
Under review as submission to TMLR

2SSP: A Two-Stage Framework for Structured Pruning of
LLMs

Anonymous authors
Paper under double-blind review

Abstract

We propose a novel Two-Stage framework for Structured Pruning (2SSP) for pruning Large
Language Models (LLMs), which combines two different strategies of pruning, namely Width
and Depth Pruning. The first stage (Width Pruning) removes entire neurons, hence their
corresponding rows and columns, aiming to preserve the connectivity among the pruned
structures in the intermediate state of the Feed-Forward Networks in each Transformer block.
This is done based on an importance score measuring the impact of each neuron over the
output magnitude. The second stage (Depth Pruning), instead, removes entire Attention
submodules. This is done by applying an iterative process that removes the Attention
submodules with the minimum impact on a given metric of interest (in our case, perplexity).
We also propose a novel mechanism to balance the sparsity rate of the two stages w.r.t. to the
desired global sparsity. We test 2SSP on four LLM families and three sparsity rates (25%,
37.5%, and 50%), measuring the resulting perplexity over three language modeling datasets
as well as the performance over six downstream tasks. Our method consistently outperforms
five state-of-the-art competitors over three language modeling and six downstream tasks,
with an up to two-order-of-magnitude gain in terms of pruning time.1

1 Introduction

The sheer size of the recent, billion-scale Large Language Models (LLMs) is one of the main reasons for their
successful performance. However, it comes at the cost of computational budget in terms of required GPUs as
well as time for pre-training and inference, which in turn has serious economic and environmental impacts.
Therefore, studying approaches to reduce the computational burden of such models while minimizing their
performance degradation has become a pressing matter.

One of the main approaches to address this issue is through Network Pruning Frantar & Alistarh (2023);
Ma et al. (2023), which mainly focuses on reducing the size of pre-trained LLMs as well as their inference
time. Among the several pruning methods available in the literature, reliable inference speed-ups Kurtic et al.
(2023); Ashkboos et al. (2024) have been achieved mainly through structured pruning, i.e., approaches that
remove entire portions of the model. Different strategies to select which portions of the network to remove
have been proposed, see Figure 1, identifying Width pruning, which removes rows/columns and/or single
layers, Depth Pruning (Blocks), which removes entire Transformer Blocks, and Depth Pruning (Submodules),
which removes entire submodules (i.e., the Attention submodule–in the following, referred to as “Attention”,
for brevity— and/or Feed-Forward Network (FFN)) from the Transformer Blocks. width pruning has the
main advantage of having a lower granularity level in the removal search space, which leads to a more refined
identification of unimportant components of the model. On the other hand, the advantage of depth pruning
lies in the lower computation time required to obtain the sparse structure as well as the larger inference
speed-up that comes from the removal of entire blocks/submodules.

Contributions So far, the aforementioned categories of structured pruning have been investigated inde-
pendently of one another, and their combination is currently a relatively unexplored research direction. In
this paper, we propose a Two-Stage Framework for Structured Pruning (2SSP), a new structured pruning

1The codebase will be publicly released after the review process.

1

Under review as submission to TMLR

Depth Pruning
Blocks

Depth Pruning
Submodules

Width + Depth Pruning (Ours)
Rows/Columns + Submodules

Width Pruning
Rows/Columns

Figure 1: The four categories of structured pruning discussed. Each squared box indicates a Transformer
block, with the Attention on the left and the FFN on the right. The red color indicates the elements pruned
in each category, ranging from rows/columns to entire blocks or submodules therein. Our method 2SSP is
the first one to combine width and depth (submodule) pruning.

approach that, to our knowledge, is the first to combine width and depth pruning, hence exploiting the
advantages of both approaches. The proposed 2SSP works in two stages. The first stage works at a lower
granularity level, i.e., it uses width pruning to remove neurons from the intermediate state of FFNs based on
the output’s magnitude. This is done while preserving the network connectivity, which is a critical measure
for reducing performance degradation in sparse structures Vysogorets & Kempe (2023); Cunegatti et al.
(2024); Iurada et al. (2024). Moreover, the first stage is applied only to the FFN parts of the model, for
which pruning is known to be more difficult than Attention blocks Siddiqui et al. (2024). The second stage
complements the effect of the first one by iteratively applying depth pruning on Attentions, based on the
minimization of a given performance metric (in our case, perplexity).

We tested our proposed method over four different LLM families, for three different sparsity rates over three
language modeling datasets, and six downstream tasks, showing that it consistently outperforms the five
most recent state-of-the-art baselines while also having the best performance vs. pruning runtime trade-off.

2 Related Work

In this section, we discuss the different techniques proposed in the literature to remove parameters from
pre-trained LLMs (i.e., for pruning after training). Methods for removing parameters from a model, while
minimizing its performance degradations, can be roughly categorized into unstructured and structured pruning.
The main difference between these two approaches is that for a given sparsity and task, unstructured pruning
allows for achieving better performance for the task, but the real speed-up is mainly theoretical (since the
parameters are only masked, rather than practically removed); whereas, using structured pruning (the focus
of this paper), the speed-up at inference/training time is substantial (because of actual structure removals),
but the performance degradation on the task may be higher.

2.1 Unstructured Pruning

Unstructured pruning aims to reduce the model’s parameters by identifying critical weights (inside a weight
matrix W), in any position, e.g., based on weight magnitude Jaiswal et al. (2024), Hessian matrix Frantar
& Alistarh (2023), or activations Sun et al. (2024); Zhang et al. (2024a); Farina et al. (2024). On top of
these methods, several techniques have been proposed either to select the best block-wise sparsity allocation,
e.g., based on outliers Yin et al. (2024), activation alignment Cunegatti et al. (2025), and optimal allocation
search Li et al. (2024), or to further minimize the reconstruction error Zhang et al. (2024b); Xu et al. (2024).

2.2 Structured Pruning

Structured pruning removes entire parameter groups or structures from the LLM. Different categories of
structured pruning algorithms have been proposed, which can be roughly categorized w.r.t. the granularity
of the structures they remove. The earliest approach is named Width Pruning, which encompasses
methods that remove specific portions of weight matrices (such as rows and/or columns), or layers inside each
Transformer block (such as a single Linear layer). The pruning decision can be based on gradient information
Ma et al. (2023); Fang et al. (2024), computational invariance Ashkboos et al. (2024), perturbative pruning
Dery et al. (2024), hardware-aware inference vs. performance trade-off Kurtic et al. (2023), Fisher information
van der Ouderaa et al. (2024), or knowledge-distillation Muralidharan et al. (2024).

2

Under review as submission to TMLR

Recently, a new paradigm of pruning, namely Depth Pruning, has emerged, shifting the pruning focus from
weight matrices and layers to either entire Transformer blocks or entire Transformer submodules (Attention
and/or FFN). The main idea behind this category of pruning algorithms is to assign an importance score to
each block/submodule and then prune it w.r.t. to its given score. These scores can be given either based
on the change in hidden representation between blocks (similarity-based) or by computing each block’s
importance w.r.t. the model performance on a given task (performance-based).

Among the Depth Pruning (Blocks), most of the existing methods are similarity-based Samragh et al.
(2023); Gromov et al. (2024); Kim et al. (2024); Song et al. (2024), with a few performance-based exceptions
Ma et al. (2023); Song et al. (2024). Motivated by the promising results of these algorithms, the more
recent category of Depth Pruning (Submodules) further refined the granularity of the pruned structures,
proposing both performance-based Zhong et al. (2024) and similarity-based Siddiqui et al. (2024); Sieberling
et al. (2024) approaches.

3 Methods

We now introduce 2SSP, a novel pruning framework that combines two stages of structured pruning: a
first stage (s1) which prunes at the level of entire neurons by removing rows and columns from the FFN
within the Transformer blocks; and a second stage (s2), which performs submodule-based depth pruning by
removing entire Attentions.

Notations Given a Transformer-based LLM M, let B denote the number of identical blocks it is made of,
and b represents a generic block. We define a submodule of block b as either the Attention or the FFN of
that block. The Attention mechanism involves three linear projections, namely queries Wquery, keys Wkey,
and values Wvalue, and an output projection Wout, which for a given input X outputs a final representation
computed as softmax

(
(XWquery(XWkey)⊤)/

√
dk

)
(XWvalue)Wout. For the most recent LLMs, such as the

one tested in this paper, the FFN consists of three linear projections: gate Wgate, up Wup, and down Wdown,
where the input is processed sequentially through the first two before the down projection. For a given input
X, the FFN forward output is given by (σ(XWgate)(XWup))Wdown, where σ is the activation function.

The hidden dimension of the model is represented by dmodel, while dint denotes the intermediate dimension of
the FFN, corresponding to the output dimension of the gate and up projections, and to the input dimension
of the down projection. For any Linear layer l within these submodules, let Wl ∈ Rdout×din denote the weight
matrix of the layer. We use Dcal to denote the calibration dataset used for pruning.

Neuron Pruning (s1) The method aims to prune the neurons of the intermediate representation within
the Linear layers of the FFN following the Attention in each Transformer block. The rationale is that the
FFN’s hidden state generates an intermediate representation that can be compressed by removing entire
neurons from its hidden state, obtaining a lower-dimensional representation that preserves the most important
features of the input sequence. We show that a high fraction of neurons in this representation created within
the FFN is irrelevant, and thus can be pruned without significantly impacting performance.

The algorithm prunes an equal number of neurons from each FFN, removing the neurons in the hidden
state that have the lowest impact, measured as the magnitude of their activated output. The magnitude is
calculated as the average L2 norm across the tokens in a set of calibration samples from a given calibration
dataset Dcal. The top-K neurons are then retained in the FFN of each block.

Let the intermediate representation of the FFN in block b be denoted as Zb ∈ RT ×dint , where T is the
sequence length and dint is the dimension of the intermediate representation of the FFN in block b. For each
neuron j, we compute an importance score sj across the calibration dataset Dcal:

sj = 1
|Dcal|

|Dcal|∑
c=1

∥z(j)
c ∥2 (1)

where z
(j)
c is the activation of the j-th neuron for the c-th sequence in the calibration dataset, and ∥ · ∥2

denotes the L2 norm over the tokens in the calibration sequence.

3

Under review as submission to TMLR

Linear Linear Linear

Multi-Head Attention

Linear

Q K V

Concatenate

Gate
Projection

Up
Projection

Down
Projection

 Attention Pruning Stage

FFN

Dense FFN

Sparse FFN

 Neuron Pruning Stage

Sparse LLM

Figure 2: Conceptual scheme of the proposed 2SSP method. The left part of the image indicates the LLM
given as input to the algorithm; the central part indicates stage s1 , which focuses on FFNs; the right part
indicates stage s2 , which focuses on the Attention modules.

Formally, let Win ∈ Rdint×dmodel and Wout ∈ Rdmodel×dint be the input and output projection matrices of the
FFN, respectively, where dmodel is the model’s hidden dimension. We define a binary mask m ∈ {0, 1}dint

that selects the top-K neurons to preserve based on their importance scores sj . The pruned weight matrices
are then computed as:

Ŵin = Win[m = 1, :] (2)
Ŵout = Wout[:, m = 1] (3)

To illustrate the mechanism, let us consider a simple FFN with two Linear layers, denoted as lin and
lout

2. Removing a neuron from the hidden state of the FFN necessitates the removal of all the associated
weights in both lin and lout connected to that particular neuron. More precisely, given the weight matrices
Win ∈ Rdint×dmodel and Wout ∈ Rdmodel×dint , respectively of lin and lout, the pruning of a hidden state neuron
involves eliminating (in this order, to preserve network connectivity) the corresponding row in Win and the
associated column in Wout.

Attention Pruning (s2) Pruning only the FFN submodules limits the effectiveness of the algorithm,
as only a restricted fraction of the total number of parameters can be pruned, leaving all the Attention
parameters intact. To address this limitation, inspired from the observation derived in Siddiqui et al. (2024)
where it has been shown how the Attentions can be removed to a certain degree (∼ 33%) with almost no
performance degradation, we propose a second pruning stage that, after removing a certain fraction of FFN
neurons, also prunes the remaining parameters from the Attentions. Unlike FFNs, Attentions do not create a
single hidden state due to the sequential application of multiple mathematical operators, such as scaling,
softmax, and matrix multiplication. This makes pruning entire neurons impractical. We address this challenge
by adopting the submodules pruning mechanism proposed in Zhong et al. (2024), by removing only Attentions
(and not also FFNs as in the original mechanism) from the sparse network M1 obtained after the first stage.
Specifically, we iteratively remove the Attentions leading to the lowest perplexity on the calibration dataset
until the target sparsity is reached.

Formally, let A = {a1, . . . , aB} be the set of Attentions across all the B blocks of the Transformer. At each
step t, we select the Attention module a∗ whose removal minimizes the perplexity on the calibration dataset:

a∗ = argmin
a∈At

PPL(Mt \ a, Dcal) (4)

2Without loss of generality, we represent the standard three-projections FFN (gate, up, down) into a two-layer representation
where lin combines the gate and up projections, and lout handles the down-projection.

4

Under review as submission to TMLR

where At is the set of the remaining Attention modules at step t, Mt \ a denotes the model at step t with
the Attention module a removed, and PPL represents the perplexity metric, calculated as the exponential of
the negated average log-likelihood over the calibration samples of Dcal.

Balancing the Sparsity Rate As explained above, the proposed 2SSP algorithm works in two stages.
Hence, given a target sparsity rate s, selecting the pruning rate allocated for each of the two stages is also
required.

Through empirical analysis, we found out that the following equation provides a reliable metric for determining
the optimal number of Attention modules to prune at any given sparsity rate (see Figure 6):

NAttn = round
(

B · s
|WFFN|

α|WAttn|

)
(5)

where α = 1.5 (see Section 4.3), |WFFN| represents the number of FFN parameters per block, and |WAttn|
represents the number of Attention parameters per block. This equation captures two critical aspects of this
pruning process. First, it ensures that the number of pruned Attention parameters scales with increasing
sparsity rates. Second, it adjusts the Attention pruning rate based on the relative sizes of the FFN and
Attention modules. Specifically, when |WFFN|

|WAttn| is large, indicating that FFN parameters dominate the block
structure, the equation reduces the proportion of Attention parameters to be pruned. This adaptive behavior
helps maintain the balance between the number of Attentions and the number of FFN parameters pruned.

4 Experiments

Setup We implement 2SSP using PyTorch Paszke et al. (2019) with HuggingFace’s Transformer library Wolf
et al. (2020) for model and dataset management. All experiments are conducted on a cluster of four NVIDIA
A30 GPUs (24GB memory each).

Models To test the effectiveness of our approach across different LLM families, we tested the 7B-parameter
variants of Mistral-v0.3 Jiang et al. (2023), Llama-2 Touvron et al. (2023), and Qwen-2.5 Yang et al. (2024),
while using the 14B-parameter version Phi-3 Abdin et al. (2024).

Tasks and Datasets We employ perplexity over language modeling tasks as the primary evaluation metric,
given its established usage in assessing pruning algorithms Frantar & Alistarh (2023); Ashkboos et al. (2024);
Sieberling et al. (2024) and the fact that it has been empirically proved to be a reliable metric for evaluating
compressed models Jin et al. (2024). We measure perplexity across three datasets: the full WikiText2 dataset
Merity et al. (2017), along with subsets of samples from C4 Raffel et al. (2020) and FineWeb Penedo et al.
(2024) datasets, which are all popular benchmarks in the pruning literature Sieberling et al. (2024). We also
conduct downstream evaluations using LM Eval Harness Gao et al. (2024), including MMLU Hendrycks et al.
(2021), WinoGrande (WQ) Sakaguchi et al. (2021), PiQA Tata & Patel (2003), HellaSwag (HS) Zellers et al.
(2019), and ARC (easy and challenge, in the following referred to as “ARC-e” and ‘ARC-c”, respectively)
Clark et al. (2018).

Baselines We compare 2SSP against a broad set of state-of-the-art structured pruning methods for LLMs.
Since our proposed approach works by combining width pruning with depth submodule pruning, we designed
the experimental setup to include baselines from the three different categories of pruning granularity mentioned
above:
• Depth Pruning (Blocks): This category includes ShortGPT Men et al. (2024) and Sliding Window
Cosine Similarity Gromov et al. (2024), which perform pruning at the coarsest level by removing entire
Transformer blocks.
• Depth Pruning (Submodules): This category includes BlockPruner Zhong et al. (2024) and EvoPress
Sieberling et al. (2024), which shift the pruning target from entire Transformer blocks to Attention and/or
FFN submodules.
• Width Pruning: This category includes SliceGPT Ashkboos et al. (2024), which operates at the finest
granularity by pruning individual rows and columns within Transformer weight matrices.

For all the pruning algorithms, as done for 2SSP, we use a calibration dataset made of sequences of 2048
tokens each, taken from the C4 dataset. For 2SSP, we use 32 sample sequences for the first stage (see

5

Under review as submission to TMLR

Table 1: Perplexity for 2SSP vs. the compared pruning algorithms over three different sparsity rates across
four LLMs. The boldface and underline indicate, respectively, the best and second-best value per dataset
(excluding the dense baseline).

Sparsity Method
Mistral-v0.3 7B LLama-2 7B Qwen-2.5 7B Phi-3 14B

WikiText2 C4 Fineweb-Edu WikiText2 C4 Fineweb-Edu WikiText2 C4 Fineweb-Edu WikiText2 C4 Fineweb-Edu

0% Dense 5.36 8.13 6.49 5.47 7.13 6.44 6.85 11.68 7.7 2 4.31 8.54 6.41

25%

ShortGPT 44.65 38.62 32.81 25.43 31.04 22.8 13.09 19.38 14.24 129.79 124.02 139.66
Sliding Window 37.75 52.26 42.49 18.25 21.71 17.95 11.37 17.54 12.75 31.13 30.28 24.39
BlockPruner 10.33 13.43 10.95 12.09 12.98 11.04 11.57 17.43 12.33 9.76 13.16 9.83
EvoPress 9.35 12.86 10.39 10.37 11.92 10.23 11.74 17.29 12.41 8.71 12.34 9.53
SliceGPT 11.84 13.09 11.36 14.82 12.57 11.19 12.72 17.40 13.88 10.01 11.86 9.82
2SSP (Ours) 9.24 12.19 10.27 9.25 10.52 9.21 10.61 15.67 11.92 7.06 10.43 8.42

37.5%

ShortGPT 1.83e3 1.49e3 1.31e3 79.49 66.69 54.07 52.99 48.07 36.98 1.34e5 1.33e5 1.48e5

Sliding Window 984.31 1.40e3 1.36e3 207.04 225.83 172.21 21.73 30.88 23.07 1.20e6 5.71e5 5.03e5

BlockPruner 23.31 25.66 23.23 23.62 21.47 18.13 22.17 29.49 21.76 19.31 21.81 17.15
EvoPress 27.00 24.10 19.93 19.03 20.22 17.04 22.03 28.98 21.79 15.62 19.89 15.18
SliceGPT 23.24 21.41 19.98 30.28 19.58 18.71 25.08 28.07 25.31 17.06 15.81 14.52
2SSP (Ours) 14.92 17.15 15.03 14.64 14.93 13.36 15.26 20.95 16.89 9.79 12.88 10.91

50%

ShortGPT 1.01e3 963.5 889.31 233.18 187.46 160.98 9.30e4 1.27e8 3.63e8 4.40e5 2.79e5 3.67e5

Sliding Window 3.31e3 1.56e3 1.82e3 3.34e3 2.48e3 2.42e3 213.96 177.08 142.71 1.01e6 1.08e6 9.97e5

BlockPruner 81.90 64.85 54.64 71.36 55.46 48.10 54.97 63.00 47.94 56.6 57.36 46.40
EvoPress 91.83 73.71 60.55 70.97 44.39 38.58 49.91 57.95 43.45 54.46 50.22 39.95
SliceGPT 41.24 35.29 33.96 57.66 36.06 35.55 38.47 41.98 37.56 34.40 26.42 27.21
2SSP (Ours) 23.77 25.95 23.30 31.40 27.16 25.40 21.66 28.00 23.72 16.93 18.82 17.07

Section 4.2) and one sample for the second stage. As done in the original papers, we set the number of samples
for ShortGPT and Sliding Window Cosine Similarity to 256. For BlockPruner and EvoPress, we use a single
calibration sample. Since these two methods are based on removing submodules and evaluating the solutions
in an iterative manner (as our s2 stage), the number of samples highly influences the pruning runtime. For
this reason, following the findings in Sieberling et al. (2024), which demonstrate robust performance even
with minimal calibration data, we set the calibration set size to one sample, as we have done for our second
stage, aiming to obtain a fair comparison. For SliceGPT, we utilize 256 samples based on the empirical
analysis showing performance convergence beyond 128 samples reported in Ashkboos et al. (2024).

4.1 Experimental Results

In this section, we evaluate 2SSP w.r.t. the selected baselines in terms of performance over both language
modeling and downstream tasks. We also include experiments about the runtime required by our approach
to obtain the final sparse models. We show how our approach outperforms the competitors in terms of task
performance and when confronting the pruning runtime vs. performance trade-off. We also evaluate the
quality of the sparse models w.r.t. their inference speed-up w.r.t. the corresponding dense models.

Numerical Results The first task we evaluate is language modeling over WikiText2, C4, and FineWeb
at three different sparsity rates, namely 25%, as in Men et al. (2024); Zhong et al. (2024); Ashkboos et al.
(2024), 37.5%3, taken as intermediate value, and 50%, as in Sieberling et al. (2024), avoiding higher values as
it is established that structured pruning algorithms struggle to obtain reasonable performance above such
sparsity rates.

Table 1 reports all the numerical results in terms of perplexity across the tested dataset and sparsity rates. It
is clear how our proposed approach outperforms the baselines in all test cases. Even more interesting is the
robustness of our approach w.r.t. both models and sparsity rates. Table 1 also highlights, for each setting,
the second best (underline). Apart from the 50% case, where SliceGPT consistently ranks second, there are
no baselines that outperform all the others after 2SSP. On the other hand, different baselines take the second
place in different settings. In contrast, our approach provides stable results across all models, sparsity rates,
and datasets tested.

We also tested if our approach could still outperform all the baselines at sparsity rates different from 25%,
37.5%, and 50%. For doing so, we computed the perplexity over WikiText2 for different sparsity rates
ranging from zero to 70%. The results for Mistral-v0.3 7B and LLama-2 7B are shown in Figure 3, where the

3Given Qwen’s architecture of 28 blocks, instead of 37.5% we select a sparsity rate of 39.29% as it represents the nearest
achievable rate through whole-block pruning (i.e., 11 blocks removed).

6

Under review as submission to TMLR

performance trend of 2SSP w.r.t. the baselines indicated in Table 1 is confirmed even across such a broader
set of sparsity rates.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsity

101

102

103

104

Pe
rp

le
xi

ty

Mistral-v0.3 7B

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Sparsity

Llama-2 7B

ShortGPT
Sliding Window

BlockPruner
Evopress

SliceGPT
2SSP (Ours)

Figure 3: Perplexity for 2SSP vs. the compared pruning algo-
rithms and the dense baseline when varying the sparsity rate on
Llama-2 7B and Mistral-v0.3 7B.

In order to assess the performance of our
approach not only in terms of perplexity,
we considered six different downstream
tasks. In this case, we tested 2SSP, as
well as the baselines, at 37.5% sparsity
(the intermediate value among those con-
sidered), considering the average zero-shot
and few-shot accuracy as the main met-
ric. In detail, we conduct 3-shot evalu-
ations on the same benchmark datasets
from Table 2, namely MMLU Hendrycks
et al. (2021), WinoGrande (WQ) Sak-
aguchi et al. (2021), PiQA Tata & Pa-
tel (2003), HellaSwag (HS) Zellers et al.
(2019), and ARC (easy and challenge,
in the following referred to as “ARC-e”
and ‘ARC-c”, respectively) Clark et al.
(2018).Table 2 shows the numerical re-
sults of the zero-shot experimental setting, showing once again how 2SSP outperforms the tested baselines
in most of the cases (and always on average across all tasks). Also in this case, no fixed second-best exists
among the competitors, while our approach consistently outperforms (on average across all tasks) all the
other methods, regardless of the model. Table 3 demonstrates once more that 2SSP consistently outperforms
the baseline models across most tasks and maintains superior average performance in the few-shot (3-shot)
regime across all models.

Table 2: Zero-shot performance for 2SSP vs. the compared pruning models at 37.5% sparsity. The boldface
and underline indicate, respectively, the best and second-best value per dataset (excluding the dense baseline).

Model Algorithm M
M

L
U

W
Q

P
iQ

A

H
S

A
R

C
-e

A
R

C
-c

Average

Mistral-v0.3 7B

Dense 59.08 73.72 80.30 60.91 79.67 48.81 67.08

ShortGPT 22.67 58.56 56.96 27.73 33.59 29.27 38.13
Sliding Window 25.54 57.22 59.19 29.41 34.51 26.88 38.79
BlockPruner 23.59 54.62 66.16 37.92 46.25 24.32 42.14
EvoPress 25.00 57.14 68.82 39.79 50.21 25.94 44.48
SliceGPT 23.15 61.88 65.34 36.95 42.68 21.42 41.90
2SSP 24.49 63.14 70.29 41.99 49.96 24.49 45.73

Llama-2 7B

Dense 40.67 68.90 78.07 57.09 76.22 43.34 60.72

ShortGPT 32.25 60.54 59.63 33.54 41.33 28.50 42.63
Sliding Window 33.38 58.64 60.07 33.47 36.15 28.41 41.69
BlockPruner 23.59 55.09 66.87 36.92 50.80 24.49 42.96
EvoPress 25.66 52.01 68.61 37.15 53.20 25.94 43.76
SliceGPT 23.07 63.85 67.90 40.40 47.56 26.19 44.83
2SSP 27.91 61.33 70.29 42.78 55.93 27.39 47.61

Qwen-2.5 7B

Dense 71.88 73.24 78.56 59.97 80.35 48.29 68.72

ShortGPT 23.02 51.46 63.98 33.90 50.55 24.74 41.27
Sliding Window 23.76 52.49 65.02 34.36 54.46 23.12 42.20
BlockPruner 25.15 53.35 67.41 36.97 58.59 27.22 44.78
EvoPress 24.21 55.17 67.30 36.95 59.76 27.13 45.09
SliceGPT 22.91 57.70 65.94 34.32 48.02 20.48 41.56
2SSP 23.34 61.40 70.29 43.75 52.65 26.79 46.37

Phi-3 14B

Dense 67.61 75.77 81.01 64.04 84.05 60.67 72.19

ShortGPT 27.03 52.09 56.04 27.15 34.34 28.50 37.53
Sliding Window 25.17 50.04 52.77 25.65 26.22 23.04 33.82
BlockPruner 27.90 61.40 68.12 42.00 62.75 37.37 49.93
EvoPress 34.63 60.14 67.85 41.46 61.74 35.58 50.23
SliceGPT 27.21 66.61 71.16 45.45 54.34 29.78 49.09
2SSP 51.85 68.82 74.97 51.60 67.26 38.99 58.92

7

Under review as submission to TMLR

Table 3: Few-shot performance (3-shot) for 2SSP vs. the compared pruning models at 37.5% sparsity. The
boldface and underline indicate, respectively, the best and second-best value per dataset (excluding the dense
baseline).

Model Algorithm M
M

L
U

W
Q

P
iQ

A

H
S

A
R

C
-e

A
R

C
-c

Average

Mistral-v0.3 7B

Dense 61.63 77.11 80.85 61.68 82.83 55.72 69.97

ShortGPT 23.84 55.72 55.71 27.26 32.20 27.3 37.01
Sliding Window 28.02 55.09 58.16 28.46 32.41 24.4 37.76
BlockPruner 26.81 56.75 66.59 37.64 49.16 24.32 43.54
EvoPress 25.37 57.14 68.12 39.62 51.43 27.05 44.79
SliceGPT 27.12 60.69 62.95 36.13 42.09 21.50 41.75
2SSP 29.84 64.64 70.08 40.97 49.12 24.32 46.49

Llama-2 7B

Dense 45.65 71.98 78.35 57.95 79.21 47.87 63.50

ShortGPT 39.16 62.59 60.34 33.86 43.73 29.86 44.92
Sliding Window 39.27 58.64 58.32 32.42 38.01 29.18 42.64
BlockPruner 24.78 54.54 66.59 36.90 52.78 26.02 43.60
EvoPress 25.54 51.93 68.17 36.80 54.63 27.13 44.03
SliceGPT 27.03 62.90 67.41 39.28 49.16 27.47 45.54
2SSP 28.38 59.27 70.08 41.00 57.15 29.78 47.61

Qwen-2.5 7B

Dense 74.01 74.74 80.36 59.76 86.07 58.79 72.29

ShortGPT 24.92 50.67 64.2 34.14 53.96 25.85 42.29
Sliding Window 26.58 50.67 64.04 34.12 54.00 22.95 42.06
BlockPruner 26.09 53.43 67.30 36.19 59.39 29.01 45.23
EvoPress 26.63 52.49 66.97 36.83 60.27 27.05 45.04
SliceGPT 27.00 55.25 63.82 32.91 44.36 19.80 40.52
2SSP 37.44 62.51 70.29 42.99 52.57 27.82 48.94

Phi-3 14B

Dense 76.51 73.88 81.12 64.84 87.25 62.37 74.33

ShortGPT 36.38 55.17 57.78 27.33 38.22 29.01 40.65
Sliding Window 24.21 51.62 52.39 25.77 26.05 22.95 33.83
BlockPruner 37.20 58.33 68.82 42.06 63.09 37.71 51.20
EvoPress 35.47 61.96 70.13 41.69 65.99 37.88 52.19
SliceGPT 37.24 69.69 71.22 45.30 56.14 30.63 51.70
2SSP 52.08 70.01 75.73 51.47 68.60 40.27 59.70

Pruning Runtime For any pruning algorithm to be considered effective, along with the performance
obtained by the generated sparse model, also the time required to obtain such sparse models is a critical
metric. For this reason, we compare the performance (in terms of perplexity over WikiText2) vs. the pruning
runtime of 2SSP and the baselines. Figure 4 shows the trade-off between these two metrics for the three
sparsity rates tested in Table 1, for the case LLama-2 7B (for the same analysis on the other models, please
see the Appendix). The results clearly show how 2SSP is the best algorithm in terms of performance vs.
pruning runtime trade-off. As expected, the fastest algorithms in terms of pruning runtime are the ones
belonging to the Depth Pruning (Blocks) category, since they apply pruning in one-shot, as the first stage,
w.r.t. the similarity among blocks. On the other hand, the algorithms from the Depth Pruning (Submodules)
category are the slowest ones, since they evaluate each possible submodule removal combination. The pruning
runtime of SliceGPT lies somewhere in between and is mostly due to the PCA step employed for reducing
the matrix dimension. To conclude, our approach, which is a combination of one-shot removal (s1) and
submodule evaluation (s2) is able to achieve the best performance in terms of perplexity while requiring
limited pruning runtime.

ShortGPT

Sliding Window

BlockPruner

EvoPress

SliceGPT

2SSP (Ours)

25.43

18.25

12.09

10.37

14.82

9.25

84.53 (s)

84.19 (s)

129.37 (s)

4641.09 (s)

1061.45 (s)

94.81 (s)

25% sparsity

79.49

207.04

23.62

19.03

30.28

14.64

83.47 (s)

83.71 (s)

170.89 (s)

6613.86 (s)

972.47 (s)

115.30 (s)

37.5% sparsity

233.18

3341.31

71.36

70.97

57.66

31.40

83.54 (s)

83.68 (s)

198.66 (s)

5620.10 (s)

916.75 (s)

128.18 (s)

50% sparsity

Figure 4: Pruning runtime (red, left side of the x-axis, log scale) vs. perplexity (green, right side of the x-axis,
log scale) for 2SSP vs. the compared pruning algorithms over LLama-2 7B pruned at three different sparsity
rates.

8

Under review as submission to TMLR

Sparse Inference Speed-Up To complete the analysis of 2SSP and the baselines, we study the inference
runtime speed-up of the sparse models generated with the different pruning algorithms under examination
over three different NVIDIA GPU models. Table 4 reports the inference runtime of LLama-2 7B (including
its dense version) computed as the average inference GPU time (in ms) over 10 runs on a single sample of
2048 tokens. The speed-up of the structured pruning algorithms w.r.t. the dense model is evident and, as
expected, increases with the sparsity rate. The advantage is maximum for the depth pruning approaches,
while the width pruning methods achieve minimum speed-ups. As expected, 2SSP positions itself between
the two categories.

Table 4: Inference time (ms) of pruned models on different GPUs.

GPU Sparsity
Pruning Method

ShortGPT Sliding Window BlockPruner Evopress SliceGPT 2SSP

RTX
3090

24GB

Dense 457.59

25% 375.86 362.25 357.31 352.95 410.33 381.22
37.5% 318.26 314.61 301.84 297.03 330.92 316.66
50% 258.46 253.46 245.30 242.01 286.33 270.82

A30
24GB

Dense 317.39

25% 241.85 241.82 243.45 242.47 269.56 255.09
37.5% 203.07 203.66 204.80 204.49 228.48 223.41
50% 163.96 163.86 167.15 166.65 206.30 186.92

A100
80GB

Dense 158.17

25% 120.49 120.48 120.21 121.43 129.17 127.53
37.5% 100.44 100.94 100.92 102.09 113.47 111.11
50% 81.22 81.39 81.40 83.09 99.17 92.59

4.2 Ablation Studies

In this section, we conduct different ablation studies to test the robustness of our proposed approach. In
particular, we focus our analysis on the first stage (s1) and on the combination of depth pruning and width
pruning, which are the distinctive aspects of our method.

Pruning Rows-Columns vs. Columns-Rows in s1 We conduct an ablation study to analyze the
first stage of 2SSP, hence the neuron-based pruning approach. As discussed earlier, given the intermediate
representation of an FFN, our method removes entire neurons by pruning their corresponding rows and
columns in the input and output projection matrices, respectively. We explore an “inverted” approach that,
instead, prunes columns in the input projection matrix and rows in the output projection matrix, thereby
preserving all neurons in the intermediate representation while reducing the dimensionality dmodel of the
hidden state. The perplexity results in Table 5 show how the row-columns strategy employed by 2SSP is the
most reliable choice since inverting the order or pruning leads to worse results even by orders of magnitude in
terms of perplexity. This can be explained by the fact that pruning rows first and then columns (but not the
other way around) preserves the network connectivity.

Neuron Selection based on L1 vs. L2 in s1 To evaluate the robustness of our neuron selection criterion,
we study the impact of using L1 norm as an alternative magnitude metric for neuron selection, comparing
it against the L2 norm used in Eq. equation 1. In this variation, we modify the importance score sj , by
replacing the L2 norm with the L1 norm. The perplexity results in Table 5 show that using L1 leads to worse
performance across all models and sparsity rates compared to the main 2SSP version based on L2.

Running s1 only vs. s1 + s2

We also separate the two stages included in 2SSP, to show the effectiveness of their combination. However,
while it is possible to ablate on the first stage only, we exclude the case of having the second stage only since
this stage’s applicability is constrained by the model’s architecture, hence it is not applicable to all models.

9

Under review as submission to TMLR

In fact, the number of Attention parameters in an LLM ranges from approximately 19% in Llama-2 to 33%
in Mistral-v0.3, which limits the possibility of conducting this ablation across the three different sparsity
rates chosen throughout the whole paper.

Table 5: Numerical results of the ablation studies over Mistral-v0.3
7B and LLama-2 7B for three different sparsity rates. The results
correspond to the perplexity computed over the WikiText2 dataset.

Model 2SSP variant
Sparsity

25% 37.5% 50%

Mistral-v0.3 7B

s1 inverted + s2 257.30 1.23e3 5.80e3

s1 L1 norm + s2 9.41 17.65 48.52
s1 only 9.51 15.58 30.16
s1 + s2 9.24 14.92 23.77

LLama-2 7B

s1 inverted 8.27e3 1.02e4 5.51e4

s1 L1 norm 11.37 23.64 66.56
s1 only 9.88 19.94 41.73
s1 + s2 9.19 18.16 32.85

On the other hand, this does not
hold for the first stage only, for
which results are reported in Table 5.
An interesting trend emerges in this
case: while 2SSP (combining both
stages) always outperforms the first
stage only, it is visible how the gap
between these two approaches in-
creases while increasing the sparsity
rate. It should be noted, however,
that also the first stage only cannot
be applied to extreme sparsity rates
such as > ∼70% due to the same
limitations of the second stage only,
in this case related to the number of
FFN parameters.

4.3 Hyperparameter Tuning

2SSP relies on two main hyperparameters, namely α used in Eq. equation 5 and the calibration set size |Dcal|.
We detail their selection choices in this section. Note that for the calibration set size of the second stage, we
set it to one sample, as done in Sieberling et al. (2024), to balance pruning runtime vs. performance and
provide a fair comparison, as also explained in Section 4.1. Therefore, we limit our analysis to the calibration
set size applied to the first stage.

Choice of α parameter A crucial aspect that makes our method effective is an accurate balancing between
the number of parameters pruned in the first and the second stages. To achieve this balance, we introduced
Eq. equation 5, which, given a desired sparsity rate s for the whole model, controls the number of Attentions
to prune (NAttn). This equation uses a parameter α to regulate the rate of Attention pruning w.r.t. the
overall sparsity: lower values of α result in a more gradual increase in the number of Attentions w.r.t. s,
while higher values of α produce higher values of NAttn already at lower sparsity rates. Through empirical
evaluation across multiple sparsity rates and models, we determine α = 1.5 to be near-optimal, as shown in
Figure 5.

0.5 1.0 1.5 2.0
α

10

15

20

25

30

35

40

45

Pe
rp

le
xi

ty

Mistral-v0.3 7B

0.5 1.0 1.5 2.0
α

20

40

60

80

100
LLama-2 7B

25% 37.5% 50% 2SSP

Figure 5: Perplexity on WikiText2 of models pruned
using 2SSP at different sparsity rates when varying α
in Eq. equation 5.

Figure 6 shows, for Mistral-v0.3 7B and Llama-2
7B, the perplexity across various combinations of
overall sparsity rates (s) and Attention sparsities.
The figure highlights the importance of our proposed
sparsity balancing approach. When pruning only
FFN submodules (i.e., when the Attention sparsity
is zero), perplexity deteriorates rapidly at higher
sparsity rates, particularly when approaching the
theoretical maximum sparsity of B·|WFFN|

|Wtotal| . This limit
is imposed by the total number of FFN parameters
available for pruning. However, we observe that
gradually incorporating Attention pruning alongside
neuron pruning leads to improved perplexity scores.
The figure also shows the robustness of our α selec-
tion choice. Comparing the value of NAttn found
by Eq. equation 5 setting α = 1.5 with the optimal
value found by an exhaustive grid search spanning

10

Under review as submission to TMLR

0.0 0.16 0.31 0.47 0.62 0.78 0.94

Sparsity Rate s

0.
94

0.
78

0.
62

0.
47

0.
31

0.
16

0.
0

S
pa

rs
ity

A
ttn

.

Mistral-v0.3 7B

0.0 0.16 0.31 0.47 0.62 0.78 0.94

Sparsity Rate s

Llama-2 7B

101

102

103

104

Pe
rp

le
xi

ty 2SSP
Grid Search
Both

Figure 6: Perplexity on WikiText2 for various model sparsities (steps of 0.03) and Attention sparsities
(pruned/total Attentions). The cells with orange (gray) border indicate the optimal no. of Attention modules
to prune for each FFN sparsity, obtained by grid search (by 2SSP with Eq. equation 5). The red border
indicates that the two methods find the same value. Eq. equation 5 is a valid proxy for the optimal value.
The white cells correspond to sparsity values where 2SSP cannot be applied due to the theoretical maximum
sparsity constraint.

all possible choices of Attention sparsity, it can be
seen there is in most cases an almost exact match. It
is also noteworthy to observe that the optimal number of Attention parameters to prune is highly dependent
on the model, nevertheless, our approach reliably provides a near-optimal choice.

2 4 8 16 32 64 128 256

Calibration set size

30

40

50

Pe
rp

le
xi

ty

Mistral-v0.3 7B Llama-2 7B 2SSP

Figure 7: Perplexity on WikiText2 of models pruned
using 2SSP at 50% sparsity when varying the calibra-
tion set size.

Choice of Calibration Set Size Finally, we inves-
tigate how the number of calibration samples for s1
affects model performance while maintaining a fixed
sequence length of 2048 tokens. We conduct this
analysis on Wikitext2 with both Mistral-v0.3 and
Llama-2 at 50% sparsity, using perplexity to evaluate
the performance of the final pruned models after ap-
plying 2SSP with varying calibration set sizes. The
results shown in Figure 7 reveal that 2SSP achieves
strong performance even with a limited number of
calibration samples (at least 16). Given that larger
calibration sets increase computational overhead due
to additional forward passes, we stick to 32 calibra-
tion samples for the main experiments, as mentioned
earlier in Section 4.1.

5 Conclusions

In this paper, we introduced 2SSP, a new structured pruning algorithm that aims to combine Width Pruning
for FFN submodules with Depth Pruning for Attentions. Our approach works in two stages by firstly
pruning neurons in the intermediate state of FFN submodules, and then iteratively removing Attentions
based on the model performance computed as perplexity. We tested 2SSP over three different families of
LLMs, ranging from 7B to 14B at three different sparsity rates. The results demonstrate how our proposed
algorithm consistently outperforms the state-of-the-art baselines on both language modeling and downstream
tasks. 2SSP achieves these results while requiring limited pruning runtime, which positions our method as
state-of-the-art over the performance vs. pruning runtime trade-off. Finally, we conducted in-depth ablation
and tuning studies to demonstrate the robustness of our proposed method, focusing in particular on the
neuron pruning mechanism of the first stage and the sparsity rate balancing between the two stages.

11

Under review as submission to TMLR

References
Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit

Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable
language model locally on your phone, 2024. URL https://arxiv.org/abs/2404.14219.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.
SliceGPT: Compress Large Language Models by Deleting Rows and Columns. In International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=vXxardq6db.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge, 2018. URL
https://arxiv.org/abs/1803.05457.

Elia Cunegatti, Matteo Farina, Doina Bucur, and Giovanni Iacca. Understanding Sparse Neural Networks
from their Topology via Multipartite Graph Representations. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=Egb0tUZnOY.

Elia Cunegatti, Leonardo Lucio Custode, and Giovanni Iacca. Zeroth-order adaptive neuron alignment
based pruning without re-training. In Sparsity in LLMs (SLLM): Deep Dive into Mixture of Experts,
Quantization, Hardware, and Inference, 2025. URL https://openreview.net/forum?id=peyLy5ek4w.

Lucio Dery, Steven Kolawole, Jean-François Kagy, Virginia Smith, Graham Neubig, and Ameet Talwalkar.
Everybody prune now: Structured pruning of LLMs with only forward passes, 2024. URL https:
//arxiv.org/abs/2402.05406.

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov, and
Xinchao Wang. MaskLLM: Learnable Semi-Structured Sparsity for Large Language Models. In Advances
in Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=Llu9nJal7b.

Matteo Farina, Massimiliano Mancini, Elia Cunegatti, Gaowen Liu, Giovanni Iacca, and Elisa Ricci. MULTI-
FLOW: Shifting Towards Task-Agnostic Vision-Language Pruning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16185–16195, 2024. URL https://doi.ieeecomputersociety.org/
10.1109/CVPR52733.2024.01532.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in one-
shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023. URL https:
//dl.acm.org/doi/10.5555/3618408.3618822.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 2024.
URL https://zenodo.org/records/12608602.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring Massive Multitask Language Understanding. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Leonardo Iurada, Marco Ciccone, and Tatiana Tommasi. Finding Lottery Tickets in Vision Models via
Data-driven Spectral Foresight Pruning. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16142–16151, 2024.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, Zhangyang Wang, et al. The emergence of essential sparsity in
large pre-trained models: The weights that matter. In Advances in Neural Information Processing Systems,
volume 36, 2024. URL https://openreview.net/forum?id=bU9hwbsVcy.

12

https://arxiv.org/abs/2404.14219
https://openreview.net/forum?id=vXxardq6db
https://arxiv.org/abs/1803.05457
https://openreview.net/forum?id=Egb0tUZnOY
https://openreview.net/forum?id=peyLy5ek4w
https://arxiv.org/abs/2402.05406
https://arxiv.org/abs/2402.05406
https://openreview.net/forum?id=Llu9nJal7b
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.01532
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.01532
https://dl.acm.org/doi/10.5555/3618408.3618822
https://dl.acm.org/doi/10.5555/3618408.3618822
https://zenodo.org/records/12608602
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=bU9hwbsVcy

Under review as submission to TMLR

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7B,
2023. URL https://arxiv.org/abs/2310.06825.

Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, and Deyi Xiong. A Comprehensive
Evaluation of Quantization Strategies for Large Language Models. In Findings of the Association for Compu-
tational Linguistics, pp. 12186–12215, Bangkok, Thailand, 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-acl.726. URL https://aclanthology.org/2024.findings-acl.726/.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-Kyu
Song. Shortened LLaMA: A Simple Depth Pruning for Large Language Models. In ICLR Workshop on
Mathematical and Empirical Understanding of Foundation Models, 2024. URL https://openreview.net/
forum?id=18VGxuOdpu.

Eldar Kurtic, Elias Frantar, and Dan Alistarh. ZipLM: Inference-Aware Structured Pruning of Language
Models. In Advances in Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=d8j3lsBWpV.

Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu, Qiang Wang, Wenhan Luo, Wei Xue, Qifeng Liu, Xiaowen
Chu, and Yike Guo. Discovering Sparsity Allocation for Layer-wise Pruning of Large Language Models. In
Advances in Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=
rgtrYVC9n4.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large language
models. In Advances in Neural Information Processing Systems, volume 36, pp. 21702–21720, 2023. URL
https://openreview.net/forum?id=J8Ajf9WfXP.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. ShortGPT: Layers in large language models are more redundant than you expect, 2024. URL
https://arxiv.org/abs/2403.03853.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture Models. In
International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=
Byj72udxe.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Bhuminand Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact Language
Models via Pruning and Knowledge Distillation. In Advances in Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=9U0nLnNMJ7.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library, 2019. URL
https://arxiv.org/abs/1912.01703.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. The FineWeb Datasets: Decanting the Web for the Finest Text
Data at Scale. In Advances in Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=n6SCkn2QaG.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: an adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99––106, 2021. URL https:
//doi.org/10.1145/3474381.

13

https://arxiv.org/abs/2310.06825
https://aclanthology.org/2024.findings-acl.726/
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=18VGxuOdpu
https://openreview.net/forum?id=d8j3lsBWpV
https://openreview.net/forum?id=d8j3lsBWpV
https://openreview.net/forum?id=rgtrYVC9n4
https://openreview.net/forum?id=rgtrYVC9n4
https://openreview.net/forum?id=J8Ajf9WfXP
https://arxiv.org/abs/2403.03853
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=9U0nLnNMJ7
https://arxiv.org/abs/1912.01703
https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381

Under review as submission to TMLR

Mohammad Samragh, Mehrdad Farajtabar, Sachin Mehta, Raviteja Vemulapalli, Fartash Faghri, Devang
Naik, Oncel Tuzel, and Mohammad Rastegari. Weight subcloning: direct initialization of transformers
using larger pretrained ones, 2023. URL https://arxiv.org/abs/2312.09299.

Shoaib Ahmed Siddiqui, Xin Dong, Greg Heinrich, Thomas Breuel, Jan Kautz, David Krueger, and Pavlo
Molchanov. A deeper look at depth pruning of LLMs. In ICML 2024 Workshop on Theoretical Foundations
of Foundation Models, 2024. URL https://openreview.net/forum?id=9B7ayWclwN.

Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and Dan Alistarh. Evopress: Towards optimal dynamic
model compression via evolutionary search. arXiv preprint arXiv:2410.14649, 2024.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. SLEB: Streamlining
LLMs through Redundancy Verification and Elimination of Transformer Blocks. In International Conference
on Machine Learning, 2024. URL https://openreview.net/forum?id=fuX4hyLPmO.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A Simple and Effective Pruning Approach
for Large Language Models. In International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=PxoFut3dWW.

Sandeep Tata and Jignesh M. Patel. PiQA: an algebra for querying protein data sets. In International
Conference on Scientific and Statistical Database Management, pp. 141–150, 2003. URL https://api.
semanticscholar.org/CorpusID:1545102.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Tycho F. A. van der Ouderaa, Markus Nagel, Mart Van Baalen, and Tijmen Blankevoort. The LLM Surgeon.
In International Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=DYIIRgwg2i.

Artem Vysogorets and Julia Kempe. Connectivity matters: Neural network pruning through the lens of
effective sparsity. Journal of Machine Learning Research, 24(99):1–23, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. HuggingFace’s Transformers: State-of-the-art Natural Language Processing, 2020.
URL https://arxiv.org/abs/1910.03771.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao, and
Ping Luo. BESA: Pruning Large Language Models with Blockwise Parameter-Efficient Sparsity Allocation.
In International Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=gC6JTEU3jl.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue,
Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang
Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5
Technical Report, 2024. URL https://arxiv.org/abs/2412.15115.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy, Yi Liang,
Zhangyang Wang, and Shiwei Liu. Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for
Pruning LLMs to High Sparsity, 2024. URL https://openreview.net/forum?id=pOBvr1PxFd.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a Machine Really
Finish Your Sentence? In Annual Meeting of the Association for Computational Linguistics, pp. 4791–4800,
2019. URL https://aclanthology.org/P19-1472/.

14

https://arxiv.org/abs/2312.09299
https://openreview.net/forum?id=9B7ayWclwN
https://openreview.net/forum?id=fuX4hyLPmO
https://openreview.net/forum?id=PxoFut3dWW
https://api.semanticscholar.org/CorpusID:1545102
https://api.semanticscholar.org/CorpusID:1545102
https://arxiv.org/abs/2307.09288
https://openreview.net/forum?id=DYIIRgwg2i
https://openreview.net/forum?id=DYIIRgwg2i
https://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=gC6JTEU3jl
https://openreview.net/forum?id=gC6JTEU3jl
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=pOBvr1PxFd
https://aclanthology.org/P19-1472/

Under review as submission to TMLR

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-and-Play:
An Efficient Post-training Pruning Method for Large Language Models. In International Conference on
Learning Representations, 2024a. URL https://openreview.net/forum?id=Tr0lPx9woF.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu, and
Rongrong Ji. Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs. In International
Conference on Learning Representations, 2024b. URL https://openreview.net/forum?id=1ndDmZdT4g.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-grained
pruning for large language models. arXiv preprint arXiv:2406.10594, 2024.

15

https://openreview.net/forum?id=Tr0lPx9woF
https://openreview.net/forum?id=1ndDmZdT4g

Under review as submission to TMLR

A Details on Pruning Rows-Columns vs. Columns-Rows in s1

For each dimension k in the inputs’ and outputs’ hidden state, we compute importance scores across the
calibration dataset Dcal:

sin
k = 1

|Dcal|

|Dcal|∑
c=1

∥i(k)
c ∥2 (6)

sout
k = 1

|Dcal|

|Dcal|∑
c=1

∥o(k)
c ∥2 (7)

where i
(k)
c and o

(k)
c denote the k-th dimension of the input and output hidden states respectively. We define

binary masks min, mout ∈ {0, 1}dmodel to select the top-K dimensions based on these importance scores. The
pruned weight matrices are computed as:

Ŵin = Win[:, min = 1] (8)
Ŵout = Wout[mout = 1, :] (9)

We evaluate both pruning strategies on the WikiText2 dataset across various sparsity rates as shown in
Table 5. Our experimental results demonstrate that pruning entire neurons consistently outperforms the
dimension-based pruning approach in terms of perplexity.

B Additional Results

B.1 Performance vs. Pruning Runtime

Here we present additional results of performance (perplexity on WikiText2) vs. pruning runtime of 2SSP
and the baselines on Mistral-v0.3 7B (Figure 8), Qwen-2.5 7B (Figure 9), and Phi-3 14B (Figure 10). Across
all models and sparsity rates, our 2SSP consistently demonstrates superior performance compared to existing
pruning methods.

ShortGPT

Sliding Window

BlockPruner

EvoPress

SliceGPT

2SSP (Ours)

44.65

37.75

10.33

9.35

11.84

9.24

94.82 (s)

95.37 (s)

149.20 (s)

4118.33 (s)

964.28 (s)

197.93 (s)

25% sparsity

1828.89

984.31

23.31

27.00

23.24

14.92

94.45 (s)

95.00 (s)

195.58 (s)

4603.13 (s)

875.29 (s)

208.68 (s)

37.5% sparsity

1014.44

3310.36

81.90

91.83

41.24

23.77

94.44 (s)

94.94 (s)

227.27 (s)

4209.85 (s)

823.92 (s)

218.95 (s)

50% sparsity

Figure 8: Pruning runtime (left side of the x-axis, log scale) vs. perplexity (right side of the x-axis, log scale)
for 2SSP vs. the compared pruning algorithms over Mistral-v0.3 7B pruned at three different sparsity rates.

ShortGPT

Sliding Window

BlockPruner

EvoPress

SliceGPT

2SSP (Ours)

13.09

11.37

11.57

11.74

12.72

10.61

81.78 (s)

81.60 (s)

100.65 (s)

11852.00 (s)

1364.36 (s)

180.74 (s)

25% sparsity

52.99

21.73

22.17

22.03

25.08

15.26

82.20 (s)

82.49 (s)

137.31 (s)

15700.97 (s)

1327.14 (s)

184.97 (s)

37.5% sparsity

93070.50

213.96

54.97

49.91

38.47

21.66

82.66 (s)

82.15 (s)

155.86 (s)

12705.11 (s)

1276.28 (s)

191.63 (s)

50% sparsity

Figure 9: Pruning runtime (left side of the x-axis, log scale) vs. perplexity (right side of the x-axis, log scale)
for 2SSP vs. the compared pruning algorithms over Qwen-2.5 7B pruned at three different sparsity rates.

16

Under review as submission to TMLR

ShortGPT

Sliding Window

BlockPruner

EvoPress

SliceGPT

2SSP (Ours)

129.79

31.13

9.76

8.71

10.01

7.06

251.01 (s)

250.07 (s)

608.24 (s)

16699.45 (s)

1794.15 (s)

320.78 (s)

25% sparsity

134585.97

1207399.88

19.31

15.62

17.06

9.79

250.08 (s)

248.84 (s)

797.32 (s)

17948.84 (s)

1638.08 (s)

375.95 (s)

37.5% sparsity

440539.84

1014482.56

56.60

54.46

34.40

16.93

250.23 (s)

248.82 (s)

925.69 (s)

15835.07 (s)

1514.37 (s)

464.25 (s)

50% sparsity

Figure 10: Pruning runtime (left side of the x-axis, log scale) vs. perplexity (right side of the x-axis, log scale)
for 2SSP vs. the compared pruning algorithms over Phi-3 14B pruned at three different sparsity rates.

C Experimental Details

We implement our experiments using the HuggingFace Transformers library Wolf et al. (2020). The models
we use are sourced from the HuggingFace model hub, with their corresponding repositories listed in Table 6.

Model HuggingFace Repository

Mistral-v0.3 7B mistralai/Mistral-7B-v0.3
Llama-2 7B meta-llama/Llama-2-7b-hf
Qwen-2.5 7B Qwen/Qwen2.5-7B
Phi-3 14B microsoft/Phi-3-medium-128k-instruct

Table 6: Models and their corresponding HuggingFace repositories.

For the calibration dataset, we use the Colossal Clean Crawled Corpus (C4) Raffel et al. (2020), specifically
the HuggingFace repository allenai/c4. Due to the substantial size of the training split, we fetch only a
subset of samples extracted from the first shard of the dataset. Since sequence lengths in C4 vary, we first
concatenated all sequences into a single corpus, tokenized it, and then divided it into segments of exactly
2048 tokens each.

For evaluation, we use the wikitext-2-raw-v1 split available from the wikitext repository on HuggingFace.
Additionally, for perplexity evaluation, we include two other datasets: a subset of the validation split of C4
and samples from the sample-10BT subset of the HuggingFaceFW/fineweb-edu repository. Similar to the
calibration dataset, the evaluation datasets are processed by concatenating their sequences, tokenizing the
resulting corpus, and splitting it into sequences of 2048 tokens each. Specifically, Wikitext consists of 163
sequences, C4 contains 288 sequences, and FineWeb comprises 259 sequences.

For reproducibility, we set a fixed random seed of 0 across all randomization sources in our experiments by
enabling deterministic mode for CUDA operations and setting the seed for Python’s random module, NumPy
and PyTorch. This ensures consistent results across different runs of our experiments.

D Qualitative Results

In this section, we present some qualitative examples obtained from pruned models by evaluating their
performance on concrete generation tasks. Specifically, we examine the Mistral-v0.3 model pruned using
2SSP at three distinct sparsity rates: 25%, 37.5%, and 50%. The pruned models are tested on the content
generation task starting from two distinct prompts: “Who is Albert Einstein?” and “Explain the theory of
relativity”. We compare the quality of their generated responses at each sparsity rate, providing examples
for each case. The results for the first prompt are shown in Table 7, while those for the second prompt are
shown in Table 8.

The qualitative results confirm that, as expected, higher sparsity leads to a decrease in the quality of generated
responses. However, it is noteworthy that despite the reduced accuracy, 2SSP is capable of maintaining
the structural coherence of the sentences, often preserving the flow of the narrative. This coherence is

17

Under review as submission to TMLR

achieved at the cost of factual correctness, with pruned models occasionally introducing incorrect or irrelevant
information.

Table 7: Qualitative examples of text generated by Mistral-v0.3 7B pruned at different sparsity rates with
2SSP. The responses are based on the prompt “Who is Albert Einstein?”.

Sparsity Generated Sentences

Dense Albert Einstein was a German-born theoretical physicist who developed the theory of
relativity, one of the two pillars of modern physics (alongside quantum mechanics). His
work is also known for its influence on the philosophy of science. He is best known for
his mass–energy equivalence formula E = mc2 (which has been dubbed “the world’s
most famous equation”). He received the 1921 Nobel Prize in Physics for his services
to theoretical physics, and especially for his discovery of the law of the photoelectric
effect

25% Albert Einstein was born on January 1, 1879, in Switzerland. He was a physicist and
won the Nobel Prize in 1991. He is best known for his theory of relativity.
Einstein was born in Switzerland, but he grew up in Germany. He studied at the
University of Zurich, where he earned his doctorate in physics. He then went on to
work at the Swiss Federal Institute of Technology in Zurich. There, he worked on a
number of projects, including the development of the atomic bomb.

37.5% Albert Einstein was born on January 21, 1905, and died on April 28, 2021. He was a
Nobel Nobel Prize winner and the winner of Nobel’s Nobel Award for Nobel Science.
Einstein was born in the United States, and he was the first Nobel to win Nobel and
Nobel awards. He won Nobel in Nobel, and his Nobel award was Nobel. He also
received Nobel Awards for Noble Science and Noble Noble Awards. Albert Einstein

50% Albert Einstein was born in 1990 in the United States. Albert Einstein is a well-known
artist and sculptor. He is famous for his sculpting skills. He has been sculpting since
2010. Albert is a sculptor by profession.
Albert Einstein Biography
He was born on the 17th of July, 1890, in the USA. Albert has been working in the
sculpting industry since he was 10 years old. He started sculpting at the age of 15.

18

Under review as submission to TMLR

Table 8: Qualitative examples of text generated by Mistral-v0.3 7B pruned at different sparsity rates with
2SSP. The responses are based on the prompt “Explain the theory of relativity”.

Sparsity Generated Sentences

Dense The theory of relativity is one of the most important theories in the history of science.
It was developed by Albert Einstein in 1905 and published in his paper “On the
Electrodynamics of Moving Bodies.” In this paper, Einstein proposed that the laws of
physics are the same for all observers, regardless of their state of motion. This theory
has revolutionized our understanding of the universe and has had a profound impact
on many fields of science, including physics, astronomy, and cosmology.
One of the key concepts in the theory of relativistic is the concept of spacetime.

25% The theory of relativity is one of the most important theories in physics. It is based
on the idea that the speed of light is the same for all observers, regardless of their
distance from each other. This means that no matter how far apart two people are,
they will still be able to see each other at the same time.
The theory was first proposed by Albert Einstein in 1905, and it has since been used
to explain many different phenomena. For example, it can explain why some objects
appear to be moving faster than others, even though they are not actually moving at
all.

37.5% The theory of relativity is one of the most important concepts in the world of physics.
It is a concept that has been around since the beginning of the 20th century, and it
has been used to explain how the universe works.
The theory of physics is a very important concept in physics. Physics is a field of
physics that deals with the physics of the universe. It deals with physics, physics, and
physics. The physics of physics are very important because they help us to understand
the universe better. Physics is very important in physics because it helps us to better
understand physics. For example, physics

50% The theory of relativity in the United States of America (US) has been the topic of
discussion for a long time now. The US is the only country in the world that has a
reputation for being the best in the US.
The US is a country that has been in existence since the 1950s. It is the US that has
the reputation of being one of the most popular countries to live in. This is because
of the US’ reputation for the US to be a country where the US can be found to be the
best country to be in. In this article, we will discuss the US

19

	Introduction
	Related Work
	Unstructured Pruning
	Structured Pruning

	Methods
	Experiments
	Experimental Results
	Ablation Studies
	Hyperparameter Tuning

	Conclusions
	Details on Pruning Rows-Columns vs. Columns-Rows in [outer color=s1color,fill color=s1color]s1
	Additional Results
	Performance vs. Pruning Runtime

	Experimental Details
	Qualitative Results

