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Abstract

Although pre-training has become a prevalent001
approach for addressing various biomedical002
tasks, the current efficacy of pre-trained models003
is hindered by their reliance on a limited scope004
of medical sources. This limitation results in005
data scarcity during pre-training and restricts006
the range of applicable downstream tasks. In007
response to these challenges, we develop MED-008
CSP, a new pre-training strategy designed to009
bridge the gap between multimodal medical010
sources. MEDCSP employs modality-level ag-011
gregation to unify patient data within individ-012
ual sources. Additionally, leveraging tempo-013
ral information and diagnosis history, MED-014
CSP effectively captures explicit and implicit015
correlations between patients across different016
sources. To evaluate the proposed strategy, we017
conduct comprehensive experiments, where the018
experiments are based on 6 modalities from 2019
real-world medical data sources, and MEDCSP020
is evaluated on 4 tasks against 19 baselines,021
marking an initial yet essential step towards022
cross-source modeling in the medical domain.023

1 Introduction024

Pre-training, a widely adopted technique with the025

primary objective of enhancing the performance026

of downstream tasks, is a practice extensively em-027

ployed in natural language processing (Kenton and028

Toutanova, 2019; Radford et al., 2018). In the med-029

ical domain, researchers have dedicated efforts in030

pretraining powerful models, including Clinical-031

BERT (Huang et al., 2019), ClinicalT5 (Lehman032

and Johnson, 2023), and MedHMP (Wang et al.,033

2023). While these pre-training techniques benefit-034

ing from unlabeled data have showcased superior-035

ity in diverse medical downstream tasks, they still036

suffer from the following challenges:037

Data scarcity. Training a robust pre-trained model038

typically requires a substantial corpus, particularly039

in a multimodal approach. However, obtaining a040

sizable training dataset in the medical domain poses041

challenges owing to concerns surrounding data pri- 042

vacy. Hence, exploring innovative approaches for 043

integrating more medical data into the pre-training 044

process becomes imperative. 045

Limited downstream tasks. Current pre-trained 046

models in the medical domain are often trained 047

using data from a single source, thus limiting the 048

spectrum of applicable downstream tasks. For ex- 049

ample, MedHMP (Wang et al., 2023) pretrained 050

on electronic health records (EHRs) source is only 051

suitable for predictive modeling tasks involving 052

EHR data. In contrast, pre-trained models in the 053

general domain are usually applicable to various 054

tasks. For instance, Flamingo (Alayrac et al., 2022), 055

a visual-language model, achieves state-of-the-art 056

performance on 16 few-shot learning tasks. There- 057

fore, considering the multimodal nature of medical 058

data, an ideal pre-trained model should be equipped 059

to address as many tasks as possible. 060

To tackle these issues simultaneously, a promis- 061

ing approach involves training a model using di- 062

verse medical data sources from various datasets. 063

This strategy not only augments the volume of train- 064

ing data but also broadens the spectrum of tasks. 065

Nevertheless, achieving this objective is inherently 066

challenging due to the following reasons: 067

Firstly, the number of patients who have data 068

across multiple data sources is significantly lim- 069

ited. For example, this number is 14,620 between 070

the MIMIC-IV and MIMIC-CXR databases, rep- 071

resenting only 22.36% and 45.19% of these two 072

databases, respectively. The scarcity of patients 073

with data spanning multiple sources further di- 074

minishes the limited connectivity between these 075

sources, adding complexity to cross-source integra- 076

tion efforts. Thus, designing an effective model 077

that proficiently leverages the overlapped patients 078

as a bridge to facilitate the training of other patients 079

simultaneously is essential. 080

Secondly, modeling patients with data from mul- 081

tiple sources is challenging due to the intrinsic com- 082
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Figure 1: Overview of the proposed MEDCSP.

plexity of medical data. For example, a patient’s083

chest X-ray images and reports may be housed in084

the MIMIC-CXR database, while diagnosis and085

treatment information are stored in the MIMIC-086

IV database. However, owing to the temporal na-087

ture of medical data, their recorded times of infor-088

mation across various sources may not align per-089

fectly. Therefore, exploring a reasonable approach090

to model these relationships is urgently needed.091

Finally, implicit yet informative relationships of-092

ten exist among patients across different sources,093

requiring appropriate handling. For instance, pa-094

tients with analogous conditions may exhibit simi-095

lar symptoms, despite being in separate databases.096

Recognizing and leveraging these implicit connec-097

tions is essential for facilitating cross-source train-098

ing, as they hold significant potential for enhancing099

model performance through the aggregation of sim-100

ilar patient profiles.101

To address the aforementioned challenges inher-102

ent in multimodal medical records from diverse103

sources, we introduce a pioneering pre-training104

framework in this paper, named Medical Cross-105

Source Pre-training (MEDCSP), as shown in Fig-106

ure 1. MEDCSP first encodes each modality from107

each source using modality-specific encoders in108

Section 3.2. Subsequently, it employs two distinct109

pre-training tasks. The first task explores modality-110

level relations among patients within individual111

sources (Section 3.3), while the second task fo-112

cuses on discovering relationships among patients113

across different sources (Section 3.4). Specifically,114

MEDCSP models relations for overlapped patients115

across sources by considering their record times in116

Section 3.4.1 and establishes connections among117

patients in similar cohorts using their diagnosis118

similarities in Section 3.4.2.119

Through interactive modeling, MEDCSP ac-120

quires the capability to generate informative and121

representative medical embeddings for diverse122

downstream tasks. Our exhaustive experiments123

across six modalities within two sources demon- 124

strate the effectiveness of our pre-training strategy, 125

providing an initial yet crucial solution for unifying 126

diverse modalities across multiple medical sources. 127

2 Related Work 128

Multimodal Pre-training on Medical Data. Pre- 129

training on multimodal medical data, although it 130

has seen significant development in recent years, 131

remains fragmented across various sources. The 132

predominant approach to multimodal pre-training 133

involves aligning images with text (Hervella et al., 134

2021, 2022a,b; Khare et al., 2021). Additionally, 135

with the emergence of Large Language Models 136

(LLMs), some pioneering studies have endeav- 137

ored to integrate images into the semantic space of 138

LLMs (Li et al., 2023; Moor et al., 2023). However, 139

due to the constraints imposed by their pretraining 140

data sources, applying these pretrained models to 141

tasks devoid of images proves challenging. 142

Thus, research on pre-training with multimodal 143

medical data excluding images remains relatively 144

limited. Some researchers have achieved success 145

by aligning numerical clinical features with diagno- 146

sis codes (Li et al., 2022, 2020), while others have 147

explored the correlation between clinical language 148

and codes. Recent advancements include modeling 149

complex interactions within EHR data, incorporat- 150

ing multiple modalities such as diagnosis codes, 151

demographics, clinical notes, medication codes, 152

and clinical monitoring data (Meng et al., 2021; 153

Wang et al., 2023). Nonetheless, these endeavors 154

face challenges akin to those encountered in image- 155

related pre-training, compounded by the issue of 156

data scarcity within EHR data, which significantly 157

restricts their broader applicability. 158

Multi-source Multimodal Pre-training. Conven- 159

tional pre-training techniques typically leverage 160

diverse data sources to enhance the generalizability 161

of representations, a principle that extends to mul- 162

timodal settings. Previous works (Lu et al., 2019; 163

Cho et al., 2021; Su et al., 2019; Lee et al., 2023a; 164

Tan and Bansal, 2019) have demonstrated this by 165

combining image-text pairs from multiple sources, 166

thereby enhancing model performance across vari- 167

ous domains. However, these models face limita- 168

tions when confronted with new modalities, as they 169

are built upon uniform data sources. 170

Recognizing the shortcomings of homogeneous 171

multimodal pre-training approaches, recent endeav- 172

ors have shifted focus towards harnessing more 173
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diverse and heterogeneous sources. Recent stud-174

ies (Liang et al., 2022; Reed et al., 2022) have175

embraced data from varied modalities for joint pre-176

training, resulting in improved modality-specific177

encoders. Despite these advancements, designed178

to cater to general fields, these approaches struggle179

to capture latent medical correlations within multi-180

modal health data, thereby impeding the generation181

of domain-specific representations.182

3 Methodology183

3.1 Model Input184

Let p ∈ P represent a patient in the patient set185

P . The patient’s data may be distributed across186

multiple medical sources, as illustrated in Fig-187

ure 1. We use Dp
s to represent data stored in188

the s-th source for patient p. Each patient’s data189

from a source s may contain multiple records, i.e.,190

Dp
s = {Dp

s,r}R
p
s

r=1, where Rp
s represents the number191

of records in Dp
s . In addition, each record usually192

consists of multimodal modalities. Let Dp
s,r,m de-193

note the m-th modality in the r-th record from the194

s-th source for patient p. With these inputs, the195

subsequent step involves modality-level encoding.196

3.2 Modality Encoding197

Due to the significant differences among modalities198

in the data sources, employing a uniform encoder199

to embed them poses challenges. Hence, we adopt200

modality-specific encoders to map the modality-201

level data to a shared latent space, formulated as202

follows:203

eps,r,m = Encoderm(Dp
s,r,m), (1)204

where the specifics of each encoder Encoderm(·)205

are detailed in Appendix A. By averaging embed-206

dings of modalities, we then obtain the record-level207

representation as follows:208

cps,r =
1

M

M∑
m=1

eps,r,m, (2)209

where M is the number of modalities.210

3.3 Intra-source Pre-training211

To conduct pre-training across multiple sources,212

the primary challenge lies in modeling the relation-213

ships among both modality-level and source-level214

data. Despite the different formats of modalities215

in sources, they inherently exhibit alignment. For216

instance, a chest X-ray image typically corresponds217

⋯
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Figure 2: Illustration of intra-source pre-training.

to a radiological report detailing the findings from 218

the image, and a patient’s in-hospital visit corre- 219

lates with a set of diagnosis codes, procedure codes, 220

clinical notes, and so forth. These alignments indi- 221

cate that corresponding data in different modalities 222

convey information about the same clinical event 223

or patient admission. Consequently, it is imperative 224

that these modality-level embeddings are mapped 225

as closely as possible. 226

An ideal approach to capture the relationships 227

among modalities is through pair-wise modality- 228

level contrastive learning. However, the pair-wise 229

learning paradigm encounters a drawback: the com- 230

putational complexity escalates significantly with a 231

large value of M . To address this challenge, we pro- 232

pose conducting record-modality-level contrastive 233

learning. Intuitively, as illustrated in Eq. (2), the 234

record representation cps,r serves as the centroid 235

of all modality-level representations. Ideally, each 236

modality eps,r,m should be proximate to its corre- 237

sponding centroid cps,r but distant from others, as 238

shown in Figure 2. 239

Based on this intuition, we design our alignment- 240

based loss. The loss is based on InfoNCE (Oord 241

et al., 2018) and functions on a record-modality 242

pair (eps,r,m, cps,r) for intra-source pre-training as 243

follows: 244

La = − log
exp(sim(ep

s,r,m, cps,r)/τ)∑
c
p′
s′,r′∈Na

exp(sim(ep
s,r,m, cp

′

s′,r′)/τ)
, (3) 245

where sim(·, ·) is the cosine similarity function, 246

cp
′

s′,r′ denotes a randomly selected record within 247

the batch, Na denotes the negative set, and τ is a 248

temperature hyperparameter. Thus, the total align- 249

ment loss is defined based on Eq. (3) as follows: 250

LA =
∑
p∈P

Sp∑
s=1

Rp
s∑

r=1

Ms∑
m=1

La, (4) 251

where Sp is the number of medical sources con- 252

taining patient p’s data, and Ms is the number of 253

modalities within the source s. 254
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3.4 Cross-source Pre-training255

The training objectives outlined in Eq. (4) serve256

to direct the model in capturing explicit alignment257

between different modalities for the same patient258

within the same source comprehensively. However,259

an unresolved issue remains: what if no explicit260

alignment is defined? This issue becomes particu-261

larly prominent in cross-source settings, where dis-262

tributed medical data often represent distinct admis-263

sions and studies. To address this issue, we propose264

two additional loss functions to capture relation-265

ships among patients across medical sources. The266

first loss term focuses on modeling relationships267

for patients present in different sources, while the268

second loss term aims to learn the relationships of269

patients in similar cohorts among different sources.270

3.4.1 Same Patients Across Different Sources271

Intuitively, the data of the same patient across dif-272

ferent sources should exhibit similar patterns, par-273

ticularly for records archived within the same time274

window. Let us assume that a patient’s data in275

two distinct sources are denoted as Dp
s,r and Dp

ŝ,r̂,276

and the timestamps of these two records satisfy277

|T p
s,r − T p

ŝ,r̂| ≤ θ, where θ represents a predefined278

time window threshold. The similarity between279

Dp
s,r and Dp

ŝ,r̂ represented by sim(cps,r, c
p
ŝ,r̂) should280

be larger than that between Dp
s,r and a record281

Dp′

s′,r′ randomly selected from different sources,282

i.e, s ̸= s′, if p ̸= p′. As illustrated in Figure 3,283

we design a record-level cross-source contrastive284

learning loss for the same patients as follows:285

LP =
∑
p∈P

Sp∑
s=1

Rp
s∑

r=1

Lp,

Lp = − log
exp(sim(cps,r, c

p
ŝ,r̂)/τ)∑

c
p′
s′,r′∈Np

exp(sim(cps,r, c
p′

s′,r′)/τ)
,

s.t. |T p
s,r − T p

ŝ,r̂| ≤ θ,

(5)286

where Np is the randomly selected pairs.287
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Figure 4: Illustration of pre-training for patients with
similar cohorts across different sources.

3.4.2 Patients with Similar Cohorts Across 288

Different Sources 289

In addition to within-patient interactions, as shown 290

in Eq. (5), relationships between records that nei- 291

ther share the same patient nor belong to the same 292

source still require appropriate analysis. When con- 293

sidering two data samples from distinct sources, 294

denoted as Dp
s,r and Dp̂

ŝ,r̂, the absence of explicit 295

similarity poses a challenge for understanding their 296

relationship. 297

To ensure that no potential relationships across 298

the medical domain are overlooked, we leverage 299

diagnostic history from different patients to further 300

capture implicit cross-source interactions. Intu- 301

itively, if Dp
s,r and Dp̂

ŝ,r̂ belong to patients with the 302

same medical history — such as two patients both 303

suffering from schizophrenia and bipolar disorder 304

— the symptoms manifested through their records 305

should exhibit similarity. Conversely, data without 306

any overlap in diagnoses, i.e., Dp
s,r and Dp′

s′,r′ , are 307

unlikely to have similar recorded contents. 308

Let us denote the multi-hot vector representing 309

all distinct diagnosis codes related to the patient p 310

as hp ∈ R|H|, where |H| denotes the distinct num- 311

ber of diagnosis codes. hp serves as the diagnostic 312

history of patient p. By calculating the cosine simi- 313

larity between two patients, p and p̂, we extend the 314

definition of diagnostic similarity as follows: 315

αp,p̂ = sim(hp,hp̂). (6) 316

In Eqs. (3) and (5), we employ a strategy of di- 317

rectly choosing negative pairs with hard negative la- 318

bels. This is because the positive labels exclusively 319

originate from identical records (i.e., Eq.(3)) or pa- 320

tients (i.e., Eq. (5)). Consequently, pairs randomly 321

selected in this manner exhibit a high confidence 322

of being negative. Nevertheless, discerning posi- 323

tive and negative labels for similar cohorts drawn 324

from distinct patients across diverse sources poses 325

a challenge. To address this, we are prompted to 326
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adopt the similarity score calculated by Eq. (6) as327

a soft label for each pair, which contains more fine-328

grained information than a hard label.329

As illustrated in Figure 4, given any cross-source330

pair (cps,r, c
p
ŝ,r̂), we can derive its diagnostic rela-331

tionship αp,p̂ using Eq. (6). Building on previous332

work (Wu et al., 2021), we define the loss function333

designed for aggregating records associated with334

similar cohorts as follows:335

LD =
∑
p∈P

Sp∑
s=1

Rp
s∑

r=1

Ld,

Ld = −αp,p̂ log
exp(sim(cps,r, c

p̂
ŝ,r̂)/τ)∑

c
p′
s′,r′∈R

exp(sim(cps,r, c
p′

s′,r′)/τ)
,

(7)336

where R is the relation set across sources.337

3.5 Training Objective of MEDCSP338

The final pre-training objective of MEDCSP is the339

weighted summation of alignment-based, patient-340

based, and disease-based contrastive learning341

terms, expressed as:342

L = LA + λPLP + λDLD, (8)343

where λP and λD are two hyperparameters aiding344

in balancing the loss terms. This aggregated opti-345

mization objective balances intra- and cross-source346

modeling on health data, catering to sources with347

diverse cohorts and modalities. We will showcase348

the effectiveness of MEDCSP through numerous349

experiments in the subsequent sections.350

4 Experiments351

In this section, we first outline the configuration of352

our pretraining process in Section 4.1 and then353

demonstrate evaluation with downstream tasks354

on EHR source (Section 4.2) and medical image355

source (Section 4.3), respectively. Due to the space356

limitation, we put more experimental results in357

Appendix E and F.358

4.1 Pretraining Setting359

4.1.1 Datasets of Pretraining360

For our pretraining, we engage with two distinct361

sources: the MIMIC-IV dataset (Johnson et al.,362

2023), which acts as a proxy for EHR data, and the363

MIMIC-CXR dataset (Johnson et al., 2019), which364

represents sources of medical imaging. These365

datasets span six modalities: text, images, temporal366

clinical data, demographics, diagnosis codes, and367

medication codes. Details about data preprocessing368

are listed in Appendix B.369

4.1.2 Implementation Details of Pretraining 370

We subject the introduced model to pretraining 371

over 10 epochs with a learning rate of 1e-5. The 372

batch size is configured at 128, optimized for the 373

NVIDIA A100 GPU. Setups of modality-specific 374

encoders are outlined in Appendix A. Throughout 375

the training phase, we adjust all parameters, setting 376

the balancing hyperparameters λP and λD to 0.5 377

and 0.2, respectively. Temperature hyperparameter 378

τ is set to 0.1. Furthermore, we establish a time 379

gap threshold θ of 30 days for the training process. 380

4.2 Evaluation on EHR Source 381

4.2.1 EHR Tasks 382

In-ICU Criticality Prediction. This experiment 383

focuses on forecasting in-ICU activities by utilizing 384

temporal clinical data and demographic informa- 385

tion as inputs. We use three predictive tasks in this 386

evaluation, including acute renal failure (ARF) pre- 387

diction, shock prediction, and mortality prediction 388

within a 48-hour window. 389

Readmission Prediction. The goal here is to fore- 390

cast the likelihood of a patient’s readmission within 391

30 days. This prediction’s input includes temporal 392

clinical data, clinical notes, demographic details, 393

diagnosis codes, and medication codes. 394

4.2.2 Experimental Setups for EHR Tasks 395

The data used in the evaluation of these tasks are ex- 396

tracted from the MIMIC-III dataset (Johnson et al., 397

2016), which avoids the label leakage issue. We di- 398

vide the dataset into training, validation, and testing 399

subsets at an 80%/10%/10% split. The baselines 400

include F-LSTM (Tang et al., 2020), F-CNN (Tang 401

et al., 2020), RAIM (Xu et al., 2018), DCMN (Feng 402

et al., 2019), and MedHMP (Wang et al., 2023) 403

for the In-ICU Criticality Prediction task. For the 404

Readmission Prediction task, we use eight multi- 405

modal approaches present in existing work (Yang 406

and Wu, 2021) and MedHMP as baselines. Note 407

that only MedHMP and the proposed MEDCSP are 408

pre-trained models. However, MedHMP uses both 409

MIMIC-III and MIMIC-IV databases for the pre- 410

training, while MEDCSP conducts the pre-training 411

with MIMIC-IV and MIMIC-CXR databases. In 412

other words, MedHMP uses more training EHR 413

data than MEDCSP for the EHR tasks. 414

To evaluate the effectiveness of our pretrained 415

encoder, we merge its output embeddings for each 416

task and employ a Multi-layer Perceptron (MLP) 417

module for task-specific classification. We deter- 418
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Figure 5: In-ICU Criticality Prediction Tasks.
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mined the optimal learning rate and batch size419

through a grid search, with the batch size rang-420

ing from 32 to 256 and the learning rate from 2e-5421

to 2e-2. We employ the area under the Precision-422

Recall (PR) curve (AUPR) and the area under the423

receiver operating characteristic curve (AUROC)424

as the evaluation metrics. The higher, the better.425

We obtain the final results as the mean values of426

five runs.427

4.2.3 Results of Evaluation on EHR Source428

The experiment results on the in-ICU criticality429

prediction task are depicted in Figure 5. The pre-430

trained models, MedHMP and MEDCSP, outper-431

form other non-pre-trained baselines. MEDCSP,432

pre-trained with less EHR data but taking the lead433

in all three tasks, demonstrates its superiority by434

using cross-sourced pre-training. This observation435

consolidates the correct rationale behind our de-436

sign of a cross-source pre-training strategy. We437

can observe similar patterns for the readmission438

prediction task, as shown in Figure 6. 439

4.3 Evaluation on Radiological Source 440

One advantage of the proposed MEDCSP is to 441

increase the diversity of downstream tasks by lever- 442

aging multi-source pre-training. To validate this 443

advantage, we also conduct experiments to assess 444

our model’s proficiency in analyzing radiological 445

images and the corresponding reports. 446

4.3.1 Radiological Tasks 447

Text-image Retrieval. This task assesses the 448

model’s ability to associate radiological images 449

with corresponding textual descriptions correctly. 450

It measures the model’s comprehension of visual 451

elements and textual information. 452

Zero-shot Image Classification. The model’s 453

accuracy in categorizing medical images into es- 454

tablished categories without fine-tuning is evalu- 455

ated. This ability is vital for healthcare applications 456

and medical diagnostics, offering insights into the 457

model’s utility in real-world scenarios. 458

4.3.2 Radiological Datasets 459

We utilize a subset of the MIMIC-CXR dataset 460

which is NOT included in the pretraining phase for 461

the text-image retrieval task. Extra experiments 462

on Open-I (Demner-Fushman et al., 2016) can be 463

found in Appendix E. The text queries came from 464

X-ray reports, and the corresponding X-ray images 465

act as the ground truth for image candidates. For 466

zero-shot image classification, we use the COVID- 467

19 dataset (Chowdhury et al., 2020; Rahman et al., 468

2021), consisting of COVID and non-COVID lung 469
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Table 1: Results (%) on Text-image Retrieval Task

Methods
Precision @K Recall @K

1 5 10 20 50 100 1 5 10 20 50 100
CLIP 0.17 0.18 0.17 0.13 0.14 0.12 0.08 0.67 1.16 1.75 4.63 7.79
MedCLIP 0.08 0.10 0.08 0.09 0.08 0.08 0.04 0.23 0.44 1.03 2.07 4.21
BiomedCLIP 0.50 0.53 0.43 0.39 0.31 0.26 0.46 2.29 3.49 5.89 11.79 18.73
PubMedCLIP 0.25 0.13 0.16 0.15 0.15 0.12 0.11 0.39 0.96 1.71 4.30 7.42
CXRCLIP 0.08 0.10 0.11 0.09 0.09 0.08 0.03 0.24 0.58 0.96 2.77 4.61
LLaVAMed 0.17 0.13 0.12 0.12 0.11 0.10 0.11 0.44 0.82 1.66 3.90 7.00
MEDCSP 12.06 6.41 4.45 2.97 1.64 1.04 8.74 21.91 29.51 38.04 50.49 61.74

X-ray images, as the evaluation task. Additional470

experiments on CheXpert (Irvin et al., 2019) are471

covered in Appendix F.472

4.3.3 Implementation Details473

We maintain the original configuration settings for474

all CLIP-like baseline models, including MEDCSP.475

Specifically, for LLaVA-Med, we utilize models de-476

signed for pure text input to encode textual data. To477

process images, we employ a summarizing prompt478

in conjunction with the radiological image as input.479

The final aggregated outputs from these processes480

serve as the encoded embeddings for both text and481

image modalities. We then calculate the similarity482

between these modalities using the cosine distance483

metric, facilitating a comprehensive evaluation of484

the model’s ability to bridge the gap between tex-485

tual descriptions and visual representations. For the486

text-image retrieval task, we measure and report487

precision and recall at K scores, aligning with the488

methodologies established in previous studies, such489

as those detailed in (Wang et al., 2022) and (Zhang490

et al., 2023). In the image classification task, we491

document the precision, recall, and F1 score to492

evaluate model performance comprehensively.493

4.3.4 Result Analysis494

The findings from our Text-Image Retrieval task495

experiments, detailed in Table 1, indicate that our496

model, MEDCSP, significantly outshines CLIP-497

like baseline models with similar architecture in all498

assessed precision metrics at every k value. Impres-499

sively, MEDCSP even exceeds the performance of500

CXRCLIP (Lee et al., 2023b), another model pre-501

trained on the MIMIC-CXR dataset, evidencing the502

superior advantage of our multi-source pre-training503

approach. This advantage is particularly notewor-504

thy because it suggests that our model’s effective-505

ness is not merely due to its alignment with the test506

data’s origin.507

Similar to the results listed in Table 1, MED-508

CSP outperforms baselines on the zero-shot image509

Table 2: Performance(%) comparison of the zero-shot
image classification task on the COVID-19 dataset.

Methods Precision Recall F1
CLIP 26.01 64.91 37.14
MedCLIP 17.80 37.28 24.10
PubMedCLIP 66.67 0.11 0.22
BiomedCLIP 97.54 21.93 35.80
CXRCLIP 30.49 96.03 47.43
LLaVAMed 26.18 100.00 41.50
MEDCSP 71.98 55.00 62.36

classification task, as shown in Table 2. These ob- 510

servations highlight the robustness of MEDCSP’s 511

pre-training processes in forging strong correla- 512

tions between image and text modalities. Conse- 513

quently, MEDCSP emerges as a powerful asset for 514

addressing complex medical issues, demonstrating 515

its particular strength in the field of radiological 516

image analysis. 517

4.4 Ablation Study 518

Our ablation study is conducted from two distinct 519

angles: loss-wise and source-wise. This approach 520

allows us to examine not just the impact of each in- 521

dividual loss term but also the benefits derived from 522

a cross-source setting. For this purpose, we utilize 523

the COVID-19 image classification task as a means 524

to analyze the effectiveness of our pretraining strat- 525

egy. Through this methodical examination, we aim 526

to uncover the specific contributions of different 527

loss components and the value added by leveraging 528

diverse data sources to enhance our model’s perfor- 529

mance on a critical healthcare challenge. We report 530

the F1 score of different settings in Figure 7. 531

Source-wise Comparison. MEDCSPsingle, which 532

represents the version of our model pretrained 533

solely on the MIMIC-CXR dataset, exhibits a 534

noticeable decrease in performance (↓15.36%) 535

compared to its multi-source pretrained counter- 536

part, MEDCSP. This comparison starkly highlights 537

the indispensable role of cross-source pretraining, 538

demonstrating the substantial benefits that accrue 539

from incorporating a variety of data sources to im- 540
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Figure 7: Results of ablation study. The X-axis denotes
different settings, and the Y-axis represents the F1 score.

prove pretraining outcomes.541

Loss-wise Comparison. Delving deeper into the542

architecture of our model, we introduce notations543

MEDCSPA, MEDCSPA+P, and, MEDCSPA+D to544

represent only keeping LA, LA+LP , and LA+LD545

in the loss function (Eq. (8)), respectively. There546

are several observations: (1) The omission of547

any of these components results in a significant548

drop in performance metrics, emphasizing the es-549

sential contribution of each term to the model’s550

comprehensive efficacy. (2) Only utilization of551

MEDCSPA+P causes the most significant drop552

(↓11.56%) of the F1 score based on the experiment.553

The ablation study demonstrates the importance554

of disease-oriented metric learning terms. This555

analysis further elucidates the synergistic impact of556

these components in enhancing the model’s ability557

to navigate complex medical data landscapes.558

4.5 Case Study559

Patient-wise Modeling. The cross-source pre-560

training strategy aims to consolidate records from561

different sources linked by common patient iden-562

tifiers. To evaluate the impact of alignment- and563

patient-centric training objectives, we focus on two564

patients with the highest number of radiological565

records in the MIMIC-CXR dataset. We then vi-566

sualize the embeddings of both modalities, CXR567

images, and their corresponding reports to facilitate568

a detailed analysis, as presented in Figure 8. We569

can observe that data from the same patients are570

organized according to modality rather than patient571

identity when using solely the alignment-based loss572

function Eq. (4). This observation suggests the in-573

sufficient modeling of the unique latent medical574

patterns specific to each patient. In contrast, our575

model, designed to capture patient-level consis-576

tency, effectively clusters data by patient rather577

than by modality. This comparison vividly demon-578

strates that our model acquires an excellent under-579

standing of patient latent medical patterns through580

the targeted design of our loss function.581

Text of Patient 1Image of Patient 1 Image of Patient 2 Text of Patient 2

(a) Pretraining with alignment-based loss only. (b) Pretraining with all our losses.

Figure 8: Case study on patient-wise modeling.
Record of Patient 2Record of Patient 1 Record of Patient 3

(a) Pretraining with alignment-based loss only. (b) Pretraining with all our losses.

Figure 9: Case study on diagnosis-wise modeling.

Diagnosis-wise Modeling. We further explore 582

our model’s ability to forge connections between 583

patients diagnosed with similar diseases. The 584

analysis, illustrated in Figure 9, focuses on the 585

record representations from three distinct patients. 586

Patients 1 and 2 exhibit diagnostic similarities, 587

whereas Patient 3 does not share any common dis- 588

eases. Our findings reveal that when our model 589

is pre-trained in the comprehensive setting, it ef- 590

fectively clusters records of patients with similar 591

diagnoses. In contrast, when the model is pre- 592

trained solely with the alignment-based loss, it 593

faces challenges in forming consistent connections 594

within disease-specific cohorts. This outcome un- 595

derscores MEDCSP’s proficiency in capturing the 596

relationships between patients with similar diag- 597

nostic profiles, thereby generating meaningful rep- 598

resentations for diverse downstream tasks. 599

5 Conclusion 600

This paper introduces a novel pre-training frame- 601

work, MEDCSP, specifically designed for the com- 602

plexities of diverse and highly heterogeneous med- 603

ical sources. MEDCSP aggregates patient data 604

within individual sources by aligning different 605

modalities and subsequently captures patient rela- 606

tionships across multiple medical sources by lever- 607

aging temporal information and diagnosis history. 608

Our experiments across a range of medical tasks 609

and sources demonstrate that MEDCSP achieves 610

superior performance. The observations are further 611

supported by ablation studies and case analyses, un- 612

derscoring the potential of MEDCSP in advancing 613

medical cross-source modeling. 614
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6 Ethic Consideration615

The data utilized in our study have been appropri-616

ately de-identified according to Health Insurance617

Portability and Accountability Act (HIPAA) stan-618

dards, which mandate the removal of all sensitive619

information as outlined in the HIPAA guidelines.620

As such, privacy concerns regarding the data we621

employ are mitigated. Additionally, the pretrained622

checkpoints of MEDCSP will be released follow-623

ing a thorough assessment of privacy, ethnicity, and624

security considerations.625

7 Limitations626

This study is constrained by computational re-627

sources, leading to the inclusion of only two med-628

ical databases during the pre-training phase. Rec-629

ognizing the importance of diverse data for com-630

prehensive learning, we aim to incorporate a wider631

array of medical sources in future research endeav-632

ors. Furthermore, we are considering an upgrade of633

our text encoding system by integrating advanced634

large language models (LLMs), as detailed in Ap-635

pendix D. This strategic enhancement is expected636

to significantly augment the learning capabilities637

of our framework, paving the way for more sophis-638

ticated analyses and applications in the medical639

domain.640
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A Details of Encoders883

As detailed in Section 3.2, we utilize modality-884

specific encoders to handle data from different885

modalities. Specific details about these encoders886

and the modalities they correspond to are provided887

in Table 3. For initialization, we employ Biomed- 888

CLIP checkpoints for both the image and language 889

encoders. Throughout the pretraining phase, the 890

language encoders designated for clinical notes and 891

radiological reports are set up to share parameters. 892

Table 3: Modalities leveraged in our experiments, along
with their corresponding encoders.

Sources Modalities Encoders

EHR

ICD Codes Multi-Layer Perceptron
Drug Codes Multi-Layer Perceptron
Clinical Notes PubMedBERT_256
Demograhics Multi-Layer Perceptron
Clinical Temporal Readings Long-short Term Memory

CXR
Radiological Images VIT_base_patch16_224
Radiological Reports PubMedBERT_256

B Data Processing 893

We adopt existing pipeline (Tang et al., 2020) 894

for preprocessing EHR data. We follow existing 895

work (Wang et al., 2023) to set the values of hy- 896

perparameters. To showcase the model’s capability 897

to manage non-overlapping cohorts across sources, 898

we retain patients who do not appear in the MIMIC- 899

CXR dataset. 900

Regarding the CXR data source, we omit records 901

from pre-training if their corresponding patients do 902

not feature in the processed MIMIC-IV dataset, 903

prioritizing efficiency. These excluded records are 904

then utilized for zero-shot text-image retrieval tasks. 905

This approach ensures the complete avoidance of 906

any potential data leakage issues. From the pool of 907

patients excluded from pre-training, we randomly 908

select 1% and subsequently gather 1,202 records 909

to form the evaluation set for the text-image re- 910

trieval task in Table 1. Comprehensive details on 911

the datasets used for pretraining and fine-tuning 912

across downstream tasks are provided in Table 4. 913

C Baselines 914

C.1 Baselines for EHR Tasks 915

The following multimodal approaches designed to 916

handle clinical tasks serve as our baselines in EHR- 917

related evaluation: 918

• F-LSTM (Tang et al., 2020) is a Long-short 919

Term Memory (LSTM) architecture that pro- 920

cesses inputs consisting of concatenated de- 921

mographic and clinical temporal features. 922

• F-CNN (Tang et al., 2020) is a conventional 923

Convolutional Neural Network (CNN) operat- 924

ing on the concatenation of clinical time series 925
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Table 4: Data statistics.

Stage Source Dataset # of patients # of records

Pretraining EHR MIMIC-IV 32,355 41,230
Medical Image MIMIC-CXR 14,620 156,837

Downstream

Source Dataset Predictive Task Total Positive Negative

EHR MIMIC-III
ARF within 48 hours 5,038 402 4,636
Shock within 48 hours 7,182 693 6,489
Readmission within 30 days 11,695 1,581 10,114

Medical Image
MIMIC-CXR Image Text Retrieval 1,202 - -

COVID-19 Image Classification 13,808 3,616 10,192

and demographic information for prediction926

on downstream tasks.927

• Raim (Xu et al., 2018) is an advanced archi-928

tecture engineered to process clinical infor-929

mation with a multi-channel attention mecha-930

nism.931

• DCMN (Feng et al., 2019) is a combination932

of two distinct memory networks, with one fo-933

cusing on temporal information and the other934

on static demographic data, allowing for com-935

prehensive analysis.936

• MedHMP (Wang et al., 2023) leverages a hi-937

erarchical pretraining strategy for boosting the938

model’s performance in medical downstream939

tasks. Representations of modalities are ag-940

gregated through an attention mechanism for941

pre-training and fine-tuning.942

• BertLstm et al. (Yang and Wu, 2021) con-943

tains different combinations of modality-944

specific encoders, including BERT, StarTrans-945

former, LSTM, and MLP. Multimodal repre-946

sentations are aggregated through summation947

for prediction tasks.948

C.2 Baselines for Radiological Tasks949

We adopt the following baselines for our evaluation950

of the radiological source:951

• CLIP (Radford et al., 2021) is the backbone952

architecture developed by OpenAI. By per-953

forming contrastive learning between aligned954

image-text pairs, the model marks a signifi-955

cant step towards the unification of vision and956

language domains.957

• MedCLIP (Wang et al., 2022) is pretrained on958

multiple datasets in a multi-tasking pattern.It959

relies on labeled images for extracting medical960

knowledge, thus performing contrastive learn- 961

ing without leveraging alignment between im- 962

age and text. 963

• BiomedCLIP (Zhang et al., 2023) leverages 964

PMC-15M dataset for deepening CLIP’s adap- 965

tation in the biomedical domain, pretraining 966

with InfoNCE loss (Radford et al., 2021). 967

• PubMedCLIP (Eslami et al., 2023) per- 968

forms pair-wise pretraining based on ROCO 969

dataset (Pelka et al., 2018), following the con- 970

ventional CLIP design. 971

• CXRCLIP (You et al., 2023) is pretrained on 972

MIMIC-CXR dataset. The authors utilize con- 973

trastive learning loss between image and text, 974

as well as multi-view of images, for achieving 975

competitive performance. 976

• LLaVAMed(Li et al., 2023) is a multimodal 977

Large Language Model (LLM) built upon pre- 978

trained LLaVA(Liu et al., 2023). It leverages 979

the PMC-15M dataset for additional pretrain- 980

ing in a generative pattern. 981

We adopt image processors and tokenizers cor- 982

responding to each baseline for a fair comparison, 983

as introduced in the original papers. 984

D Implementing MEDCSP with Large 985

Language Model (LLM) 986

Inspired by recent findings demonstrating the effi- 987

cacy of applying LLM in the medical domain (Li 988

et al., 2023), we sought to integrate our pre- 989

training strategies with proficient LLM. Specifi- 990

cally, for modalities other than text, we employ 991

the modality-specific encoders detailed in Table 3 992

to generate uniform embeddings, which are then 993

concatenated with modality-specific prompts as 994

input for LLaMA (Touvron et al., 2023). Tex- 995

tual contents are directly encoded alongside the 996
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Table 5: Text-Image Retrieval Results (%) on the Open-I Dataset.

Methods
Precision @K Recall @K

1 5 10 20 50 100 1 5 10 20 50 100
CLIP 0.03 0.05 0.04 0.04 0.04 0.04 0.03 0.13 0.21 0.45 1.12 2.08
MedCLIP 0.18 0.09 0.10 0.08 0.07 0.06 0.09 0.23 0.51 0.78 1.79 2.90
BiomedCLIP 0.21 0.10 0.14 0.11 0.09 0.08 0.12 0.26 0.70 1.10 2.24 3.95
PubMedCLIP 0.00 0.03 0.04 0.04 0.03 0.03 0.00 0.06 0.20 0.41 0.89 1.62
CXRCLIP 0.03 0.04 0.03 0.02 0.03 0.02 0.01 0.09 0.12 0.21 0.62 1.12
LLaVAMed 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.05 0.13 0.30 0.66 1.43
MEDCSP 0.91 0.63 0.48 0.37 0.25 0.19 0.49 1.74 2.62 4.09 6.92 10.25

prompt. Our pre-training approach, encompass-997

ing various data modalities, records, and patient998

information, aligns with the methodologies out-999

lined in Sections 3.3, 3.4, and 3.5. We adopt the1000

LLaVA-med model (Li et al., 2023) as the struc-1001

tural foundation for our exploration.1002

During this exploration, we solely fine-tune the1003

projection layer between the frozen visual encoder1004

and the fixed LLM, comprising only 3.15 million1005

parameters. We observed a notable performance1006

enhancement in the text-image retrieval task. This1007

improvement is particularly evident when compar-1008

ing our results to those obtained with LLaVA-med,1009

achieving a significant increase in Recall@100 on1010

the MIMIC-CXR dataset (16.19% versus 7.00%).1011

This exploratory investigation underscores the ef-1012

fectiveness of MEDCSP’s pre-training strategy and1013

hints at its potential for integration with various1014

backbone architectures.1015

E Extra Experiments for Text-image1016

Retrieval1017

Although we meticulously executed data split-1018

ting that absolutely eliminates data leakage con-1019

cerns in our text-image retrieval task experiments,1020

there might still be skepticism regarding whether1021

MEDCSP truly surpasses baseline models on the1022

MIMIC-CXR dataset, given its pre-training on the1023

same source. To address this and demonstrate that1024

the robust performance of MEDCSP is attributed to1025

our strategically crafted pre-training approach, we1026

conducted additional experiments on the Open-I1027

dataset (Demner-Fushman et al., 2016). The results1028

are presented in Table 5. Echoing the findings de-1029

tailed in Table 1, MEDCSP consistently exceeds1030

the performance of all comparison models across1031

various metrics, further validating the effectiveness1032

and soundness of our well-designed pre-training1033

strategies.1034

Table 6: Performance(%) comparison of the zero-shot
image classification task on the CheXpert dataset.

Methods Precision Recall F1
CLIP 55.42 42.20 47.92
MedCLIP 31.52 26.61 28.86
PubMedCLIP 36.61 37.61 37.10
BiomedCLIP 68.42 11.92 20.31
CXRCLIP 42.11 44.04 43.05
LLaVAMed 46.58 100.00 63.56
MEDCSP 62.93 66.97 64.89

F Extra Experiments for Zero-shot Image 1035

Classification 1036

To further demonstrate the effectiveness of MED- 1037

CSP in the zero-shot image classification task, 1038

we conducted experiments on the CheXpert 1039

dataset (Irvin et al., 2019). In these experiments, 1040

MEDCSP and baseline models are tasked with pre- 1041

dicting the presence of an enlarged cardiomedi- 1042

astinum in images without any fine-tuning. The re- 1043

sults are presented in Table 6. Consistent with our 1044

findings from the COVID-19 dataset experiments 1045

(Table 2), MEDCSP surpasses both CLIP-like base- 1046

lines and the Large Language Model (LLaVAMed), 1047

underscoring its superior performance resulting 1048

from well-devised pretraining strategies. 1049
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