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Abstract

We introduce GPTAQ, a novel finetuning-free
quantization method for compressing large-scale
transformer architectures. Unlike the previous
GPTQ method, which independently calibrates
each layer, we always match the quantized layer’s
output to the exact output in the full-precision
model, resulting in a scheme that we call asym-
metric calibration. Such a scheme can effectively
reduce the quantization error accumulated in pre-
vious layers. We analyze this problem using opti-
mal brain compression to derive a close-formed
solution. The new solution explicitly minimizes
the quantization error as well as the accumulated
asymmetry error. Furthermore, we utilize vari-
ous techniques to parallelize the solution calcu-
lation, including channel parallelization, neuron
decomposition, and Cholesky reformulation for
matrix fusion. As a result, GPTAQ is easy to
implement, simply using 20 more lines of code
than GPTQ but improving its performance under
low-bit quantization. Remarkably, on a single
GPU, we quantize a 405B language transformer
as well as EVA-02—the rank first vision trans-
former that achieves 90% pretraining Imagenet
accuracy. Code is available at Github.

1. Introduction
The emergence of transformer architectures (Vaswani, 2017)
has led to unprecedented scaling in model sizes and com-
putational demands in both vision and language domains.
In computer vision, models like ViT-G/14 (Zhai et al.,
2022) encompass 2 billion parameters and require 2860
GFLOPs—700 times that of ResNet-50—for processing a
single image. Language models have scaled even further,
with architectures like LLaMA-3-405B (Meta, 2024) reach-
ing hundreds of billions of parameters. This scale poses
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Figure 1. Calibration pipeline in the symmetric way (GPTQ) and
the asymmetric way (GPTAQ).

significant deployment challenges across all computing plat-
forms, from servers to edge devices. Moreover, transformers
enable multi-modal architectures, which combine multiple
transformer architectures and make it challenging to operate
under resource-constrained environments.

Quantization (Gholami et al., 2022) has emerged as a
promising approach to address these challenges by reducing
the precision of weights and activations, thereby accelerat-
ing both memory access and computation. However, current
state-of-the-art quantization methods often rely on model
fine-tuning. These approaches (Shao et al., 2023; Liu et al.,
2024) update parameters through gradient descent, a process
that becomes increasingly challenging with model size. For
instance, Malinovskii et al. (2024) requires 8 A100 GPUs
running for 8 days to fine-tune a 70B parameter language
model. This computational burden becomes particularly
problematic given the numerous possible quantization con-
figurations, including bit formats, symmetry choices, etc.,
making fine-tuning-based quantization less efficient.

This work focuses on finetuning-free quantization—an ap-
proach that circumvents gradient-based optimization in fa-
vor of forward-pass calibration computation. Several meth-
ods have emerged in recent literature (Lin et al., 2023;
Dettmers et al., 2022; Nagel et al., 2019; Liu et al., 2021).
Among these approaches, GPTQ (Frantar et al., 2022)1 has
distinguished itself through a particularly effective com-
bination of speed and accuracy, leading to its widespread
adoption across the machine learning community, with over
5,321 quantized transformers now available on the Hugging-

1While the authors used the name “OPTQ” in the final camera-
ready paper, we use “GPTQ” throughout this work as it has become
the more widely recognized name in the broader community.
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face Hub (Huggingface, 2025). The method’s broad API
support and straightforward implementation have made it
the de facto standard for quantizing emerging transformer
architectures, enabling rapid deployment.

In this work, we identify a crucial problem in GPTQ, which
we call symmetric calibration. The symmetric calibration
problem arises from the fact that each layer optimizes the
objective of ||ŵX−wX||2F where the input X is coming
from the previous quantized layer’s output. This input poses
a deviation from the original model’s input activation X̃, as
shown in Fig. 1. Our objective involves the input activation
from the full precision model, which we call asymmetric
calibration: In this work, we tackle asymmetric calibration
by proposing GPTAQ, where A stands for input activation
asymmetry. Our contribution includes:

1. We analyze the asymmetric calibration and show that the
optimal update to weights needs to account for quantiza-
tion error, inverse Hessian, as well as input deviation.

2. We propose to execute the asymmetric calibration via
several modifications, including efficiently parallelizing
all output channels and decomposing the residual error
into each channel dimension to leverage efficiency.

3. Using the above method, our proposed GPTAQ only re-
quires 20 lines of more code than GPTQ and improve its
performance on both vision and language transformers.
GPTAQ effectively quantizes extremely large transform-
ers, including LLaMA3.1-405B and EVA-02.

2. Related Work
Finetuning-Free Quantization. Finetuning-free quantiza-
tion gathers particular interest as it can immediately export
quantized checkpoints given the massiveness of pre-trained
large models. A classic finetuning-free approach is to cor-
rect the distribution using bias and scales, (Banner et al.,
2019; Lin et al., 2023; Nagel et al., 2019). Moreover, Lin
et al. (2023); Xiao et al. (2023); Wei et al. (2022b; 2023)
have proposed to reduce the outlier problem in language
transformers. Other approaches involve architecture modifi-
cations like channel splitting and merging (Zhao et al., 2019;
Liu et al., 2023a). Recently, incoherence processing (Chee
et al., 2023) has been proposed to transform the weight
distribution into a more quantization-friendly one. Tseng
et al. (2024) adopts Hadamard transforms to improve trans-
form efficiency and Ashkboos et al. (2024) further extends
it with an online operation to transform activations. Hetero-
geneous treatment, e.g., Dettmers et al. (2022); Huang et al.
(2024a;b), allocates more quantization spaces (higher preci-
sion) for salient entries, which, however, requires complex
hardware design.

The precursor of our method, GPTQ (Frantar et al., 2022)
optimizes the weight elements using closed-form solutions

and thus does not require backpropagation. Both our method
and GPTQ can be combined with above mentioned methods.

Finetuning-based Quantization. Fintuning-based quan-
tization costs more computation resources to compute for-
ward and backward propagation. Full network finetun-
ing (Malinovskii et al., 2024; Liu et al., 2024; Dettmers
et al., 2023; Wang et al., 2023) can achieve good perfor-
mance but they are restricted to smaller models. Local fine-
tuning approaches can alleviate this problem (Nagel et al.,
2020; Hubara et al., 2020; Li et al., 2021; Wei et al., 2022a;
Shao et al., 2023; Tseng et al., 2024), nevertheless, the time
and resources needed are still a lot more than finetuning-free
approaches.

Optimal Brain Surgeon (OBS). It was originally applied
to small networks with hundreds of weights (LeCun et al.,
1989; Hassibi et al., 1993). Efforts have been made to re-
duce the estimation complexity of Hessian on larger models,
like Fisher approximation (Singh & Alistarh, 2020), K-FAC
approximation (Dong et al., 2017). Our approach extends
the Optimal Brain Compression (Frantar & Alistarh, 2022)
which uses Gram layer input as the Hessian matrix to per-
form layer-wise quantization. The key difference is the in-
troduction of a correction term in the input for ground truth
target, leading to an asymmetric calibration framework.

3. Background
3.1. Notations

We adopt row-vector notation throughout this paper. Vectors
and matrices are denoted by bold lowercase and uppercase
letters respectively. For instance, a linear operation between
a weight vector and input activations is expressed as: y =
wX where w ∈ R1×n represents a row of weights (output
channel) and X ∈ Rn×k denotes the input activation matrix,
with n being the number of input neurons. Quantization
is represented as ŵ = quant(w). For indexing, we use
subscripts to denote specific elements or subsets of vectors
and matrices. Notably, negative indices indicate the removal
of a neuron (corresponding to a row in X). For example,
X−1 ∈ R(n−1)×k represents the input activation matrix
with its first input neuron removed.

3.2. OBQ & GPTQ

Converting floating-point model parameters W ∈ Rm×n

from FP16 to integer representations Ŵ demands a calibra-
tion process to preserve model behavior. This calibration
is formalized in the Optimal Brain Quantization (OBQ)
framework, which GPTQ implements efficiently for large
models. At its core, OBQ calibration process minimizes the
difference between the original and quantized layer outputs:

min
∆w
||(w +∆w)X−wX||2F , s.t. ∆w = ŵ −w. (1)
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(a) GPTQ

Figure 2. Visualization of input activation MAE loss (|X̃ − X|)
when calibrating LLaMA3-8B using GPTQ and GPTAQ.

Using OBS framework (Hassibi et al., 1993), OBQ solves
this optimization problem iteratively. For each weight q, it
computes the optimal quantized value and corresponding
adjustment:

q = argmin
q

(ŵq −wq)
2

H−1
qq

, ∆w =
(ŵq −wq)

H−1
qq

· (H−1
q,: ).

(2)
where H−1 = (XX⊤)−1 represents the inverse Hessian
matrix. After quantizing each weight, the inverse Hessian
matrix is updated efficiently using Gaussian Elimination to
exclude the quantized entry:

H−1
−q = (X−qX

⊤
−q)

−1 =
(
H−1 −

H−1
:,q H

−1
q,:

H−1
qq

)
(3)

While OBQ provides a closed-form solution, its computa-
tional cost becomes prohibitive for billion-parameter trans-
former models. GPTQ (Frantar et al., 2022) addresses this
limitation by enhancing parallelization and improving nu-
merical stability through Cholesky Reformuation, making
the approach practical and robust for models with hundreds
of billions of parameters.

4. GPTAQ Methodology
We contend that a key limitation of GPTQ and the original
OBQ lies in their symmetric treatment of input activations,
that fails to account for how quantized layers progressively
transform the activation patterns. This oversight, which be-
comes particularly acute as quantization proceeds through
deeper layers, motivates our introduction of an asymmetric
calibration framework designed to preserve the character-
istics of the floating-point model’s layer inputs X̃. The
optimization objective becomes:

min
∆w
||(w +∆w)X−wX̃||2F , s.t. ∆w = ŵ −w, (4)

In practice the difference (X̃ − X) can come from both
activation quantization and weight quantization in previous
layers. This deviation accumulates systematically through
the network’s depth—a phenomenon we show in Fig. 2(a),

where the activation MAE loss across transformer blocks
continues to increase during GPTQ quantization, and thus
reveals a fundamental bias in symmetric calibration. To
address this challenge comprehensively, our work advances
two primary contributions: first, a rigorous theoretical frame-
work that optimally handles asymmetric calibration, and
second, an efficient GPU implementation strategy that crys-
tallizes these insights into the GPTAQ framework. We also
show the MAE loss surfaces using GPTAQ in Fig. 2(b).

4.1. Optimal Framework

We now develop a solution to the asymmetric calibration
problem defined in Eq. (4). Let us first consider opti-
mization for a single output channel (one row of weights).
We introduce r to represent the output activation residuals
wX̃−wX, allowing us to reformulate the objective as:

min
∆w
||∆wX− r||2F , s.t. ∆w = ŵ −w. (5)

Our optimization strategy proceeds iteratively by:

1. Selecting a weight wq for quantization,
2. Computing the optimal weight updates ∆w to minimize

the loss function.

For the q-th weight quantization, we introduce the constraint
∆we⊤q +wq − ŵq = 0, where eq represents a unit vector
with all elements set to 0 except for a 1 in the q-th position.
This leads to a nested optimization problem:

min
q

{
min
∆w
{||∆wX− r||2F } s.t. ∆we⊤q +wq − ŵq = 0

}
.

(6)
To solve this constrained optimization problem, we formu-
late its Lagrangian:

L = ||∆wX− r||2F + λ(∆we⊤q +wq − ŵq). (7)

The optimal solutions are obtained by taking derivatives of
the Lagrangian:

∂L

∂∆w
= 2∆wH− 2rX⊤ + λeq

∂L

∂λ
= ∆we⊤q +wq − ŵq

, (8)

and setting these derivatives to zero, which yields the opti-
mal weight update ∆w:

∆w =
(ŵq −wq)

H−1
qq

· (H−1
q,: ) + rX⊤H−1

−q, (9)

with the corresponding loss function:

Lq =
(ŵq −wq)

2

H−1
qq

+ rr⊤ − rX⊤H−1
−qXr⊤

− 2
(ŵq −wq)

H−1
qq

rX⊤H−1
:,q ,

(10)
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where H−1
−q , according to Eq. (3), represents the inverse

Hessian matrix after applying Gaussian elimination to zero
out the q-th row and column. The complete derivation is
provided in Appendix A.1. The optimal framework pro-
ceeds iteratively by first computing q = argminq Lq, then
quantizing the q-th weight to ŵq, and finally updating the
remaining full-precision weights by ∆w. This process con-
tinues until all weight elements are quantized.

However, this direct implementation faces significant effi-
ciency challenges when applied to large transformer models,
that stem not only from the computational cost of evaluating
Lq for each weight, but also from the way different optimal
q orderings across output channels prevent effective GPU
parallelization. The computational burden is particularly
severe as the process involves multiple n× n matrix multi-
plications for every single weight, becoming prohibitively
expensive for large foundation models. Furthermore, each
weight update necessitates re-estimation of the residual out-
put r. To address these limitations, we propose four opti-
mization steps that achieve efficiency comparable to GPTQ,
which we detail in the following section.

4.2. Efficient Solution

Step 1, Arbitrary orders of handling q. The massive
parameter space of large-scale foundation models suggests
an important optimization: we can process weights in an
arbitrary order rather than strictly following the optimal se-
quence of Lq . When quantizing individual weight elements,
the extensive weight space provides sufficient flexibility
to compensate for quantization errors. This insight is sup-
ported by empirical evidence from GPTQ (Frantar et al.,
2022), which demonstrates that following the optimal de-
scending order of Lq offers only marginal improvements
over arbitrary ordering.

Processing weights in an arbitrary order yields an additional
practical advantage: it enables parallel processing of all
rows, efficiently utilizing GPU computational capabilities.
We therefore adopt GPTQ’s order of processing columns,
which is sequentially from the first column to the last. For
each q = 1, 2, 3, . . . , n, we compute the weight updates
∆W across all rows simultaneously using:

∆W =
(Ŵ:,q −W:,q)

H−1
qq

· (H−1
q,: ) +RX⊤H−1

−q, (11)

where R = WX̃ −WX represents the output residuals
across all rows (output channels). This formulation allows
us to maintain a single copy of H−1

−q as it remains constant
across all rows for a given q.

While this approach enables parallel processing of rows,
two significant computational challenges remain: the need
to estimate new residuals R at each iteration, and the com-
putational burden of the matrix multiplication RX⊤H−1

−q .

× × ×
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Figure 3. Computing paradigm of the second term for residual
output error in q = 2 iteration. The inverse Hessian matrix is fac-
torized by Cholesky Decomposition, furthermore, ∆Xq,:X

⊤H−1
−q:

is fused to the q-th row of matrix P, which can be computed in
parallel. Dimensions are in the bottom left corner of each matrix.

These challenges should be addressed to achieve practical
efficiency for large-scale models.

Step 2, Efficient Residual Decomposition. Another cru-
cial efficiency consideration in our algorithm is the repeated
computation of residuals R. Although the term RX⊤H−1

−q

effectively reduces the gap between quantized and full-
precision model outputs, the residual output R needs to
be re-estimated at each new iteration. Denoting the residual
error in input activation ∆X = X̃−X, the update formula
is given by

Rnew = R−q −∆W∆X−q, (12)

which incurs a substantial computational cost, with com-
plexity O(mnk), where k is the product of token length and
number of calibration samples. The dependence on k poses
a particular challenge for large foundation models, where
k typically exceeds m and n by a factor of 10 ∼ 50 (for
example on LLaMA2-7B the k is 128×2048, which is 64×
greater than n(4096)), leading to prohibitive processing
times.

We propose an alternative approach that eliminates the need
to recalculate residual outputs R. Our key insight is that
residuals can be decomposed into n individual components
from different neurons:

R = W∆X =

n∑
q=1

W:,q∆Xq,:, (13)

This decomposition enables a single estimation of R before

4
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layer calibration. Hence, at q-th iteration, with the first q−1
columns quantized, we focus on quantizing the q-th column
while minimizing its associated residual error component:

min
∆W:,q:

||∆W:,q:Xq:,: −W:,q∆Xq,:||2F

s.t. ∆W:,qe
⊤
q +W:,q − Ŵ:,q = 0,

(14)

Similarly, the optimal weight update for the q-th iteration
becomes:

∆W:,q: =
(Ŵ:,q −W:,q)

H̃−1
qq

·(H̃−1
q,: )+W:,q∆Xq,:X

⊤
:,q:H̃

−1
−q.

(15)
where H̃−1 = H−1

−(q−1): is the inverse Hessian matrix elimi-

nated by (q−1) iterations, therefore H̃−1
−q = H−1

−q:. Notably,
the first term in Eq. (15) is the same with GPTQ, while the
second term is accounted for minimizing the residual error
in q-th neuron and does not need re-estimation of residual
error since W:,q is already updated by previous ∆W. Fig. 3
gives an example of the second term when q = 2.

Furthermore, the residual decomposition yields significant
computational advantages because we reduce the complex-
ity of the second term by a factor of n, due to the fact that
∆Xq,:X

⊤
:,q:H

−1
−q: ∈ R1×(n−q) is a row vector and W:,q is a

column vector, requiring only O(mn) complexity to com-
pute the second term. We further optimize our algorithm by
noting that ∆Xq,:X

⊤
:,q:H

−1
−q: is independent to the update of

weights, thus we can compute each row in advance and store
it in a matrix P, such that the second term can be efficiently
computed by W:,qPq,: in q-th iteration.

Step 3, Cholesky Reformulation. The final challenge
lies in computing P efficiently while maintaining numer-
ical stability. These requirements arise from the need to
perform Gaussian Elimination on the inverse Hessian n
times and compute matrix multiplications. As model size
increases, repeated Gaussian Elimination operations accu-
mulate numerical errors. We address this numerical insta-
bility through Cholesky decomposition of the inverse Hes-
sian: H−1 = LL⊤, where L represents the lower-triangular
Cholesky factor. This enables efficient and stable computa-
tion of H−1

−q: through the following lemma:
Lemma 4.1. Given the Cholesky factor L for the full in-
verse Hessian matrix H−1, the inverse Hessian H−1

−q: =

(X−q:X
⊤
−q:)

−1 is equivalent to Lq+1:,q+1:L
⊤
q+1:,q+1:.

The proof is provided in Appendix A.2. This formulation
offers better numerical stability compared to Gaussian Elim-
ination, requiring only matrix slicing and multiplication to
obtain H−1

−q:. Consequently, we can reformulate Pq,: as:

Pq,: = ∆Xq,:X
⊤Lq+1:,q+1:L

⊤
q+1:,q+1:. (16)

Here, we use X⊤ since X⊤
:,q:H

−1
−q: = X⊤H−1

−q:. To opti-
mize the computation of P, we begin by computing the

Algorithm 1 GPTAQ quantization for one layer

Input: FP weight W, calibration input X, FP input X̃,
and Block size B
H← XX⊤, ∆XX⊤ ← (X̃−X)X⊤

L = Inverse Cholesky(H+ λ1I)

P←
(
(∆XX⊤L)⊙MU

)
L⊤

Q← 0m×n,E← 0m×B

for i = 0, B, 2B, . . . do
for j = i, i+ 1, . . . , i+B − 1 do
Q:,j ← quant(W:,j)
E:,j−i ← (W:,j −Q:,j)/Ljj

W:,j:(i+B) ←W:,j:(i+B) −E:,j−iL
⊤
j,j:(i+B)

+W:,jPj,j:(i+B)

end for
W:,(i+B): ←W:,(i+B): −E · L⊤

i:(i+B),(i+B):

+W:,i:(i+B)Pi:(i+B),(i+B):

end for

full matrix ∆XX⊤ ∈ Rn×n. The key challenge becomes
efficiently utilizing the structure of Lq+1:,q+1:L

⊤
q+1:,q+1: to

enable parallel processing of each row in P on GPUs. The
lower-triangular structure of Lq+1:,q+1: presents an oppor-
tunity for computational optimization through vectorization,
as formalized in the following theorem:

Theorem 4.2. The matrix P is equal to

P =
(
(∆XX⊤L)⊙MU

)
L⊤, (17)

where MU ∈ 0, 1n×n is a strictly upper-triangular masking
matrix with ones above the diagonal and⊙ denotes element-
wise multiplication.

Proof is provided in Appendix A.3. With the above formula,
we can compute P in one line code (See Fig. 3 bottom).
Furthermore, the proposed method integrates seamlessly
with GPTQ’s existing implementation, as it also utilizes
the Cholesky factor L for computing diagonal values and
the q-th row vector H̃−1

q,: . Our implementation extends the
original GPTQ framework with minimal modifications.

Step 4, Lazy-Batch Updates. With matrix P computed in
advance, we can easily obtain the second term. Moreover,
just like GPTQ, the quantization results for column q are
only affected by updates performed on this very column,
and so updates to later columns are irrelevant at this point in
the process. Thus we can lazily batch both terms to achieve
better GPU utilization. Concretely, given a block of columns
Q, we first update the columns in the block with a sliced P
and L, and then update the remaining weights outside the
block with

∆W:,Q: =
(Ŵ:,Q −W:,Q)

L⊤
QQ

L⊤
Q,Q: +W:,QPQ,Q: (18)
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Table 1. Quantization results of vision transformer (left) and language transformer (right). For vision models, we report ImageNet accuracy
(↑) and for language models, we report Wikitext2 perplexity (↓). * denotes our implementation.

Precision Method FT-Free DeiT-S DeiT-B Method FT-Free L3-8B L3-70B L2-7B L2-13B L2-70B
FP16 Pretrained - 79.8 81.3 Pretrained - 6.14 2.85 5.47 4.88 3.32

W4A4

PTQ4ViT ✓ 34.1 64.4 OmniQuant ✗ - - 14.3 12.3 41.1
APQ-ViT ✓ 43.6 67.5 QLLM ✗ - - 11.8 9.09 7.00
PD-Quant ✗ 64.9 60.1 DuQuant ✗ 8.06 - 6.08 5.33 3.76
RepQ-ViT ✓ 69.0 75.6 QuaRot ✓ 9.91 46.6 7.98 5.93 4.03
GPTQ ✓ 71.9 77.7 QuaRot+GPTQ ✓ 7.80 9.44 6.00 5.30 3.71
GPTAQ ✓ 72.8 78.4 QuaRot+ GPTAQ ✓ 7.37 6.93 5.86 5.17 3.69

W2A4
RepQ-ViT* ✓ 0.23 0.30 QuaRot ✓ 6.0e5 3.9e4 7.7e3 5.6e3 1.5e3
GPTQ ✓ 38.4 61.0 QuaRot+GPTQ ✓ 102 444 32.6 15.5 6.68
GPTAQ ✓ 46.8 62.2 QuaRot+GPTAQ ✓ 17.9 39.1 11.2 8.57 5.64

Comparing GPTQ with GPTAQ. Together, we summa-
rized our algorithm in Algorithm 1. The primary additions to
GPTQ are highlighted in blue. The remaining implementa-
tion follows the standard GPTQ procedure, for example, the
Hessian diagonal is dampened by 1% of the average values
for better numerical stability. It is worthwhile to note that
our method is not a simple extension of GPTQ. The second
term accounting for residual output error is as important as
the quantization error in the first term, as we will show in ex-
periments (subsubsection 5.5.1). Our optimization through
neuron decomposition and Cholesky Reformulation ensures
both terms can be handled under a unified framework.

5. Experiments
5.1. Setup

We implement GPTAQ using Hugging Face (Wolf, 2019) on
top of the PyTorch framework (Paszke et al., 2019). Unless
specifically mentioned, we always use per-channel asym-
metric quantization for weights and per-token asymmetric
quantization for input activations. The input activation has a
clipping ratio of 0.9 as suggested in Ashkboos et al. (2024)
and the weight clipping range is searched by minimizing
mean squared error (Frantar et al., 2022). We select 128
input samples as calibration dataset, see detailed source in
each model type section. For GPTQ implementation, we
first quantize weights and then quantize activation following
prior work (Ashkboos et al., 2024; Liu et al., 2024), while
our GPTAQ quantizes activations in the first place and mini-
mizes layer output residual error in weight quantization2.

5.2. Results on Vision Transformer

We conduct our experiments on DeiT-S/B models (Tou-
vron et al., 2021). We select 128 samples from ImageNet
training dataset as calibration data. The compared base-
lines are PTQ4ViT (Liu et al., 2021), APQ-ViT (Ding et al.,
2022), PD-Quant (Liu et al., 2023b), RepQ-ViT (Li et al.,
2023), and GPTQ (Frantar et al., 2022). Most of then are

2A detailed study of quantization order is in Sec. 5.5.2 .

finetuneing-free approaches. On vision transformers, we use
act order, an option in GPTQ that sorts the columns based
on Hessian diagonal magnitude, which we found useful to
improve the performance. The dampening ratio was set to
10% for improved generalization. We test with W2A4 and
W4A4 quantization.

We provide the results in Table 1 left part, from which we
observe that GPTQ and our GPTAQ outperform the existing
quantization regime due to explicit optimization of weights
accounting for quantization error minimization. Further-
more, our proposed method outperforms GPTQ baseline by
1% on 4-bit DeiT-S and 0.7% on 4-bit Deit-B model. On
W2A4, we run the existing baseline RepQ-ViT which has
the best accuracy in W4A4, however, this method fails at
this precision (0.23% accuracy for DeiT-S). GPTQ obtains
38.4% accuracy on DeiT-S and our method further improves
it to 46.8%.

5.3. Results on Language Transformer

We also verify our experiments on large language trans-
former architectures, including LLaMA2 and LLaMA3.
We perform quantization in W4A4 and W2A4 scenarios
as we did on the vision transformer. The language trans-
former is more challenging due to the existence of out-
liers. Therefore, we apply the incoherence processing with
QuaRot (Ashkboos et al., 2024), which is a finetuning-free
transformation, to RTN, GPTQ and GPTAQ. We addition-
ally compare several finetuning-based approaches including
OmniQuant (Shao et al., 2023), QLLM (Liu et al., 2023a),
DuQuant (Lin et al., 2024). Following standard setups, we
select 128 2048-token training sequences from the Wiki-
text2 training set as calibration dataset.

Perplexity Evaluation. We first compare the perplexity
performance in Table 1 right part. We note that on LLaMA2
models, GPTQ on a rotated model can achieve better per-
formance than other existing methods. Our GPTAQ further
improves the perplexity performance. On LLaMA2-7B,
our method improves the perplexity from 6.0 to 5.85. For
LLaMA3 models, quantization becomes more challenging.
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Table 2. 4-bit quantization results of LLaMA2/3 Models. We report GPU hours to run quantization (including processing time with
rotation, which is not modified by our method), Wikitext2 perplexity and zero-shot reasoning tasks performance.

Model Method FT-Free GPU Hours Wiki2(↓) PiQA Arc E Arc C HellaSwag Winogrande BoolQ Avg(↑)
FP16 ✓ - 6.44 80.7 77.7 53.7 79.1 73.2 81.1 74.3
QuaRot+GPTQ ✓ 0+0.2 7.80 75.0 70.5 43.5 73.9 66.3 73.2 67.1

L3-8B QuaRot+GPTAQ ✓ 0+0.3 7.36 78.2 72.7 44.8 75.4 69.1 77.5 69.6
SpinQuant+GPTQ ✗ 4.0+0.2 7.26 78.4 74.6 46.8 76.0 69.7 73.4 69.8
SpinQuant+GPTAQ ✗ 4.0+0.3 7.19 78.7 75.9 48.4 76.1 70.6 78.2 71.3
FP16 ✓ - 3.32 84.4 85.9 64.3 84.9 80.7 85.1 80.4
QuaRot+GPTQ ✓ 0.1+1.8 9.44 74.6 65.0 38.7 64.2 62.7 69.3 62.4

L3-70B QuaRot+GPTAQ ✓ 0.1+2.7 6.94 78.2 73.2 49.0 72.6 68.3 73.3 69.1
SpinQuant+GPTQ ✗ 28+1.8 6.14 79.8 76.6 54.3 78.8 73.5 80.7 73.9
SpinQuant+GPTAQ ✗ 28+2.7 5.00 82.1 81.4 58.2 82.5 76.8 85.1 77.7

L2-7B

FP16 ✓ - 5.47 79.0 74.6 46.5 76.0 68.9 77.7 70.5
OmniQuant ✗ 2.1 14.6 65.9 43.9 30.8 53.5 55.1 - 49.9
QLLM ✗ 1.1 11.8 67.7 44.4 30.9 58.5 56.6 - 51.6
DuQuant ✗ 2.1 6.08 75.7 50.0 37.5 69.7 63.9 69.2 61.0
QuaRot+GPTQ ✓ 0+0.2 6.00 77.2 70.4 42.6 73.0 65.7 74.5 67.2
QuaRot+GPTAQ ✓ 0+0.3 5.85 77.3 70.6 43.7 73.6 67.6 75.8 68.1
SpinQuant+GPTQ ✗ 3.3+0.2 5.90 76.7 70.2 43.3 73.1 65.2 73.7 67.1
SpinQuant+GPTAQ ✗ 3.3+0.3 5.85 77.3 71.9 43.8 72.9 68.0 74.3 68.0

L2-13B

FP16 ✓ - 4.88 80.5 77.5 49.2 79.4 72.4 80.6 73.3
OmniQuant ✗ 3.2 12.3 69.8 47.2 33.8 59.3 55.5 - 53.1
QLLM ✗ 1.7 9.09 70.5 48.5 34.4 62.8 55.4 - 54.3
DuQuant ✗ 3.2 5.33 77.3 56.2 42.2 73.7 65.4 63.4 63.8
QuaRot+GPTQ ✓ 0+0.4 5.30 78.1 74.2 46.4 76.5 70.4 78.3 70.6
QuaRot+GPTAQ ✓ 0+0.5 5.17 78.7 74.8 47.4 77.5 70.1 78.8 71.2
SpinQuant+GPTQ ✗ 4.0+0.4 5.20 78.2 75.3 47.3 76.9 67.7 77.1 70.7
SpinQuant+GPTAQ ✗ 4.0+0.5 5.19 78.9 75.6 48.8 77.3 71.0 77.7 71.5

L2-70B

FP16 ✓ - 3.32 82.7 81.0 57.3 83.8 78.0 83.8 77.8
OmniQuant ✗ 15 41.1 53.0 31.2 23.9 33.9 52.0 - 38.8
QLLM ✗ 9.3 7.00 74.3 50.6 37.2 71.6 59.4 - 58.6
DuQuant ✗ 15 3.76 79.8 59.8 46.8 79.4 74.1 73.1 68.8
QuaRot+GPTQ ✓ 0.1+1.8 3.71 81.6 79.7 55.6 81.8 76.6 81.5 76.1
QuaRot+GPTAQ ✓ 0.1+2.7 3.69 82.4 79.0 55.9 82.1 76.8 82.3 76.4
SpinQuant+GPTQ ✗ 28+1.8 3.68 82.0 79.0 55.6 82.3 76.5 82.6 76.3
SpinQuant+GPTAQ ✗ 28+2.7 3.67 82.0 79.3 55.4 82.4 76.4 82.7 76.4

For example, GPTQ in 4-bit quantization increased the per-
plexity of LLaMA3-70B to 9.44, while our method reduced
this to 6.93. To the best of our knowledge, we are the first to
validate the W2A4 perplexity results in language transform-
ers. In this case, the quantized model easily crashed without
a delicate calibration, for example, applying QuaRot and
RTN consistently yields > 1000 perplexity, significantly
deteriorating the model performance. Applying GPTQ can
recover the model but still degrades the full-precision perfor-
mance by a large margin. Remarkably, our method obtains
great improvement over GPTQ, reducing the perplexity of
GPTQ by 20%∼90%.

Zero-Shot Accuracy Evaluation. We evaluate the quan-
tized model’s zero-shot performance on six downstream
tasks: PiQA (Bisk et al., 2020), ARC easy / chal-
lenged (Clark et al., 2018), Hellaswag (Zellers et al., 2019),
Winogrande (Sakaguchi et al., 2021), and BoolQ (Clark
et al., 2019). In addition to QuaRot, we take the learned rota-
tion matrices from SpinQuant (Liu et al., 2024), a finetuning-
based approach, to combine it with our GPTAQ. To ensure
a comprehensive comparison in effectiveness and efficiency,
we additionally report the GPU Hours (on one A100) re-

quired to run the algorithm. Although in practice, Spin-
Quants runs on 8 A100 GPUs. The results are shown in
Table 2. With QuaRot, GPTQ has 7.2% and 18% gap with
the full precision 8B and 70B models, respectively. GP-
TAQ can effectively reduce these gaps to 4.7% and 11%.
Notably, QuaRot+GPTAQ can achieve similar average ac-
curacy with SpinQuant+GPTQ, an approach that takes sig-
nificantly more time than finetuning-free quantization. For
example, on LLaMA2-7B, QuaRot+GPTAQ achieves 5.85
perplexity and 68.1% average accuracy, which is even 0.05
lower and 1% higher than the SpinQuant+GPTQ.

Since SpinQuant primarily focuses on activation quanti-
zation and our method can incorporate this part into our
asymmetric calibration, we further test SpinQuant+GPTAQ
using the official checkpoints. GPTAQ can improve the per-
formance of SpinQuant as well. For instance, on LLaMA3-
70B, our method improves the average accuracy from 73.9%
to 77.7% (3.8% improvement).

Results on Weight-Only Quantization. Given that the
original GPTQ method mainly focuses on the weight-only
quantization, we also evaluate our method under this case.
To make a fair comparison, we use the original paper’s
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Table 3. 3-bit per-group weight symmetric quantization results of LLaMA2/3 Models. We report perplexity on Wikitext2 and C4 and the
reasoning accuracy on 8 datasets. We use 128 examples from the C4 datasets (Raffel et al., 2020) to calibrate the model.

Model Method Wiki2(↓) C4(↓) PiQA Arc E Arc C HS WG BoolQ OBQA SiQA Avg(↑)
FP16 7.21 11.39 81.2 79.3 55.0 79.2 73.7 84.1 43.2 32.9 66.1

L3-8B-Instruct AWQ 10.47 16.77 76.7 71.1 46.3 72.5 70.3 80.9 39.8 32.9 61.3
GPTQ 9.04 14.01 78.1 72.0 48.0 74.0 72.5 81.4 41.6 32.8 62.5
GPTAQ 8.86 13.84 78.7 77.2 50.6 74.9 71.6 83.2 41.6 32.9 63.8
FP16 5.47 7.26 79.1 74.5 46.3 76.0 69.0 77.7 44.2 32.9 62.5

L2-7B AWQ 6.75 8.98 76.4 67.2 42.1 71.8 67.6 69.1 40.6 33.8 58.6
GPTQ 6.88 14.02 76.6 65.0 38.5 67.5 67.6 72.4 41.2 33.5 57.8
GPTAQ 6.59 8.39 78.0 68.6 42.2 72.9 65.7 72.2 40.2 33.1 59.1
FP16 4.88 6.72 80.5 77.5 49.2 79.4 72.2 80.6 45.2 33.2 64.7

L2-13B AWQ 5.49 7.57 78.6 74.4 43.1 76.2 71.9 77.7 44.4 32.8 62.4
GPTQ 5.42 7.36 79.7 75.0 47.3 75.6 71.4 79.6 43.8 32.9 63.1
GPTAQ 5.41 7.33 79.6 76.1 48.5 76.3 72.0 81.8 43.2 33.1 63.8

Table 4. Quantization results of huge transformers.
Precision Method FT-Free EVA-02 L3.1-405B
FP16 Pretrained - 90.05 (↑) 1.44 (↓)

W4A4
RTN ✓ 85.72 17.4
GPTQ ✓ 86.48 5.82
GPTAQ ✓ 88.30 3.48

primary settings: 3-bit per-group weight quantization. We
use a symmetric format (no zero point), and the group size
is set to 128. We turn on act order operation that sorts
the Hessian based on its diagonal values. Additionally, we
test another weight-only quantization algorithm, AWQ (Lin
et al., 2023), for its layer-wise optimization. As shown in
Table 3, GPTAQ is able to achieve the best performance
among these layer-wise FT-free quantization algorithms.
Remarkably, for the LLaMA3-8B-Instruct, we have 63.8%
average accuracy, which is 2.4% higher than AWQ and 1.3%
higher than GPTQ.

5.4. Results on Huge Transformers

To demonstrate the scalability of our method, we further
test two huge transformers architectures, (1) EVA-02 (Fang
et al., 2024), the Rank 1st architecture in Pytorch Image
Models benchmark that achieves 90.05% ImageNet top-
1 accuracy, and (2) LLaMA3.1-405B that achieves 1.44
Wikitext2 perplexity. We perform GPTQ and GPTAQ on a
single A100 GPU to quantize these two models into 4-bit
weights and activations. The results are shown in Table 4.
For EVA-02, the RTN and GPTQ method degrades the full
precision accuracy by 4.3% and 3.5% respectively. Our
GPTAQ, notably, reduces this gap to 1.7%, which is half of
the GPTQ algorithm. For LLaMA3.1-405B, which contains
126 transformer blocks with an intermediate size of 8096,
the RTN significantly degrades its perplexity performance to
17.4. Our GPTAQ achieves 4.32 perplexity. Compared to the
GPTQ algorithm, our method effectively reduces perplexity
by 2.3, demonstrating the scalability of our method.

Table 5. Ablation study of ∆W on LLaMA3-8B.
Precision Method ∆W Wiki2(↓) Avg(↑)

W4A4

RTN 0 9.91 65.5
GPTQ E:,qL

⊤
q,: 7.80 67.1

GPTAQ′ W:,qPq,: 7.97 69.0
GPTAQ E:,qL

⊤
q,: +W:,qPq,: 7.36 69.6

5.5. Ablation Study

5.5.1. WEIGHT UPDATE

The proposed algorithm comprises two different terms
E:,qL

⊤
q,: and W:,qPq,: for ∆W, which can be viewed as

minimizing the quantization error from current layer, and
minimizing the quantization error from the previous layer,
respectively. Therefore, we test the performance of apply-
ing these two terms individually and observe how they con-
tribute to the final performance. We conduct experiments
on W4A4 LLaMA3-8B with QuaRot transformations. The
results are demonstrated in Table 5. Note that if we do not
empower any update to weights, the method will reduce
to RTN; and GPTQ is the case where we only apply the
first term. Interestingly, we can find that solely applying the
first term or second term can increase the quantization per-
formance compared to RTN. While applying the first term
(GPTQ) obtains a better perplexity score, the average accu-
racy when applying the second term individually is much
better, resulting in 2% higher performance. Combining both
terms, which is our GPTAQ, the quantization performance
can be further improved. This result suggests that quantiza-
tion errors accumulated in previous layers should be taken
into account during calibration.

5.5.2. ACTIVATION QUANTIZATION ORDER

Conventionally, for GPTQ activation quantization is added
after weight quantization is done as did in QuaRot (Ashk-
boos et al., 2024) and SpinQuant (Liu et al., 2024). For
our GPTAQ, the activation quantization, however, is added
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Table 6. Comparison of activation/weight quantization pipeline. All weights and activations are quantized into 4-bit.
Model Method Q Order Wiki2(↓) PiQA Arc E Arc C HellaSwag Winogrande BoolQ Avg(↑)

FP16 - 6.44 80.7 77.7 53.7 79.1 73.2 81.1 74.3
QuaRot+GPTQ W→A 7.80 75.0 70.5 43.5 73.9 66.3 73.2 67.1

L3-8B QuaRot + GPTAQ W→A 7.68 78.2 73.8 45.8 74.3 68.4 74.6 69.2
QuaRot+GPTQ A→W 7.78 76.3 72.3 45.3 73.8 67.7 75.8 68.6
QuaRot + GPTAQ A→W 7.36 78.2 72.7 44.8 75.4 69.1 77.5 69.6
FP16 - 5.47 79.0 74.6 46.5 76.0 68.9 77.7 70.5
QuaRot+GPTQ W→A 6.00 77.2 70.4 42.6 73.0 65.7 74.5 67.2

L2-7B QuaRot + GPTAQ W→A 5.95 77.3 70.6 42.5 73.7 66.5 75.5 67.7
QuaRot+GPTQ A→W 6.00 76.7 72.0 42.4 73.1 65.8 75.1 67.5
QuaRot + GPTAQ A→W 5.85 77.3 70.6 43.7 73.6 67.6 75.8 68.1
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Figure 4. Latency visualization of our algorithm under various n.

before weight quantization so that ∆X can capture this in-
formation. We now demonstrate the cases where activation
quantization is added before GPTQ or after GPTAQ.

We conduct experiments on 4-bit LLaMA3-8B and
LLaMA2-7B. The results are shown in Table 6. From the ta-
ble, we can conclude that (1) For GPTQ calibration whether
the activation quantization is enabled or not has no impact
on the perplexity results. (2) However, activation quanti-
zation may help GPTQ achieve higher downstream task
accuracy. (3) For GPTAQ, enabling activation quantization
can further aid the performance as it considers more infor-
mation in input activation error. (4) Even if we disable the
activation quantization, GPTAQ still outperforms GPTQ
regardless of quantization order.

5.6. Algorithm Efficiency

We analyze the speed of running GPTAQ. (Memory anal-
ysis is presented in Appendix C). First, we compare the
latency of calculating P using unparalleled implementation
(Eq. (16)) and paralleled implementation (Eq. (17)) under
various size of n. Second, we compare the latency of GPTQ
and GPTAQ on a layer with n×n dimension, using the pro-

cedure in Algorithm 1. We assume that ∆XX⊤ and L are
obtained previously, and test the latency on one A100 GPU
with PyTorch 2.4.1-cu12.4. In Fig. 4(a), we first compare
the latency to compute P. Thanks to the highly optimized
CUDA kernel, our parallel implementation takes less than
1ms to finish, which is > 104 faster than the unparalleled
implementation despite using the same number of opera-
tions. Fig. 4(b) compares the speed of running GPTQ and
GPTAQ, from which we observe that GPTAQ incurs less
than 10% more latency when weight dimension is smaller
than 4096. In these cases, the latency bottleneck is the
quantization operation rather than computing ∆W. When
dimension further expands, the bottleneck switches to com-
puting ∆W, and our GPTAQ increases the latency by a
slight margin (30∼40% latency).

Conclusion
In this paper, we introduce GPTAQ, an efficient finetuning-
free quantization to reduce the accumulated asymmetry error
in quantization. Building upon the OBQ framework, our
method introduces 4 steps that effectively parallelize and
accelerate the computation of optimal weight update. As a
result, GPTAQ is easy to implement and can adapt to the
previous GPTQ framework with minimum effort. Through
both qualitative and quantitative verification, GPTAQ can ef-
fectively reduce the asymmetry to improve the quantization
performance without involving finetuning.
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A. Theoretical Derivation
A.1. Optimal Framework

We provide a detailed derivation of the optimal framework. To compute the local minima of the Lagrangian form, we set the
partial derivatives to zeros:

∂L

∂∆w
= 2∆wH− 2rX⊤ + λeq = 0

∂L

∂λ
= ∆we⊤q +wq − ŵq = 0

(19)

Solving the first equation, we have

∆wH = −λ

2
eq + rX⊤. (20)

Right multiplying the inverse Hessian on both sides, we get

∆w = −λ

2
eqH

−1 + rX⊤H−1 (21a)

= −λ

2
H−1

q,: + rX⊤H−1 (21b)

Substituting the equation into the second equation of Eq. (A.1), we have

−λ

2
H−1

q,: e
⊤
q + rX⊤H−1e⊤q +wq − ŵq = −λ

2
H−1

qq + rX⊤H−1
:,q +wq − ŵq = 0 (22a)

where we can easily compute λ as

λ = 2

(
wq − ŵq

H−1
qq

+
rX⊤H−1

:,q

H−1
qq

)
(23)

Now substituting the above equation into Eq. (21b), we can compute ∆w as

∆w = −λ

2
H−1

q,: + rX⊤H−1 (24a)

= −wq − ŵq

H−1
qq

· (H−1
q,: )−

rX⊤H−1
:,q H

−1
q,:

H−1
qq

+ rX⊤H−1 (24b)

= −wq − ŵq

H−1
qq

· (H−1
q,: ) + rX⊤

(
H−1 −

H−1
:,q H

−1
q,:

H−1
qq

)
(24c)

= −wq − ŵq

H−1
qq

· (H−1
q,: ) + rX⊤H−1

−q (24d)

The Lq is derived by replacing the optimal ∆w into the loss function ||∆wX− r||2F , given by

Lq = ||rX⊤H−1
−qX− r+

(ŵq −wq)

H−1
qq

· (H−1
q,: )X||2F . (25)

Expanding this function, we obtain

Lq = rX⊤H−1
−qXX⊤H−1

−qXr⊤ + rr⊤ − 2rX⊤H−1
−qXr⊤ +

(ŵq −wq)
2

(H−1
qq )2

·H−1
q,: XX⊤H−1

:,q (26a)

+ 2
(ŵq −wq)

H−1
qq

·
(
rX⊤H−1

−qXX⊤H−1
:,q

)
− 2

(ŵq −wq)

H−1
qq

·
(
rX⊤H−1

:,q

)
(26b)

= rX⊤H−1
−qHH−1

−qXr⊤ + rr⊤ − 2rX⊤H−1
−qXr⊤ +

(ŵq −wq)
2

(H−1
qq )2

·H−1
q,: HH−1

:,q (26c)

+ 2
(ŵq −wq)

H−1
qq

·
(
rX⊤H−1

−qHH−1
:,q

)
− 2

(ŵq −wq)

H−1
qq

·
(
rX⊤H−1

:,q

)
(26d)
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We start by simplifying H−1
−qH:

H−1
−qH =

(
H−1 −

H−1
:,q H

−1
q,:

H−1
qq

)
H (27a)

= I−

(
H−1

:,q H
−1
q,:

H−1
qq

H

)
(27b)

= I−

(
H−1e⊤q eqH

−1

H−1
qq

H

)
(27c)

= I− 1

H−1
qq

H−1e⊤q eq (27d)

Substitute this function back into Eq. (26d), we get

Lq = rX⊤
(
I− 1

H−1
qq

H−1e⊤q eq

)
H−1

−qXr⊤ + rr⊤ − 2rX⊤H−1
−qXr⊤ +

(ŵq −wq)
2

(H−1
qq )2

·H−1
q,: HH−1

:,q (28a)

+ 2
(ŵq −wq)

H−1
qq

·
(
rX⊤

(
I− 1

H−1
qq

H−1e⊤q eq

)
H−1

:,q

)
− 2

(ŵq −wq)

H−1
qq

·
(
rX⊤H−1

:,q

)
(28b)

= − 1

H−1
qq

rX⊤H−1e⊤q eqH
−1
−qXr⊤ + rr⊤ − rX⊤H−1

−qXr⊤ +
(ŵq −wq)

2

(H−1
qq )2

·H−1
q,: HH−1

:,q (28c)

− 2
(ŵq −wq)

(H−1
qq )2

rX⊤H−1e⊤q eqH
−1
:,q , (28d)

We note that the eqH
−1
−q = 0 is a all-zero vector since the q-th row of H−1

−q is eliminated. Therefore, the first term in

Eq. (28d) is omitted. For last term, we can rewrite it to −2 (ŵq−wq)

H−1
qq

rX⊤H−1
:,q due to eqH

−1
:,q = H−1

qq .

We further simplify H−1
q,: HH−1

:,q by

H−1
q,: HH−1

:,q = eqH
−1HH−1e⊤q (29a)

= eqH
−1e⊤q (29b)

= H−1
qq (29c)

To this end, we can simplify the Lq to

Lq =
(ŵq −wq)

2

H−1
qq

+ rr⊤ − rX⊤H−1
−qXr⊤ − 2

(ŵq −wq)

H−1
qq

rX⊤H−1
:,q (30)

A.2. Proof of Lemma 4.1

Proof. Without loss of generality, we first prove the case of H−1
−1 = (X−1X

⊤
−1)

−1 = L2:,2:L
⊤
2:,2:. When performing the

Cholesky decomposition on H−1, we have H−1 = LL⊤ where L is a lower-triangular matrix. Thus, we can rewrite the
Cholesky factor as

L =

[
L11 0
L2:,1 L2:,2:

]
(31)

Now, substitute the H−1 = LL⊤ with above equation, we have

H−1 =

[
H−1

11 H−1
1,2:

H−1
2:,1 H−1

2:,2:

]
=

[
L11 0
L2:,1 L2:,2:

] [
L11 L⊤

2:,1

0 L⊤
2:,2:

]
=

[
L2
11 L11L

⊤
2:,1

L11L2:,1 L2:,1L
⊤
2:,1 + L2:,2:L

⊤
2:,2:

]
(32)

We can thus construct a linear system from the above equation, given by
H−1

11 = L2
11

H−1
2:,1 = L11L2:,1

H−1
2:,2: = L2:,1L

⊤
2:,1 + L2:,2:L

⊤
2:,2:

(33)
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It is straightforward to solve the equations and obtain

L11 =

√
H−1

11

L2:,1 =
1√
H−1

11

H−1
2:,1

L2:,2:L
⊤
2:,2: = H−1

2:,2: −
1√
H−1

11

1√
H−1

11

H−1
2:,1H

−1
1,2:

(34)

Recall that H−1
1:,1:− 1

H−1
11

H−1
1:,1H

−1
1,1: performs the Gaussian Elimination on the first row/column, which is the H−1

−1. The third

equation in Eq. (A.2) is essentially the H−1
−1 with the first row/column removed. Therefore, we have H−1

−1 = L2:,2:L
⊤
2:,2:.

The lemma can be derived by recursively removing the first row/column in the current inverse Hessian to get H−1
−q: =

Lq+1:,q+1:L
⊤
q+1:,q+1:.

A.3. Proof of Theorem 4.2

Proof. We start with computing each row of P. Recall that this formula is given by

Pi,: = ∆Xi,:X
⊤Li+1:,i+1:L

⊤
i+1:,i+1: (35)

For matrix L⊤
i+1:,i+1:, the j-th column has non-zero values only if j > i. therefore, elements in P can be written as

Pi,j =


j∑

a=i+1

Oi,aL
⊤
a,j if i < j

0 if i ≥ j

(36)

where Oi,a = (∆Xi:,X
⊤Li+1:,i+1:)a is the element from the product of the first three terms. We again note that Li+1:,i+1:

has non-zero values in a-th column only if a > i. Thus, the matrix O is computed as

Oi,a =


n∑

b=a

(∆Xi,:X
⊤)bLb,a =

n∑
b=a

(∆XX⊤)i,bLb,a if i < a

0 if i ≥ a

(37)

Hence, O can be derived by masking out the lower-triangular area of ∆XX⊤L, as

O = (∆XX⊤L)⊙MU. (38)

The fact that O has zeros values on the lower-triangular area makes it possible to directly multiply O and L⊤ to get P,
given by

(OL⊤)i,j =

j∑
a=1

Oi,aL
⊤
a,j =

i∑
a=1

0× L⊤
a,j +

j∑
a=i+1

Oi,aL
⊤
a,j +

n∑
a=j+1

Oi,a × 0 =

j∑
a=i+1

Oi,aL
⊤
a,j = Pi,j (39)

Thus, we have P =

(
(∆XX⊤L)⊙MU

)
L⊤.

B. Additional Experiments
B.1. Weight-only Quantization with Rotation

We tested our method for weight-only quantization on LLaMA2 and LLaMA3 models. The weight is quantized to 2/3/4
bits in per-channel asymmetric format. The compared baseline includes AWQ (Lin et al., 2023), OmniQuant (Shao et al.,
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Algorithm 2 GPTAQ quantization for entire transformer model

Input: Full-Precision Model, which contains b blocks, two model input X and X̃, AQ=True/False.
for i = 1, 2, 3, . . . , b-th block do

Move block[i] to GPU memory # Only 1 block is loaded into GPU
Disable activation quantization, if any
X̃← block[i](X̃), store FP input for each layer # update FP block input data
if AQ is True then

Enable activation quantization, if any # Enable activation quantization during calibration
end if
for j = i, 2, . . . , l-th layer do

= block[i](X), store input for j-th layer # Compute H and ∆XX⊤ and delete FP input for this layer
Perform GPTAQ algorithm for j-th layer
Quantize j-th layer’s weight

end for
X← block[i](X) # update quantized block input data
Move block[i] to CPU memory

end for

2023), QuaRot (Ashkboos et al., 2024), and QuaRot+GPTQ (Frantar et al., 2022). As demonstrated in the following table,
QuaRot+GPTAQ is able to enhance the performance of weight-only quantization, too. This result demonstrates that even
weight-only quantization will introduce residual output error in the quantized model. In W2A16 cases, this will significantly
impact the GPTQ performance and our method can reduce the perplexity by ∼50%.

Table 7. Weight quantization results of language transformer. We report Wikitext2 perplexity.
Precision Method FT-Free L3-8B L3-70B L2-7B L2-13B L2-70B
FP16 Pretrained ✓ 6.14 2.85 5.47 4.88 3.32

W4A16

AWQ ✓ 6.57 3.59 5.82 5.07 3.49
OmniQuant ✗ - - 5.74 5.02 3.47
QuaRot ✓ 7.72 16.7 6.76 5.48 3.66
QuaRot+GPTQ ✓ 6.54 3.55 5.60 5.00 3.41
QuaRot+GPTAQ ✓ 6.46 3.35 5.54 4.96 3.40

W3A16

AWQ ✓ 11.8 12.3 14.2 6.32 4.22
OmniQuant ✗ - - 6.58 5.58 3.92
QuaRot ✓ 39.7 138 146 48.9 5.25
QuaRot+GPTQ ✓ 7.59 5.37 6.08 5.37 3.72
QuaRot+GPTAQ ✓ 7.25 4.70 5.86 5.20 3.66

W2A16

AWQ ✓ 4.1e5 8.6e4 2.9e6 6.2e3 3.9e3
OmniQuant ✗ - - 37.4 17.2 7.81
QuaRot ✓ 4.0e4 4.7e4 9.7e3 5.2e3 1.2e3
QuaRot+GPTQ ✓ 23.2 18.5 20.7 10.9 5.60
QuaRot+GPTAQ ✓ 13.4 10.7 9.02 7.72 5.18

C. Memory Analysis
We additionally analyze the GPU memory required to perform our algorithm (Algorithm 1). We focus our analysis on two
key components in our method: X̃ and P. We first make the observation that X̃ is only involved in the computation of
∆XX⊤. Thus, the memory required for storing X̃ is temporary and can be safely released as soon as ∆XX⊤ is computed.
P, on the other hand, needs to be kept in the GPU memory during the iterative quantization updates.

Though X̃ only requires temporary GPU memory, due to the inherent large dimensionality of k, materializing X̃ for the
entire model can potentially cause the GPU to suffer from high peak memory usage. We thus utilize a GPU-friendly strategy
to manipulate the temporary storage of X̃. As shown in Algorithm 2, for each block that awaits calibration, only the X̃ that
associates with the block will be materialized in the GPU memory. Assuming the block consists of l layers, the temporary
memory required by X̃ is bounded by the complexity of O(nkl). As an example, on LLaMA2-7B, our profiling results
show that X̃ only temporarily induces ∼ 12GB memory space. Note that since the complexity solely depends on the block
size, our storage strategy for X̃ is scalable with the growing model size. In practice, we can further offload these data to
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CPU memory and only load them to GPU when needed, which we empirically find brings negligible overhead to the overall
latency but further improves the GPU memory efficiency.

As for P, thanks to the relatively smaller dimensionality of m,n, the memory storage requirement is very small. In Table 8,
we detail the dimensionality of different matrices that are kept in GPU memory during the iterative updates (left part) and
the one for each local update round within the column blocks. For concrete reference, Table 9 provides the runtime GPU
memory requirements for calibrating individual layers within a block of LLaMA2-7B.

We would like to strengthen and clarify the fact that throughout the entire quantization process, only one single copy of
the model block exists inside the GPU memory. The X̃ that contains the FP information of the block is first calculated by
forwarding the input through the unquantized block and stored in the CPU memory. Then the same model block inside the
GPU memory is quantized and calibrated by our proposed algorithm. As shown in Algorithm 2, the extra memory storage
required by our method is solely brought by X̃ and P which we have analyzed above.

Table 8. Dimensions of matrices used in GPTQ/GPTAQ.
Method W L Q E P W:,Q LQ,Q Q:,Q E:,Q PQ,Q

GPTQ m× n n× n m× n m× n 0× 0 m×B B ×B m×B m×B 0× 0
GPTAQ m× n n× n m× n m× n n× n m×B B ×B m×B m×B B ×B

Table 9. Memory needed to perform calibration on LLaMA2-7B. B = 128 follows the standard setup.
Layer q proj k proj v proj o proj up proj gate proj down proj
m× n 4096× 4096 4096× 4096 4096× 4096 4096× 4096 11008× 4096 11008× 4096 4096× 11008
GPTQ 0.13GB 0.13GB 0.13GB 0.13GB 0.29GB 0.29GB 0.48GB
GPTAQ 0.16GB 0.16GB 0.16GB 0.16GB 0.32GB 0.32GB 0.70GB
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