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ABSTRACT

Salient object detection exemplifies data-bounded tasks where expensive pixel-
precise annotations force separate model training for related subtasks like DIS
and HR-SOD. We present a method that dramatically improves generalization
through large-scale synthetic data generation and ambiguity-aware architecture.
We introduce S3OD, a dataset of over 139,000 high-resolution images created
through our multi-modal diffusion pipeline that extracts labels from diffusion and
DINO-v3 features. The iterative generation framework prioritizes challenging
categories based on model performance. We propose a streamlined multi-mask
decoder that handles the inherent ambiguity in salient object detection by predicting
multiple valid interpretations. Models trained only on synthetic data achieve 20-
50% error reduction in cross-dataset generalization, while fine-tuned versions reach
state-of-the-art performance across DIS and HR-SOD benchmarks.

Figure 1: S3OD Top: Our large scale synthetic dataset, consisting of diverse complex scenes and
high quality samples. Bottom: Model Predictions. Our model trained on synthetic data generalizes
well to real-world images, handling ambiguous scenes by predicting alternative hypothesis.

1 INTRODUCTION

Salient object detection (SOD) is a fundamental computer vision problem with applications spanning
AR/VR (Tian et al., 2022), robotics (Chan & Riek, 2020), 3D reconstruction (Liu et al., 2021a), and
image editing (Goferman et al., 2011). Recently, two specialized subtasks have emerged: dichotomous
image segmentation (DIS), focusing on highly accurate boundaries, and high-resolution SOD (HR-
SOD) for 2K-8K resolution images, both presenting new generalization challenges. SOD exemplifies
tasks fundamentally limited by labeled data availability. Creating diverse, representative datasets is
difficult, requiring extensive real-world scenarios and object types. The labeling process demands
pixel-precise manual annotations taking up to 10 hours per sample (Qin et al., 2022). Moreover,
annotations often contain inherent ambiguities and inconsistencies across datasets, as annotators
interpret scene saliency differently which is a fundamental challenge that deterministic approaches
fail to address. These constraints yield relatively small datasets (Qin et al., 2022; Zeng et al., 2019)
that cannot capture real-world complexity. Even large-scale datasets like SA-1B (Ravi et al., 2024)
struggle with the high-resolution pixel-perfect data (Ke et al., 2023). Current approaches train
separate models for DIS and HR-SOD due to small datasets and domain gaps, leading to task-specific
overfitting rather than generalizable principles. Recent architectural innovations (Yu et al., 2024;
Zheng et al., 2024; Kim et al., 2022) achieve incremental improvements but fail to address cross-
domain generalization. The fundamental bottleneck remains data scarcity, not model complexity,
while models typically enforce deterministic predictions, ignoring the ambiguity. Synthetic data
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offers an attractive solution, but existing approaches have critical limitations. Traditional pseudo-
labeling setups are bounded by teacher capabilities and often use the same vision encoders, creating
performance ceilings. Methods extending diffusion models to predict masks directly (Wu et al.,
2023a) suffer from consistency issues due to noisy diffusion features. In contrast, mask-conditioned
generation (Qian et al., 2024) struggles with diversity as obtaining large mask libraries and generating
complex scenes remain challenging.
In this work, we aim to unify DIS and HR-SOD by addressing two main limitations of prior work.
We refer to the unified task as high-fidelity salient segmentation. To this end, we introduce: 1)
a multi-modal data generation pipeline that leverages the generative power of diffusion models,
eliminating teacher bottlenecks, 2) an ambiguity-aware architecture handling multiple interpretations,
and 3) an iterative generation framework adapting to model weaknesses. Our main contributions are:
Multi-Modal Dataset Diffusion Pipeline: Our diffusion pipeline simultaneously generates images
and masks by extracting FLUX DiT feature maps, concept attention maps, and DINO-v3 (Siméoni
et al., 2025) representations during the generation process. The generation pipeline utilize rich spatial
understanding encoded during generation alongside robust semantic features from discriminative
models to decode high-quality masks. This ensures strong image-label alignment, enabling a flexible
framework applicable to other dense prediction tasks.
Iterative Generation Framework: We introduce feedback-driven synthetic data generation that
dynamically identifies model weaknesses, continuously adapting sampling distribution to prioritize
challenging categories. Unlike traditional static methods, this iterative approach enables continuous
improvement as datasets grow.
Large-Scale Synthetic Dataset: Using our pipeline, we generate 139,000+ high-resolution images
with pixel-wise annotations, over 2× more than all existing SOD datasets combined. This enables up
to 50% error reduction across benchmarks when evaluated for cross-dataset generalization. Models
trained solely on synthetic data achieve strong cross-dataset generalization without real training data,
while fine-tuned versions reach state-of-the-art performance across DIS and HR-SOD benchmarks.
Ambiguity-Aware Architecture: We directly address SOD’s inherent ambiguity through a multi-
mask decoder allowing multiple valid interpretations while enabling a simpler architecture compared
to current state-of-the-art methods. We employ DINO-v3 backbone, leveraging enhanced visual
representations for improved generalization.

2 RELATED WORK

Salient Object Detection: SOD has evolved from handcrafted features (Borji et al., 2015) to complex
multi-view transformer architectures (Yu et al., 2024). BASNet (Qin et al., 2019) introduced boundary-
aware refinement with hybrid loss functions for precise object segmentation, while subsequent work
(Zhao et al., 2019; Wei et al., 2020b; Wu et al., 2019b; Feng et al., 2019) explored efficient edge-
refinement strategies. U2-Net (Qin et al., 2020) developed nested UNet architecture to capture
multi-scale contextual information. CPD (Wu et al., 2019a) introduced cascaded decoders directly
refining features with generated saliency maps. PFANet (Zhang et al., 2018) and PAGENet (Wang
et al., 2019) leveraged pyramid attention networks to enhance segmentation quality. However, these
approaches remain constrained by training dataset limitations and struggle with high-resolution
inference scenarios. Recently, HR-SOD and DIS emerged as specialized subtasks focused on
high-resolution accurate segmentation. IS-Net (Qin et al., 2022) established the DIS baseline
using intermediate supervision with feature-level and mask-level guidance. Newer approaches
incorporated transformer backbones (Liu et al., 2021b) to enhance feature extraction. InSPyReNet
(Kim et al., 2022) adapted image pyramid architecture for HR-SOD, while BiRefNet (Zheng et al.,
2024) introduced bilateral reference frameworks for capturing intricate details. MVANet (Yu et al.,
2024) recently proposed multi-view aggregation to detect finer details while improving efficiency.
Nevertheless, these methods produce single deterministic outputs and remain constrained by limited
training data. Our approach addresses both limitations while simplifying architecture.
Synthetic Data Generation: Diffusion models have transformed data generation by enabling high-
quality, diverse synthetic datasets. Recent work (Shipard et al., 2023; Sarıyıldız et al., 2023; Tian
et al., 2023; Azizi et al., 2023; Fan et al., 2024) improved classification model performance through
synthetic data generation with latent diffusion models (Rombach et al., 2022), though limited to image
classification. DiffuMask (Wu et al., 2023b), Attn2mask (Yoshihashi et al., 2024), and DatasetDM
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(Wu et al., 2023a) utilize diffusion models to generate synthetic images with annotations for segmen-
tation tasks. However, DatasetDM’s attention-based extraction produces noisy, incomplete masks
lacking precise boundaries and struggling with complex multi-object scenes. OVDiff (Karazija et al.,
2024) synthesises support image sets for arbitrary textual categories, while Instance Augmentation
(Kupyn & Rupprecht, 2024) provides augmentation frameworks but only slightly expands original
distributions. VGGHeads (Kupyn et al., 2024) demonstrated synthetic data’s impact on generalization
for 3D head modeling but remains bounded by external teacher models. For SOD specifically,
SODGAN (Wu et al., 2022) employs GANs but struggles with complex scenes due to limited training
data variability. MaskFactory (Qian et al., 2024) conditions image generation on edited masks but is
limited to only creating slight variations of the train set. Unlike these approaches relying on noisy
attention extraction, mask conditioning, or external teacher models, our method extracts supervision
from multiple complementary sources within the generative process itself. By combining DINO-v3
(Siméoni et al., 2025) visual features, diffusion transformer activations, and concept attention maps
(Helbling et al., 2025), we achieve robust supervision with strong image-mask alignment while
eliminating performance bottlenecks.

3 MODEL

Most recent SOD methods focus on improving performance through complex architectural compo-
nents such as multi-view feature fusion (Yu et al., 2024) or iterative refinement modules (Zheng et al.,
2024). In contrast, we propose a lightweight architecture that addresses SOD ambiguity through a
multi-mask decoder while significantly simplifying other components.

3.1 MODEL ARCHITECTURE

We build our model upon the Dense Prediction Transformer (DPT) (Ranftl et al., 2021) architecture,
which processes input images through transformer (Vaswani et al., 2017) stages followed by multi-
scale feature reassembly. DPT transforms input into patch token sequences, processes them through
transformer layers, then reshape it into multi-scale image-like representations. These features are
progressively fused and upsampled through residual convolutional blocks (He et al., 2016) to produce
final predictions. We adopt this efficient hierarchical design as our backbone. We initialize the DPT
encoder with DINO-v3 weights to improve generalization, leveraging visual representations from
large-scale self-supervised training. The full architecture is shown in Figure 2.
We formulate the problem as function f : I → M mapping from images I ⊂ RH×W×3 to binary
masks M = {0, 1}H×W of spatial resolution H ×W . Many training annotations contain ambiguity:
multiple objects may be present with unclear saliency interpretation. Single-output models tend to
average all possible predictions, resulting in low-confidence regions.
To address this, we design the final mask prediction head to output multiple masks (m1, . . . ,mN ).
Predicted masks are soft mi ∈ (0, 1)H×W to model pixel-wise confidence. For each training
image I ∈ I, only one ground truth annotation y ∈ M is available. Inspired by multiple-choice
learning (Guzman-Rivera et al., 2012), during training, the main loss applies to the best prediction
i∗ = argmini IoU(mi, y), chosen via IoU score between predicted and ground truth masks.
To prevent unused branches from degrading, we employ relaxed assignment (Rupprecht et al.,
2017) where loss is computed across all branches with decaying weight: L = Li∗ + λe−γt

∑N
i Li,

where λ controls initial auxiliary branch weight, γ is decay rate, t is current epoch. Individual
losses Li = L(mi, y) are described next. For test-time selection, the model estimates IoU scores
(s1, . . . , sN ) for every prediction. This is supervised by actual IoU scores between prediction and
ground truth during training and this estimate is used to select the highest-scoring mask during testing.

3.2 OBJECTIVE FUNCTION

Following standard semantic segmentation practice, we employ a multi-component loss combining
pixel-wise and region-wise supervision. The total loss L consists of two main components: Focal
Loss (Lin et al., 2017) Lfocal for handling class imbalance and IoU Loss LIoU for region-level
accuracy.
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Figure 2: S3ODNet Architecture. Model extends DPT (Ranftl et al., 2021) to predict multiple mask
candidates and a vector of IoUs with the ground truth, employing DINO-v3 as the backbone. During
training, the loss is propagated through the branch with the highest predicted IoU.

Focal Loss. To address foreground-background imbalance, we implement focal loss, widely used
in dense prediction:

Lfocal(mi) = −
H×W∑
p=1

(1−mi(p))
τy(p) log(mi(p))

where p iterates over pixels indexing predicted mask mi(p) and ground truth y(p), and τ = 2 is the
focusing parameter.

IoU Loss. To capture region-level accuracy, we incorporate IoU loss measuring overlap between
predicted and ground truth masks:

LIoU(mi) = 1−
∑H×W

p=1 mi(p)y(p)∑H×W
p=1 (mi(p) + y(p)−mi(p)y(p))

The overall mask loss combines both components:
Lmask(mi) = λmaskLfocal(mi) + LIoU(mi, y)

where λmask = 10 balances the losses.

IoU Score Loss. To enable optimal mask selection at inference, we supervise predicted IoU scores
si using mean squared error between predicted and actual IoU values:

Lscore(si) = (si − IoU(mi, y))
2

Finally, the overall training objective comprises the mask loss of best prediction, score loss for all
predictions, and a decaying regularizer across all predicted masks:

Lmask(mi∗) +

N∑
i=1

λscoreLscore(si) + λrege
−γtLmask(mi)

where λscore = 0.05, λreg = 0.1 weigh the losses, γ = 0.2 is decay rate, t is current epoch, and N is
the number of prediction branches.

4 DATASET

Unlike other dense prediction tasks, scaling SOD datasets faces unique challenges that cannot
be solved by simply leveraging existing collections like LAION (Schuhmann et al., 2022). SOD
requires samples with distinct foreground objects, and annotation demands significant expertise and
attention to detail, particularly for high-resolution images with precise boundary requirements. These
constraints make traditional manual dataset curation both impractical and cost-inefficient. Our goal is
to generate large-scale synthetic data that accurately reflects real-world distributions.

4.1 MULTI-MODAL DATASET DIFFUSION

Large-scale diffusion transformers like FLUX (Labs, 2023) with 12B parameters encode rich se-
mantic and spatial representation during the generation process. Rather than ignoring these latent
representations and relying on teacher models that predict masks directly from generated images,
we extend the diffusion model to output masks by combining multiple complementary modalities.
We extract latent feature maps that encode spatial layout understanding, concept attention maps that
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Figure 3: Iterative Generation Pipeline. The LLM (Achiam et al., 2023) generates a library of
diverse prompts for a large set of object categories. These prompts guide a diffusion model to
generate synthetic images with corresponding masks. The resulting dataset trains SOD model, which
undergoes category-wise evaluation. Performance feedback from a trained SOD model dynamically
adjusts category weights w̃i, prioritizing challenging cases in next iterations.

provide interpretable semantic localization, and DINO-v3 features from decoded images that capture
fine-grained visual semantics. This multi-modal supervision mitigates data scarcity while ensuring
alignment between generated images and corresponding masks.
DiT Feature Maps. FLUX DiT employs a hybrid architecture with 19 dual-stream transformer
blocks (processing text and image tokens separately) and 38 single-stream blocks (operating on con-
catenated sequences). We extract feature maps from four single-stream transformer blocks at layers
{4, 16, 27, 36}, encoding multi-scale spatial representations across generation stages. Each block
outputs features RB×(LT+LI)×3072 where LT = 512. We extract only image tokens RB×LI×3072

and project to 768 dimensions via learned projections. These features encode the model’s internal
spatial understanding used during generation.
Concept Attention Maps. Common dataset generation methods (Wu et al., 2023a) extract mean
attention maps across all text tokens, producing semantically ambiguous supervision. Instead, we
use a static set of concepts to obtain interpretable, consistent maps. Following the concept attention
framework (Helbling et al., 2025), for each generated image, we compute attention maps between
image patches and static concept tokens. For concept token c and image patch x, we compute:

Aconcept(x, y) = softmax(ox · oTc )
where ox and oc are attention output vectors from the multi-modal transformer layers. For each
sample, we extract two concept attention maps using the primary object category (e.g., ”dog”) and
”background” tokens, yielding interpretable maps {Aobject, Abackground} that consistently encode
object location and background regions.
DINO-v3 Visual Features. We extract semantic visual features from generated images using DINO-
v3 (ViT-L), providing rich object-level representations that capture fine-grained visual semantics
through self-supervised learning trained on large-scale real world data.
The three modalities are fused through a dedicated module that projects each to a common 256-
dimensional space via separate convolutional branches with batch normalization. FLUX features and
concept maps are upsampled to match DINO-v3 resolution using bilinear interpolation. The projected
features are concatenated channel-wise and processed through a two-stage convolutional network
(3× 3 followed by 1× 1 convolution), with the result residually combined with the original DINO-v3
features to produce unified multi-modal representations. We feed this combined representation into
DPT decoder, supervising it with DIS-5K, HR-SOD, UHRSOD and DUTS datasets, ensuring the
model learn how to decode multiple sources into a fine-grained segmentation mask.

4.2 ITERATIVE DATA SYNTHESIS

To incorporate a feedback mechanism into the data generation, we introduce an iterative process that
adjusts generation parameters based on the downstream model’s performance for subsequent rounds.
After training the model on synthetic data D(r), we evaluate its performance on a held-out test set for
each category ci. For each image Ij , we compute a score κ(Ij), which is the average IoU score across
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Table 1: SOD Datasets Statistics: S3OD dataset is orders of magnitudes larger than existing datasets
and contains a wide variety of scenes and objects.

Metric DUTS ECSSD HKU-IS DUT-OMRON UHRSD HRSOD DIS-5K S3OD (ours)

# of Images 15,570 1,000 4,447 5,168 5,920 2,010 5,000 139,981
# of Unique Objects 1152 310 551 749 948 381 758 1676

Figure 4: S3OD Dataset: The dataset consists of diverse object categories and complex scenes that
closely reflect real-world environments, featuring various lighting conditions, spatial compositions,
and object interactions. All samples are generated with multi-modal dataset diffusion.

various image transformations (flipping, etc.). κ(Ij) is high if the prediction is consistent across
augmentations. We then compute a mean category score κ̄i by averaging these scores across all
images in category ci. The category weights w(r+1)

i for the next iteration are updated proportionally
to the inverse of these scores, ensuring categories with lower performance receive more samples
in subsequent generations. Specifically, we map the category scores through a non-linear scaling
function: w(r+1)

i = wmin + wnewe
−α(κ̄i−β), where α = 8 and β = 0.5 control the strength of the

performance-based skew, wmin = 1
|C| is a minimum weight per class, and wnew = 4

|C| is the maximal
possible over-weighting. This scales up weights for categories with scores below a certain threshold
while maintaining a minimum weight for well-performing categories. This adaptive sampling strategy
ensures that the synthetic data generation process continuously evolves, producing examples that
maximize model improvement. The pipeline is visualized in Figure 3.

4.3 MULTI-STAGE QUALITY FILTERING

While synthetic data generation offers scalability, it inevitably produces imperfect samples that can
degrade training quality. To ensure high dataset quality, we implement a comprehensive multi-stage
filtering pipeline that addresses standard failure modes in synthetic data generation.
Consistency Filtering. We evaluate prediction consistency using a separate large model trained
without FLUX features. For each sample, we compute IoU between the original prediction and
horizontally-flipped prediction, filtering samples below τ = 0.8 consistency threshold. Low consis-
tency scores often indicate overly ambiguous samples where even robust models struggle to maintain
coherent predictions, suggesting fundamental issues with the generated image-mask pairs.
Mask Quality Assessment. We employ a Gemma-3 VLM (Team et al., 2025) to evaluate mask
quality, identifying severe artifacts such as fragmentation, noise or artifacts that commonly occur
in image segmentation. Only masks with cohesive white regions (≤ 5 main components) pass this
stage, ensuring clean supervision signals for model training.
Semantic Validation. In a second pass, the Gemma VLM evaluates semantic correctness by analyzing
the original image and the mask overlay. This stage ensures both the presence of clear salient objects
and adequate mask coverage (> 70% of the main object), filtering out samples where the multi-modal
supervision fails to capture the intended semantic content.
This multi-stage approach removes 6.8% of generated samples, significantly improving dataset quality
while maintaining scale advantages over manual annotation.

4.4 IMPLEMENTATION DETAILS

We generate 139,981 high-resolution data samples Figure 4 in three rounds (R = 3) which is 131%
more than 11 most common academic benchmarks combined. We sample category names from
ImageNet taxonomy covering wide range of objects and activities Table 1. First round generates
100 images per category, followed by a second and third round of additional 25,000 images in each,
prioritizing challenging categories. During processing, 6.8% of the samples are filtered out. The
images are generated with a FLUX model with 25 inference steps. For each image, we randomly
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Table 2: Cross-Dataset Generalization: S3ODNet trained on synthetic data only demonstrates
superior generalization across all datasets comparing to other methods trained on subtasks datasets.
SOD datasets stand for (HRSOD-TR (Zeng et al., 2019), UHRSD-TR (Xie et al., 2022b) and DUTS-
TR (Wang et al., 2017)). Best and second best results highlighted.

Method Data DIS-1 DIS-2 DIS-3 DIS-4 Overall
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
InSpyreNet DUTS .786 .822 .857 .064 .828 .845 .877 .057 .839 .848 .883 .059 .789 .806 .838 .082 .811 .830 .864 .065
BiRefNet SOD .812 .841 .863 .049 .844 .855 .877 .050 .855 .856 .881 .053 .790 .803 .824 .081 .825 .839 .861 .058
S3ODNet SOD .850 .885 .902 .046 .880 .870 .914 .043 .888 .875 .928 .040 .833 .823 .881 .069 .863 .856 .906 .049
S3ODNet S3OD .865 .884 .917 .034 .896 .898 .933 .032 .901 .895 .938 .033 .861 .857 .913 .054 .881 .884 .925 .039

Method Data DAVIS-S HRSOD-TE UHRSOD-TE DUTS-TE DUT-OMRON
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
InSpyreNet DIS .921 .937 .966 .015 .891 .912 .923 .038 .914 .922 .932 .033 .845 .880 .895 .046 .713 .801 .812 .071
BiRefNet DIS .919 .936 .961 .014 .887 .915 .926 .031 .922 .924 .937 .032 .860 .886 .910 .036 .744 .819 .835 .054
MVANet DIS .907 .929 .959 .016 .902 .919 .930 .033 .922 .926 .941 .032 .852 .877 .893 .042 .711 .792 .838 .072
S3ODNet DIS .951 .950 .973 .010 .923 .913 .932 .030 .946 .927 .947 .029 .902 .901 .926 .035 .808 .830 .858 .061
S3ODNet S3OD .970 .967 .988 .005 .954 .955 .972 .016 .954 .944 .961 .023 .937 .938 .962 .020 .860 .887 .911 .040

sample aspect ratio from a fixed set of common image resolutions, further expanding dataset variety.
All student models are trained with the ViT-B (Dosovitskiy et al., 2020) backbone. Model training on
S3OD dataset takes 2 days on 8 H200 GPUs.

5 EXPERIMENTAL EVALUATION

We extensively evaluate dataset and model generalization and performance on various benchmarks.

5.1 EVALUATION PROTOCOL

The performance of the salient object detection models is evaluated on six datasets of two domains.
For dichotomous image segmentation (DIS), we use DIS-5K (Qin et al., 2022), containing 5,470
high-resolution images with extremely fine-grained labels of camouflaged, salient, and meticulous
objects in varied backgrounds. For Salient Object Detection (HR-SOD), we evaluate on three high-
resolution benchmarks: UHRSD (Xie et al., 2022b) (5,920 images at 4K-8K resolution), HRSOD-TE
(Zeng et al., 2019) (400 test images with shortest edge >1200 pixels), and DAVIS-S (92 images from
DAVIS (Pont-Tuset et al., 2017) video segmentation dataset). We also include two low-resolution
benchmarks: DUT-OMRON (Yang et al., 2013) (5,168 images with complex backgrounds) and
DUTS-TE (Wang et al., 2017) (5,019 test images from the largest available SOD dataset). All datasets
feature pixel-wise ground truth annotations for quantitative evaluation.

Metrics. We evaluate each model with commonly used metrics: maximum F-measure (F1max)
(Achanta et al., 2009), Mean Average Error (MAE) (Perazzi et al., 2012), structure measure (Sα) (Fan
et al., 2017) and enhanced alignment measure (EΦ

M ) (Fan et al., 2018). The F-measure (Fβ) provides
a balance between precision and recall, computed with β2 = 0.3 to emphasize precision. MAE
calculates the average absolute difference between predicted and ground truth masks. The structure
measure Sα evaluates preservation of object-aware (So) and region-aware (Sr) structural similarities,
computed as Sm = α ∗ So + (1 − α) ∗ Sr with α = 0.5. The enhanced alignment measure EΦ

M
combines local and global similarity information, jointly capturing image-level statistics and local
pixel matching information.

5.2 CROSS-DATASET GENERALIZATION

We argue that the most important aspect of modern salient object segmentation models should be
generalizing to new image distributions. We evaluate the cross-task generalization by training the
model on DIS-5K (Qin et al., 2022) dataset and evaluating on SOD benchmarks and vice versa. The
robust generalizable method is expected to perform well on all benchmark datasets, given that all
focus on the same high-level problem. The results are presented in Table 2. S3OD trained on a
combination of SOD datasets achieves superior generalization comparing to BiRefNet (Zheng et al.,
2024) or InSpyreNet (Kim et al., 2022).
Remarkably, even training solely on synthetic data enables the method to achieve state-of-the-art
generalization, reducing the MAE compared to the model trained on DIS-5K by 50.0%, 46.7%,
20.7%, 42.9%, and 34.4%. The models trained on DIS-5K only (3000 images) and evaluated on
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Table 3: Quantitative comparison on DIS5K and SOD benchmarks. Best results highlighted in bold.
The S3ODNet ∗ are the metrics computed with the best match over three predicted masks.

Method DIS-1 DIS-2 DIS-3 DIS-4 Overall
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
SAM-HQ .897 .907 .943 .019 .889 .883 .928 .029 .851 .851 .897 .045 .763 .799 .843 .088 .850 .860 .903 .045
InSpyreNet .845 .873 .874 .043 .894 .905 .916 .036 .919 .918 .940 .034 .905 .905 .936 .042 .891 .900 .917 .039
BiRefNet .860 .885 .911 .037 .894 .900 .930 .036 .925 .919 .955 .028 .904 .900 .939 .039 .896 .901 .934 .035
MVANet .862 .880 .906 .039 .909 .912 .942 .032 .924 .918 .954 .030 .907 .905 .946 .039 .900 .904 .937 .035
S3ODNet .892 .902 .932 .031 .923 .921 .953 .026 .930 .920 .960 .025 .909 .902 .954 .034 .914 .911 .950 .029
S3ODNet ⋆ .916 .924 .960 .018 .941 .936 .973 .016 .941 .931 .975 .018 .914 .907 .967 .027 .928 .924 .969 .020

Method DAVIS-S HRSOD-TE UHRSD-TE DUTS-TE DUT-OMRON
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
InSpyreNet .977 .973 .987 .007 .956 .956 .962 .018 .957 .953 .965 .020 .932 .936 .956 .024 .823 .872 .906 .046
BiRefNet .979 .975 .989 .006 .963 .957 .973 .016 .963 .957 .969 .016 .943 .944 .962 .018 .839 .882 .896 .038
S3ODNet .979 .974 .993 .004 .963 .961 .978 .013 964 .952 .969 .018 .954 .949 .972 .015 .879 .898 .924 .032
S3ODNet ⋆ .982 .977 .993 .004 .979 .973 .991 .005 .977 .966 .985 .008 .963 .959 .987 .008 .907 .919 .953 .023

SOD benchmarks all achieve comparable results, proving an importance of the data scale and and
impact of overfitting to the subtask specifics. Still, S3OD trained on synthetic data demonstrates
strong generalization across all benchmarks.

5.3 STATE-OF-THE-ART COMPARISON

Prior work does not evaluate cross-task generalization and trains task/benchmark-specific models.
While we argue that the evaluation above is the way forward for salient object segmentation, we
also evaluate in the historically used setting. We finetune the model trained on our S3OD dataset
on both the DIS-5K (Qin et al., 2022) and a combination of SOD datasets (HR-SOD (Zeng et al.,
2019), UHRSOD (Xie et al., 2022b), DUTS-TR (Wang et al., 2017)). We report the results in Table 3.
S3OD significantly outperforms all the other methods on DIS-5K benchmarks achieving a new
state-of-the-art and reducing the error rate by 14.0%, 7.3%, 20.6% and 17.1%.
However, the salient object detection benchmarks have become highly saturated. S3OD achieves
superior results on HRSOD-TE (Zeng et al., 2019), DUTS-TE (Wang et al., 2017), and DUT-OMRON
(Yang et al., 2013), even though all models are trained on the first two datasets. The evaluation on
the DUT-OMRON benchmark serves as the strongest generalization test as none of the models were
trained or fine-tuned on it, and the benchmark consists of 5,168 samples. S3OD achieves 24.8%,
13.6%, 26.9% and 15.8% reduction in error rate compared to BiRefNet. Notably, on UHRSD (Xie
et al., 2022b), which is the largest HR-SOD train dataset and DAVIS-S, which contains only 92
images, all large models with transformer backbones achieve comparable results. This is another
indicator of benchmark saturation and supports our choice of cross-task generalization evaluation.
The variant S3OD ⋆ computes the metrics with the best match of the three masks with the ground truth
mask. This oracle evaluation uses ground truth information and cannot be compared to other methods.
However, it demonstrates the inherent ambiguity in the data annotations and/or the task. This confirms
that our choice of ambiguity-aware modelling will be highly useful in practical applications.

5.4 SYNTHETIC DATA EVALUATION

We also evaluate our data generation mechanism compared to other data synthesis methods. We
measure the impact of synthetic data on performance and generalization, evaluating S3OD and other
synthetic data generation methods (Wu et al., 2023a; Qian et al., 2024). MaskFactory (Qian et al.,
2024) augments the DIS-5K (Qin et al., 2022) dataset with both rigid and non-rigid transforms and
generates a new set of images conditioned on augmented masks. To ensure fair comparison, we train
our model on DIS-5K and a mix of DIS-5K and three synthetic datasets. Since the other two synthetic
datasets contain only 10,000 train images, we also subsample a subset from S3OD of the same size
from the 2nd iteration of data generation. We evaluate the model both on DIS and SOD benchmarks.
The results are presented in Table 4.

Results. Interestingly, S3OD achieves comparable performance to MaskFactory (Qian et al., 2024)
on the DIS-5K test set, even though it was not fine-tuned for categories and types of object in this
benchmark, despite MaskFactory utilising the DIS-5K train set to generate augmented masks. On
other four SOD benchmarks S3OD demonstrates significantly stronger generalization and perfor-
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Table 4: Synthetic Data Generation Evaluation: S3ODNet model is trained on a combination of
DIS-5K and 3 synthetic datasets. Training with S3OD dataset significantly improves generalization.

Training Data DIS (1-4) HRSOD-TE UHRSD-TE DUTS-TE DUT-OMRON
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
DIS .910 .897 .943 .032 .923 .913 .932 .032 .946 .927 .947 .030 .902 .901 .925 .036 .808 .830 .858 .061
DIS + MaskFactory .912 .904 .950 .030 .910 .916 .936 .031 .937 .926 .947 .030 .886 .898 .924 .038 .774 .812 .842 .071
DIS + DatasetDM .898 .889 .939 .036 .899 .896 .911 .041 .932 .914 .934 .037 .872 .877 .900 .048 .770 .795 .818 .080
DIS + S3OD .908 .905 .945 .030 .944 .946 .963 .020 .950 .940 .958 .024 .924 .928 .951 .025 .842 .871 .899 .048

Table 5: Iterative Data Generation Ablation: Progressively generating hard samples improves
model performance and generalization across all datasets.

Training Data DIS (1-4) HRSOD-TE DUTS-TE DUT-OMRON
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓

S3OD Single Round .879 .883 .916 .041 .951 .953 .969 .018 .933 .935 .959 .020 .855 .881 .907 .042
S3OD (2 rounds) .880 .884 .918 .040 .953 .954 .971 .017 .935 .939 .961 .020 .859 .885 .908 .040
S3OD (3 rounds) .881 .884 .925 .039 .954 .955 .972 .016 .937 .938 .962 .020 .860 .887 .911 .040

mance, comparing to both original train dataset and other synthetic data generation methods, proving
the diversity and versatility of our data generation method.

5.5 ABLATION STUDY

Table 6: Data Diffusion Model Ablation: Combining all three modalities achieves optimal perfor-
mance across benchmarks.

DINO-v3 DiT Maps Concept Maps DIS (1-4) HRSOD-TE UHRSD-TE DUTS-TE DUT-OMRON
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
× ✓ ✓ .710 .743 .783 .091 .733 .784 .789 .097 .865 .868 .890 .054 .773 .805 .840 .070 .681 .733 .772 .095
✓ × ✓ .913 .909 .949 .029 .959 .958 .974 .014 .965 .953 .971 .017 .950 .945 .968 .017 .870 .887 .911 .036
✓ ✓ × .914 .906 .944 .030 .961 .957 .972 .014 .965 .952 .971 .016 .949 .943 .966 .017 .871 .889 .915 .036
✓ ✓ ✓ .917 .913 .951 .028 .962 .961 .976 .012 .966 .953 .971 .016 .948 .944 .969 .016 .873 .891 .918 .034

Table 7: Architecture Ablation: Multi-mask
decoder improves performance on DIS-5K.

Backbone NM Fm ↑ Sα ↑ MAE↓
Swin-B 1 .884 .883 .044
DINO-v3 1 .909 .911 .033
DINO-v3 2 .892 .896 .034
DINO-v3 3 .914 .913 .031

Table 8: Prompt Generator: LLM prompts
improve diversity and quality.

Prompt CLIP↑ IS↑
Class Name .399 67.8
GPT .434 .98.1

We evaluate our multi-modal data diffusion approach and architectural components. Table 6 shows
individual feature types are insufficient: diffusion features alone cannot decode high-resolution masks,
while DINO-v3, despite strong performance, can suffer from train-test distribution gaps when applied
to generated images. The combination of all three modalities achieves optimal performance across
benchmarks, with diffusion features providing crucial complementary information for challenging,
ambiguous cases. DINO-v3 backbone significantly outperforms Swin-B (Table 7), demonstrating
foundation model value. Three mask predictions also yield best performance, proving multi-mask
effectiveness. Iterative generation Table 5 consistently improves performance with 3.6% F-measure
gain on DIS datasets and 5.3% on DUT-OMRON, confirming the effectiveness of prioritizing chal-
lenging categories. LLM-generated prompts improve synthetic image quality with 44.7% Inception
Score Table 8 increase over simple class names, highlighting prompt engineering importance.

6 CONCLUSION

We demonstrate that combining features from generative and discriminative models: DiT feature
maps, concept attention maps, and DINO-v3 features enables effective synthetic data generation
for salient object detection. Our iterative generation framework dynamically prioritizes challenging
categories, while the ambiguity-aware architecture naturally handles multiple valid interpretations.
This pipeline significantly improves cross-dataset generalization and provides a scalable framework
for addressing data scarcity in dense prediction tasks, suggesting that synthetic datasets can be
complementary to manual annotations in computer vision applications.
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A DATASET EVALUATION

To further validate an impact of S3OD dataset we retrained BiReftNet (Zheng et al., 2024) and
MVANet (Yu et al., 2024) on our synthetic data. Results are reported in Table 9 and are consistent
with other evaluations. Training on S3OD improves the generalization of all models and S3ODNet
still outperforms other methods trained in the same setup.

Method Data DAVIS-S HRSOD-TE UHRSOD-TE DUTS-TE DUT-OMRON
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
MVANet DIS .907 .929 .959 .016 .902 .919 .930 .033 .922 .926 .941 .032 .852 .877 .893 .042 .711 .792 .838 .072
MVANet S3OD .951 .958 .975 .008 .950 .948 .954 .019 .951 .943 .942 .024 .875 .893 .901 .039 .776 .791 .873 .064

BiRefNet DIS .919 .936 .961 .014 .887 .915 .926 .031 .922 .924 .937 .032 .860 .886 .910 .036 .744 .819 .835 .054
BiRefNet S3OD .963 .958 .978 .009 .956 .951 .965 .019 .955 .949 .962 .022 .928 .931 .951 .024 .845 .882 .899 .045

S3ODNet DIS .951 .950 .973 .010 .923 .913 .932 .030 .946 .927 .947 .029 .902 .901 .926 .035 .808 .830 .858 .061
S3ODNet S3OD .970 .967 .988 .005 .954 .955 .972 .016 .954 .944 .961 .023 .937 .938 .962 .020 .860 .887 .911 .040

Table 9: Impact of S3OD dataset on salient object detection performance across different methods.
Training on S3OD improves generalization across all methods.

B GENERALIZATION TO CAMOUFLAGED OBJECT DETECTION

Method Data COD10K CAMO NC4K
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
S3ODNet SOD .850 .862 .911 .034 .858 .848 .893 .061 .896 .889 .929 .034
S3ODNet DIS .832 .853 .896 .035 .845 .846 .892 .058 .885 .882 .922 .035
S3ODNet MaskFactory .809 .828 .884 .035 .849 .838 .889 .060 .872 .864 .909 .038
S3ODNet S3OD .854 .880 .920 .033 .859 .864 .906 .056 .897 .901 .936 .032

FSPNet COD .769 .851 .895 .026 .830 .856 .899 .050 .843 .879 .915 .035
BiRefNet COD .888 .913 .960 .014 .904 .904 .954 .030 .909 .914 .953 .023
S3ODNet S3OD +COD .911 .923 .970 .012 .908 .903 .949 .031 .923 .920 .961 .020

Table 10: Evaluation on COD benchmarks. We evaluate generalization to Camouflaged Object
Detection. When trained on S3OD dataset S3ODNet reach the strongest generalization to the new
task in zero-shot transfer setting, comparing to other real and synthetic dataset. Fine-tuned on COD
data S3ODNet achieves state-of-the-art results on COD-10K and NC4K benchmarks.

Figure 5: Zero-shot Evaluation on Camouflaged Object Detection. Left to Right: Image, Predicted
Mask, Ground Truth. Our model trained on S3OD generalizes to detecting camouflaged objects
despite being trained exclusively on synthetic SOD data.

To evaluate the generalization of our dataset and model beyond salient object detection, we assess
transfer to Camouflaged Object Detection (Fan et al., 2020): a challenging task where objects are
specifically designed to blend with their backgrounds. We evaluate on three COD benchmarks:
COD10K (Fan et al., 2020), CAMO (Le et al., 2019), and NC4K (Lv et al., 2021). Table 10 shows
that S3ODNet trained solely on S3OD (without any real data) achieves strong zero-shot performance,
outperforming models trained on SOD, DIS or MaskFactory datasets across all metrics. Next,
following BiRefNet setup we finetune S3OD on CAMO and COD-10K train sets. The finetuned
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Figure 6: Multi-Modal Feature Visualization: Each modality captures complementary information:
concept attention maps provide semantic localization, DINO-v3 encodes fine-grained visual semantics,
and FLUX DiT features capture spatial scene structure. High-dimensional features (FLUX, DINO-v3)
are visualized via PCA projection to RGB.

model reaches state-of-the-art results on COD10K (Fm = 0.911 vs BiRefNet’s 0.888) and NC4K
(Fm = 0.923 vs 0.909). Similar to SOD evaluation we observe than the smallest benchmark the other
models are also trained on (CAMO with only 250 test images) shows saturation due to overfitting.
This validates that our synthetic data teaches generalizable segmentation principles beyond salient
object detection. Interestingly, S3ODNet trained only on our synthetic data outperforms some of the
methods that were trained on COD datasets (Huang et al., 2023).
Figure 5 visualizes predictions on challenging camouflaged scenes, showing that models trained only
on S3OD successfully detect occluded complex objects with ambiguous boundaries confirming even
such challenging scenarios are represented in S3OD synthetic dataset.

C FEATURE COMPLEMENTARITY

Figure 6 visualizes the three feature sources on dataset samples. Concept attention maps provide
strong but coarse foreground-background separation through explicit semantic grounding. DINO-v3
features capture fine-grained visual semantics where similar regions exhibit similar embeddings,
enabling strong object-level understanding. FLUX DiT features encode spatial scene parsing in-
formation from the generative process, including boundary localization and structural composition.
The visualization also demonstrate the limitations of individual feature sources. Concept maps
provide strong foreground cues on simple scene but fail to precisely localize foreground object in
more complex scenario (rows 3 and 4) – demonstrating the limitation of unsupervised segmentation
methods that rely only on attention maps (Helbling et al., 2025). Rows 3 and 5 also show DiT feature
maps capabilities: in contrast to DINO feaures the objects in reflection or snow piles patches have
higher similarity as diffusion model efficiently reuse the information during generation. This precisely
demonstrate an importance of combining multiple feature sources: in highly complex ambiguous
scenes generative and discriminative features complement each other allowing to decode high quality
mask. Note that FLUX and DINO-v3 features are high-dimensional and visualized via PCA for
interpretability.
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D PROMPTING

To further enhance the quality and diversity of our synthetic data, we employed an LLM (Achiam et al.,
2023) to generate detailed, specific prompts rather than using simple class names. The prompting
strategy was designed to systematically vary key aspects of scene composition including object size,
positioning, occlusion levels, lighting conditions, and environmental complexity. For example, when
generating ”lion” category images, prompts varied from scenes with multiple lions to single lions in
challenging environmental conditions. These detailed textual descriptions guided the diffusion model
to create more challenging, diverse training samples that better reflect real-world scenarios and edge
cases. The set of example prompts for the ”lion” category includes:

1. A medium-sized lion lying on a sunlit rock, partially obscured by tall grass, with a dense
forest background; intricate shadows play on the lion’s fur and the rock surface.

2. A small lion cub, occupying the left third of the frame, peeking through a thicket of dry
branches in a savannah setting with blurred golden grass and a distant treeline.

3. Two lions resting under the shade of an acacia tree, one lion partially hidden by the tree’s
trunk; dappled sunlight filters through the leaves, creating complex patterns on the ground.

4. A majestic lion standing on a hilltop, backlit by the setting sun, casting a dramatic silhouette
against a vibrant, cloud-streaked sky with the savannah stretching out in the background.

5. A close-up of a lion’s face, centered in the frame, with its mane blending into a similarly
colored rocky background; fine textures of the fur and rock are sharply defined.

6. A trio of lions walking through a misty grassland, with their figures partly obscured by the
fog; subtle variations in coloration and mane distinguish each lion.

7. A lioness crouching low in a field of tall yellow grass, partially obscured and camouflaged
by the foliage, with a clear blue sky above and distant hills in the background.

8. A large male lion resting near a waterhole, with its reflection visible in the water; surrounding
reeds and scattered stones add complexity to the scene.

9. A lion moving through a snowy landscape, with snowflakes gently falling; the lion’s fur
stands out against the whiteness, and scattered bushes break the monotony of the snow.

10. A wide shot of a lion pride relaxing in the shade of a large rock formation, with varied poses
and partial occlusions by rocks; the background features a lush green valley.

The full system prompt is presented in Figure 7

E DATASET QUALITY

We conducted a quality assessment of our synthetic dataset across multiple dimensions. Manual
verification of 1,000 randomly sampled masks revealed high annotation quality: only 14 samples
(1.4%) exhibited minor issues such as slightly incomplete mask boundaries, while merely 1 sample
(0.1%) was missing a clear foreground object entirely. This demonstrates the effectiveness of our
multi-stage filtering pipeline and multi-modal dataset diffusion approach.
To quantitatively evaluate synthetic-to-real domain gap we compute quality and coverage of the
samples produced by a generative model following (Kynkäänniemi et al., 2019) versus a combination
of SOD and DIS datasets. We observe that both synthetic images and masks closely follow real
distribution in contrast to other methods that only model a part of it. Further, UMAP (McInnes et al.,
2018) projections of DINO-v3 image and masks features demonstrate that S3OD samples cover a
larger region of the real data manifold compared to MaskFactory (Qian et al., 2024). Reduced domain
gap directly explains the superior generalization of the models trained on S3OD.
Another significant challenge in synthetic data generation is the domain gap between synthetic and
real images. We observed that standard FLUX model fine-tuned for aesthetics produce unnatu-
rally oversaturated images that differ substantially from real-world photography. To address this,
we employ the FLUX-Krea checkpoint (Black Forest Labs, 2025), which underwent large-scale
reinforcement learning alignment specifically for photorealism, producing significantly more natural-
looking images. Additionally, during pretraining we apply comprehensive image augmentations to
further reduce the synthetic-to-real domain gap.
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System Prompt for Salient Object Detection Data Generation

Generate exactly {num prompts} diverse prompts for {main class} images for salient object detection.
Focus on natural, photorealistic scenes with varying complexity.
Focus on natural, photorealistic scenes with an elevated level of realism, complexity, and diversity.
Key aspects to vary:

• Object size: Include scenes with small main objects (occupying 10-30% of the frame) as well
as larger instances, ensuring varied prominence.

• Object position: Vary placement between center, left, and right sides of the frame.

• Multiple instances: Occasionally include 2-3 distinct instances of the main object, each with
subtle differences in appearance or partial occlusion.

• Visual complexity: Integrate rich textures, intricate patterns, and similarly-colored natural
background elements that challenge segmentation.

• Occlusion: Introduce partial occlusion by natural elements (10-20% occlusion) to add depth.

• Lighting: Vary between harsh shadows, dramatic backlighting, and dappled sunlight, ensuring
that all lighting conditions remain natural.

• Environment: Use visually busy natural settings with detailed foreground, midground,
and background elements that contribute to overall scene complexity. Include challenging
conditions such as fog, rain, snow, or dusty haze to heighten realism if appropriate.

• Viewpoint: Mix close-ups, medium shots, and wide perspectives for diverse scene composi-
tions.

• Additional elements: Ensure the main object remains identifiable in the foreground, integrated
into a naturally complex setting without relying on artificial or softened effects.

Essential requirements:
• The main object(s) must be clearly discernible for salient object detection, yet embedded

within a challenging, detailed environment.

• Avoid artificial or studio setups—use only natural settings and lighting.

• Maintain sharp focus across all scene elements to ensure realism; do not include any blur,
bokeh, or artificially softened backgrounds.

• The background should be naturally complex and detailed, providing a challenging context
for segmentation without compromising the visibility of the main object.

Return exactly {num prompts} prompts as Python list: [”A description of a scene”, ...]
Important: Double-check that your response contains exactly {num prompts} prompts.

Figure 7: The complete system prompt used to instruct the LLM (Achiam et al., 2023) for generating
diverse text descriptions. These descriptions focus on creating natural scenes with varying complexity,
occlusion, and lighting to simulate challenging real-world conditions for salient object detection.

We evaluate synthetic data quality using standard generative model metrics compared to existing
approaches. As shown in Table 11, our method achieves superior image quality and diversity
comparing to datasets based on older diffusion models. S3OD achieves an Inception Score of 35.19
compared to MaskFactory’s 17.41 and DatasetDM’s 14.97, indicating better diversity and quality. Our
FID score of 1.74 significantly outperforms MaskFactory (2.81) and DatasetDM (3.16), demonstrating
closer similarity to real data distribution.

Table 11: Dataset Quality Comparison: S3OD generated with large DiT model fine-tuned for
photorealism achieves substantially higher quality and better real-data alignment compared to existing
synthetic approaches, demonstrating the importance of realistic generation models.

Method Diffusion Model Inception Score ↑ FID ↓
S3OD FLUX-Krea (Black Forest Labs, 2025) 35.19 1.74
S3OD FLUX-dev (Labs, 2023) 31.94 1.90
MaskFactory Stable Diffusion (Rombach et al., 2022) 17.41 2.81
DatasetDM Stable Diffusion (Rombach et al., 2022) 14.97 3.16
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Figure 8: S3OD Dataset Samples: Our method generates diverse high quality samples across a wide
variety of object categories.

F QUALITATIVE EVALUATION

We visualize the random samples from different categories of S3OD in Figure 8. It demonstrates
the diversity and realism achieved by our synthetic data generation pipeline, spanning various object
types, lighting conditions, and scene compositions. The samples exhibit challenging scenarios with
complex backgrounds, partial occlusions, and varying object: key attributes for training robust salient
object detection models. As shown in Figure 9, LLM-based prompt generation significantly enhances
the visual quality and diversity.

G MODEL DETAILS

S3ODNet achieves a strong balance between performance and efficiency as shown in Table 12,
comparable to other state-of-the-art models that utilize large transformer backbones. Notably, the
model is both more efficient and has more parameters comparing to models that are based on the
Swin architecture (Liu et al., 2021b). The DINO-v3 (Siméoni et al., 2025) backbone with ViT-B
(Dosovitskiy et al., 2020) offers a favorable trade-off between computational efficiency and state-of-
the-art performance.
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Figure 9: Prompt Enhancement: Top: Class name as a prompt. Bottom: LLM Prompt Generator.
By focusing on key properties of salient object detection dataset the agent creates detailed and diverse
prompts to maximize the diversity and realism.

Input Image InSPyReNet BiRefNet MVANet S3OD Ground Truth

Figure 10: Qualitative Comparison: We compare S3ODNet vs state-of-the-art methods on DIS-5K
(Qin et al., 2022) dataset. By modeling multiple hypothesis S3ODNet is able to predict detailed
masks with high confidence. Alternative prediction can be seen in the bottom right corner.

Table 12: Model Efficiency. S3ODNet achieves comparable performance to other state-of-the-art
salient object detection methods.

Model Total Parameters FLOPs (T) FPS

InSPyreNet (Kim et al., 2022) 90,721,443 1.495 2.88
BiRefNet (Zheng et al., 2024) 220,176,498 1.143 3.65
MVANet (Yu et al., 2024) 94,139,021 0.857 4.62
S3ODNet 116,905,286 0.807 3.80
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(a) Image Feature Distribution (UMAP) (b) Mask Feature Distribution (UMAP)

(c) Precision-Recall: Images (d) Precision-Recall: Masks

Figure 11: Domain Gap Analysis. (a-b) UMAP projections of DINO-v3 image and masks features.
S3OD covers large portion of the real data distribution matching combined SOD real datasets. (c-d)
Precision-Recall curves (Kynkäänniemi et al., 2019) vs a combination of DIS and SOD dataset:
S3OD achieves higher recall and precision for both images and masks comparing to other synthetic
datasets that only cover a part of real data distribution demonstrating lower synthetic to real gap.

H STATE-OF-THE-ART COMPARISON

We further expand the analysis of S3OD performance vs other state-of-the-art methods. Table 13
evaluates the performance comparing to models finetuned from foundational segmentation model
(Ravi et al., 2024). We observe that all models that are based on SAM perform well on simpler
subset of DIS (DIS-TE1) but the performance drops significantly as the sample complexity increases.
S3ODNet outperforms all approaches (Ke et al., 2023; Liu et al., 2024) matching the performance of
DIS-SAM (Liu et al., 2025) which is a more complex two stage pipelines consisting of two separate
models performing segmentation in high resolution resulting in significantly larger complexity and
number of parameters comparing to our simple network design. This evaluation demonstrates that
the limited manually labeled data is still insufficient to finetune even the state-of-the-art foundational
models pretrained on various data from a slightly different domain.
Next we provide the results of more state-of-the-art methods as well as S3ODNet variant trained only
on DIS-5K or SOD datasets in Table 14 to further evaluate the impact of pretraining on synthetic
data. We include (Wei et al., 2020a; Zeng et al., 2019; Tang et al., 2021; Xie et al., 2022a) model to
SOD evaluation. Interestingly, S3OD trained only on synthetic data outperforms most of the older
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methods that were trained on SOD datasets when evaluating on SOD benchmarks! This showcases
both the quality of the synthetic data and model effectiveness. S3ODNet trained only on SOD
confirms the insights from Section 5 – the performance on salient object detection benchmarks
is saturated. All transformer based methods that were trained on SOD data show comparable
performance when evaluating on same datasets. The only benchmark that is from a different data
distribution is DUT-OMRON, demonstrating that S3ODNet trained on SOD outperforms other
methods and pretraining on S3OD further improves performance. This also highlights the importance
of cross-dataset generalization evaluation instead of only measuring overfitting to small academic
benchmarks.
The evaluation of S3ODNet trained on DIS-5K follows the same trend. We further evaluate (Qin
et al., 2019; 2020; Xie et al., 2022a; Qin et al., 2022; Pei et al., 2023; Zhou et al., 2023). Similarly to
other evaluations, S3ODNet trained on DIS outperforms other methods trained on same dataset and
pretraining on S3OD further improves the performance.

Table 13: Comparison of SAM-based methods and S3ODNet: Our model outperforms most larger
models finetuned from Segment Anything matching the performance of complex two-stage pipeline
(Liu et al., 2025).

Method DIS-TE1 DIS-TE2 DIS-TE3 DIS-TE4 Overall
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
SAM .838 .843 .805 .047 .803 .792 .863 .081 .773 .761 .848 .094 .677 .697 .762 .162 .773 .773 .845 .096
HQ-SAM .903 .907 .959 .019 .895 .883 .950 .029 .860 .851 .926 .045 .776 .799 .863 .088 .859 .860 .924 .045
Pi-SAM .890 .894 .947 .027 .903 .907 .953 .027 .899 .901 .953 .030 .869 .871 .939 .046 .890 .893 .948 .033
DIS-SAM .929 .929 .960 .019 .924 .921 .955 .025 .918 .908 .948 .030 .899 .888 .932 .043 .917 .911 .949 .029
S3ODNet .892 .902 .932 .031 .923 .921 .953 .026 .930 .920 .960 .025 .909 .902 .954 .034 .914 .911 .950 .029

I MULTI-MASK DECODER ANALYSIS

Our multi-mask decoder builds upon the multiple hypothesis prediction (MHP) framework of (Rup-
precht et al., 2017), which shows that predicting M hypotheses creates a Voronoi tessellation of
the output space, with each hypothesis converging to the conditional mean of its region. However,
salient object detection differs fundamentally from inherently ambiguous tasks like future predic-
tion: most samples have a single clear ground truth and only a small subset are truly ambiguous
(multiple objects or complex scene). This creates a critical training instability. Without explicit
regularization, branches that are initially far from the data receive no gradients from the best-match
selection i∗ = argmini IoU(mi, y) and degenerate, as most samples assign to a single dominant
branch. This is why we introduce auxiliary loss with exponential decay L = Li∗ + λrege

−γt
∑

i Li,
which prevents branch collapse by forcing all branches to maintain proximity to ground truth early in
training, then gradually allows diverse outputs as the decay reduces supervision. This setup enable
branches to handle both the dominant unambiguous cases and the sparse ambiguous samples. The
ablation study below validates this design. The baseline configuration achieves optimal balance
between branch diversity and segmentation performance. Without auxiliary loss, we observe branch
collapse as two branches stop receiving gradients and output empty masks. Static regularization
without decay produces overfits to output all similar masks ignoring the ambiguity, while stronger
regularization or slower decay both slightly reduce entropy without clear performance benefits.
We evaluate the impact of auxiliary branch regularization through the λreg and decay rate γ parameters
in our multi-mask decoder loss formulation. The baseline configuration uses λreg = 0.1 with
exponential decay γ = 0.2.
Due to the computational cost of retraining the model, we cannot perform an exhaustive grid search
over all possible parameter combinations. Instead, we strategically select four key ablation variants
that test fundamental design choices: (1) stronger regularization (λreg = 0.2) to assess if auxiliary
branches benefit from full mask supervision, (2) slower decay (γ = 0.1) to maintain full mask longer
during training, (3) static regularization (γ = 0.0) without any decay to evaluate the necessity of the
temporal annealing mechanism, and (4) no auxiliary loss (λreg = 0.0) training only the best-matching
branch to test if some branches stop receiving gradient during the training.
These variants assess the trade-off between enforcing branch diversity and preventing degradation of
unused predictions. The last configuration (λreg = 0.0) is particularly important as it tests whether
supervising all branches with the ground-truth mask in early epochs provides any benefit and stabilize
the training.
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Table 14: Quantitative Comparison: We extend the comparison to more baselines and also evaluate
S3ODNet trained only on real data. S3ODNet trained on the same datasets as prior work demonstrates
better performance. Pretraining on S3OD further improve the performance, showing the value of the
dataset even on saturated benchmarks.

Method Data DAVIS-S HRSOD-TE UHRSD-TE DUTS-TE DUT-OMRON
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
LDF SOD .911 .922 .947 .019 .904 .904 .919 .032 .888 .913 .891 .047 .892 .898 .910 .034 .820 .838 .873 .051
HRSOD SOD .899 .876 .955 .026 .905 .896 .934 .030 - - - - .835 .824 .885 .050 .743 .762 .831 .065
DHQ SOD .938 .920 .947 .012 .922 .920 .947 .022 .900 .911 .905 .039 .894 .900 .919 .031 .820 .836 .873 .045
PGNet SOD .957 .954 .979 .010 .945 .938 .946 .020 .935 .949 .916 .026 .859 .871 .897 .038 .772 .786 .884 .058
InSpyreNet SOD .977 .973 .987 .007 .956 .956 .962 .018 .957 .953 .965 .020 .932 .936 .956 .024 .823 .872 .906 .046
BiRefNet SOD .979 .975 .989 .006 .963 .957 .973 .016 .963 .957 .969 .016 .943 .944 .962 .018 .839 .882 .896 .038
S3ODNet SOD .975 .969 .991 .005 .964 .953 .973 .017 .964 .948 .967 .019 .951 .939 .966 .018 .874 .890 .919 .033
S3ODNet S3OD + SOD .979 .974 .993 .004 .963 .961 .978 .013 .964 .952 .969 .018 .954 .949 .972 .015 .879 .898 .924 .032

Method Data DIS-1 DIS-2 DIS-3 DIS-4 Overall
Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
BASNet DIS .663 .741 .756 .105 .738 .781 .808 .096 .790 .816 .848 .080 .785 .806 .844 .087 .744 .786 .814 .092
U2Net DIS .701 .762 .783 .085 .768 .798 .825 .083 .813 .823 .856 .073 .800 .814 .837 .085 .771 .799 .825 .082
PGNet DIS .754 .800 .848 .067 .807 .833 .880 .065 .843 .844 .911 .056 .831 .841 .899 .065 .809 .830 .885 .063
IS-Net DIS .740 .787 .820 .074 .799 .823 .858 .070 .830 .836 .883 .064 .827 .830 .870 .072 .799 .819 .858 .070
FP-DIS DIS .784 .821 .860 .060 .827 .845 .893 .059 .868 .871 .922 .049 .846 .852 .906 .061 .831 .847 .895 .047
UDUN DIS .784 .817 .864 .059 .829 .843 .886 .058 .865 .865 .917 .050 .846 .849 .901 .059 .831 .844 .892 .057
SAM-HQ DIS .897 .907 .943 .019 .889 .883 .928 .029 .851 .851 .897 .045 .763 .799 .843 .088 .850 .860 .903 .045
InSpyreNet DIS .845 .873 .874 .043 .894 .905 .916 .036 .919 .918 .940 .034 .905 .905 .936 .042 .891 .900 .917 .039
BiRefNet DIS .860 .885 .911 .037 .894 .900 .930 .036 .925 .919 .955 .028 .904 .900 .939 .039 .896 .901 .934 .035
MVANet DIS .862 .880 .906 .039 .909 .912 .942 .032 .924 .918 .954 .030 .907 .905 .946 .039 .900 .904 .937 .035
S3ODNet DIS .896 .891 .928 .031 .919 .905 .943 .030 .928 .910 .957 .028 .896 .883 .942 .039 .910 .897 .943 .032
S3ODNet DIS + S3OD .892 .902 .932 .031 .923 .921 .953 .026 .930 .920 .960 .025 .909 .902 .954 .034 .914 .911 .950 .029

Table 15: Multi-Mask Decoder Loss Ablation: We report segmentation performance on UHRSD-
TE and DUT-OMRON benchmarks, along with diversity metrics computed across all test samples.

λreg γ
Diversity Metrics UHRSD-TE DUT-OMRON

Entropy↑ Avg IoU↓ Fm ↑ Sα ↑ EΦ
M ↑ MAE↓ Fm ↑ Sα ↑ EΦ

M ↑ MAE↓
0.1 0.2 .878 .863 .964 .948 .967 .019 .874 .890 .919 .033

0.2 0.2 .823 .869 .963 .948 .967 .020 .873 .891 .917 .033
0.1 0.1 .824 .877 .962 .948 .967 .020 .873 .890 .916 .034
0.1 0.0 .906 .945 .962 .949 .968 .019 .874 .890 .919 .034
0.0 0.0 0.0 0.0 .964 .947 .966 .020 .876 .890 .920 .034

J LIMITATIONS AND BROADER IMPACT

S3OD data is fully generated so we deliberately don’t provide a test split for the dataset as we believe
the methods can be pretrained on synthetic data but should be evaluated or smaller scale precise
human annotations. The multi-stage filtering strategy detects and removes most of the fail cases but
the model occasionally might produce some artifacts both while generating an image or mask, such as
mask not fully covering an object or a scene missing a clear salient object. We acknowledge the high
computational cost of generating large-scale data using diffusion transformers, yet the process is still
orders of magnitudes faster than manual labeling and can be effectively parallelized. Additionally,
similarly to (Zheng et al., 2024) we observe that training for more than 100 epochs almost does not
impact the metrics but slightly improves finer details quality so we were able to obtain similar metrics
with using only 4 A6000 GPUs for 2.5 days which makes the training pipeline more accessible. We
expect that the insights into the combination of generative and discriminative features as well as
the iterative data generation can be reused in other tasks and domain especially where obtaining the
ground truth data is the main bottleneck for scaling.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

The LLM is a core part of the dataset generation method Figure 3 ensuring we build a large library
of diverse captions for various object categories. We also used LLMs to polish the writing, verify
grammar or improve the sentence structure.

23


	Introduction
	Related Work
	Model
	Model Architecture
	Objective Function

	Dataset
	Multi-Modal Dataset Diffusion
	Iterative Data Synthesis
	Multi-Stage Quality Filtering
	Implementation Details

	Experimental Evaluation
	Evaluation Protocol
	Cross-Dataset Generalization
	State-of-the-Art Comparison
	Synthetic Data Evaluation
	Ablation Study

	Conclusion
	Dataset Evaluation
	Generalization to Camouflaged Object Detection
	Feature Complementarity
	Prompting
	Dataset Quality
	Qualitative Evaluation
	Model Details
	State-of-the-Art Comparison
	Multi-Mask Decoder Analysis
	Limitations and Broader Impact
	The Use of Large Language Models (LLMs)

