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ABSTRACT

Salient object detection exemplifies data-bounded tasks where expensive pixel-
precise annotations force separate model training for related subtasks like DIS
and HR-SOD. We present a method that dramatically improves generalization
through large-scale synthetic data generation and ambiguity-aware architecture.
We introduce S30D, a dataset of over 139,000 high-resolution images created
through our multi-modal diffusion pipeline that extracts labels from diffusion and
DINO-v3 features. The iterative generation framework prioritizes challenging
categories based on model performance. We propose a streamlined multi-mask
decoder that handles the inherent ambiguity in salient object detection by predicting
multiple valid interpretations. Models trained only on synthetic data achieve 20-
50% error reduction in cross-dataset generalization, while fine-tuned versions reach
state-of-the-art performance across DIS and HR-SOD benchmarks.

Figure 1: S30D Top: Our large scale synthetic dataset, consisting of diverse complex scenes and
high quality samples. Bottom: Model Predictions. Our model trained on synthetic data generalizes
well to real-world images, handling ambiguous scenes by predicting alternative hypothesis.

1 INTRODUCTION

Salient object detection (SOD) is a fundamental computer vision problem with applications spanning
AR/VR (Tian et al., 2022), robotics (Chan & Riekl[2020), 3D reconstruction (Liu et al.,[2021al), and
image editing (Goferman et al.,|2011). Recently, two specialized subtasks have emerged: dichotomous
image segmentation (DIS), focusing on highly accurate boundaries, and high-resolution SOD (HR-
SOD) for 2K-8K resolution images, both presenting new generalization challenges. SOD exemplifies
tasks fundamentally limited by labeled data availability. Creating diverse, representative datasets is
difficult, requiring extensive real-world scenarios and object types. The labeling process demands
pixel-precise manual annotations taking up to 10 hours per sample (Qin et al., 2022). Moreover,
annotations often contain inherent ambiguities and inconsistencies across datasets, as annotators
interpret scene saliency differently which is a fundamental challenge that deterministic approaches
fail to address. These constraints yield relatively small datasets (Qin et al.| 2022 |[Zeng et al., 2019)
that cannot capture real-world complexity. Even large-scale datasets like SA-1B (Ravi et al.| 2024)
struggle with the high-resolution pixel-perfect data (Ke et al., 2023)). Current approaches train
separate models for DIS and HR-SOD due to small datasets and domain gaps, leading to task-specific
overfitting rather than generalizable principles. Recent architectural innovations (Yu et al., [2024;
Zheng et al. 2024} |[Kim et al.,[2022) achieve incremental improvements but fail to address cross-
domain generalization. The fundamental bottleneck remains data scarcity, not model complexity,
while models typically enforce deterministic predictions, ignoring the ambiguity. Synthetic data
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offers an attractive solution, but existing approaches have critical limitations. Traditional pseudo-
labeling setups are bounded by teacher capabilities and often use the same vision encoders, creating
performance ceilings. Methods extending diffusion models to predict masks directly (Wu et al.,
2023a)) suffer from consistency issues due to noisy diffusion features. In contrast, mask-conditioned
generation (Qian et al.|, 2024) struggles with diversity as obtaining large mask libraries and generating
complex scenes remain challenging.

In this work, we aim to unify DIS and HR-SOD by addressing two main limitations of prior work.
We refer to the unified task as high-fidelity salient segmentation. To this end, we introduce: 1)
a multi-modal data generation pipeline that leverages the generative power of diffusion models,
eliminating teacher bottlenecks, 2) an ambiguity-aware architecture handling multiple interpretations,
and 3) an iterative generation framework adapting to model weaknesses. Our main contributions are:

Multi-Modal Dataset Diffusion Pipeline: Our diffusion pipeline simultaneously generates images
and masks by extracting FLUX DiT feature maps, concept attention maps, and DINO-v3 (Siméoni
et al.,2025) representations during the generation process. The generation pipeline utilize rich spatial
understanding encoded during generation alongside robust semantic features from discriminative
models to decode high-quality masks. This ensures strong image-label alignment, enabling a flexible
framework applicable to other dense prediction tasks.

Iterative Generation Framework: We introduce feedback-driven synthetic data generation that
dynamically identifies model weaknesses, continuously adapting sampling distribution to prioritize
challenging categories. Unlike traditional static methods, this iterative approach enables continuous
improvement as datasets grow.

Large-Scale Synthetic Dataset: Using our pipeline, we generate 139,000+ high-resolution images
with pixel-wise annotations, over 2x more than all existing SOD datasets combined. This enables up
to 50% error reduction across benchmarks when evaluated for cross-dataset generalization. Models
trained solely on synthetic data achieve strong cross-dataset generalization without real training data,
while fine-tuned versions reach state-of-the-art performance across DIS and HR-SOD benchmarks.

Ambiguity-Aware Architecture: We directly address SOD’s inherent ambiguity through a multi-
mask decoder allowing multiple valid interpretations while enabling a simpler architecture compared
to current state-of-the-art methods. We employ DINO-v3 backbone, leveraging enhanced visual
representations for improved generalization.

2 RELATED WORK

Salient Object Detection: SOD has evolved from handcrafted features (Borji et al., 2015) to complex
multi-view transformer architectures (Yu et al.,|2024)). BASNet (Qin et al.,[2019)) introduced boundary-
aware refinement with hybrid loss functions for precise object segmentation, while subsequent work
(Zhao et al., 2019 Wei et al., 2020b; [Wu et al., |2019bj |[Feng et al., |2019) explored efficient edge-
refinement strategies. U 2_Net (Qin et al., [2020) developed nested UNet architecture to capture
multi-scale contextual information. CPD (Wu et al.,|2019a) introduced cascaded decoders directly
refining features with generated saliency maps. PFANet (Zhang et al.,|2018) and PAGENet (Wang
et al.| 2019) leveraged pyramid attention networks to enhance segmentation quality. However, these
approaches remain constrained by training dataset limitations and struggle with high-resolution
inference scenarios. Recently, HR-SOD and DIS emerged as specialized subtasks focused on
high-resolution accurate segmentation. IS-Net (Qin et al., [2022) established the DIS baseline
using intermediate supervision with feature-level and mask-level guidance. Newer approaches
incorporated transformer backbones (Liu et al.,2021b) to enhance feature extraction. InSPyReNet
(Kim et al.| [2022) adapted image pyramid architecture for HR-SOD, while BiRefNet (Zheng et al.|
2024) introduced bilateral reference frameworks for capturing intricate details. MVANet (Yu et al.,
2024) recently proposed multi-view aggregation to detect finer details while improving efficiency.
Nevertheless, these methods produce single deterministic outputs and remain constrained by limited
training data. Our approach addresses both limitations while simplifying architecture.

Synthetic Data Generation: Diffusion models have transformed data generation by enabling high-
quality, diverse synthetic datasets. Recent work (Shipard et al., 2023} |Sariy1ldiz et al., [2023}; Tian
et al.| 2023} |Azizi et al.,|2023; [Fan et al.,2024) improved classification model performance through
synthetic data generation with latent diffusion models (Rombach et al.,2022), though limited to image
classification. DiffuMask (Wu et al.,[2023b), Attn2mask (Yoshihashi et al.,|[2024), and DatasetDM
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(Wu et al.;,|2023a)) utilize diffusion models to generate synthetic images with annotations for segmen-
tation tasks. However, DatasetDM’s attention-based extraction produces noisy, incomplete masks
lacking precise boundaries and struggling with complex multi-object scenes. OVDiff (Karazija et al.|
2024) synthesises support image sets for arbitrary textual categories, while Instance Augmentation
(Kupyn & Rupprecht, [2024) provides augmentation frameworks but only slightly expands original
distributions. VGGHeads (Kupyn et al.,2024)) demonstrated synthetic data’s impact on generalization
for 3D head modeling but remains bounded by external teacher models. For SOD specifically,
SODGAN (Wau et al.,|[2022) employs GANSs but struggles with complex scenes due to limited training
data variability. MaskFactory (Qian et al., 2024) conditions image generation on edited masks but is
limited to only creating slight variations of the train set. Unlike these approaches relying on noisy
attention extraction, mask conditioning, or external teacher models, our method extracts supervision
from multiple complementary sources within the generative process itself. By combining DINO-v3
(Siméoni et al., 2025)) visual features, diffusion transformer activations, and concept attention maps
(Helbling et al., [2025)), we achieve robust supervision with strong image-mask alignment while
eliminating performance bottlenecks.

3 MODEL

Most recent SOD methods focus on improving performance through complex architectural compo-
nents such as multi-view feature fusion (Yu et al.;2024) or iterative refinement modules (Zheng et al.|
2024])). In contrast, we propose a lightweight architecture that addresses SOD ambiguity through a
multi-mask decoder while significantly simplifying other components.

3.1 MODEL ARCHITECTURE

We build our model upon the Dense Prediction Transformer (DPT) (Ranftl et al., [2021)) architecture,
which processes input images through transformer (Vaswani et al.,|2017) stages followed by multi-
scale feature reassembly. DPT transforms input into patch token sequences, processes them through
transformer layers, then reshape it into multi-scale image-like representations. These features are
progressively fused and upsampled through residual convolutional blocks (He et al.,|2016)) to produce
final predictions. We adopt this efficient hierarchical design as our backbone. We initialize the DPT
encoder with DINO-v3 weights to improve generalization, leveraging visual representations from
large-scale self-supervised training. The full architecture is shown in Figure 2]

We formulate the problem as function f : Z — M mapping from images Z C R *W>3 (o binary
masks M = {0, 1}7*W of spatial resolution H x W. Many training annotations contain ambiguity:
multiple objects may be present with unclear saliency interpretation. Single-output models tend to
average all possible predictions, resulting in low-confidence regions.

To address this, we design the final mask prediction head to output multiple masks (mq, ..., my).
Predicted masks are soft m; € (0,1)*" to model pixel-wise confidence. For each training
image I € Z, only one ground truth annotation y € M is available. Inspired by multiple-choice
learning (Guzman-Rivera et al.| 2012}, during training, the main loss applies to the best prediction
1* = argmin, IoU(m,, y), chosen via IoU score between predicted and ground truth masks.

To prevent unused branches from degrading, we employ relaxed assignment (Rupprecht et al.,

2017) where loss is computed across all branches with decaying weight: £ = L;+ + Xe™ "t Ziv Li,
where A controls initial auxiliary branch weight, + is decay rate, t is current epoch. Individual
losses £; = L(m;,y) are described next. For test-time selection, the model estimates IoU scores
(s1,...,sn) for every prediction. This is supervised by actual IoU scores between prediction and
ground truth during training and this estimate is used to select the highest-scoring mask during testing.

3.2 OBIECTIVE FUNCTION

Following standard semantic segmentation practice, we employ a multi-component loss combining
pixel-wise and region-wise supervision. The total loss £ consists of two main components: Focal
Loss (Lin et al [2017) L¢,ca1 for handling class imbalance and IoU Loss L,y for region-level
accuracy.
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Figure 2: S3ODNet Architecture. Model extends DPT (Ranftl et al.,|2021) to predict multiple mask
candidates and a vector of IoUs with the ground truth, employing DINO-v3 as the backbone. During
training, the loss is propagated through the branch with the highest predicted IoU.

=
I

Focal Loss. To address foreground-background imbalance, we implement focal loss, widely used
in dense prediction:
HxW

Ligeat(mi) = — > (1= my(p)) y(p) log(mi(p))
p=1
where p iterates over pixels indexing predicted mask m;(p) and ground truth y(p), and 7 = 2 is the
focusing parameter.

IoU Loss. To capture region-level accuracy, we incorporate IoU loss measuring overlap between
predicted and ground truth masks:

HxW
=1 mi(p)y(p)
HXW
ey (mi(p) +y(p) — mi(p)y(p))
The overall mask loss combines both components:

Lmask(mi) = /\maskﬁfocal(mi) + Liou (mi7 y)
where A\, .5 = 10 balances the losses.

Liou(m;) =1—

IoU Score Loss. To enable optimal mask selection at inference, we supervise predicted IoU scores
s; using mean squared error between predicted and actual IoU values:

ﬁscore(si) = (81 - IOU(mﬂy))Q

Finally, the overall training objective comprises the mask loss of best prediction, score loss for all
predictions, and a decaying regularizer across all predicted masks:
N
£mask (mz*) + Z )\scoreﬁscore(si) + )\rege_vtﬁmask (mz)
i=1
where Ascore = 0.05, Areg = 0.1 weigh the losses, v = 0.2 is decay rate, t is current epoch, and N is
the number of prediction branches.

4 DATASET

Unlike other dense prediction tasks, scaling SOD datasets faces unique challenges that cannot
be solved by simply leveraging existing collections like LAION (Schuhmann et al., |[2022). SOD
requires samples with distinct foreground objects, and annotation demands significant expertise and
attention to detail, particularly for high-resolution images with precise boundary requirements. These
constraints make traditional manual dataset curation both impractical and cost-inefficient. Our goal is
to generate large-scale synthetic data that accurately reflects real-world distributions.

4.1 MULTI-MODAL DATASET DIFFUSION

Large-scale diffusion transformers like FLUX (Labs| |2023) with 12B parameters encode rich se-
mantic and spatial representation during the generation process. Rather than ignoring these latent
representations and relying on teacher models that predict masks directly from generated images,
we extend the diffusion model to output masks by combining multiple complementary modalities.
We extract latent feature maps that encode spatial layout understanding, concept attention maps that
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Figure 3: Iterative Generation Pipeline. The LLM (Achiam et al., [2023) generates a library of
diverse prompts for a large set of object categories. These prompts guide a diffusion model to
generate synthetic images with corresponding masks. The resulting dataset trains SOD model, which
undergoes category-wise evaluation. Performance feedback from a trained SOD model dynamically
adjusts category weights w;, prioritizing challenging cases in next iterations.

provide interpretable semantic localization, and DINO-v3 features from decoded images that capture
fine-grained visual semantics. This multi-modal supervision mitigates data scarcity while ensuring
alignment between generated images and corresponding masks.

DiT Feature Maps. FLUX DiT employs a hybrid architecture with 19 dual-stream transformer
blocks (processing text and image tokens separately) and 38 single-stream blocks (operating on con-
catenated sequences). We extract feature maps from four single-stream transformer blocks at layers
{4,16, 27,36}, encoding multi-scale spatial representations across generation stages. Each block
outputs features RB* (L1 +L1)x3072 where [ = 512. We extract only image tokens RZ L1 x3072
and project to 768 dimensions via learned projections. These features encode the model’s internal
spatial understanding used during generation.

Concept Attention Maps. Common dataset generation methods (Wu et al.| 2023a)) extract mean
attention maps across all text tokens, producing semantically ambiguous supervision. Instead, we
use a static set of concepts to obtain interpretable, consistent maps. Following the concept attention
framework (Helbling et al.| 2025), for each generated image, we compute attention maps between
image patches and static concept tokens. For concept token ¢ and image patch x, we compute:

T

Aconcept (%, y) = softmax (o, - 0 )
where o, and o, are attention output vectors from the multi-modal transformer layers. For each
sample, we extract two concept attention maps using the primary object category (e.g., ’dog”) and

”background” tokens, yielding interpretable maps {Aobject, Abackgmund} that consistently encode
object location and background regions.

DINO-v3 Visual Features. We extract semantic visual features from generated images using DINO-
v3 (ViT-L), providing rich object-level representations that capture fine-grained visual semantics
through self-supervised learning trained on large-scale real world data.

The three modalities are fused through a dedicated module that projects each to a common 256-
dimensional space via separate convolutional branches with batch normalization. FLUX features and
concept maps are upsampled to match DINO-v3 resolution using bilinear interpolation. The projected
features are concatenated channel-wise and processed through a two-stage convolutional network
(3 x 3 followed by 1 x 1 convolution), with the result residually combined with the original DINO-v3
features to produce unified multi-modal representations. We feed this combined representation into
DPT decoder, supervising it with DIS-5K, HR-SOD, UHRSOD and DUTS datasets, ensuring the
model learn how to decode multiple sources into a fine-grained segmentation mask.

4.2 ITERATIVE DATA SYNTHESIS

To incorporate a feedback mechanism into the data generation, we introduce an iterative process that
adjusts generation parameters based on the downstream model’s performance for subsequent rounds.
After training the model on synthetic data D) we evaluate its performance on a held-out test set for
each category ¢;. For each image I;, we compute a score x([;), which is the average IoU score across
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Table 1: SOD Datasets Statistics: S30D dataset is orders of magnitudes larger than existing datasets
and contains a wide variety of scenes and objects.

Metric | DUTS ECSSD HKU-IS DUT-OMRON UHRSD HRSOD DIS-5K S30D (ours)

15,570 1,000 4,447 5,168 5,920 2,010 5,000 139,981
1152 310 551 749 948 381 758 1676

# of Images
# of Unique Objects

: ; R e
Figure 4: S30D Dataset: The dataset consists of diverse object categories and complex scenes that
closely reflect real-world environments, featuring various lighting conditions, spatial compositions,
and object interactions. All samples are generated with multi-modal dataset diffusion.

various image transformations (flipping, etc.). x(I;) is high if the prediction is consistent across
augmentations. We then compute a mean category score <; by averaging these scores across all

images in category c;. The category weights wgrﬂ) for the next iteration are updated proportionally
to the inverse of these scores, ensuring categories with lower performance receive more samples
in subsequent generations. Specifically, we map the category scores through a non-linear scaling

function: wEHl) = Wmin + wnewe_"‘(ki_ﬁ), where v = 8 and 8 = 0.5 control the strength of the

performance-based skew, win = ﬁ is a minimum weight per class, and wyeyw = % is the maximal
possible over-weighting. This scales up weights for categories with scores below a certain threshold
while maintaining a minimum weight for well-performing categories. This adaptive sampling strategy
ensures that the synthetic data generation process continuously evolves, producing examples that

maximize model improvement. The pipeline is visualized in Figure[3]

4.3 MULTI-STAGE QUALITY FILTERING

While synthetic data generation offers scalability, it inevitably produces imperfect samples that can
degrade training quality. To ensure high dataset quality, we implement a comprehensive multi-stage
filtering pipeline that addresses standard failure modes in synthetic data generation.

Consistency Filtering. We evaluate prediction consistency using a separate large model trained
without FLUX features. For each sample, we compute IoU between the original prediction and
horizontally-flipped prediction, filtering samples below 7 = 0.8 consistency threshold. Low consis-
tency scores often indicate overly ambiguous samples where even robust models struggle to maintain
coherent predictions, suggesting fundamental issues with the generated image-mask pairs.

Mask Quality Assessment. We employ a Gemma-3 VLM (Team et al.| [2025) to evaluate mask
quality, identifying severe artifacts such as fragmentation, noise or artifacts that commonly occur
in image segmentation. Only masks with cohesive white regions (< 5 main components) pass this
stage, ensuring clean supervision signals for model training.

Semantic Validation. In a second pass, the Gemma VLM evaluates semantic correctness by analyzing
the original image and the mask overlay. This stage ensures both the presence of clear salient objects
and adequate mask coverage (> 70% of the main object), filtering out samples where the multi-modal
supervision fails to capture the intended semantic content.

This multi-stage approach removes 6.8% of generated samples, significantly improving dataset quality
while maintaining scale advantages over manual annotation.

4.4 IMPLEMENTATION DETAILS

We generate 139,981 high-resolution data samples Figurein three rounds (R = 3) which is 131%
more than 11 most common academic benchmarks combined. We sample category names from
ImageNet taxonomy covering wide range of objects and activities Table[I] First round generates
100 images per category, followed by a second and third round of additional 25,000 images in each,
prioritizing challenging categories. During processing, 6.8% of the samples are filtered out. The
images are generated with a FLUX model with 25 inference steps. For each image, we randomly
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Table 2: Cross-Dataset Generalization: S30DNet trained on synthetic data only demonstrates
superior generalization across all datasets comparing to other methods trained on subtasks datasets.
SOD datasets stand for (HRSOD-TR (Zeng et al., |2019), UHRSD-TR (Xie et al., 2022b) and DUTS-
TR (Wang et al.| |2017)). Best and second best results highlighted.

DIS-1 DIS-2 DIS-3 DIS-4 Overall
Fnt Sat Eff T MAEL|Fy 1 So 1t Efy T MAEL|Fy 1 Sa 1 Ey T MAEL|F,n 1 Sa t Efy 1 MAEL|F, 1 Sa 1 Ef; T MAE]

InSpyreNet| DUTS| .786 .822 .857 .064 | .828 .845 877 .057 | .839 .848 .883 059 |.789 .806 .838 .082 |.811 .830 .864 .065
BiRefNet [SOD | .812 .841 .863 .049 | .844 855 877 .050 | .855 .856 .881 .053 |.790 .803 .824 081 |.825 .839 .861 .058
S30DNet |SOD | .850 .885 .902 .046 |.880 .870 914 .043 | .888 875 .928 .040 |.833 .823 .881 .069 |.863 .856 .906 .049
S30DNet |S30D | .865 .884 917 .034 | .896 .898 .933 .032 |.901 .895 .938 .033 |.861 .857 .913 .054 |.881 .884 .925 .039

Method Data

DAVIS-S HRSOD-TE UHRSOD-TE DUTS-TE DUT-OMRON
Fut Sat Eff T MAEL|Fo 1 Sa t Efy T MAEL| ot So + Efy T MAEL|Fy 1 Sa t Efy T MAEL|F\, 1 Sa T Ej; 1 MAE]

InSpyreNet|DIS | 921 937 966 .015 |.891 .912 923 .038 | 914 922 .932 .033 |.845 .880 .895 .046 | .713 .801 .812 .071
BiRefNet |DIS |[.919 .936 .961 .014 |.887 915 926 .031 |.922 924 937 .032 |.860 .886 910 .036 | .744 819 .835 054
MVANet |DIS |.907 .929 .959 .016 |.902 .919 .930 .033 |.922 926 941 032 |.852 877 .893 .042 | 711 .792 .838 .072
S30DNet |DIS |.951 950 973 .010 |.923 913 932 .030 | .946 .927 .947 .029 |.902 .901 926 .035 |.808 .830 .858 .06l
S30DNet |S30D|.970 .967 .988 .005 |.954 .955 972 .016 | .954 .944 961 .023 |.937 938 962 .020 | .860 .887 .911 .040

Method Data

sample aspect ratio from a fixed set of common image resolutions, further expanding dataset variety.
All student models are trained with the ViT-B (Dosovitskiy et al.,[2020) backbone. Model training on
S30D dataset takes 2 days on 8 H200 GPUs.

5 EXPERIMENTAL EVALUATION
We extensively evaluate dataset and model generalization and performance on various benchmarks.

5.1 EVALUATION PROTOCOL

The performance of the salient object detection models is evaluated on six datasets of two domains.
For dichotomous image segmentation (DIS), we use DIS-5K (Qin et al., [2022)), containing 5,470
high-resolution images with extremely fine-grained labels of camouflaged, salient, and meticulous
objects in varied backgrounds. For Salient Object Detection (HR-SOD), we evaluate on three high-
resolution benchmarks: UHRSD (Xie et al.;2022b)) (5,920 images at 4K-8K resolution), HRSOD-TE
(Zeng et al.;, 2019) (400 test images with shortest edge >1200 pixels), and DAVIS-S (92 images from
DAVIS (Pont-Tuset et al.,|2017) video segmentation dataset). We also include two low-resolution
benchmarks: DUT-OMRON (Yang et al. [2013)) (5,168 images with complex backgrounds) and
DUTS-TE (Wang et al.,2017) (5,019 test images from the largest available SOD dataset). All datasets
feature pixel-wise ground truth annotations for quantitative evaluation.

Metrics. We evaluate each model with commonly used metrics: maximum F-measure (Fi,q5)
(Achanta et al., 2009), Mean Average Error (MAE) (Perazzi et al.,|2012), structure measure (S, ) (Fan
et al.}2017) and enhanced alignment measure (E}f;[) (Fan et al., 2018). The F-measure (F3) provides
a balance between precision and recall, computed with 3° = 0.3 to emphasize precision. MAE
calculates the average absolute difference between predicted and ground truth masks. The structure
measure S, evaluates preservation of object-aware (.S,) and region-aware (,S;.) structural similarities,
computed as S, = @ * S, + (1 — ) * S, with « = 0.5. The enhanced alignment measure E5;
combines local and global similarity information, jointly capturing image-level statistics and local
pixel matching information.

5.2 CROSS-DATASET GENERALIZATION

We argue that the most important aspect of modern salient object segmentation models should be
generalizing to new image distributions. We evaluate the cross-task generalization by training the
model on DIS-5K (Qin et al.| 2022) dataset and evaluating on SOD benchmarks and vice versa. The
robust generalizable method is expected to perform well on all benchmark datasets, given that all
focus on the same high-level problem. The results are presented in Table [2| S30D trained on a
combination of SOD datasets achieves superior generalization comparing to BiRefNet (Zheng et al.,
2024) or InSpyreNet (Kim et al.| [2022).

Remarkably, even training solely on synthetic data enables the method to achieve state-of-the-art
generalization, reducing the MAE compared to the model trained on DIS-5K by 50.0%, 46.7 %,
20.7%, 42.9% , and 34.4% . The models trained on DIS-5K only (3000 images) and evaluated on
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Table 3: Quantitative comparison on DIS5K and SOD benchmarks. Best results highlighted in bold.
The S30DNet * are the metrics computed with the best match over three predicted masks.

DIS-1 DIS-2 DIS-3 DIS-4 Overall
Fn 1 Sa® Ef 1+ MAEL|Fn 1 So T EY + MAEL|F T Sa 1 ES; 1+ MAEL|F, 1 Sa T Ef; + MAEL| Fy 1 So T EY T MAE]

SAM-HQ |.897 .907 .943 .019 |.889 .883 .928 .029 |.851 .851 .897 .045 |.763 .799 .843 .088 |.850 .860 .903 .045
InSpyreNet | .845 873 874 .043 | .894 905 916 .036 | 919 918 .940 .034 | .905 .905 936 .042 | .891 .900 917 .039
BiRefNet | .860 .885 .911 .037 |.894 .900 .930 .036 |.925 919 .955 .028 |.904 .900 .939 .039 |.896 .901 .934 .035
MVANet | .862 .880 .906 .039 |.909 .912 942 .032 |.924 918 .954 .030 |.907 .905 .946 .039 | .900 .904 .937 .035
S30DNet | .892 902 .932 .031 |.923 .921 .953 .026 |.930 .920 .960 .025 | .909 .902 .954 .034 | 914 911 .950 .029
S30DNet *| 916 .924 960 .018 | .941 .936 .973 .016 | .941 931 975 .018 |.914 907 .967 .027 |.928 .924 .969 .020

Method

Method DAVIS-S HRSOD-TE UHRSD-TE DUTS-TE DUT-OMRON

Fon 1 Sat EY; + MAEL|Fy 1 St Ef; T MAEL|Fy, 1 So t Eyy © MAEL| Fn t So © Efy  MAEL| Fy, 1 Sa 1+ Efy T MAE]
InSpyreNet | .977 973 987 .007 | .956 .956 .962 .018 |.957 .953 .965 .020 | .932 .936 .956 .024 |.823 .872 .906 .046
BiRefNet |.979 .975 989 .006 |.963 .957 973 .016 | .963 .957 .969 .016 | .943 944 962 .018 |.839 .882 .896 .038
S30DNet |.979 974 993 .004 | .963 .961 .978 .013 | 964 952 969 .018 |.954 .949 972 .015 | .879 .898 .924 .032
S30DNet *| 982 .977 .993 .004 | .979 973 991 .005 |.977 966 .985 .008 |.963 .959 .987 .008 |.907 919 .953 .023

SOD benchmarks all achieve comparable results, proving an importance of the data scale and and
impact of overfitting to the subtask specifics. Still, S30D trained on synthetic data demonstrates
strong generalization across all benchmarks.

5.3 STATE-OF-THE-ART COMPARISON

Prior work does not evaluate cross-task generalization and trains task/benchmark-specific models.
While we argue that the evaluation above is the way forward for salient object segmentation, we
also evaluate in the historically used setting. We finetune the model trained on our S30D dataset
on both the DIS-5K (Qin et al., 2022)) and a combination of SOD datasets (HR-SOD (Zeng et al.,
2019), UHRSOD (Xie et al.,[2022b), DUTS-TR (Wang et al.,2017)). We report the results in Table
S30D significantly outperforms all the other methods on DIS-5K benchmarks achieving a new
state-of-the-art and reducing the error rate by 14.0%, 7.3%, 20.6% and 17.1%.

However, the salient object detection benchmarks have become highly saturated. S30D achieves
superior results on HRSOD-TE (Zeng et al.,2019), DUTS-TE (Wang et al., 2017), and DUT-OMRON
(Yang et al., |2013), even though all models are trained on the first two datasets. The evaluation on
the DUT-OMRON benchmark serves as the strongest generalization test as none of the models were
trained or fine-tuned on it, and the benchmark consists of 5,168 samples. S30D achieves 24.8%,
13.6%, 26.9% and 15.8% reduction in error rate compared to BiRefNet. Notably, on UHRSD (Xie
et al.l [2022b), which is the largest HR-SOD train dataset and DAVIS-S, which contains only 92
images, all large models with transformer backbones achieve comparable results. This is another
indicator of benchmark saturation and supports our choice of cross-task generalization evaluation.
The variant S30D * computes the metrics with the best match of the three masks with the ground truth
mask. This oracle evaluation uses ground truth information and cannot be compared to other methods.
However, it demonstrates the inherent ambiguity in the data annotations and/or the task. This confirms
that our choice of ambiguity-aware modelling will be highly useful in practical applications.

5.4 SYNTHETIC DATA EVALUATION

We also evaluate our data generation mechanism compared to other data synthesis methods. We
measure the impact of synthetic data on performance and generalization, evaluating S30D and other
synthetic data generation methods (Wu et al.,|2023a;|Qian et al., [2024)). MaskFactory (Qian et al.,
2024)) augments the DIS-5K (Qin et al., [2022)) dataset with both rigid and non-rigid transforms and
generates a new set of images conditioned on augmented masks. To ensure fair comparison, we train
our model on DIS-5K and a mix of DIS-5K and three synthetic datasets. Since the other two synthetic
datasets contain only 10,000 train images, we also subsample a subset from S30D of the same size
from the 2nd iteration of data generation. We evaluate the model both on DIS and SOD benchmarks.
The results are presented in Table ]

Results. Interestingly, S30D achieves comparable performance to MaskFactory (Qian et al., [2024)
on the DIS-5K test set, even though it was not fine-tuned for categories and types of object in this
benchmark, despite MaskFactory utilising the DIS-5K train set to generate augmented masks. On
other four SOD benchmarks S30D demonstrates significantly stronger generalization and perfor-
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Table 4: Synthetic Data Generation Evaluation: S30DNet model is trained on a combination of
DIS-5K and 3 synthetic datasets. Training with S30D dataset significantly improves generalization.

Training Data DIS (1-4) HRSOD-TE UHRSD-TE DUTS-TE DUT-OMRON \
e Fnt Sot Eff t MAEL||Fyn 1t Sa t Ef; T MAEL|Fyy t Sa 1 Ef T MAEL|Fy, 1 Sa t Ef; T MAEL|Fy, 1 Sa 1 Ef 1 MAEL
DIS 910 .897 .943 .032 923 913 932 .032 | .946 927 947 .030 |.902 .901 .925 .036 |.808 .830 .858 .06l
DIS + MaskFactory | .912 .904 .950 .030 || .910 916 .936 .031 |.937 .926 .947 .030 |.886 .898 .924 .038 |.774 .812 .842 .071
DIS + DatasetDM | .898 .889 .939 .036 || .899 .896 .911 .041 |.932 914 934 .037 |.872 .877 900 .048 |.770 .795 .818 .080
DIS + S30D 908 905 945 .030 || .944 946 .963 .020 |.950 .940 .958 .024 |.924 .928 .951 .025 |.842 .871 .899 .048

Table 5: Iterative Data Generation Ablation: Progressively generating hard samples improves
model performance and generalization across all datasets.

DIS (1-4)
Fn 1t Sat EY T MAE|

HRSOD-TE DUTS-TE

DUT-OMRON |
Fn 1 Sa 1 EY; 1 MAEL|F 1 Sa 1 Ef; 1 MAE}

Training Data
: Fnt Sat Ef t MAE]

S30D Single Round| .879 .883 916 .041 || .951 .953 .969 .018 |.933 .935 .959 .020 |.855 .881 .907 .042
S30D (2 rounds) .880 .884 918 .040 || .953 954 971 .017 | .935 939 961 .020 |.859 .885 .908 .040
S30D (3 rounds) 881 884 .925 .039 || 954 955 .972 .016 | .937 938 .962 .020 |.860 .887 .911 .040

mance, comparing to both original train dataset and other synthetic data generation methods, proving
the diversity and versatility of our data generation method.

5.5 ABLATION STUDY

Table 6: Data Diffusion Model Ablation: Combining all three modalities achieves optimal perfor-
mance across benchmarks.

DIS (1-4)
Fnt Sat Ey; T MAE|

HRSOD-TE UHRSD-TE DUTS-TE
Fnt Sat Efy 1 MAEL|Fyy 1 Sa 1 Efy 1 MAEL|F 1 Sa t EY; T MAE]

DUT-OMRON

DINO-v3 DiT Maps Concept Maps Fn 1 Sat EY + MAE]

X ' v 710 743 783 .091 |.733 .784 789 .097 | .865 .868 .890 .054 |.773 .805 .840 .070 |.681 .733 .772 .095
' X v 913 909 949 .029 | .959 958 .974 .014 | .965 953 971 .017 |.950 945 .968 .017 |.870 .887 911 .036
' ' X 914 906 944 .030 | 961 957 972 014 | 965 952 971 016 |.949 943 966 .017 |.871 .889 915 .036
' ' v 917 913 951 .028 |.962 961 .976 .012 | .966 .953 971 .016 | .948 944 .969 .016 |.873 .891 .918 .034

Table 7: Architecture Ablation: Multi-mask
decoder improves performance on DIS-5K. Table 8: Prompt Generator: LLM prompts
improve diversity and quality.

Backbone | Ny | Frn © Sa ™ MAE]

Swin-B 1 | 834 883 044 Prompt CLIPT ISt
DINO-v3 | 1 | 909 911  .033 Class Name 399 678
DINO-v3 | 2 | 892 896  .034 GPT 434 98.1
DINO-v3 | 3 | 914 913  .031

We evaluate our multi-modal data diffusion approach and architectural components. Table [6|shows
individual feature types are insufficient: diffusion features alone cannot decode high-resolution masks,
while DINO-v3, despite strong performance, can suffer from train-test distribution gaps when applied
to generated images. The combination of all three modalities achieves optimal performance across
benchmarks, with diffusion features providing crucial complementary information for challenging,
ambiguous cases. DINO-v3 backbone significantly outperforms Swin-B (Table[7), demonstrating
foundation model value. Three mask predictions also yield best performance, proving multi-mask
effectiveness. Iterative generation Table 5] consistently improves performance with 3.6% F-measure
gain on DIS datasets and 5.3% on DUT-OMRON, confirming the effectiveness of prioritizing chal-
lenging categories. LLM-generated prompts improve synthetic image quality with 44.7% Inception
Score Table[§]increase over simple class names, highlighting prompt engineering importance.

6 CONCLUSION

We demonstrate that combining features from generative and discriminative models: DiT feature
maps, concept attention maps, and DINO-v3 features enables effective synthetic data generation
for salient object detection. Our iterative generation framework dynamically prioritizes challenging
categories, while the ambiguity-aware architecture naturally handles multiple valid interpretations.
This pipeline significantly improves cross-dataset generalization and provides a scalable framework
for addressing data scarcity in dense prediction tasks, suggesting that synthetic datasets can be
complementary to manual annotations in computer vision applications.
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A DATASET EVALUATION

To further validate an impact of S30D dataset we retrained BiReftNet (Zheng et al) 2024) and
MVANEet (Yu et al., [2024) on our synthetic data. Results are reported in Table@] and are consistent
with other evaluations. Training on S30D improves the generalization of all models and S30ODNet
still outperforms other methods trained in the same setup.

DAVIS-S HRSOD-TE UHRSOD-TE

Fnt Sat Ey; t MAEL|Fy 1 Sa t E3; t MAEL|Fy 1t Sa t E3; © MAEL|F,, 1 So T Ef T MAE|
DIS 907 929 959 .016 |.902 919 .930 .033 |.922 926 .941 .032 |.852 .877 .893 .042 ‘,711 792 838 072

DUTS-TE DUT-OMRON

Method F 1t Sat EY 1 MAE|

Data

MVANet
MVANet

BiRefNet
BiRefNet

S30DNet
S30DNet

SSOD‘ 951 958 975 .008 ‘.950 948 954 019 ‘.951 943 942 024 ‘.875 893 901 .039 |.776 .791 .873 .064
DIS ‘.919 936 .961 .014 ‘.887 915 926 .031 ‘.922 924 937 .032 ‘.860 .886 910 .036 ‘.744 819 835 .054

S30D| .963 958 .978 .009 | .956 .951 .965 .019 |.955 .949 962 .022 | .928 .931 .951 .024 | .845 .882 .899 .045

DIS |.951 950 .973 .010 |.923 .913 .932 .030 |.946 .927 947 .029 |.902 901 .926 .035 |.808 .830 .858 .061
S30D| .970 .967 .988 .005 | .954 .955 .972 .016 | .954 944 961 .023 | .937 .938 .962 .020

860 .887 911 .040

Table 9: Impact of S30D dataset on salient object detection performance across different methods.
Training on S30D improves generalization across all methods.

B GENERALIZATION TO CAMOUFLAGED OBJECT DETECTION

Method | Data CODI10K CAMO NC4K

Fnt Sa® Ejft MAEL|F, 1 Sat Ejy T MAEL|F, 1 So1 Ej 1 MAE]
S30DNet | SOD 850 .862 911 034 | 858 .848 .893 .061 | .896 .889 929 .034
S30DNet | DIS 832 853 896 .035 | .845 .846 .892 .058 | .885 .882 .922 .035
S30DNet | MaskFactory | .809 .828 .884 .035 | .849 .838 .889 .060 | .872 .864 .909 .038
S30DNet | S30D 854 880 .920 .033 | .859 .864 .906 .056 | .897 .901 936 .032
FSPNet | COD 769 851 895 .026 | .830 .856 .899 .050 | .843 879 915 .035
BiRefNet | COD 888 913 960 .014 | .904 .904 954 .030 | 909 914 953 .023
S30DNet | S30D +COD | 911 .923 970 .012 | 908 .903 949 .031 | .923 .920 .961 .020

Table 10: Evaluation on COD benchmarks. We evaluate generalization to Camouflaged Object
Detection. When trained on S30D dataset S3ODNet reach the strongest generalization to the new
task in zero-shot transfer setting, comparing to other real and synthetic dataset. Fine-tuned on COD
data S3ODNet achieves state-of-the-art results on COD-10K and NC4K benchmarks.

Figure 5: Zero-shot Evaluation on Camouflaged Object Detection. Left to Right: Image, Predicted
Mask, Ground Truth. Our model trained on S30D generalizes to detecting camouflaged objects
despite being trained exclusively on synthetic SOD data.

To evaluate the generalization of our dataset and model beyond salient object detection, we assess
transfer to Camouflaged Object Detection (Fan et al.l[2020): a challenging task where objects are
specifically designed to blend with their backgrounds. We evaluate on three COD benchmarks:
COD10K (Fan et al., [2020), CAMO (Le et al.,[2019), and NC4K (Lv et al., 2021). Table shows
that S30DNet trained solely on S30D (without any real data) achieves strong zero-shot performance,
outperforming models trained on SOD, DIS or MaskFactory datasets across all metrics. Next,
following BiRefNet setup we finetune S30D on CAMO and COD-10K train sets. The finetuned
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Figure 6: Multi-Modal Feature Visualization: Each modality captures complementary information:
concept attention maps provide semantic localization, DINO-v3 encodes fine-grained visual semantics,
and FLUX DiT features capture spatial scene structure. High-dimensional features (FLUX, DINO-v3)
are visualized via PCA projection to RGB.

model reaches state-of-the-art results on COD10K (F;,, = 0.911 vs BiRefNet’s 0.888) and NC4K
(F, = 0.923 vs 0.909). Similar to SOD evaluation we observe than the smallest benchmark the other
models are also trained on (CAMO with only 250 test images) shows saturation due to overfitting.
This validates that our synthetic data teaches generalizable segmentation principles beyond salient

object detection. Interestingly, S3ODNet trained only on our synthetic data outperforms some of the
methods that were trained on COD datasets (Huang et al.}, 2023).

Figure 5] visualizes predictions on challenging camouflaged scenes, showing that models trained only
on S30D successfully detect occluded complex objects with ambiguous boundaries confirming even
such challenging scenarios are represented in S30D synthetic dataset.

C FEATURE COMPLEMENTARITY

Figure [§] visualizes the three feature sources on dataset samples. Concept attention maps provide
strong but coarse foreground-background separation through explicit semantic grounding. DINO-v3
features capture fine-grained visual semantics where similar regions exhibit similar embeddings,
enabling strong object-level understanding. FLUX DiT features encode spatial scene parsing in-
formation from the generative process, including boundary localization and structural composition.
The visualization also demonstrate the limitations of individual feature sources. Concept maps
provide strong foreground cues on simple scene but fail to precisely localize foreground object in
more complex scenario (rows 3 and 4) — demonstrating the limitation of unsupervised segmentation
methods that rely only on attention maps (Helbling et al.,2025). Rows 3 and 5 also show DiT feature
maps capabilities: in contrast to DINO feaures the objects in reflection or snow piles patches have
higher similarity as diffusion model efficiently reuse the information during generation. This precisely
demonstrate an importance of combining multiple feature sources: in highly complex ambiguous
scenes generative and discriminative features complement each other allowing to decode high quality
mask. Note that FLUX and DINO-v3 features are high-dimensional and visualized via PCA for
interpretability.
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D PROMPTING

To further enhance the quality and diversity of our synthetic data, we employed an LLM (Achiam et al.,
2023) to generate detailed, specific prompts rather than using simple class names. The prompting
strategy was designed to systematically vary key aspects of scene composition including object size,
positioning, occlusion levels, lighting conditions, and environmental complexity. For example, when
generating “lion” category images, prompts varied from scenes with multiple lions to single lions in
challenging environmental conditions. These detailed textual descriptions guided the diffusion model
to create more challenging, diverse training samples that better reflect real-world scenarios and edge
cases. The set of example prompts for the “lion” category includes:

1. A medium-sized lion lying on a sunlit rock, partially obscured by tall grass, with a dense
forest background; intricate shadows play on the lion’s fur and the rock surface.

2. A small lion cub, occupying the left third of the frame, peeking through a thicket of dry
branches in a savannah setting with blurred golden grass and a distant treeline.

3. Two lions resting under the shade of an acacia tree, one lion partially hidden by the tree’s
trunk; dappled sunlight filters through the leaves, creating complex patterns on the ground.

4. A majestic lion standing on a hilltop, backlit by the setting sun, casting a dramatic silhouette
against a vibrant, cloud-streaked sky with the savannah stretching out in the background.

5. A close-up of a lion’s face, centered in the frame, with its mane blending into a similarly
colored rocky background; fine textures of the fur and rock are sharply defined.

6. A trio of lions walking through a misty grassland, with their figures partly obscured by the
fog; subtle variations in coloration and mane distinguish each lion.

7. A lioness crouching low in a field of tall yellow grass, partially obscured and camouflaged
by the foliage, with a clear blue sky above and distant hills in the background.

8. A large male lion resting near a waterhole, with its reflection visible in the water; surrounding
reeds and scattered stones add complexity to the scene.

9. A lion moving through a snowy landscape, with snowflakes gently falling; the lion’s fur
stands out against the whiteness, and scattered bushes break the monotony of the snow.

10. A wide shot of a lion pride relaxing in the shade of a large rock formation, with varied poses
and partial occlusions by rocks; the background features a lush green valley.

The full system prompt is presented in Figure

E DATASET QUALITY

We conducted a quality assessment of our synthetic dataset across multiple dimensions. Manual
verification of 1,000 randomly sampled masks revealed high annotation quality: only 14 samples
(1.4%) exhibited minor issues such as slightly incomplete mask boundaries, while merely 1 sample
(0.1%) was missing a clear foreground object entirely. This demonstrates the effectiveness of our
multi-stage filtering pipeline and multi-modal dataset diffusion approach.

To quantitatively evaluate synthetic-to-real domain gap we compute quality and coverage of the
samples produced by a generative model following (Kynkdanniemi et al.,[2019) versus a combination
of SOD and DIS datasets. We observe that both synthetic images and masks closely follow real
distribution in contrast to other methods that only model a part of it. Further, UMAP (Mclnnes et al.|
2018) projections of DINO-v3 image and masks features demonstrate that S30D samples cover a
larger region of the real data manifold compared to MaskFactory (Qian et al.; 2024). Reduced domain
gap directly explains the superior generalization of the models trained on S30D.

Another significant challenge in synthetic data generation is the domain gap between synthetic and
real images. We observed that standard FLUX model fine-tuned for aesthetics produce unnatu-
rally oversaturated images that differ substantially from real-world photography. To address this,
we employ the FLUX-Krea checkpoint (Black Forest Labs| 2025), which underwent large-scale
reinforcement learning alignment specifically for photorealism, producing significantly more natural-
looking images. Additionally, during pretraining we apply comprehensive image augmentations to
further reduce the synthetic-to-real domain gap.
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Generate exactly {num_prompts} diverse prompts for {main_class} images for salient object detection.
Focus on natural, photorealistic scenes with varying complexity.

Focus on natural, photorealistic scenes with an elevated level of realism, complexity, and diversity.
Key aspects to vary:

* Object size: Include scenes with small main objects (occupying 10-30% of the frame) as well
as larger instances, ensuring varied prominence.

* Object position: Vary placement between center, left, and right sides of the frame.

¢ Multiple instances: Occasionally include 2-3 distinct instances of the main object, each with
subtle differences in appearance or partial occlusion.

* Visual complexity: Integrate rich textures, intricate patterns, and similarly-colored natural
background elements that challenge segmentation.

¢ Occlusion: Introduce partial occlusion by natural elements (10-20% occlusion) to add depth.

¢ Lighting: Vary between harsh shadows, dramatic backlighting, and dappled sunlight, ensuring
that all lighting conditions remain natural.

e Environment: Use visually busy natural settings with detailed foreground, midground,
and background elements that contribute to overall scene complexity. Include challenging
conditions such as fog, rain, snow, or dusty haze to heighten realism if appropriate.

* Viewpoint: Mix close-ups, medium shots, and wide perspectives for diverse scene composi-
tions.

* Additional elements: Ensure the main object remains identifiable in the foreground, integrated
into a naturally complex setting without relying on artificial or softened effects.

Essential requirements:

* The main object(s) must be clearly discernible for salient object detection, yet embedded
within a challenging, detailed environment.

* Avoid artificial or studio setups—use only natural settings and lighting.

¢ Maintain sharp focus across all scene elements to ensure realism; do not include any blur,
bokeh, or artificially softened backgrounds.

* The background should be naturally complex and detailed, providing a challenging context
for segmentation without compromising the visibility of the main object.

Return exactly {num_prompts} prompts as Python list: [”A description of a scene”, ...]
Important: Double-check that your response contains exactly {num_prompts} prompts.

Figure 7: The complete system prompt used to instruct the LLM (Achiam et al., 2023) for generating
diverse text descriptions. These descriptions focus on creating natural scenes with varying complexity,
occlusion, and lighting to simulate challenging real-world conditions for salient object detection.

We evaluate synthetic data quality using standard generative model metrics compared to existing
approaches. As shown in Table [TT} our method achieves superior image quality and diversity
comparing to datasets based on older diffusion models. S30D achieves an Inception Score of 35.19
compared to MaskFactory’s 17.41 and DatasetDM’s 14.97, indicating better diversity and quality. Our
FID score of 1.74 significantly outperforms MaskFactory (2.81) and DatasetDM (3.16), demonstrating
closer similarity to real data distribution.

Table 11: Dataset Quality Comparison: S30D generated with large DiT model fine-tuned for
photorealism achieves substantially higher quality and better real-data alignment compared to existing
synthetic approaches, demonstrating the importance of realistic generation models.

Method \ Diffusion Model | Inception Score T FID |
S30D FLUX-Krea (Black Forest Labs|, [2025)) 35.19 1.74
S30D FLUX-dev (Labs) [2023) 31.94 1.90
MaskFactory | Stable Diffusion (Rombach et al., 2022) 17.41 2.81
DatasetDM Stable Diffusion (Rombach et al., 2022 14.97 3.16
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Figure 8: S30D Dataset Samples: Our method generates diverse high quality samples across a wide
variety of object categories.

F QUALITATIVE EVALUATION

We visualize the random samples from different categories of S30D in Figure[§] It demonstrates
the diversity and realism achieved by our synthetic data generation pipeline, spanning various object
types, lighting conditions, and scene compositions. The samples exhibit challenging scenarios with
complex backgrounds, partial occlusions, and varying object: key attributes for training robust salient
object detection models. As shown in Figure[9] LLM-based prompt generation significantly enhances
the visual quality and diversity.

G MODEL DETAILS

S30DNet achieves a strong balance between performance and efficiency as shown in Table
comparable to other state-of-the-art models that utilize large transformer backbones. Notably, the
model is both more efficient and has more parameters comparing to models that are based on the
Swin architecture (Liu et al 2021b). The DINO-v3 (Siméoni et al., 2025)) backbone with ViT-B
(Dosovitskiy et al.}[2020) offers a favorable trade-off between computational efficiency and state-of-
the-art performance.
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a photo of a cup

a photo of a lion

Figure 9: Prompt Enhancement: Top: Class name as a prompt. Bottom: LLM Prompt Generator.
By focusing on key properties of salient object detection dataset the agent creates detailed and diverse
prompts to maximize the diversity and realism.

Input Image InSPyReNet BiRefNet MVANet S30D Ground Truth

Figure 10: Qualitative Comparison: We compare S30DNet vs state-of-the-art methods on DIS-5K
(Qin et al.| [2022)) dataset. By modeling multiple hypothesis S3ODNet is able to predict detailed
masks with high confidence. Alternative prediction can be seen in the bottom right corner.

Table 12: Model Efficiency. S3ODNet achieves comparable performance to other state-of-the-art
salient object detection methods.

Model Total Parameters FLOPs (T) FPS
InSPyreNet (Kim et al.| {2022 90,721,443 1.495 2.88
BiRefNet (Zheng et al., 2024) 220,176,498 1.143  3.65
MVANeEet (Yu et al.,|2024) 94,139,021 0.857 4.62
S30DNet 116,905,286 0.807 3.80
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Figure 11: Domain Gap Analysis. (a-b) UMAP projections of DINO-v3 image and masks features.
S30D covers large portion of the real data distribution matching combined SOD real datasets. (c-d)
Precision-Recall curves (Kynkadnniemi et al.,2019) vs a combination of DIS and SOD dataset:
S30D achieves higher recall and precision for both images and masks comparing to other synthetic
datasets that only cover a part of real data distribution demonstrating lower synthetic to real gap.

H STATE-OF-THE-ART COMPARISON

We further expand the analysis of S30D performance vs other state-of-the-art methods. Table[I3]
evaluates the performance comparing to models finetuned from foundational segmentation model
2024). We observe that all models that are based on SAM perform well on simpler
subset of DIS (DIS-TE1) but the performance drops significantly as the sample complexity increases.
S30DNet outperforms all approaches (Ke et al.} 2023} [Liu et al.}, [2024) matching the performance of
DIS-SAM which is a more complex two stage pipelines consisting of two separate
models performing segmentation in high resolution resulting in significantly larger complexity and
number of parameters comparing to our simple network design. This evaluation demonstrates that
the limited manually labeled data is still insufficient to finetune even the state-of-the-art foundational
models pretrained on various data from a slightly different domain.

Next we provide the results of more state-of-the-art methods as well as S30DNet variant trained only
on DIS-5K or SOD datasets in Table [T4] to further evaluate the impact of pretraining on synthetic

data. We include (Wei et all,[20204; [Zeng et al, 2019; [Tang et al.}, 2021} [Xie et al.,[2022a) model to

SOD evaluation. Interestingly, S30D trained only on synthetic data outperforms most of the older
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methods that were trained on SOD datasets when evaluating on SOD benchmarks! This showcases
both the quality of the synthetic data and model effectiveness. S30DNet trained only on SOD
confirms the insights from Section [5] - the performance on salient object detection benchmarks
is saturated. All transformer based methods that were trained on SOD data show comparable
performance when evaluating on same datasets. The only benchmark that is from a different data
distribution is DUT-OMRON, demonstrating that S3ODNet trained on SOD outperforms other
methods and pretraining on S30D further improves performance. This also highlights the importance
of cross-dataset generalization evaluation instead of only measuring overfitting to small academic
benchmarks.

The evaluation of S30DNet trained on DIS-5K follows the same trend. We further evaluate (Qin
et al., [2019;[2020; [Xie et al.l[2022a}; |Qin et al., 2022} Pei et al.l [2023; Zhou et al., 2023). Similarly to
other evaluations, S30ODNet trained on DIS outperforms other methods trained on same dataset and
pretraining on S30D further improves the performance.

Table 13: Comparison of SAM-based methods and S30DNet: Our model outperforms most larger
models finetuned from Segment Anything matching the performance of complex two-stage pipeline
(Liu et al.| 2025)).

Method DIS-TE1 DIS-TE2 DIS-TE3 DIS-TE4 Overall
Fn 1 Sa1 Byt MAEL|Fn 1 Sa 1 Ejp t MAEL| Fn 1 Sa 1 Exp T MAEL| Fn 1 Sa 1 B T MAEL| Fin 1 Sa 1 B3y T MAEL
SAM 838 .843 805 .047 |.803 .792 .863 .081 |.773 .761 848 .094 |.677 .697 .762 .162 |.773 773 .845 .096

HQ-SAM | .903 907 959 .019 | .895 883 .950 .029 |.860 .851 .926 .045 |.776 .799 .863 .088 |.859 .860 .924 .045
Pi-SAM | .890 .894 947 .027 | .903 907 .953 .027 |.899 .901 .953 .030 |.869 .871 .939 .046 |.890 .893 .948 .033
DIS-SAM| .929 .929 .960 .019 |.924 921 .955 .025 | 918 908 .948 .030 |.899 .888 .932 .043 |.917 911 .949 .029
S30ODNet | .892 902 .932 .031 |.923 921 .953 .026 |.930 .920 .960 .025 |.909 .902 .954 .034 | 914 911 .950 .029

I MULTI-MASK DECODER ANALYSIS

Our multi-mask decoder builds upon the multiple hypothesis prediction (MHP) framework of (Rup-
precht et al., 2017), which shows that predicting M hypotheses creates a Voronoi tessellation of
the output space, with each hypothesis converging to the conditional mean of its region. However,
salient object detection differs fundamentally from inherently ambiguous tasks like future predic-
tion: most samples have a single clear ground truth and only a small subset are truly ambiguous
(multiple objects or complex scene). This creates a critical training instability. Without explicit
regularization, branches that are initially far from the data receive no gradients from the best-match
selection * = arg min,; IoU(m;, y) and degenerate, as most samples assign to a single dominant
branch. This is why we introduce auxiliary loss with exponential decay L = L;« + Apege 70> . Ly,
which prevents branch collapse by forcing all branches to maintain proximity to ground truth early in
training, then gradually allows diverse outputs as the decay reduces supervision. This setup enable
branches to handle both the dominant unambiguous cases and the sparse ambiguous samples. The
ablation study below validates this design. The baseline configuration achieves optimal balance
between branch diversity and segmentation performance. Without auxiliary loss, we observe branch
collapse as two branches stop receiving gradients and output empty masks. Static regularization
without decay produces overfits to output all similar masks ignoring the ambiguity, while stronger
regularization or slower decay both slightly reduce entropy without clear performance benefits.

We evaluate the impact of auxiliary branch regularization through the A, and decay rate -y parameters
in our multi-mask decoder loss formulation. The baseline configuration uses A,.., = 0.1 with
exponential decay v = 0.2.

Due to the computational cost of retraining the model, we cannot perform an exhaustive grid search
over all possible parameter combinations. Instead, we strategically select four key ablation variants
that test fundamental design choices: (1) stronger regularization (\,., = 0.2) to assess if auxiliary
branches benefit from full mask supervision, (2) slower decay (v = 0.1) to maintain full mask longer
during training, (3) static regularization (v = 0.0) without any decay to evaluate the necessity of the
temporal annealing mechanism, and (4) no auxiliary loss (A4 = 0.0) training only the best-matching
branch to test if some branches stop receiving gradient during the training.

These variants assess the trade-off between enforcing branch diversity and preventing degradation of
unused predictions. The last configuration (A4 = 0.0) is particularly important as it tests whether
supervising all branches with the ground-truth mask in early epochs provides any benefit and stabilize
the training.
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Table 14: Quantitative Comparison: We extend the comparison to more baselines and also evaluate
S30DNet trained only on real data. S30ODNet trained on the same datasets as prior work demonstrates
better performance. Pretraining on S30D further improve the performance, showing the value of the
dataset even on saturated benchmarks.

Method Data DAVIS-S HRSOD-TE UHRSD-TE DUTS-TE DUT-OMRON
Fn 1 Sat E3; 1 MAEL|Fpn 1 Sa t Ejf © MAEL|Fi 1 Sa 1t EY; £ MAEL| Fo 1 Sa t Ef + MAEL| F 1 Sa 1 Ey 1 MAE]

LDF SOD 911 922 947 019 | .904 904 919 .032 |.888 913 .891 .047 |.892 .898 910 .034 | .820 .838 .873 .051
HRSOD SOD 899 876 955 .026 | .905 .896 .934 .030 - - - - 835 .824 885 .050 |.743 .762 831 .065
DHQ SOD 938 920 .947 .012 | .922 920 947 .022 | .900 911 .905 .039 |.894 .900 .919 .031 |.820 .836 .873 .045
PGNet SOD 957 954 979 .010 | 945 938 946 .020 |.935 949 916 .026 |.859 .871 .897 .038 |.772 .786 .884 .058
InSpyreNet SOD 977 973 987 .007 | 956 956 .962 .018 |.957 953 .965 .020 |.932 936 .956 .024 | .823 .872 .906 .046
BiRefNet SOD 979 975 989 .006 |.963 957 973 .016 |.963 .957 .969 .016 | 943 944 962 .018 |.839 .882 .896 .038
S30DNet SOD 975 969 991 .005 | .964 953 973 017 |.964 948 967 .019 |.951 939 966 .018 | .874 .890 .919 .033

S30DNet |S30D +SOD| .979 974 .993 .004 | .963 .961 .978 .013 |.964 952 .969 .018 |.954 .949 972 .015 | .879 .898 .924 .032

Method Data DIS-1 DIS-2 DIS-3 DIS-4 Overall
Fin 1 Sa? Ef 1 MAEL| Pyt Sot B3, 1 MAEL|Fin 1 Sa 1 Efi 1 MAEL|Fuu 1 Sa t ESf 1 MAEL|Fru 1 Sa 1 Eff 1 MAEL

BASNet DIS 663 741 756 .105 | .738 .781 .808 .096 |.790 .816 .848 .080 |.785 .806 .844 .087 |.744 786 .814 .092
U?Net DIS 701 762 783 .085 | .768 .798 .825 .083 | .813 .823 .856 .073 |.800 .814 .837 .085 |.771 .799 .825 .082
PGNet DIS 754 800 .848 .067 | .807 .833 .880 .065 | .843 .844 911 .056 |.831 .841 .899 .065 |.809 .830 .885 .063
IS-Net DIS 740 787 820 .074 |.799 .823 858 .070 |.830 .836 .883 .064 |.827 .830 .870 .072 |.799 .819 .858 .070
FP-DIS DIS 784 821 .860 .060 | .827 .845 .893 .059 | .868 .871 .922 .049 | .846 .852 906 .061 |.831 .847 .895 .047
UDUN DIS 784 817 864 .059 | .829 .843 886 .058 |.865 .865 .917 .050 | .846 .849 .901 .059 |.831 .844 .892 .057
SAM-HQ DIS 897 907 943 .019 | .889 .883 .928 .029 |.851 .851 .897 .045 |.763 .799 .843 .088 |.850 .860 .903 .045
InSpyreNet DIS 845 873 874 .043 | 894 905 916 .036 | .919 918 .940 .034 | 905 .905 936 .042 | .891 .900 .917 .039
BiRefNet DIS 860 .885 911 .037 |.894 900 .930 .036 |.925 919 955 .028 | .904 900 .939 .039 | .896 .901 .934 .035
MVANet DIS 862 .880 .906 .039 | .909 912 942 .032 |.924 918 .954 .030 |.907 .905 .946 .039 |.900 .904 .937 .035
S30DNet DIS 896 .891 928 .031 |.919 905 .943 .030 |.928 910 .957 .028 |.896 .883 .942 .039 |.910 .897 .943 .032
S30DNet |DIS +S30D| .892 902 .932 .031 |.923 921 .953 .026 | .930 .920 .960 .025 | .909 902 .954 .034 |.914 911 .950 .029

Table 15: Multi-Mask Decoder Loss Ablation: We report segmentation performance on UHRSD-
TE and DUT-OMRON benchmarks, along with diversity metrics computed across all test samples.

A Diversity Metrics UHRSD-TE DUT-OMRON

"9 7 | Entropy? AvgloU} | Fre t Sat E% 4 MAEL| Fnt Sat E% 1 MAE)
0.1 02| .878 863 | 964 948 967 .019 | 874 .890 919  .033
02 02| .823 869 963 948 967 .020 | .873 .891 917  .033
0.1 0.1] .824 877 962 948 967 .020 | 873 .890 916 .034
0.1 00| .906 945 962 949 968 019 | 874 890 919  .034
00 00| 00 0.0 964 947 966  .020 | .876 .890 920  .034

J  LIMITATIONS AND BROADER IMPACT

S30D data is fully generated so we deliberately don’t provide a test split for the dataset as we believe
the methods can be pretrained on synthetic data but should be evaluated or smaller scale precise
human annotations. The multi-stage filtering strategy detects and removes most of the fail cases but
the model occasionally might produce some artifacts both while generating an image or mask, such as
mask not fully covering an object or a scene missing a clear salient object. We acknowledge the high
computational cost of generating large-scale data using diffusion transformers, yet the process is still
orders of magnitudes faster than manual labeling and can be effectively parallelized. Additionally,
similarly to (Zheng et al.,2024) we observe that training for more than 100 epochs almost does not
impact the metrics but slightly improves finer details quality so we were able to obtain similar metrics
with using only 4 A6000 GPUs for 2.5 days which makes the training pipeline more accessible. We
expect that the insights into the combination of generative and discriminative features as well as
the iterative data generation can be reused in other tasks and domain especially where obtaining the
ground truth data is the main bottleneck for scaling.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)
The LLM is a core part of the dataset generation method Figure [3|ensuring we build a large library

of diverse captions for various object categories. We also used LLMs to polish the writing, verify
grammar or improve the sentence structure.
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