software release.

Marek Gagolewski. A framework for benchmarking clustering algorithms. SoftwareX, 20:101270, 2022. ISSN
2352-7110. doi: https://doi.org/10.1016/j.s0ftx.2022.101270. URL https://www.sciencedirect.com/
science/article/pii/S2352711022001881.

Marc Glisse. persistence-based clustering. In GUDHI User and Reference Manual. GUDHI Editorial Board,
3.11.0 edition, 2025. URL https://gudhi.inria.fr/python/3.11.0/clustering.html.

Frangois Godi. Bottleneck distance. In GUDHI User and Reference Manual. GUDHI Editorial Board, 3.11.0
edition, 2025. URL https://gudhi.inria.fr/doc/3.11.0/group__bottleneck__distance.htmll

Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps to compare persistence diagrams.
ACM J. Exp. Algorithmics, 22, September 2017. ISSN 1084-6654. doi: 10.1145/3064175. URL https:
//doi.org/10.1145/3064175.

Catherine Loader. locfit: Local Regression, Likelihood and Density Estimation, 2024. URL https://CRAN.
R-project.org/package=locfit. R package version 1.5-9.9.

Simone Romano, Xuan Vinh Nguyen, James Bailey, and Karin Verspoor. Adjusting for chance clustering
comparison measures. J. Mach. Learn. Res., 17:134:1-134:32, 2016. URL https://jmlr.org/papers/
v17/15-627 .html.

P. Rosen, M. Hajij, and B. Wang. Homology-preserving multi-scale graph skeletonization using mapper
on graphs. In 2023 Topological Data Analysis and Visualization (TopoInVis), pp. 10-20, Los Alamitos,
CA, USA, oct 2023. IEEE Computer Society. doi: 10.1109/TopoInVis60193.2023.00008. URL https:
//doi.ieeecomputersociety.org/10.1109/TopoInVis60193.2023.00008.

M. Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Efficient parameter-free clustering using first
neighbor relations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8934-8943, 2019.

Gurjeet Singh, Facundo Mémoli, Gunnar E Carlsson, et al. Topological methods for the analysis of high
dimensional data sets and 3d object recognition. PBG@ Eurographics, 2:091-100, 2007.

Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal Medina-
Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: A topological data analysis toolkit for machine
learning and data exploration, 2020.

Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles Gueunet, and Michael Michaux. The topol-
ogy toolkit. IEEE Transactions on Visualization and Computer Graphics, 24(1):832-842, January 2018.
ISSN 1077-2626. doi: 10.1109/TVCG.2017.2743938. Funding Information: This work is partially sup-
ported by the Bpifrance grant “AVIDO” (Programme d’Investissements d’Avenir FSN2, reference P112017-
2661376/D0S0021427) and by the National Science Foundation IIS-1654221. We would like to thank the
reviewers for their thoughtful remarks and suggestions. We would also like to thank Attila Gyulassy, Julien
Jomier and Joachim Pouderoux for insightful discussions and Will Schroeder, who encouraged us to write
this manuscript. Publisher Copyright: © 1995-2012 IEEE.

13


https://books.google.fr/books?id=MDXa6gFRZuIC
https://books.google.fr/books?id=MDXa6gFRZuIC
https://doi.org/10.1007/s00453-001-0016-8
https://doi.org/10.1007/s00453-001-0016-8
https://github.com/gagolews/clustering-data-v1/releases/tag/v1.1.0
https://github.com/gagolews/clustering-data-v1/releases/tag/v1.1.0
https://www.sciencedirect.com/science/article/pii/S2352711022001881
https://www.sciencedirect.com/science/article/pii/S2352711022001881
https://gudhi.inria.fr/python/3.11.0/clustering.html
https://gudhi.inria.fr/doc/3.11.0/group__bottleneck__distance.html
https://doi.org/10.1145/3064175
https://doi.org/10.1145/3064175
https://CRAN.R-project.org/package=locfit
https://CRAN.R-project.org/package=locfit
https://jmlr.org/papers/v17/15-627.html
https://jmlr.org/papers/v17/15-627.html
https://doi.ieeecomputersociety.org/10.1109/TopoInVis60193.2023.00008
https://doi.ieeecomputersociety.org/10.1109/TopoInVis60193.2023.00008

Published in Transactions on Machine Learning Research (10/2025)

Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Computational Ge-
ometry, 33(2):249-274, Feb 2005. ISSN 1432-0444. doi: 10.1007/s00454-004-1146-y. URL https:
//doi.org/10.1007/s00454-004-1146-y.

14


https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1007/s00454-004-1146-y

Published in Transactions on Machine Learning Research (10/2025)

A Appendix

A.1 About the choice of data sets

As explained in Section [£:2] we chose to include the data set named windows from the battery named wut,
but not the data set named olympic from the same battery. Those are illustrated in Figure[6] In that figure,
the data points are colored according to the ground truth clustering.
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Figure 6: The data sets named windows (left) and olympic (right) from the wut-battery.

A.2 Benchmarking results

In this subsection we report the Fowlkes-Mallows scores coming from comparing AuToMATo to the other
clustering algorithms, as explained in Section [4] For those benchmarking data sets that come with more
than one ground truth, we report the scores for each of those, and different ground truths are indicated
by the last digit in the data set name. Moreover, each table is sorted according to increasing difference
in clustering performance of AuToMATo and the respective clustering algorithm that AuToMATo is being
compared against. As is customary, we indicate the score stemming from the best performing clustering
algorithm in bold. Finally, each of the table is accompanied by a graph similar to the one depicted in
Figure Note that, in particular, that those figures indicate only the score corresponding to the ground
truth on which the respective clustering algorithm performs best on.

Table 2: Fowlkes-Mallows scores of AuToMATo vs. DBSCAN

Dataset automato _mean dbscan_max dbscan_min
sipu_rl5_2 0.486740.0000 1.0000 0.5607
wut__trajectories_ 0 0.5038+0.0107 1.0000 0.4999
wut_x3_0 0.515340.0000 0.9398 0.5149
wut_x2 0 0.584640.0000 0.9483 0.5779
sipu_rl5_ 1 0.543640.0000 0.8954 0.5021
fcps_ tetra_ 0 0.626140.0000 0.9403 0.0000
sipu_ pathbased_ 0 0.651740.0000 0.9569 0.5769
sipu_ spiral_0 0.7028=+0.0000 1.0000 0.5756
wut__isolation_ 0 0.725640.0113 1.0000 0.5773
sipu_ pathbased_ 1 0.732240.0000 0.9620 0.5170

Continued on next page
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Table 2: Fowlkes-Mallows scores of AuToMATo vs. DBSCAN

Dataset automato _mean dbscan_max dbscan_min
sipu__jain_ 0 0.783740.0000 0.9880 0.7837
graves_ dense_ 0 0.8377£0.1396 0.9970 0.7053
sipu__compound_ 0 0.8616=£0.0000 1.0000 0.4972
feps _atom_ 0 0.869440.0000 1.0000 0.7067
wut_ circles_ 0 0.885740.0000 1.0000 0.4998
feps_ chainlink 0 0.889640.0000 1.0000 0.7068
other_ iris 0 0.771540.0000 0.8721 0.0000
wut_mk4 0 0.9072+0.0234 1.0000 0.5770
wut_mk2 0 0.635640.0000 0.7068 0.5778
sipu__ compound_ 4 0.9442+0.0000 1.0000 0.5523
wut_x3_ 1 0.654640.0000 0.7042 0.6546
graves_ zigzag 1 0.6720£0.0000 0.7149 0.4446
other_iris5_0 0.671240.0000 0.7046 0.0000
wut_ smile 1 0.970140.0000 1.0000 0.5825
wut_x1_0 0.974140.0818 1.0000 0.5846
feps_ target_ 0 0.985040.0000 1.0000 0.6963
wut__smile_ 0 0.968140.0000 0.9753 0.5471
wut_mk3_0 0.772040.0000 0.7774 0.5764
sipu__compound_ 1 0.97860.0000 0.9825 0.5715
sipu_ flame 0 0.732040.0000 0.7341 0.5918
sipu__unbalance_ 0 0.9986+0.0008 1.0000 0.5339
feps_ twodiamonds_ 0 0.706740.0000 0.7067 0.7067
sipu__aggregation_ 0 0.86524-0.0000 0.8652 0.4653
wut_ stripes_ 0 1.0000+0.0000 1.0000 0.7070
wut_ trapped_lovers_ 0 1.0000=£0.0000 1.0000 0.6632
wut_ windows_ 0 1.0000£0.0000 1.0000 0.6753
fcps__hepta_ 0 1.0000+0.0000 1.0000 0.3727
feps Isun_ 0 1.0000£0.0000 1.0000 0.6111
graves_ line_ 0 1.0000£0.0000 1.0000 0.8238
graves_ ring_ 0 1.0000+0.0000 1.0000 0.7068
graves_ring_outliers_ 0 1.0000+0.0000 1.0000 0.6863
graves_ zigzag_ (0 1.0000+0.0000 1.0000 0.5328
other_ square_ 0 1.0000£0.0000 1.0000 0.7068
wut_mkl 0 0.9866+0.0000 0.9651 0.5754
wut__twosplashes_ 0 1.0000+0.0000 0.9649 0.7062
feps_ wingnut_ 0 0.980540.0000 0.8784 0.7068
graves_ parabolic_ 1 0.6916+0.0000 0.5000 0.4999
wut_ labirynth_ 0 0.788440.0000 0.5221 0.5221
graves_ parabolic_ 0 0.98024-0.0000 0.7068 0.7068
sipu_d31_0 0.600110.0085 0.1846 0.1787
sipu_al_0 0.749940.0000 0.3269 0.2229
sipu_rl5_0 0.925840.0000 0.4551 0.2552
sipu_sl_0 0.9888+4-0.0000 0.4890 0.2581
sipu_a2_ 0 0.755540.0000 0.1685 0.1685
sipu_a3_0 0.743440.0000 0.1410 0.1410
sipu_s2_0 0.940540.0000 0.2581 0.2581
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Figure 7: Comparison of AuToMATo and DBSCAN.

Table 3: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with average linkage

Dataset automato_mean linkage average max linkage average min
sipu_rl5_2 0.486740.0000 1.0000 0.3971
wut_ trajectories_ 0 0.5038=+0.0107 1.0000 0.3115
fcps_ tetra_ 0 0.626140.0000 1.0000 0.0651
sipu_rl5_1 0.543640.0000 0.8954 0.4435
sipu_d31_0 0.600140.0085 0.9322 0.1787
wut_x3_0 0.515340.0000 0.8389 0.3343
wut_x3 1 0.654640.0000 0.9747 0.2693
feps_ twodiamonds_ 0 0.7067=+0.0000 0.9925 0.1287
sipu_a2 0 0.755540.0000 0.9432 0.1685
sipu_al_0 0.749940.0000 0.9268 0.2229
sipu_a3d_0 0.743440.0000 0.8825 0.1410
sipu__aggregation_ 0 0.865240.0000 0.9932 0.1785
sipu_ pathbased_ 1 0.732240.0000 0.8564 0.2058
graves_ dense_ 0 0.8377£0.1396 0.9604 0.6633
sipu_ pathbased_ 0 0.651740.0000 0.7704 0.1848
wut_x2_0 0.584640.0000 0.7001 0.2782
wut_ circles_ 0 0.885740.0000 1.0000 0.2369
wut_mk3_0 0.772040.0000 0.8771 0.0876
wut__mk2 0 0.635640.0000 0.7068 0.1421
sipu_rl5_0 0.925840.0000 0.9900 0.2552
graves_ zigzag 1 0.6720£0.0000 0.7202 0.4380
other iris_ 0 0.771540.0000 0.8080 0.0791
other_iris5_0 0.671240.0000 0.7042 0.0451
wut_x1_0 0.974140.0818 1.0000 0.3070
sipu__jain_ 0 0.783740.0000 0.7904 0.1736
wut_mkl_0 0.986640.0000 0.9933 0.2037
sipu__unbalance_ 0 0.9986-+0.0008 0.9995 0.5339
fcps__hepta_ 0 1.00000.0000 1.0000 0.3727
sipu_ flame_ 0 0.732040.0000 0.7320 0.0913
sipu_sl_0 0.9888+0.0000 0.9821 0.2581

Continued on next page
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Table 3: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with average linkage

Dataset

automato_mean

linkage average max

linkage average_min

sipu__compound_ 0
sipu__ compound_ 4
sipu__compound__1

sipu_s2 0
wut__smile 1
feps__atom_ 0

graves_ parabolic_ 1

sipu__spiral_ 0
wut_mk4 0
wut__smile 0
wut__isolation_ 0
graves_line_ 0
fcps__chainlink_ 0
fcps_ target_ 0
fcps_wingnut_ 0
feps Isun_ 0
graves_ring 0

graves_ parabolic_ 0

graves_ ring_outliers_ 0

other_ square_0
wut_ labirynth_ 0
wut_ stripes_ 0

wut__twosplashes_ 0

wut_ windows 0

wut__trapped_ lovers_ 0

graves_ zigzag 0

0.86160.0000
0.9442+0.0000
0.9786+0.0000
0.9405+0.0000
0.9701+0.0000
0.8694+0.0000
0.69160.0000
0.7028+0.0000
0.907240.0234
0.9681+0.0000
0.7256+0.0113
1.0000+0.0000
0.8896+0.0000
0.9850+0.0000
0.9805-0.0000
1.000010.0000
1.000040.0000
0.9802+0.0000
1.000040.0000
1.000040.0000
0.7884+0.0000
1.0000+0.0000
1.000040.0000
1.000040.0000
1.000040.0000
1.000040.0000

0.8431
0.9224
0.9546
0.9097
0.8726
0.7491
0.5708
0.5756
0.7714
0.8221
0.5773
0.8238
0.7068
0.7986
0.7739
0.7896
0.7780
0.7580
0.7767
0.7413
0.5221
0.7070
0.7062
0.6753
0.6632
0.6616

0.2207
0.1985
0.1922
0.2581
0.4041
0.2555
0.2135
0.1919
0.2071
0.4303
0.1651
0.3047
0.1456
0.3285
0.1101
0.1735
0.2638
0.1598
0.2801
0.1746
0.2306
0.1082
0.4837
0.1194
0.1077
0.3008
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Figure 8: Comparison of AuToMATo and agglomerative clustering with average linkage.
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Table 4: Fowlkes-Mallows scores of AuToMATo vs. HDBSCAN

Dataset automato _mean automato_ std hdbscan
wut__trajectories_ 0 0.503840.0107 0.0107  1.0000
wut_x3_0 0.515340.0000 0.0000  0.8959
wut_x2 0 0.584640.0000 0.0000 0.9344
sipu_ spiral_0 0.702840.0000 0.0000  0.9815
sipu_ flame_ 0 0.732040.0000 0.0000  0.9900
sipu_d31_0 0.600140.0085 0.0085  0.8231
sipu__jain_ 0 0.783740.0000 0.0000 0.9779
fcps_tetra_ 0 0.626140.0000 0.0000 0.8157
graves_ dense_ 0 0.8377+0.1396 0.1396 0.9894
sipu_ pathbased_ 1 0.732240.0000 0.0000 0.8634
feps__atom_ 0 0.869440.0000 0.0000  1.0000
sipu_ pathbased_ 0 0.651740.0000 0.0000  0.7815
fcps_ chainlink_ 0 0.8896+0.0000 0.0000 1.0000
sipu_rl5_0 0.925840.0000 0.0000  0.9932
sipu_al_0 0.749940.0000 0.0000  0.8081
wut_x3 1 0.654640.0000 0.0000  0.6972
other_irish_0 0.671240.0000 0.0000  0.7042
wut_x1_0 0.974140.0818 0.0818  1.0000
sipu__compound__1 0.9786+0.0000 0.0000 1.0000
sipu__compound_ 4 0.94424-0.0000 0.0000  0.9656
feps__target_ 0 0.9850+0.0000 0.0000 1.0000
sipu__ compound_ 0 0.861640.0000 0.0000 0.8751
sipu__unbalance_ 0 0.9986+0.0008 0.0008 1.0000
graves_ zigzag 1 0.672040.0000 0.0000 0.6720
sipu_ aggregation_ 0 0.86524-0.0000 0.0000 0.8652
wut_ stripes_ 0 1.0000£0.0000 0.0000  1.0000
wut_ trapped_lovers_ 0 1.0000=40.0000 0.0000 1.0000
wut_ windows_ 0 1.0000+£0.0000 0.0000 1.0000
fcps__hepta_ 0 1.0000+£0.0000 0.0000  1.0000
fecps_Isun_ 0 1.0000+0.0000 0.0000  1.0000
graves_ line_ 0 1.0000£0.0000 0.0000  1.0000
graves_ ring_ 0 1.0000-£0.0000 0.0000  1.0000
graves_ring_outliers_ 0 1.0000=£0.0000 0.0000 1.0000
graves_ zigzag 0 1.0000+£0.0000 0.0000  1.0000
other_ square_ 0 1.0000+0.0000 0.0000 1.0000
other_iris_ 0 0.77154+0.0000 0.0000 0.7715
wut_mk3_0 0.772040.0000 0.0000 0.7719
wut_mkl 0 0.9866+0.0000 0.0000 0.9863
sipu_ad_0 0.74344-0.0000 0.0000 0.7415
sipu_a2_0 0.755540.0000 0.0000 0.7502
sipu_rl5_ 2 0.4867+0.0000 0.0000 0.4671
sipu_rlb5_1 0.5436+0.0000 0.0000 0.5212
wut__isolation_ 0 0.7256+0.0113 0.0113 0.6377
feps_ wingnut_ 0 0.9805+0.0000 0.0000 0.8725
sipu_sl_0 0.98884-0.0000 0.0000 0.8717
sipu_s2_0 0.940540.0000 0.0000 0.7410
wut__mk4 0 0.907240.0234 0.0234 0.6459
wut_ labirynth_ 0 0.7884+4+0.0000 0.0000 0.5134

Continued on next page
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Table 4: Fowlkes-Mallows scores of AuToMATo vs. HDBSCAN

Dataset automato _mean automato_ std hdbscan
graves_ parabolic_ 1 0.6916+0.0000 0.0000 0.3616
fcps_ twodiamonds_ 0 0.70674+0.0000 0.0000 0.2886
wut__mk2 0 0.6356+0.0000 0.0000 0.1574
wut_ smile 0 0.9681+0.0000 0.0000 0.4000
wut__smile 1 0.970140.0000 0.0000 0.3714
graves_ parabolic_ 0 0.98024-0.0000 0.0000 0.3526
wut__twosplashes_ 0 1.0000+£0.0000 0.0000 0.3074
wut_ circles 0 0.88574+0.0000 0.0000 0.1204
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Table 5: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with single linkage

Dataset automato_mean linkage single _max linkage single min
sipu_rl5_2 0.486740.0000 1.0000 0.5607
wut__trajectories_ 0 0.5038+0.0107 1.0000 0.4999
sipu_rl5_1 0.543640.0000 0.8954 0.5021
feps_ tetra_ 0 0.6261£0.0000 0.9296 0.0829
sipu_spiral_0 0.7028=+0.0000 1.0000 0.5756
wut_isolation_ 0 0.725640.0113 1.0000 0.5773
wut_x3_0 0.515340.0000 0.7347 0.4951
sipu__jain_ 0 0.783740.0000 0.9510 0.7837
feps__atom_ 0 0.869440.0000 1.0000 0.7067
wut_ circles 0 0.8857+0.0000 1.0000 0.4998
fcps__chainlink_ 0 0.8896-+0.0000 1.0000 0.7068
wut_mk4 0 0.907240.0234 1.0000 0.5770
sipu__compound_ 0 0.861640.0000 0.9454 0.4972
sipu_ pathbased_ 0 0.651740.0000 0.7337 0.5769
sipu_ pathbased_ 1 0.732240.0000 0.8091 0.5170
graves_ dense_ 0 0.8377+0.1396 0.9096 0.6882
wut_mk2 0 0.635640.0000 0.7068 0.6007
graves_ zigzag 1 0.6720£0.0000 0.7344 0.4446

Continued on next page
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Table 5: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with single linkage

Dataset automato_mean linkage_single__max linkage_single_ min
wut_x2_0 0.584640.0000 0.6437 0.5105
other_irish_0 0.671240.0000 0.7042 0.0451
wut__smile 1 0.970140.0000 1.0000 0.5825
wut_x1_0 0.974140.0818 0.9920 0.5846
feps__target_ 0 0.985040.0000 1.0000 0.6963
wut__smile_ 0 0.968140.0000 0.9748 0.5471
sipu__unbalance_ 0 0.9986+0.0008 1.0000 0.5339
feps_twodiamonds_ 0 0.7067+0.0000 0.7067 0.7067
wut_x3_1 0.654610.0000 0.6546 0.6140
sipu__aggregation_ 0 0.8652+0.0000 0.8652 0.4653
wut_ stripes_ 0 1.0000£0.0000 1.0000 0.7070
wut_ trapped_lovers_ 0 1.0000=£0.0000 1.0000 0.6632
wut_ windows_ 0 1.0000+0.0000 1.0000 0.6753
fcps__hepta_ 0 1.0000+0.0000 1.0000 0.3727
graves_ line_ 0 1.0000+0.0000 1.0000 0.8238
graves_ ring_ 0 1.0000=£0.0000 1.0000 0.7068
graves_ring_outliers_ 0 1.0000=£0.0000 1.0000 0.6863
graves_ zigzag 0 1.0000+0.0000 1.0000 0.5381
sipu_ flame_ 0 0.732040.0000 0.7320 0.4598
other_iris 0 0.771540.0000 0.7715 0.1223
other_ square_0 1.0000+0.0000 0.9990 0.7068
feps Isun_ 0 1.0000£0.0000 0.9983 0.6111
wut__twosplashes_ 0 1.0000=£0.0000 0.9850 0.7062
sipu__compound_ 1 0.9786+0.0000 0.9180 0.5715
sipu__compound_ 4 0.94424-0.0000 0.8824 0.5523
wut_mkl 0 0.986610.0000 0.8866 0.5754
feps_ wingnut_ 0 0.980540.0000 0.8087 0.7068
graves_parabolic_ 1 0.6916+0.0000 0.5000 0.4979
wut_mk3 0 0.772040.0000 0.5764 0.5314
wut_ labirynth_ 0 0.7884+40.0000 0.5221 0.5221
graves_ parabolic_ 0 0.9802+0.0000 0.7068 0.7040
sipu_d31_0 0.600140.0085 0.1846 0.1787
sipu_al_0 0.749940.0000 0.3269 0.2229
sipu_rl5_0 0.92584-0.0000 0.4551 0.2552
sipu_a2_0 0.755540.0000 0.1685 0.1685
sipu_a3_ 0 0.74344-0.0000 0.1410 0.1410
sipu_sl_0 0.98884-0.0000 0.3695 0.2581
sipu_s2_0 0.940540.0000 0.2581 0.2579

Table 6: Fowlkes-Mallows scores of AuToMATo vs. TTK clustering algorithm

Dataset automato mean automato_std ttk
wut__trajectories_ 0 0.5038+0.0107 0.0107 0.8682
feps_ tetra_ 0 0.626140.0000 0.0000 0.9043
wut_x3_0 0.515340.0000 0.0000 0.7818
wut_ isolation 0 0.7256+£0.0113 0.0113 0.9416
sipu_al_0 0.7499+0.0000 0.0000 0.9143
wut_x2 0 0.5846+0.0000 0.0000 0.7283

Continued on next page
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Table 6: Fowlkes-Mallows scores of AuToMATo vs. TTK clustering algorithm

Dataset automato mean automato_ std ttk
sipu_ flame_ 0 0.732040.0000 0.0000 0.8562
sipu__aggregation_ 0 0.865240.0000 0.0000 0.9692
graves_ zigzag_ 1 0.672040.0000 0.0000 0.7698
other_iris 0 0.771540.0000 0.0000 0.8639
sipu__jain_ 0 0.783740.0000 0.0000 0.8182
graves_ dense_ 0 0.837740.1396 0.1396 0.8615
sipu_rl5_0 0.925840.0000 0.0000 0.9374
wut_mk3_ 0 0.772040.0000 0.0000 0.7755
wut__labirynth_ 0 0.788440.0000 0.0000 0.7884
fcps_chainlink 0 0.889610.0000 0.0000 0.8896
wut_smile 0 0.9681+0.0000 0.0000 0.9681
wut_ stripes_ 0 1.0000=£0.0000 0.0000 1.0000
graves_ring_outliers_ 0 1.0000=£0.0000 0.0000 1.0000
wut_ smile 1 0.970140.0000 0.0000 0.9701
sipu__unbalance_ 0 0.9986+0.0008 0.0008  0.9951
sipu_sl_0 0.98884-0.0000 0.0000  0.9843
sipu_s2_0 0.940540.0000 0.0000 0.9311
other_ iris5 0 0.671240.0000 0.0000  0.6612
fcps_atom_ 0 0.869440.0000 0.0000  0.8472
wut_x3_1 0.654610.0000 0.0000  0.6312
sipu_d31_0 0.600140.0085 0.0085  0.5667
fcps__hepta_ 0 1.0000£0.0000 0.0000  0.9594
graves_ parabolic_ 1 0.691640.0000 0.0000  0.6473
sipu_rl5_2 0.486710.0000 0.0000  0.4322
sipu__pathbased_ 0 0.651740.0000 0.0000  0.5947
sipu_ spiral 0 0.702840.0000 0.0000  0.6422
sipu_rl5_1 0.54361-0.0000 0.0000  0.4827
sipu_ pathbased 1 0.73224-0.0000 0.0000  0.6668
fcps_ target_ 0 0.985040.0000 0.0000  0.9185
wut_x1_0 0.974140.0818 0.0818  0.8960
wut__twosplashes_ 0 1.0000+0.0000 0.0000  0.9140
wut_mk4 0 0.907240.0234 0.0234  0.8050
wut_mk2 0 0.635610.0000 0.0000  0.5302
graves_ parabolic_ 0 0.98024-0.0000 0.0000  0.8653
sipu__compound_ 4 0.944240.0000 0.0000 0.8145
feps_ wingnut_ 0 0.98054+0.0000 0.0000  0.8497
wut_ circles 0 0.8857+0.0000 0.0000 0.7543
wut_mkl 0 0.9866+0.0000 0.0000 0.8148
feps_ twodiamonds_ 0 0.706740.0000 0.0000  0.5251
sipu__compound_ 0 0.861610.0000 0.0000  0.6728
sipu__compound__1 0.9786+0.0000 0.0000  0.7892
graves_ line_ 0 1.0000=£0.0000 0.0000  0.7917
feps_ Isun_ 0 1.0000£0.0000 0.0000  0.7897
wut_ trapped_lovers_ 0 1.0000=£0.0000 0.0000  0.7859
other_square_ 0 1.0000+0.0000 0.0000 0.7774
graves_ zigzag_( 1.0000+0.0000 0.0000  0.7686
graves_ ring_ 0 1.0000+0.0000 0.0000  0.7278
sipu_a2 0 0.755540.0000 0.0000  0.4641
wut__windows_ 0 1.0000£0.0000 0.0000  0.5853

Continued on next page
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Table 6: Fowlkes-Mallows scores of AuToMATo vs. TTK clustering algorithm

Dataset automato mean automato_ std ttk

0.74344+0.0000 0.0000  0.1882

sipu_a3_0

Table 7: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with complete linkage

Dataset automato__mean linkage complete _max linkage complete min
sipu_rl5_2 0.486740.0000 1.0000 0.2256
wut__trajectories_ 0 0.5038+0.0107 1.0000 0.1706
sipu_rl5_ 1 0.543640.0000 0.8954 0.2516
wut_x3_ 1 0.654640.0000 0.9740 0.2004
fcps_ tetra_ 0 0.626140.0000 0.9356 0.0651
sipu_d31_0 0.600140.0085 0.8733 0.2717
wut_x3_ 0 0.515340.0000 0.7842 0.2477
sipu_a3_0 0.743440.0000 0.8979 0.2294
wut_mk3_ 0 0.772040.0000 0.9207 0.0711
wut_x2_0 0.584640.0000 0.7298 0.1964
sipu_a2_0 0.7555+0.0000 0.8992 0.2642
sipu__jain_ 0 0.783740.0000 0.9116 0.1288
wut_ circles 0 0.8857+0.0000 1.0000 0.1761
sipu_rl5_0 0.925840.0000 0.9799 0.3372
sipu_al_0 0.749940.0000 0.8040 0.3092
graves_ zigzag 1 0.672040.0000 0.7119 0.3039
sipu__aggregation_ 0 0.865240.0000 0.9030 0.1246
other_iris_ 0 0.771540.0000 0.8064 0.0680
wut_x1_0 0.974140.0818 1.0000 0.2326

sipu__unbalance_ 0 0.9986+0.0008 0.9988 0.5774
feps__hepta_ 0 1.0000+0.0000 1.0000 0.4321
fcps_twodiamonds_ 0 0.7067+0.0000 0.7060 0.0916
sipu_ flame 0 0.732040.0000 0.7276 0.0834
sipu__compound_ 0 0.8616+0.0000 0.8472 0.1567
sipu_sl_0 0.9888+40.0000 0.9563 0.3672
sipu__pathbased_ 0 0.6517+0.0000 0.6022 0.1384
sipu_ pathbased_ 1 0.732240.0000 0.6709 0.1539
graves_ parabolic_ 1 0.6916+0.0000 0.6168 0.1482
sipu__compound__ 1 0.9786+0.0000 0.9023 0.1366
sipu__compound_ 4 0.944240.0000 0.8652 0.1408
graves_dense_ 0 0.83774+0.1396 0.7584 0.3538
wut_mkl 0 0.9866+0.0000 0.8950 0.1591
wut_smile 1 0.970140.0000 0.8697 0.3562
graves_ parabolic_ 0 0.9802+40.0000 0.8610 0.1088
wut_mk2 0 0.6356+0.0000 0.5032 0.1096
other iris5 0 0.671240.0000 0.5305 0.0451
feps_atom_ 0 0.8694+0.0000 0.7278 0.1364
wut__smile_0 0.9681+0.0000 0.8206 0.3793
sipu_s2 0 0.9405+0.0000 0.7642 0.3114
wut_mk4 0 0.907240.0234 0.7282 0.1297
feps_ target_ 0 0.985040.0000 0.7881 0.1934
feps_Isun_ 0 1.0000+£0.0000 0.7668 0.1377
feps_ wingnut_ 0 0.980540.0000 0.7406 0.0816

Continued on next page
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Table 7: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with complete linkage

Dataset automato__mean linkage complete_max linkage complete min
graves_ring 0 1.0000+0.0000 0.7589 0.1849
graves_ring outliers_ 0 1.000040.0000 0.7528 0.1995
wut_ labirynth_ 0 0.7884+0.0000 0.4893 0.1426
fcps_ chainlink 0 0.8896+0.0000 0.5889 0.0919
sipu__spiral_ 0 0.7028+0.0000 0.3512 0.1424
wut_ isolation 0 0.7256+0.0113 0.3397 0.1153
graves_ line_ 0 1.0000+£0.0000 0.5972 0.1909
other_square_ 0 1.0000+0.0000 0.5846 0.1142
graves_ zigzag_ 0 1.0000£0.0000 0.5505 0.2042
wut_twosplashes 0 1.0000+0.0000 0.5310 0.2771
wut_ stripes_ 0 1.0000+£0.0000 0.5136 0.0706
wut_ trapped_lovers_ 0 1.0000=40.0000 0.4790 0.0579
wut_ windows_ 0 1.0000+0.0000 0.4349 0.0781

Table 8: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with Ward linkage

Dataset automato_mean linkage ward_ max linkage ward_min
wut_x3_ 0 0.515340.0000 0.8537 0.2203
sipu_d31_0 0.600140.0085 0.9223 0.2766
sipu_a3_ 0 0.743440.0000 0.9377 0.2889
sipu_a2_ 0 0.755540.0000 0.9360 0.2653
sipu_al_0 0.749940.0000 0.9166 0.2464
wut_x2 0 0.584640.0000 0.7219 0.2076
sipu_rl5_ 2 0.486740.0000 0.5893 0.1868
graves_ zigzag 1 0.6720£0.0000 0.7358 0.2693
sipu_rl5_0 0.925840.0000 0.9832 0.4072
sipu_rl5_1 0.543640.0000 0.5993 0.2082
wut_x3 1 0.654640.0000 0.7090 0.1795
wut_x1_0 0.974140.0818 1.0000 0.2429
sipu__unbalance_ 0 0.998640.0008 1.0000 0.2063
fcps__hepta_ 0 1.0000+0.0000 1.0000 0.4314
sipu_sl_0 0.9888+-0.0000 0.9844 0.2453
sipu__pathbased_ 0 0.6517+0.0000 0.6251 0.1370
sipu_s2 0 0.9405+0.0000 0.9085 0.2177
sipu_ pathbased_ 1 0.7322+0.0000 0.6844 0.1523
feps_ tetra_ 0 0.626140.0000 0.5622 0.0651
graves_ dense_ 0 0.83771+0.1396 0.7454 0.2684
wut__trajectories_ 0 0.50384+0.0107 0.3933 0.0981
other_iris_ 0 0.77154+0.0000 0.6377 0.0680
feps_atom_ 0 0.8694+0.0000 0.7272 0.1016
graves_ parabolic_ 1 0.6916+0.0000 0.5260 0.1301
feps_ target_ 0 0.9850+0.0000 0.7759 0.1503
other_iris5 0 0.671240.0000 0.4508 0.0451
sipu__aggregation_ 0 0.8652+0.0000 0.6064 0.1215
sipu_ flame_ 0 0.732040.0000 0.4555 0.0819
sipu__ compound_ 0 0.8616+0.0000 0.5846 0.1523
wut_mk3 0 0.772040.0000 0.4911 0.0711
fcps_twodiamonds_ 0 0.706740.0000 0.3967 0.0861
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Table 8: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with Ward linkage

Dataset automato__mean linkage ward_max linkage ward_min
sipu__jain_ 0 0.7837+0.0000 0.4668 0.1201
wut_mkl 0 0.9866+0.0000 0.6564 0.1473
fcps_lIsun_ 0 1.00000.0000 0.6659 0.1270
sipu__ compound_ 4 0.94424-0.0000 0.5793 0.1368
sipu__spiral_0 0.7028=+0.0000 0.3100 0.1384
wut_ labirynth_ 0 0.788440.0000 0.3749 0.0961
sipu__compound__1 0.9786+0.0000 0.5648 0.1327
wut__twosplashes_ 0 1.0000+0.0000 0.5817 0.2046
wut_ smile_ 1 0.9701+0.0000 0.5246 0.2352
wut_smile_ 0 0.9681+0.0000 0.5179 0.2505
wut_mk2 0 0.6356+0.0000 0.1814 0.0997
graves_ zigzag 0 1.0000+0.0000 0.5448 0.1809
wut__isolation 0 0.7256+0.0113 0.2309 0.0800
graves_ line_ 0 1.00000.0000 0.5045 0.1667
wut_ circles_ 0 0.8857+0.0000 0.3681 0.1323
feps_ chainlink 0 0.8896+0.0000 0.3407 0.0894
wut_mk4 0 0.907240.0234 0.3557 0.1079
graves_ parabolic_ 0 0.9802+0.0000 0.4184 0.0935
graves_ring_ 0 1.0000+0.0000 0.4135 0.1427
graves_ring_outliers_ 0 1.0000+0.0000 0.4082 0.1515
feps__wingnut_ 0 0.980540.0000 0.3229 0.0727
other_square 0 1.0000£0.0000 0.3347 0.1007
wut_ windows_ 0 1.0000-£0.0000 0.2833 0.0663
wut__trapped_lovers_ 0 1.0000=40.0000 0.2552 0.0471
wut_ stripes_ 0 1.00000.0000 0.1922 0.0552

Table 9: Fowlkes-Mallows scores of AuToMATo vs. FINCH

Dataset automato _mean automato_std finch
wut_x3 0 0.515340.0000 0.0000 0.7970
sipu_d31_0 0.600140.0085 0.0085 0.8657
sipu_a3_0 0.743440.0000 0.0000 0.8306
wut_x2 0 0.584640.0000 0.0000 0.6671
wut__mk3 0 0.772040.0000 0.0000 0.8503
other_ iris5 0 0.671240.0000 0.0000 0.7008
sipu_a2_ 0 0.755540.0000 0.0000 0.7635
wut_x3_1 0.654640.0000 0.0000 0.6619
sipu__unbalance_ 0 0.9986+0.0008 0.0008 0.9998
sipu_rl5_0 0.9258+0.0000 0.0000  0.9083
wut_mkl 0 0.986610.0000 0.0000  0.9655
other_iris 0 0.771540.0000 0.0000  0.7477
sipu_al_0 0.7499+40.0000 0.0000 0.7124
sipu_rl5_2 0.486740.0000 0.0000  0.4156
graves_ zigzag 1 0.672040.0000 0.0000  0.5965
graves_ dense_ 0 0.8377+0.1396 0.1396  0.7615
sipu_rl5 1 0.5436+0.0000 0.0000  0.4641
sipu_sl_0 0.988840.0000 0.0000  0.8728
fcps__hepta_ 0 1.0000+0.0000 0.0000 0.8794

Continued on next page
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Table 9: Fowlkes-Mallows scores of AuToMATo vs. FINCH

Dataset automato mean automato_ std finch
feps__atom_ 0 0.8694+40.0000 0.0000  0.7319
fcps_ tetra_ 0 0.6261+0.0000 0.0000  0.4680
sipu_s2_0 0.94054-0.0000 0.0000  0.7282
wut_x1_0 0.974140.0818 0.0818  0.7607
graves_ parabolic_ 1 0.6916+0.0000 0.0000  0.4446
sipu_flame 0 0.732040.0000 0.0000  0.4767
sipu__pathbased_ 0 0.651740.0000 0.0000  0.3440
sipu__compound_ 0 0.8616+0.0000 0.0000 0.5390
sipu_ pathbased_ 1 0.732240.0000 0.0000  0.3828
wut__trajectories_ 0 0.5038+0.0107 0.0107  0.1503
feps_ Isun_ 0 1.0000+0.0000 0.0000  0.6206
sipu__ compound_ 4 0.94424-0.0000 0.0000  0.5493
sipu__jain_ 0 0.783740.0000 0.0000  0.3824
sipu__compound_ 1 0.978610.0000 0.0000  0.5356
sipu__spiral_ 0 0.702840.0000 0.0000  0.2553
wut_mk4 0 0.907240.0234 0.0234  0.4331
wut_mk2 0 0.6356+0.0000 0.0000 0.1478
sipu_ aggregation_ 0 0.86524-0.0000 0.0000 0.3674
fcps_twodiamonds_ 0 0.7067+0.0000 0.0000 0.1837
wut_ smile_0 0.968140.0000 0.0000  0.4452
wut__smile_ 1 0.970140.0000 0.0000 0.4181

feps_ target_ 0 0.9850+0.0000 0.0000  0.4297
wut__labirynth_ 0 0.788440.0000 0.0000  0.2209
wut__isolation_ 0 0.7256+0.0113 0.0113  0.1440
wut_ twosplashes 0 1.0000+0.0000 0.0000 0.4162
graves_ zigzag_ (0 1.0000+0.0000 0.0000  0.4094
graves_ parabolic_ 0 0.9802+40.0000 0.0000  0.3343
graves_line 0 1.0000£0.0000 0.0000  0.3379
fcps__chainlink_ 0 0.889640.0000 0.0000 0.2224
feps_ wingnut_ 0 0.980540.0000 0.0000  0.3110
graves_ ring_ 0 1.0000+0.0000 0.0000  0.2770
wut_ trapped_lovers_ 0 1.0000=£0.0000 0.0000 0.2767
other_ square_ 0 1.0000£0.0000 0.0000  0.2393
graves_ring outliers_ 0 1.0000=£0.0000 0.0000 0.2248
wut_ circles_ 0 0.885740.0000 0.0000  0.0976
wut_ windows_ 0 1.0000+0.0000 0.0000  0.1166
wut_ stripes_ 0 1.0000+0.0000 0.0000 0.0867
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