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Abstract

In online convex optimization, some efficient algorithms have been designed for each of the
individual classes of objective functions, e.g., convex, strongly convex, and exp-concave.
However, existing regret analyses, including those of universal algorithms, are limited to
cases in which the objective functions in all rounds belong to the same class and cannot be
applied to cases in which the property of objective functions may change in each time step.
This paper introduces a novel approach to address such cases, proposing a new regime we
term as contaminated online convex optimization. For the contaminated case, we demon-
strate that the regret is lower bounded by Ω(log T +

√
k). Here, k signifies the level of

contamination in the objective functions. We also demonstrate that the regret is bounded
by O(log T +

√
k log T ) when universal algorithms are used. When our proposed algorithms

with additional information are employed, the regret is bounded by O(log T +
√

k), which
matches the lower bound. These are intermediate bounds between a convex case and a
strongly convex or exp-concave case.

1 Introduction

Online convex optimization (OCO) is an optimization framework in which convex objective function changes
for each time step t ∈ {1, 2, . . . , T}. OCO has a lot of applications such as prediction from expert advice
(Littlestone & Warmuth, 1994; Arora et al., 2012), spam filtering (Hazan, 2016), shortest paths (Awerbuch &
Kleinberg, 2004), portfolio selection (Cover, 1991; Hazan et al., 2006), and recommendation systems (Hazan
& Kale, 2012). The performance of the OCO algorithm is compared by regret (defined in Section 3). As
shown in Table 1, it is already known that sublinear regret can be achieved for each function class, such
as convex, strongly convex, and exp-concave, and the bound depends on the function class. In addition,
these upper bounds coincide with lower bounds, so these are optimal. However, these optimal algorithms
are applicable to one specific function class. Therefore, we need prior knowledge about the function class to
which the objective functions belong.

To solve this problem, many universal algorithms that work well for multiple function classes by one algorithm
have been proposed (Hazan et al., 2007; Van Erven & Koolen, 2016; Wang et al., 2020; Zhang et al., 2022;
Yan et al., 2024). For example, the MetaGrad algorithm proposed by Van Erven & Koolen (2016) achieves
an O(

√
T )-regret for any sequence of convex objective functions and an O(log T )-regret if all the objective

functions are exp-concave. Universal algorithms are useful in that they can be used without prior knowledge
about the objective functions. Some universal algorithms are introduced in Appendix A.3.

A notable limitation of the previous regret analyses about universal algorithms is that they apply only
to cases where all the objective functions f1, f2, . . . , fT belong to the same function class. Therefore, for
example, if some objective functions in a limited number of rounds are not strongly convex and if the other
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Table 1: Comparison of regret bounds. The parameter d is the dimension of the decision set.

FUNCTION CLASS UPPER BOUNDS LOWER BOUNDS

Convex O(
√

T ) Ω(
√

T )
(Zinkevich, 2003) (Abernethy et al., 2008)

α-exp-concave O((d/α) log T ) Ω((d/α) log T )
(Hazan et al., 2006) (Ordentlich & Cover, 1998)

k-contaminated α-exp-concave O((d/α) log T +
√

kd log T ) Ω((d/α) log T +
√

k)
(This work, Corollary 5.5) (This work, Corollary 4.8)

k-contaminated α-exp-concave O((d/α) log T +
√

k) Ω((d/α) log T +
√

k)
(with additional information) (This work, Theorem 6.2) (This work, Corollary 4.8)

λ-strongly convex O((1/λ) log T ) Ω((1/λ) log T )
(Hazan et al., 2006) (Abernethy et al., 2008)

k-contaminated λ-strongly convex O((1/λ) log T +
√

k log T ) Ω((1/λ) log T +
√

k)
(This work, Corollary 5.7) (This work, Corollary 4.9)

k-contaminated λ-strongly convex O((1/λ) log T +
√

k) Ω((1/λ) log T +
√

k)
(with additional information) (This work, Theorem 6.2) (This work, Corollary 4.9)

objective functions are strongly convex, regret bounds for strongly convex functions in previous studies are
not always valid. This study aims to remove this limitation.

1.1 Our Contribution

In this study, we consider the situation in which the function class of the objective ft may change in each time
step t. We call this situation contaminated OCO. More specifically, in k-contaminated OCO with a function
class F , we suppose that the objective function ft does not necessarily belong to the desired function class F
(e.g., exp-concave or strongly convex functions) in k rounds out of the total T rounds. Section 3 introduces
its formal definition and examples. This class of OCO problems can be interpreted as an intermediate setting
between general OCO problems and restricted OCO problems with F (F-OCOs). Intuitively, the parameter
k ∈ [0, T ] represents the magnitude of the impurity in the sequence of the objective functions, and measures
how close the problems are to F-OCOs; k = 0 and k = T respectively correspond to F-OCO and general
OCO.

The contribution of this study can be summarized as follows: (i) We introduce contaminated OCO, which
captures the situations in which the class of the objective functions may change over different rounds. (ii)
We find that the Online Newton Step, one of the optimal algorithms for exp-concave functions, does not
always work well in contaminated OCO, as discussed in Section 4.1. (iii) We present regret lower bounds
for contaminated OCO in Section 4.2. (iv) We show that some existing universal algorithms achieve better
regret bounds than ONS for contaminated OCO, which details are given in Section 5. (v) We propose an
algorithm that attains the optimal regret bounds under the additional assumption that information of the
class of the previous objective function is accessible in Section 6.

Regret bounds of contaminated cases compared to existing bounds are shown in Table 1. The new upper
bounds contain bounds in existing studies for exp-concave functions and strongly convex functions as a
particular case (k = 0). Additionally, the new lower bounds generalize bounds in existing studies for convex
functions, exp-concave functions, and strongly convex functions. In cases where only gradient information is
available, there is a multiplicative gap of O(

√
log T ) between the second terms of the upper bounds and the

lower bounds. This gap is eliminated when the information of the class of the previous objective function is
available.
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To prove regret lower bounds in Table 1, we construct distributions of problem instances of contaminated
OCO for which any algorithm suffers a certain amount of regret in expected values. Such distributions are
constructed by combining suitably designed problem instances of F-OCO and general OCO.

To derive novel regret upper bounds without additional information in Table 1, we exploit regret upper
bounds expressed using some problem-dependent values such as a measure of variance (Van Erven & Koolen,
2016). By combining such regret upper bounds and inequalities derived from the definition of k-contaminated
OCO, we obtain regret upper bounds, including the regret itself, which can be interpreted as quadratic
inequalities in regret. Solving these inequalities leads to regret upper bounds in Table 1.

We develop algorithms that can achieve optimal regret upper bounds, taking into account the function class
information of the previous function. To accomplish this, we modified two existing OCO algorithms: the
Online Newton Step (ONS), as introduced by Hazan et al. (2006), and the Online Gradient Descent (OGD),
presented by Zinkevich (2003). The modification is changing the update process depending on the function
class of the last revealed objective function.

2 Related Work

In the context of online learning, adaptive algorithms (Orabona, 2019) have been extensively studied due to
their practical usefulness. These algorithms work well by automatically exploiting the intrinsic properties
of the sequence of objective functions and do not require parameter tuning based on prior knowledge of the
objective function. For example, AdaGrad (McMahan & Streeter, 2010; Duchi et al., 2011) is probably one of
the best-known adaptive algorithms, which automatically adapts to the magnitude of the gradients. Studies
on universal algorithms (Hazan et al., 2007; Van Erven & Koolen, 2016; Wang et al., 2020; Zhang et al.,
2022; Yan et al., 2024), which work well for several different function classes, can also be positioned within
these research trends. Our study shows that some of these universal algorithms have further adaptability,
i.e., nearly tight regret bounds for contaminated settings.

van Erven et al. (2021) has explored a similar setting to ours, focusing on robustness to outliers. They regard
rounds with larger gradient norms than some threshold as outliers and denote the number of outliers as k,
whose definition differs from ours. They have defined regret only for rounds that are not outliers, terming it
robust regret, and have shown that the additional O(k) term is inevitable in bounds on robust regret.

Studies on best-of-both-worlds (BOBW) bandit algorithms (Bubeck & Slivkins, 2012) and on stochastic
bandits with adversarial corruptions (Lykouris et al., 2018; Gupta et al., 2019) are also related to our
study. BOBW algorithms are designed to achieve (nearly) optimal performance both for stochastic and
adversarial environments, e.g., O(log T )-regret for stochastic and O(

√
T )-regret for adversarial environments,

respectively. Stochastic bandits with adversarial corruptions are problems for intermediate environments
between stochastic and adversarial ones, in which the magnitude of adversarial components is measured by
means of the corruption level parameter C ≥ 0. A BOBW algorithm by Bubeck & Slivkins (2012) has
shown to have a regret bound of O(log T +

√
C log T ) as well for stochastic environments with adversarial

corruptions, which is also nearly tight (Ito, 2021). In the proof of such an upper bound, an approach referred
to as the self-bounding technique (Gaillard et al., 2014; Wei & Luo, 2018) is used, which leads to improved
guarantees via some regret upper bounds that include the regret itself. Similar proof techniques are used in
our study as well.

3 Problem Setting

In this section, we explain the problem setting we consider. Throughout this paper, we assume functions
f1, f2, . . . , fT are differentiable and convex.

3.1 OCO Framework and Assumptions

First of all, the mathematical formulation of OCO is as follows. At each time step t ∈ [T ](:= {1, 2, . . . , T}),
a convex nonempty set X ⊂ Rd and convex objective functions f1, f2, . . . , ft−1 : X → R are known and ft
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is not known. A learner chooses an action xt ∈ X and incurs a loss ft(xt) after the choice. Since ft is
unknown when choosing xt, it is impossible to minimize the cumulative loss

∑T
t=1 ft(xt) for all sequences of

ft. Instead, the goal of OCO is to minimize regret:

RT :=
T∑

t=1
ft(xt) − min

x∈X

T∑
t=1

ft(x).

Regret is the difference between the cumulative loss of the learner and that of the best choice in hindsight. The
regret can be logarithmic if the objective functions are λ-strongly convex, i.e., f(y) ≥ f(x)+⟨∇f(x), y − x⟩+
λ
2 ∥x − y∥2 for all x, y ∈ X , or α-exp-concave, i.e., exp(−αf(x)) is concave on X .
Remark 3.1. The type of information about ft that needs to be accessed varies depending on the algorithm.
Universal algorithms only utilize gradient information, while the algorithm presented in Section 6 requires
additional information besides the gradient, such as strong convexity and exp-concavity. The lower bounds
discussed in Section 4.2 are applicable to arbitrary algorithms with complete access to full information about
the objective functions.

Next, we introduce the following two assumptions. These assumptions are very standard in OCO and
frequently used in regret analysis. We assume them throughout this paper without mentioning them.
Assumption 3.2. There exists a constant D > 0 such that ∥x − y∥ ≤ D holds for all x, y ∈ X .
Assumption 3.3. There exists a constant G > 0 such that ∥∇ft(x)∥ ≤ G holds for all x ∈ X and t ∈ [T ].

These assumptions are important, not only because we can bound ∥x − y∥ and ∥∇ft(x)∥, but also because
we can use the following two lemmas:
Lemma 3.4. (Hazan, 2016) Let f : X → R be an α-exp-concave function. Assume that there exist constants
D, G > 0 such that ∥x − y∥ ≤ D and ∥∇f(x)∥ ≤ G hold for all x, y ∈ X . The following holds for all
γ ≤ (1/2) min{1/(GD), α} and all x, y ∈ X :

f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ + γ

2 (⟨∇f(y), x − y⟩)2.

Lemma 3.5. (Hazan, 2016) If f : X → R is a twice differentiable λ-strongly convex function satisfying
∥∇f(x)∥ ≤ G for all x ∈ X , then it is λ/G2-exp-concave.

Lemma 3.5 means that exp-concavity is a milder condition than strong convexity, combining with the fact
that − log ⟨a, x⟩ is not strongly convex but 1-exp-concave.

3.2 Contaminated Case

In this subsection, we define contaminated OCO and introduce examples that belong to this problem class.
The definition is below.
Definition 3.6. For some function class F , a sequence of convex functions (f1, f2, . . . , fT ) belongs to k-
contaminated F if there exists a set of indices I ⊂ [T ] such that |I| = k and ft ∈ F holds for all t ∈ [T ]\I.

For example, if functions other than k functions of them are α-exp-concave, we call the functions k-
contaminated α-exp-concave. And especially for OCO problems, if the objective functions are contaminated,
we call them contaminated OCO.

The following two examples are functions whose function class varies with time step. These examples
motivate this study.
Example 3.7. (Online least mean square regressions) Consider the situation where a batch of input-output
data (at,i, bt,i) ∈ Rd × R (i ∈ {1, 2, . . . , n}) is given in each round t and we want to estimate x which
enable to predict b ≈ ⟨a, x⟩. This can be regarded as an OCO problem whose objective functions are
ft(x) := (1/n)

∑n
i=1(⟨at,i, x⟩ − bt,i)2. These functions are λt-strongly convex, where λt is the minimum

eigenvalue of the matrix (2/n)
∑n

i=1 at,ia
⊤
t,i. Let k(λ) := |{t ∈ [T ] | λt < λ}| for any λ > 0. Then

(f1, f2, . . . , fT ) is k(λ)-contaminated λ-strongly convex.
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Example 3.8. (Online classification by using logistic regression) Consider the online classification problem.
A batch of input-output data (at,i, bt,i) ∈ Rd × {±1} (i ∈ {1, 2, . . . , n}) is given in each round t and we
want to estimate x which enable to predict b = sgn(⟨a, x⟩). Suppose that the objective functions are given
by ft(x) := (1/n)

∑n
i=1 log(1 + exp(−bt,i ⟨at,i, x⟩)). Exp-concavity of ft(x) on {x ∈ Rd | ∥x∥ ≤ 1} changes

with time step. Especially, in the case at,i = at, bt,i = bt, ft is exp(−∥at∥)-exp-concave, as proved in
Appendix B.1. Let k(α) := |{t ∈ [T ] | αt < α}| for any α > 0, where αt is defined so that ft is αt-exp-
concave. Then (f1, f2, . . . , fT ) is k(α)-contaminated α-exp-concave.
Remark 3.9. In the two examples above, constants λ and α in the definition of λ-strong convexity and α-
exp-concavity can be strictly positive for all time steps. However, since the regret bounds are O((1/λ) log T )
and O((d/α) log T ) for λ-strongly convex functions and α-exp-concave functions respectively, if λ and α are
O(1/T ), then the regret bounds become trivial. Analyses in this paper give a nontrivial regret bound to
such a case.

4 Regret Lower Bounds

4.1 Vulnerability of ONS

This subsection explains how Online Newton Step (ONS) works for contaminated exp-concave functions.
ONS is an algorithm for online exp-concave learning. Details of ONS are in Appendix A.2. The upper
bound is as follows.
Proposition 4.1. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated α-exp-concave, the
regret upper bound of ONS with γ = (1/2) min{1/(GD), α} and ε = 1/(γ2D2) is O((d/γ) log T + k).

This proposition is proved by using the proof for noncontaminated cases by Hazan (2016). A detailed proof
is in Appendix B.2. This upper bound seems trivial, but the bound is tight because of the lower bound
stated in Corollary 4.6.

Before stating the lower bound, we introduce the following theorem, which is essential in deriving some lower
bounds of contaminated cases.
Theorem 4.2. Let F be an arbitrary function class. Suppose that functions g1, g2 are the functions such
that Ω(g1(T )) and Ω(g2(T )) are lower bounds for function class F and convex functions, respectively, for
some OCO algorithm. If a sequence of objective functions belongs to k-contaminated F , then regret in the
worst case is Ω(g1(T ) + g2(k)) for the OCO algorithms.
Remark 4.3. In Theorem 4.2, if the lower bounds Ω(g1(T )) and Ω(g2(T )) are for all OCO algorithms, then
the lower bound Ω(g1(T ) + g2(k)) is also for all OCO algorithms.

To derive this lower bound, we use the following two instances; one is the instance used to prove lower bound
RT = Ω(g1(T )) for function class F , and the other is the instance used to prove Rk = Ω(g2(k)) for convex
objective functions. By considering the instance that these instances realize with probability 1/2, we can
construct an instance that satisfies

E[RT ] = Ω(g1(T ) + g2(k)),

for all OCO algorithms. A detailed proof of this proposition is postponed to Appendix B.3.

Theorem 4.2 implies that, in contaminated cases, we can derive interpolating lower bounds of regret. The
lower bound obtained from this theorem is Ω(g1(T )) if k ≪ T , and Ω(g2(T )) if k = T . Since the contaminated
case can be interpreted as an intermediate regime between restricted F-OCO and general OCO, this result
would seen as reasonable. This lower bound applies not only to ONS but also to arbitrary algorithms.

To apply Theorem 4.2 to ONS, we show the following lower bound in the case of convex functions. This
lower bound shows that ONS is not suitable for convex objective functions.
Proposition 4.4. For any positive parameters γ and ε, ONS incurs Ω(T ) regret in the worst case.

To prove this proposition, consider the instance as follows:

ft(x) = vtx, x ∈ X = [−D/2, D/2], x1 = −G,
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where

vt =


(−1)tG t < t1,

G t ≥ t1, xt1 ≥ 0,

−G t ≥ t1, xt1 < 0,

and t1 is a minimum natural number which satisfies t1 ≥ (1 + γG2D/2)−1T . Then, we can get

RT ≥ γG2D/2
2(1 + γG2D/2)2 T − 1

γ
log
(

1 + G2

ε
T

)
− 2

γG
− G2D

2 .

A detailed proof of this proposition is postponed to Appendix B.4.
Remark 4.5. Corollary 4.4 states the lower bound that holds only for ONS. However, if some better algorithms
are used, the lower bound can be improved. Therefore, it is not a contradiction that the general lower bound
in Table 1 is better than that of ONS. This is also true for Corollary 4.6, which is about the contaminated
case.

The lower bound of α-exp-concave functions can be derived as follows. The lower bound of 1-exp-concave
functions is Ω(d log T ) (Ordentlich & Cover, 1998). Here, when divided by α, 1-exp-concave functions turn
into α-exp-concave functions, and regret is also divided by α. Hence, the lower bound of α-exp-concave
functions is Ω((d/α) log T ).

We get the following from this lower bound for exp-concave functions, Proposition 4.4, and Theorem 4.2.
Corollary 4.6. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated α-exp-concave, regret
in worst case is Ω((d/α) log T + k), for ONS.

This proposition shows that the regret analysis in Proposition 4.1 is strict. While ONS does not work well
for contaminated OCO, universal algorithms exhibit more robust performance. In Section 5, we analyze
some universal algorithms on this point.
Remark 4.7. For the 1-dimension instance above, ONS can also be regarded as OGD (Algorithm 2 in
Appendix A.1) with Θ(1/t) stepsize. This implies that we can show that OGD with Θ(1/t) stepsize can
incur Ω(T ) regret in the worst case. Therefore, for k-contaminated strongly convex functions, regret in worst
case is Ω((1/λ) log T + k), for OGD with Θ(1/t) stepsize.

4.2 General Lower Bounds

In this subsection, we present regret lower bounds for arbitrary algorithms.

Using Theorem 4.2, we can get a lower bound of k-contaminated exp-concave functions. As mentioned in
Section 4.1, regret lower bound of α-exp-concave functions is Ω((d/α) log T ). From this lower bound and
that of convex functions is Ω(GD

√
T ) (Abernethy et al., 2008), we can derive the following lower bound.

This corollary shows that k-contamination of exp-concave functions worsens regret lower bound at least
Ω(GD

√
k).

Corollary 4.8. If (f1, f2, . . . , fT ) is k-contaminated α-exp-concave, regret in worst case is Ω((d/α) log T +
GD

√
k), for all OCO algorithms.

According to Abernethy et al. (2008), the regret lower bound in the case of λ-strongly convex functions is
Ω((G2/λ) log T ). Therefore, following a similar corollary is derived in the same way.
Corollary 4.9. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated λ-strongly convex,
regret in worst case is Ω((G2/λ) log T + GD

√
k), for all OCO algorithms.

5 Regret Upper Bounds by Universal Algorithms

In this section, we explain the regret upper bounds of some universal algorithms when the objective functions
are contaminated. The algorithms we analyze in this paper are multiple eta gradient algorithm (MetaGrad)
(Van Erven & Koolen, 2016), multiple sub-algorithms and learning rates (Maler) (Wang et al., 2020), and
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universal strategy for online convex optimization (USC) (Zhang et al., 2022). Though there are two variations
of MetaGrad; full MetaGrad and diag MetaGrad, in this paper, MetaGrad means full MetaGrad. We
denote Rx

T :=
∑T

t=1(ft(xt) − ft(x)), R̃x
T :=

∑T
t=1 ⟨∇ft(xt), xt − x⟩, V x

T :=
∑T

t=1(⟨∇ft(xt), xt − x⟩)2 and
W x

T := G2∑T
t=1 ∥xt − x∥2.

Concerning MetaGrad and Maler, following regret bounds hold without assuming exp-concavity or strong
convexity:
Theorem 5.1. (Van Erven & Koolen, 2016) For MetaGrad, Rx

T is simultaneously bounded by
O(GD

√
T log log T ), and by

Rx
T ≤ R̃x

T = O(
√

V x
T d log T + GDd log T ),

for any x ∈ X .
Theorem 5.2. (Wang et al., 2020) For Maler, Rx

T is simultaneously bounded by O(GD
√

T ),

Rx
T ≤ R̃x

T = O(
√

V x
T d log T ) and

Rx
T ≤ R̃x

T = O(
√

W x
T log T ),

for any x ∈ X .

Though Theorem 5.2 is derived only for x ∈ argminx∈X
∑T

t=1 ft(x) in the original paper by Wang et al.
(2020), the proof is also valid even when x is any vector in X , so we rewrite the statement in this form. The
proof of this generalization is provided in Appendix B.5. Further explanations of universal algorithms are in
Appendix A.3.

Concerning the regret bound of contaminated exp-concavity, the following theorem holds. This theorem’s
assumption is satisfied when using MetaGrad or Maler, and the result for them is described after the proof
of this theorem.
Theorem 5.3. Let αt be a constant such that ft is αt-exp-concave (if ft is not exp-concave, then αt is 0)
for each t. Suppose that

Rx
T ≤ R̃x

T = O

(√
V x

T r1(T ) + r2(T )
)

(1)

holds for some functions r1, r2, and point x ∈ X . Then, it holds for any γ > 0 that

Rx
T = O

(
1
γ

r1(T ) + GD
√

kγr1(T ) + r2(T )
)

,

where kγ :=
∑T

t=1 max{1 − γt/γ, 0}, γt := (1/2) min{1/(GD), αt}.

Before proving this theorem, we prepare a lemma. The proof of this lemma is given in Appendix B.6.
Lemma 5.4. For all a, b, x ≥ 0, if x ≤

√
ax + b, then x ≤ 3(a + b)/2.

Proof of Theorem 5.3. From Lemma 3.4, we have

Rx
T =

T∑
t=1

(ft(xt) − ft(x))

≤
T∑

t=1

(
⟨∇ft(xt), xt − x⟩ − γt

2 (⟨∇ft(xt), x − xt⟩)2
)

= R̃x
T − γ

2 V x
T +

T∑
t=1

γ − γt

2 (⟨∇ft(xt), x − xt⟩)2

≤ R̃x
T − γ

2 V x
T +

∑
t:γt<γ

γ − γt

2 G2D2

≤ R̃x
T − γ

2 V x
T + γ

2 kγG2D2.
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If Rx
T < 0, 0 is an upper bound, so it is sufficient to think of the case Rx

T ≥ 0. In this case, we have

V x
T ≤ 2

γ
R̃x

T + kγG2D2. (2)

From equation (1), there exists a positive constant C > 0 such that

R̃x
T ≤ C

(√
V x

T r1(T ) + r2(T )
)

≤ C

(√(
2
γ

R̃x
T + kγG2D2

)
r1(T ) + r2(T )

)

≤
√

2
γ

C2r1(T )R̃x
T + CGD

√
kγr1(T ) + Cr2(T ). (3)

The second inequality holds from the inequality (2), and the last inequality holds from the inequality√
x + y ≤

√
x + √

y for x, y ≥ 0.

From Lemma 5.4 with a = (2/γ)C2r1(T ) and b = CGD
√

kγr1(T ) + Cr2(T ), we have

R̃x
T ≤ 3

2

(
2
γ

C2r1(T ) + CGD
√

kγr1(T ) + Cr2(T )
)

.

From this inequality and Rx
T ≤ R̃x

T , Theorem 5.3 follows.

The core of this proof is inequality (3), which can be regarded as a quadratic inequality. Solving this
inequality enables us to obtain a regret upper bound for contaminated cases from a regret upper bound for
non-contaminated cases.

Theorem 5.3 combined with Theorem 5.1, Theorem 5.2, and Theorem A.1 in the appendix gives upper bounds
for universal algorithms; MetaGrad, Maler, and USC. The following corollary shows that, even if exp-concave
objective functions are k-contaminated, regret can be bounded by an additional term of O(

√
kd log T ). This

regret bound is better than ONS’s in the parameter k.
Corollary 5.5. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated α-exp-concave, the
regret bound of MetaGrad, Maler, and USC with MetaGrad or Maler as an expert algorithm is

RT = O

(
d

γ
log T + GD

√
kd log T

)
, (4)

where γ := (1/2) min{1/(GD), α}.

We only give proof for MetaGrad and Maler here, and the proof for USC will be provided in Appendix B.7.

Proof. As for MetaGrad and Maler, from Theorem 5.1 and Theorem 5.2,

R̃x
T = O(

√
V x

T d log T + GDd log T )

holds for any x ∈ X . Therefore, by Theorem 5.3, we have

Rx
T = O

(
d

γ
log T + GD

√
kγd log T

)
,

where GD = O(1/γ) is used, which follows from γ = (1/2) min{1/(GD), α}. Here, kγ satisfies

kγ =
T∑

t=1
max

{
1 − γt

γ
, 0
}

=
∑

t : γt<γ

(
1 − γt

γ

)
≤ k.

8
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The inequality follows from the fact that if γt < γ, then αt < α holds. Hence, we have

Rx
T = O

(
d

γ
log T + GD

√
kd log T

)
,

especially, we get the regret upper bound (4).

As for strongly convex functions, we can get a similar result as Theorem 5.3.
Theorem 5.6. Let λt be a constant such that ft is λt-strongly convex (if ft is not strongly convex, then λt

is 0) for each t. Suppose that

Rx
T ≤ R̃x

T = O

(√
W x

T r1(T ) + r2(T )
)

holds for some functions r1, r2, and point x ∈ X . Then, it holds for any λ > 0 that

Rx
T = O

(
G2

λ
r1(T ) + GD

√
kλr1(T ) + r2(T )

)
,

where kλ :=
∑T

t=1 max{1 − λt/λ, 0}.

This theorem can be derived in almost the same manner as the proof of Theorem 5.3, other than using the
definition of strong convexity and kλ. A more detailed proof is in Appendix B.8.

Theorem 5.6 combined with Theorem 5.1, Theorem 5.2, and Theorem A.1 in the appendix gives upper
bounds for universal algorithms; MetaGrad, Maler, and USC. This corollary shows that, even if strongly
convex objective functions are k-contaminated, regret can be bounded by an additional term of O(

√
k log T )

if Maler or USC with Maler as an expert algorithm is used.
Corollary 5.7. If a sequence of objective functions (f1, f2, . . . , fT ) is k-contaminated λ-strongly convex, the
regret bound of MetaGrad, Maler, and USC with Maler as an expert algorithm is

RT = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
kd̃ log T

)
,

where d̃ is d in the case of MetaGrad and 1 in the case of the other two algorithms.

This corollary can be derived from Theorem 5.6 in almost the same manner as the proof of Corollary 5.5. A
more detailed proof is in Appendix B.9 and Appendix B.10.
Remark 5.8. If (f1, f2, . . . , fT ) is k1-contaminated α-exp-concave and k2-contaminated λ-strongly convex,
then we have two regret upper bounds:

RT = O

(
d

γ
log T + GD

√
k1d log T

)
,

from Corollary 5.5 and

RT = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
k2d̃ log T

)
,

from Corollary 5.7. Here, strongly convex functions are also exp-concave functions from Lemma 3.5. There-
fore, if λ/G2 ≥ α, then k1 ≤ k2.
Remark 5.9. Note that the universal algorithms analyzed in this section do not require additional information
other than the gradient, which is a valuable property in practical use. However, comparing lower bounds in
Corollary 4.8 and Corollary 4.9 with upper bounds in Corollary 5.5 and Corollary 5.7 respectively, there are
gaps between them. This implies that our upper bounds in this section or lower bounds in Section 4.2 might
not be tight. As we will discuss in the next section, this gap can be removed if additional information on
function classes are available while it is not always the case in real-world applications.
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Algorithm 1 Algorithm using additional information
Input: convex set X ⊂ Rd, x1 ∈ X , T , D, G, α, λ

1: Set γ := (1/2) min{1/(GD), α}, ε :=
√

2G/D, A0 := εId.
2: for t = 1 to T do
3: Play xt and observe cost ft(xt).
4: Update:

At = At−1 +


λId, t ∈ S1

γ∇ft(xt)∇ft(xt)⊤, t ∈ S2

G

D
√

2|[t] ∩ U |
Id, t ∈ U,

5: Newton step and generalized projection:

yt+1 = xt − A−1
t ∇ft(xt),

xt+1 = ΠAt

X (yt+1) := arg min
x∈X

{∥yt+1 − x∥2
At

}.

6: end for

6 Regret Upper Bounds Given Additional Information

In this section, we propose a method that achieves better bounds than those of universal algorithms discussed
in the previous section under the condition that the information of the class of the last objective function is
revealed. The experimental performance of this method is shown in Appendix C.

We denote S1 := {t ∈ [T ] | ft is λ-strongly convex}, S2 := {t ∈ [T ]\S1 | ft is α-exp-concave}, U :=
[T ]\(S1 ∪ S2), and k := |U |. The algorithm using additional information is shown in Algorithm 1 (Id is d
dimensional identity matrix, and ∥ · ∥2

A means ⟨A·, ·⟩). This algorithm is a generalization of OGD and ONS.
Indeed, (S1, S2, U) = ([T ], ∅, ∅) gives normal OGD and (S1, S2, U) = (∅, [T ], ∅) gives normal ONS.

Before stating the regret upper bounds of Algorithm 1, we prepare the following lemma:

Lemma 6.1. Let {xt}t be the sequence generated by Algorithm 1 and S1, S2, U , and k be as defined above.
Then, the following inequalities hold:

∑
t∈S1

∥∇ft(xt)∥2
A−1

t

≤ G2

λ
log
(

1 + λD√
2G

|S1|
)

, (5)

∑
t∈S2

∥∇ft(xt)∥2
A−1

t

≤ d

γ
log
(

1 + λD√
2G

|S1| + γGD√
2

|S2| +
√

k

)
, (6)

∑
t∈U

∥∇ft(xt)∥2
A−1

t

≤
√

2GD(
√

k + 1 − 1). (7)

Proof. Inequality (5) can be obtained as follows:

∑
t∈S1

∥∇ft(xt)∥2
A−1

t

≤ G2
∑
t∈S1

1
λmin(At)

≤ G2
|S1|∑
i=1

1
ε + λi

≤ G2
∫ |S1|

0

ds

ε + λs
= G2

λ
log
(

1 + λD√
2G

|S1|
)

,

where λmin(At) is the minimum eigenvalue of the matrix At, which at least increases by λ when t ∈ S1.
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We can bound the left-hand side of the inequality (6) as follows:∑
t∈S2

∥∇ft(xt)∥2
A−1

t

=
∑
t∈S2

tr
(
A−1

t ∇ft(xt)(∇ft(xt))⊤)
= 1

γ

∑
t∈S2

tr
(
A−1

t (At − At−1)
)

≤ 1
γ

∑
t∈S2

log |At|
|At−1|

.

The first inequality is from Lemma B.5 in Appendix B.11. Since |At| ≥ |At−1| (∀t ∈ S1 ∪ U),

1
γ

∑
t∈S2

log |At|
|At−1|

≤ 1
γ

T∑
t=1

log |At|
|At−1|

= 1
γ

log |AT |
|A0|

≤ d

γ
log
(

1 + λD√
2G

|S1| + γGD√
2

|S2| +
√

k

)
.

The last inequality is from the fact that the largest eigenvalue of AT is at most
√

2G/D + λ|S1| + γG2|S2| +
(G/D)

√
2k.

Inequality (7) can be obtained as follows:∑
t∈U

∥∇ft(xt)∥2
A−1

t

≤ G2
∑
t∈U

1
λmin(At)

≤ G2
∑
t∈U

1
ε +

∑|[t]∩U |
i=1

G
D

√
2i

≤ G2
∑
t∈U

1
ε +

√
2 G

D (
√

|[t] ∩ U | + 1 − 1)

= GD√
2

k∑
i=1

1√
i + 1

≤
√

2GD(
√

k + 1 − 1).

Using this lemma, we can bound the regret of Algorithm 1 as follows:
Theorem 6.2. Let k be defined at the beginning of this section. Algorithm 1 guarantees

RT = O

((
G2

λ
+ d

γ

)
log T + GD

√
k

)
.

Proof. When t ∈ S1, from the definition of strong convexity,

2(ft(xt) − ft(x∗)) ≤ 2 ⟨∇ft(xt), xt − x∗⟩ − λ∥xt − x∗∥2 (8)

holds. When t ∈ S2, from Lemma 3.4,

2(ft(xt) − ft(x∗)) ≤ 2 ⟨∇ft(xt), xt − x∗⟩ − γ(⟨∇f(xt), xt − x∗⟩)2 (9)

holds. When t ∈ U , since ft is convex,

2(ft(xt) − ft(x∗)) ≤ 2 ⟨∇ft(xt), xt − x∗⟩ − G

D
√

2|[t] ∩ U |
∥xt − x∗∥2 + G

D
√

2|[t] ∩ U |
∥xt − x∗∥2 (10)

11
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holds. From the update rule of At, inequalities (8), (9), and (10) can be combined into one inequality

2(ft(xt) − ft(x∗)) ≤ 2 ⟨∇ft(xt), xt − x∗⟩ − ⟨(At − At−1)(xt − x∗), xt − x∗⟩ + G1U (t)
D
√

2|[t] ∩ U |
∥xt − x∗∥2,

where 1U is the indicator function, i.e., 1U (t) = 1 if t ∈ U , and 1U (t) = 0 otherwise. The first and second
terms in the right-hand side can be bounded as follows:

2 ⟨∇ft(xt), xt − x∗⟩ − ⟨(At − At−1)(xt − x∗), xt − x∗⟩
= 2 ⟨At(yt+1 − xt), x∗ − xt⟩ − ∥xt − x∗∥2

At
+ ∥xt − x∗∥2

At−1

= ∥yt+1 − xt∥2
At

− ∥yt+1 − x∗∥2
At

+ ∥xt − x∗∥2
At−1

≤ ∥yt+1 − xt∥2
At

− ∥xt+1 − x∗∥2
At

+ ∥xt − x∗∥2
At−1

.

The first equality is from the algorithm, the second equality is from the law of cosines, and the last inequality
is from the nonexpansiveness of projection. Therefore, we have

2(ft(xt) − ft(x∗)) ≤ ∥yt+1 − xt∥2
At

− ∥xt+1 − x∗∥2
At

+ ∥xt − x∗∥2
At−1

+ G1U (t)
D
√

2|[t] ∩ U |
∥xt − x∗∥2.

By summing up from t = 1 to T , we can bound regret as follows:

2RT ≤
T∑

t=1
∥yt+1 − xt∥2

At
+ ∥x1 − x∗∥2

A0
+
∑
t∈U

G

D
√

2|[t] ∩ U |
∥xt − x∗∥2

≤
T∑

t=1
∥∇ft(xt)∥2

A−1
t

+ D2ε + GD√
2

k∑
i=1

1√
i

≤
∑
t∈S1

∥∇ft(xt)∥2
A−1

t

+
∑
t∈S2

∥∇ft(xt)∥2
A−1

t

+
∑
t∈U

∥∇ft(xt)∥2
A−1

t

+
√

2GD(
√

k + 1).

From Lemma 6.1, we can get

2RT ≤ G2

λ
log
(

1 + λD√
2G

|S1|
)

+ d

γ
log
(

1 + λD√
2G

|S1| + γGD√
2

|S2| +
√

k

)
+ 2

√
2GD

√
k + 1

= O

((
G2

λ
+ d

γ

)
log T + GD

√
k

)
.

The key point of Theorem 6.2 is that the second term of the regret upper bound is proportional to
√

k.
Compared with Corollary 5.5, we can see that additional information improves the regret upper bound.
Remark 6.3. Algorithm 1 is written in a general form, and it is better to set S2 = ∅ in the contaminated
strongly convex case. This is because Algorithm 1 needs O(d3) computation to calculate A−1

t if S2 is
nonempty. When S1 = ∅ or S2 = ∅, the regret bound in Theorem 6.2 is reduced to O((d/γ) log T + GD

√
k)

or O((G2/λ) log T + GD
√

k) respectively.
Remark 6.4. As mentioned in Remark 5.9, the algorithms analyzed in this section need information that is
not always available in the real world. Therefore, the improved regret bound in Theorem 6.2 is theoretical,
and regret bounds for universal algorithms explained in Section 5 are more important in real applications.
However, the algorithm in this section has the notable advantage that its regret upper bounds match the
lower bounds.

7 Conclusion

In this paper, we proposed a problem class for OCO, namely contaminated OCO, the property whose
objective functions change in time steps. On this regime, we derived some upper bounds for existing and
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proposed algorithms and some lower bounds of regret. While we successfully obtained optimal upper bounds
with additional information of the function class of the last revealed objective function, there are still gaps
of O(

√
d log T ) or O(

√
log T ) between the upper bound and the lower bound without additional information.

One natural future research direction is to fill these gaps. We believe there is room for improvement in the
upper bounds and the lower bounds seem tight. Indeed, lower bounds in this study interpolate well between
tight bounds for general OCO and for (restricted) F-OCO.
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A Existing Algorithms and Known Regret Bounds

This section introduces existing algorithms for OCO and their regret bounds.

A.1 OGD Algorithm

In OCO, one of the most fundamental algorithms is online gradient descent (OGD), which is shown in
Algorithm 2. An action xt is updated by using the gradient of the point and projected onto the feasible
region X in each step. If all the objective functions are convex and learning rates are set Θ(1/

√
t), the regret

is bounded by O(
√

T ) (Zinkevich, 2003), and if all the objective functions are λ-strongly convex and learning
rates are set Θ(1/t), the regret is bounded by O((1/λ) log T ) (Hazan et al., 2006).

A.2 ONS Algorithm

If all the objective functions are α-exp-concave, ONS, shown in Algorithm 3, works well. This is an algorithm
proposed by Hazan et al. (2006) as an online version of the offline Newton method. This algorithm needs
parameters γ, ε > 0, and if γ = (1/2) min{1/(GD), α} and ε = 1/(γ2D2), then the regret is bounded by
O((d/α) log T ).

Algorithm 2 Online Gradient Descent (Zinkevich, 2003)
Input: convex set X ⊂ Rd, T , x1 ∈ X , parameters ηt

1: for t = 1 to T do
2: Play xt and observe cost ft(xt).
3: Gradient step and projection:

yt+1 = xt − ηt∇ft(xt),

xt+1 = ΠX (yt+1) := arg min
x∈X

{∥yt+1 − x∥2}.

4: end for
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Algorithm 3 Online Newton step (Hazan et al., 2006)
Input: convex set X ⊂ Rd, T , x1 ∈ X , parameters γ, ε > 0, A0 = εId

1: for t = 1 to T do
2: Play xt and observe cost ft(xt).
3: Rank-1 update: At = At−1 + ∇ft(xt)(∇ft(xt))⊤.
4: Newton step and generalized projection:

yt+1 = xt − γ−1A−1
t ∇ft(xt),

xt+1 = ΠAt

X (yt+1).

5: end for

Algorithm 4 MetaGrad Master (Van Erven & Koolen, 2016)
Input: T , G, D, C = 1 + 1/(1 + ⌈(1/2) log2 T ⌉)

1: Set ηi = 2−i/(5GD), πηi

1 = C/((i + 1)(i + 2)) for i = 0, 1, . . . , ⌈(1/2) log2 T ⌉.
2: for t = 1 to T do
3: Get prediction xηi

t of slave for each i.
4: Play xt:

xt =
∑

i πηi

t ηix
ηi

t∑
i πηi

t ηi
.

5: Update for each i:

ℓηi

t (xηi

t ) = −ηi⟨xt − xηi

t , ∇ft(xt)⟩ + η2
i (⟨xt − xηi

t , ∇ft(xt)⟩)2,

πηi

t+1 = πηi

t eℓ
ηi
t (x

ηi
t )∑

i πηi

t eℓ
ηi
t (x

ηi
t )

.

6: end for

A.3 Universal Algorithms

In real-world applications, it may be unknown which function class the objective functions belong to. To
cope with such cases, many universal algorithms have been developed. Most universal algorithms are con-
structed with two types of algorithms: a meta-algorithm and expert algorithms. Each expert algorithm is
an online learning algorithm and not always universal. In each time step, expert algorithms update xi

t, and
a meta-algorithm integrates these outputs in some way, such as a convex combination. In the following,
we explain three universal algorithms: multiple eta gradient algorithm (MetaGrad) (Van Erven & Koolen,
2016), multiple sub-algorithms and learning rates (Maler) (Wang et al., 2020), and universal strategy for
online convex optimization (USC) (Zhang et al., 2022).

First, MetaGrad is an algorithm with multiple experts, each with a different parameter η as shown in
Algorithm 4 and 5. In contrast to nonuniversal algorithms that need to set parameters beforehand depending
on the property of objective functions, MetaGrad sets multiple η so that users do not need prior knowledge.
It is known that MetaGrad achieves O(

√
T log log T ), O((d/λ) log T ) and O((d/α) log T ) regret bounds for

convex, λ-strongly convex and α-exp-concave objective functions respectively.

Second, Maler is an algorithm with three types of expert algorithms: a convex expert algorithm, strongly
convex expert algorithms, and exp-concave expert algorithms, as shown in Algorithm 6 to 9. They are
similar to OGD with Θ(1/

√
t) stepsize, OGD with Θ(1/t) stepsize, and ONS, respectively. Expert algorithms

contain multiple strongly convex expert algorithms and multiple exp-concave expert algorithms with multiple
parameters η like MetaGrad. It is known that Maler achieves O(

√
T ), O((1/λ) log T ) and O((d/α) log T )

regret bounds for convex, λ-strongly convex and α-exp-concave objective functions respectively.
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Algorithm 5 MetaGrad Slave (Van Erven & Koolen, 2016)
Input: convex set X ⊂ Rd, T , η, D

1: Set xη
1 = 0, Ση

1 = D2Id

2: for t = 1 to T do
3: Issue xη

t to master.
4: Update:

Ση
t+1 =

(
1

D2 Id + 2η2
t∑

s=1
∇ft(xt)(∇ft(xt))⊤

)−1

,

x̃η
t+1 = xη

t − ηΣη
t+1(1 + 2η2⟨∇ft(xt), xη

t − xt⟩)∇ft(xt),

xη
t+1 = Π(Ση

t+1)−1

X (x̃η
t+1).

5: end for

Algorithm 6 Maler Meta (Wang et al., 2020)
Input: T , G, D, C = 1 + 1/(1 + ⌈(1/2) log2 T ⌉)

1: Set ηc = 1/(2GD
√

T ), ηi = 2−i/(5GD) for i = 0, 1, . . . , ⌈(1/2) log2 T ⌉.
2: Set πc = 1/3, πηi,ℓ

1 = πηi,s
1 = C/(3(i + 1)(i + 2)) for i = 0, 1, . . . , ⌈(1/2) log2 T ⌉.

3: for t = 1 to T do
4: Get predictions xc

t from Algorithm 7 and xηi,ℓ
t , xηi,s

t from Algorithms 8 and 9 for all i.
5: Play

xt =
πc

t ηcxc
t +

∑
i(π

ηi,s
t ηix

ηi,s
t + πηi,ℓ

t ηix
ηi,ℓ
t )

πc
t ηc +

∑
i(π

ηi,s
t ηi + πηi,ℓ

t ηi)
.

6: Observe gradient ∇ft(xt) and send it to all experts.
7: Update weights:

πc
t+1 = πc

t e−ct(xc
t )

Φt
,

πηi,s
t+1 = πηi,s

t e−s
ηi
t (x

ηi,s

t )

Φt
for each i,

πηi,ℓ
t+1 = πηi,ℓ

t e−ℓ
ηi
t (x

ηi,ℓ

t )

Φt
for each i,

where
Φt =

∑
i

(πηi,s
1 e−

∑t

τ=1
s

ηi
τ (x

ηi,s
τ ) + πηi,ℓ

1 e−
∑t

τ=1
ℓ

ηi
τ (x

ηi,ℓ
τ )) + πc

1e−
∑t

τ=1
cτ (xc

τ ),

ct(x) = −ηc ⟨∇ft(xt), xt − x⟩ + (ηcGD)2,

sη
t (x) = −η ⟨∇ft(xt), xt − x⟩ + η2G2∥xt − x∥2,

ℓη
t (x) = −η ⟨∇ft(xt), xt − x⟩ + η2(⟨∇ft(xt), xt − x⟩)2.

8: end for

Finally, USC is an algorithm with many expert algorithms, as shown in Algorithm 10. In contrast to Maler,
which contains OGD and ONS as expert algorithms, USC contains more expert algorithms. To integrate
many experts, USC utilizes Adapt-ML-Prod (Gaillard et al., 2014) as a meta-algorithm, which realizes
universal regret bound. Concerning the regret bound of USC, there is a theorem as follows.
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Algorithm 7 Maler Convex Expert (Wang et al., 2020)
Input: convex set X ⊂ Rd, T , G, D, ηc

1: Set xc
t = 0.

2: for t = 1 to T do
3: Send xc

t to Algorithm 6.
4: Receive gradient ∇ft(xt) from Algorithm 6.
5: Update:

xc
t+1 = ΠX

(
xc

t − D

ηcG
√

t
∇ct(xc

t)
)

.

6: end for

Algorithm 8 Maler Exp-concave Expert (Wang et al., 2020)
Input: convex set X ⊂ Rd, T , D, η

1: Set xη,ℓ
t = 0, β = 1/2, Σ1 = (1/(β2D2))Id.

2: for t = 1 to T do
3: Send xη,ℓ

t to Algorithm 6.
4: Receive gradient ∇ft(xt) from Algorithm 6.
5: Update:

Σt+1 = Σt + ∇ℓη
t (xη,ℓ

t )(∇ℓη
t (xη,ℓ

t ))⊤,

xη,ℓ
t+1 = ΠΣt+1

X

(
xη,ℓ

t − 1
β

Σ−1
t+1∇ℓη

t (xη,ℓ
t )
)

.

6: end for

Theorem A.1. (Zhang et al., 2022) Let E be a set of expert algorithms and xi
t be an output of ith algorithm

in t time step. Then,

T∑
t=1

(ft(xt) − ft(xi
t)) ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 4ΓGD + Γ√

log |E|

√√√√4G2D2 +
T∑

t=1
(
〈
∇ft(xt), xt − xi

t

〉
)2,

where Γ = O(log log T ).

In USC, expert algorithms are chosen so that |E| = O(log T ) holds. This theorem holds without assuming
exp-concavity or strong convexity. In addition, it is known that USC achieves O(

√
LT log log T ), O((1/λ) ·

(min{log LT , log VT } + log log T )) and O((1/α)(d min{log LT , log VT } + log log T )) regret bounds for convex,
λ-strongly convex and α-exp-concave objective functions respectively, where LT := minx∈X

∑T
t=1 ft(x) =

O(T ), VT :=
∑T

t=1 maxx∈X ∥∇ft(x) − ∇ft−1(x)∥2
2 = O(T ).

Algorithm 9 Maler Strongly Convex Expert (Wang et al., 2020)
Input: convex set X ⊂ Rd, T , G, η

1: Set xη,s
t = 0.

2: for t = 1 to T do
3: Send xη,s

t to Algorithm 6.
4: Receive gradient ∇ft(xt) from Algorithm 6.
5: Update:

xη,s
t+1 = ΠX

(
xη,s

t − 1
2η2G2t

∇sη
t (xη,s

t )
)

.

6: end for
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Algorithm 10 Universal Strategy for Online Convex Optimization (USC) (Zhang et al., 2022)
Input: Astr, Aexp, and Acon, which are sets of algorithms designed for strongly convex functions, exp-

concave functions and general convex functions respectively; Pstr and Pexp, which are sets of parameters
of strong convexity and exp-concavity respectively.

1: Initialize E = ∅.
2: for each algorithm A ∈ Astr do
3: for each λ ∈ Pstr do
4: Create an expert E(A, λ).
5: Update E = E ∪ E(A, λ).
6: end for
7: end for
8: for each algorithm A ∈ Aexp do
9: for each α ∈ Pexp do

10: Create an expert E(A, α).
11: Update E = E ∪ E(A, α).
12: end for
13: end for
14: for each algorithm A ∈ Acon do
15: Create an expert E(A).
16: Update E = E ∪ E(A).
17: end for
18: for t = 1 to T do
19: Calculate the weight pi

t of each expert Ei by

pi
t =

ηi
t−1wi

t−1∑|E|
j=1 ηj

t−1wj
t−1

.

20: Receive xi
t from each expert Ei ∈ E .

21: Output the weighted average xt =
∑|E|

i=1 pi
tx

i
t.

22: Observe the loss function ft(·).
23: Send the function ft(·) to each expert Ei ∈ E .
24: end for

B MISSING PROOFS

In this section, we explain missing proofs.

B.1 Proof of the Exp-Concavity of the Function in Example 3.8

In this subsection, we present the proof of the exp-concavity of the functionft in Example 3.8 in the case
at,i = at, bt,i = bt. Before the proof, we introduce the following lemma.
Lemma B.1. (Hazan, 2016) A twice-differentiable function f : Rd → R is α-exp-concave at x if and only if

∇2f(x) ⪰ α∇f(x)∇f(x)⊤.

Using this lemma, we can check the exp-concavity of the function ft.

Proof. By differentiating ft, we have

∇ft(x) = − btat

1 + exp(bt ⟨at, x⟩) , ∇2ft(x) = b2
t ata

⊤
t exp(bt ⟨at, x⟩)

(1 + exp(bt ⟨at, x⟩))2 .

18



Published in Transactions on Machine Learning Research (10/2024)

For all v ∈ Rd,

v⊤(∇2ft(x) − α∇ft(x)∇ft(x)⊤)v = b2
t ⟨at, v⟩2 exp(bt ⟨at, x⟩) − α

(1 + exp(bt ⟨at, x⟩))2

holds, and combined with Lemma B.1, ft is exp(−∥at∥)-exp-concave.

B.2 Proof of Proposition 4.1

This subsection presents the proof of Proposition 4.1.

Proof. Let x∗ ∈ arg minx∈X
∑T

t=1 ft(x). We can bound regret as follows:

RT =
T∑

t=1
(ft(xt) − ft(x∗))

≤
T∑

t=1

(
⟨∇ft(xt), xt − x∗⟩ − γt

2 (⟨∇ft(xt), xt − x∗⟩)2
)

=
T∑

t=1

(
⟨∇ft(xt), xt − x∗⟩ − γ

2 (⟨∇ft(xt), xt − x∗⟩)2
)

+
T∑

t=1

γ − γt

2 (⟨∇ft(xt), xt − x∗⟩)2

≤
T∑

t=1

(
⟨∇ft(xt), xt − x∗⟩ − γ

2 (⟨∇ft(xt), xt − x∗⟩)2
)

+
∑

t:γt<γ

γ − γt

2 G2D2

≤ 2d

γ
log T + 1

4kGD,

where γt is defined in the same way as defined in Theorem 5.3. The first inequality is from Lemma 3.4. In
the last inequality, the first term is bounded by (2d/γ) log T because of the proof of ONS’s regret bound by
Hazan (2016). The second term is bounded by (1/4)kGD from γ ≤ 1/(2GD) by definition of γ.

B.3 Proof of Theorem 4.2

This subsection presents the proof of Theorem 4.2.

Proof. Let I1 and I2 be instances used to prove lower bound RT = Ω(g1(T )) for function class F and
Rk = Ω(g2(k)) for convex objective functions, respectively, and fi,t (i = 1, 2) be objective functions of Ii at
time step t, and Xi be sets which decision variables of Ii belong to. Here, take a set X so that there exist
surjections ϕi : X → Xi. For this X , let Ĩ1 be an instance whose objective function at time step t is f1,t ◦ ϕ1
and Ĩ2 be an instance whose objective function at time step t is f2,t ◦ ϕ2 if t ≤ k, and some function in F
whose minimizer is the same as the minimizer of

∑k
t=1 f2,t otherwise. For these instances, consider the case

that instances Ĩ1 and Ĩ2 realize with probability 1/2. In this case, the expectation of regret satisfies

E[RT ] = 1
2Ω(g1(T )) + 1

2Ω(g2(k))

= Ω(g1(T ) + g2(k)),

for all OCO algorithms. Therefore, Theorem 4.2 follows.

B.4 Proof of Proposition 4.4

This subsection presents the proof of Proposition 4.4.

Proof. Consider the instance as follows:

ft(x) = vtx, x ∈ X = [−D/2, D/2], x1 = −D/2,
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where

vt =


(−1)tG t < t1,

G t ≥ t1, xt1 ≥ 0,

−G t ≥ t1, xt1 < 0,

and t1 is a minimum natural number which satisfies t1 ≥ (1 + γG2D/2)−1T . Then,

min
x∈X

T∑
t=1

ft(x) ≤ (−T + t1)GD

2 ≤
(

− γG2D/2
1 + γG2D/2T + 1

)
GD

2 . (11)

The second inequality is from t1 ≤ (1 + γG2D/2)−1T + 1. If xt1 ≥ 0,
T∑

t=1
ft(xt) = G

t1−1∑
t=1

(−1)txt + G

T∑
t=t1

xt. (12)

For the first term, since
At = ε + G2t

for all t ∈ [T ], and if t < t1, we have

yt+1 = xt − γ−1(ε + G2t)−1(−1)tG.

Now, xt+1 is defined as

xt+1 =



D

2 yt+1 >
D

2 ,

yt+1 −D

2 ≤ yt+1 ≤ D

2 ,

−D

2 yt+1 < −D

2 ,

and therefore, we get

xt =


(−1)t D

2 t ≤ t2,

(−1)t2
D

2 −
t−1∑
s=t2

(−1)sG

γ(ε + G2s) t > t2,

where t2 is a minimum time step t which satisfies Gγ−1(ε + G2t)−1 < D, i.e., t > 1/(γGD) − ε/G2. From
this, for sufficiently large T so that t2 ≤ t1 − 2, we have

G

t1−1∑
t=1

(−1)txt = G

t2∑
t=1

(−1)t(−1)t D

2 +
t1−1∑

t=t2+1
(−1)t

(
(−1)t2

D

2 −
t−1∑
s=t2

(−1)sG

γ(ε + G2s)

)

≥ t2 − 1
2 GD + G2

γ

t1−1∑
t=t2+1

t−1∑
s=t2

(−1)s+t+1

ε + G2s

= t2 − 1
2 GD + G2

γ

t1−2∑
s=t2

t1−1∑
t=s+1

(−1)s+t+1

ε + G2s

≥ t2 − 1
2 GD − G2

γ

t1−2∑
s=t2

1
ε + G2s

≥ t2 − 1
2 GD − G2

γ

∫ t1−2

t2−1

ds

ε + G2s

= t2 − 1
2 GD − 1

γ
log ε + (t1 − 2)G2

ε + (t2 − 1)G2

≥ − 1
γ

log
(

1 + G2

ε
T

)
. (13)
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Next, for the second term of equation (12), if xt1 ≥ 0 and t ≥ t1, we then have
yt+1 = xt − γ−1(ε + G2t)−1 ≥ xt − γ−1G−2t−1

1

and since xt+1 ≥ yt+1 holds from yt+1 ≤ xt ≤ D/2, we have
yt+1 ≥ xt1 − (t − t1)γ−1G−2t−1

1

≥ −(T − t1)γ−1G−2t−1
1

= −
(

T

t1
− 1
)

G−2γ−1

≥ −
(

T

(1 + γG2D/2)−1T
− 1
)

G−2γ−1

= −D

2 .

Therefore, from

xt = xt1 −
t−1∑
s=t1

γ−1(ε + G2s)−1,

we have

G

T∑
t=t1

xt = G

T∑
t=t1

(
xt1 −

t−1∑
s=t1

γ−1(ε + G2s)−1

)

≥ − 1
γG

T∑
t=t1

t−1∑
s=t1

s−1

= − 1
γG

T −1∑
s=t1

T∑
t=s+1

s−1

= − 1
γG

T −1∑
s=t1

(
−1 + T

s

)
≥ T − t1 − 1

γG
− T

γG
log T

t1

≥ T − (1 + γG2D/2)−1T − 2
γG

− T

γG
log T

(1 + γG2D/2)−1T

= T

G

(
G2D/2

1 + γG2D/2 − γ−1 log
(
1 + γG2D/2

))
− 2

γG
. (14)

We can derive the same bound similarly in the case of xt1 < 0.

From inequality (11), equality (12), inequality (13) and inequality (14), we complete the proof:

RT ≥ − 1
γ

log
(

1 + G2

ε
T

)
+ T

G

(
G2D/2

1 + γG2D/2 − γ−1 log
(
1 + γG2D/2

))
− 2

γG

−
(

− γG2D/2
1 + γG2D/2T + 1

)
GD

2

≥ T

(
G2D

2 − γ−1
(

γ
G2D

2 − (γG2D/2)2

2(1 + γG2D/2)2

))
− 1

γ
log
(

1 + G2

ε
T

)
− 2

γG
− GD

2

= γG2D/2
2(1 + γG2D/2)2 T − 1

γ
log
(

1 + G2

ε
T

)
− 2

γG
− G2D

2
= Ω(T ).

The second inequality follows from the inequality log
(
1 + γG2D/2

)
≤ γG2D/2 − (γG2D/2)2

2(1+γG2D/2)2 for any γ > 0
by Taylor’s theorem.
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B.5 Proof of Theorem 5.2

This subsection proves that Theorem 5.2 holds for any x ∈ X . Before stating the proof of Theorem 5.2, we
introduce two following lemmas. Here, ct, xc

t , ℓη
t , xη,ℓ

t , sη
t , and xη,s

t are introduced in Algorithm 6.
Lemma B.2. (Wang et al., 2020) For every grid point η, we have

T∑
t=1

(ct(xt) − ct(xc
t)) ≤ log 3 + 1

4 , (15)

T∑
t=1

(ℓη
t (xt) − ℓη

t (xη,ℓ
t )) ≤ 2 log

(√
3
(

1
2 log2 T + 3

))
, (16)

and
T∑

t=1
(sη

t (xt) − sη
t (xη,s

t )) ≤ 2 log
(√

3
(

1
2 log2 T + 3

))
. (17)

Remark B.3. According to Wang et al. (2020),
T∑

t=1
(ct(xt) − ct(xc

t)) ≤ log 3

holds instead of inequality (15). However, the above inequality needs to be corrected. In the last part of the
proof of this lemma in their paper, they derived

0 ≤
T∑

t=1
ct(xc

t) + log 1
πc

=
T∑

t=1
ct(xc

t) + log 3.

From the definition of ct and ηc = 1/(2GD
√

T ), we have
T∑

t=1
ct(xt) =

T∑
t=1

(ηcGD)2 =
T∑

t=1

1
4T

= 1
4 ,

though they treated this term as 0. Combining these relationships, we get inequality (15). This mistake
seems to be a mere typo since the regret bound in their paper coincides with the result derived from the
inequality (15).
Lemma B.4. (Wang et al., 2020) For every grid point η and any x ∈ X , we have

T∑
t=1

(ct(xc
t) − cη

t (x)) ≤ 3
4 , (18)

T∑
t=1

(ℓη
t (xη,ℓ

t ) − ℓη
t (x)) ≤ 10d log T, (19)

and
T∑

t=1
(sη

t (xη,s
t ) − sη

t (x)) ≤ 1 + log T. (20)

Proof of Theorem 5.2. We can get O(GD
√

T ) bound as follows:

Rx
T ≤ R̃x

T = 1
ηc

T∑
t=1

((ηcGD)2 − ct(x))

= 1
ηc

(
T∑

t=1
(ct(xt) − ct(xc

t)) +
T∑

t=1
(ct(xc

t) − ct(x))
)

≤ 2(1 + log 3)GD
√

T ,
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where the last inequality follows from inequalities (15) and (18).

We can get O(
√

W x
T log T ) bound as follows:

Rx
T ≤ R̃x

T = 1
η

T∑
t=1

((ηG)2∥xt − x∥2 − sη
t (x))

= η

T∑
t=1

G2∥xt − x∥2 + 1
η

(
T∑

t=1
(st(xt) − st(xs

t )) +
T∑

t=1
(st(xs

t ) − st(x))
)

≤ ηW x
T + A

η
,

where A := 2 log
(√

3((1/2) log2 T + 3)
)

+ 1 + log T ≥ 1 and the last inequality follows from inequalities (17)
and (20). Let η̂ :=

√
A/W x

T ≥ 1/(5GD
√

T ). If η̂ ≤ 1/(5GD), there exists a grid point ηi ∈ [η̂/2, η̂] and we
get

R̃x
T ≤ ηiW

x
T + A

ηi
≤ η̂W x

T + 2A

η̂
=
√

W x
T A.

Otherwise, since W x
T ≤ 25G2D2A, by taking η = η1 = 1/(5GD), we get

R̃x
T ≤ η1W x

T + A

η1
≤ 10GDA.

Therefore, R̃x
T = O(

√
W x

T log T ) holds.

We can get O(
√

V x
T d log T ) bound as follows:

Rx
T ≤ R̃x

T = 1
η

T∑
t=1

(η2(⟨∇ft(xt), xt − x⟩)2 − ℓη
t (x))

= η

T∑
t=1

(⟨∇ft(xt), xt − x⟩)2 + 1
η

(
T∑

t=1
(ℓt(xt) − ℓt(xℓ

t)) +
T∑

t=1
(ℓt(xℓ

t) − ℓt(x))
)

≤ ηV x
T + B

η
,

where B := 2 log
(√

3((1/2) log2 T + 3)
)

+ 10d log T and the last inequality follows from inequalities (16) and
(19). By similar arguments, R̃x

T = O(
√

V x
T d log T ) holds.

B.6 Proof of Lemma 5.4

In this subsection, we prove Lemma 5.4 used in the proof of Theorem 5.3.

Proof. Since x ≤ 3(a + b)/2 holds when x ≤ b, it is sufficient to consider the case x > b. If x ≤
√

ax + b,
then we have

x2 − (a + 2b)x + b2 ≤ 0.

By solving this, we have

x ≤ a + 2b +
√

a2 + 4ab

2 ≤ a + b +
√

ab ≤ 3
2(a + b).

The second inequality holds from the inequality
√

x + y ≤
√

x + √
y for x, y ≥ 0, and the last inequality

holds from the inequality of arithmetic and geometric means.
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B.7 Proof of Corollary 5.5 for USC

This subsection presents the proof of Corollary 5.5 for USC.

Proof. The regret satisfies

RT =
T∑

t=1
ft(xt) −

T∑
t=1

ft(xi
t) +

T∑
t=1

ft(xi
t) − min

x∈X

T∑
t=1

ft(x)

= Rmeta
T + Rexpert

T ,

where Rmeta
T :=

∑T
t=1 ft(xt)−

∑T
t=1 ft(xi

t) and Rexpert
T :=

∑T
t=1 ft(xi

t)−minx∈X
∑T

t=1 ft(x). From Theorem
A.1,

Rmeta
T ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉

≤ 4ΓGD + Γ√
log |E|

√√√√4G2D2 +
T∑

t=1
(
〈
∇ft(xt), xt − xi

t

〉
)2

≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2

log |E|

T∑
t=1

(
〈
∇ft(xt), xt − xi

t

〉
)2.

Last inequality holds from the inequality
√

x + y ≤
√

x + √
y for x, y ≥ 0.

Similar to equation (2), if Rmeta
T > 0, inequality

T∑
t=1

(
〈
∇ft(xt), xt − xi

t

〉
)2 ≤ 2

γ

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
+ kγG2D2

holds. By combining these inequalities, we have

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2

log |E|

(
2
γ

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
+ kγG2D2

)

≤ ΓGD

(
4 +

2 +
√

kγ√
log |E|

)
+

√√√√ 2Γ2

γ log |E|

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
.

From Lemma 5.4 with a = 2Γ2/(γ log |E|) and b = ΓGD(4 + (2 +
√

kγ)/
√

log |E|), we have

Rmeta
T ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 3

2

(
ΓGD

(
4 +

2 +
√

kγ√
log |E|

)
+ 2Γ2

γ log |E|

)
.

Since |E| = O(log T ) in USC, we obtain the following loose upper bound:

Rmeta
T = O

(
d

γ
log T + GD

√
kd log T

)
.

On the other hand, by thinking of the case that ith expert is MetaGrad or Maler, from Corollary 5.5 for
MetaGrad and Maler,

Rexpert
T = O

(
d

γ
log T + GD

√
kd log T

)
.
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Combining these bounds, we get

RT = O

(
d

γ
log T + GD

√
kd log T

)
.

B.8 Proof of Theorem 5.6

This subsection presents the proof of Theorem 5.6.

Proof. From the definition of strong convexity, we have

Rx
T =

T∑
t=1

(ft(xt) − ft(x))

≤
T∑

t=1

(
⟨∇ft(xt), xt − x⟩ − λt

2 ∥xt − x∥2
)

= R̃x
T − λ

2G2 W x
T +

T∑
t=1

λ − λt

2 ∥xt − x∥2

≤ R̃x
T − λ

2G2 W x
T +

∑
t:λt<λ

λ − λt

2 D2

≤ R̃x
T − λ

2G2 W x
T + λ

2 kλD2.

If Rx
T < 0, 0 is the upper bound, so it is sufficient to think of the case Rx

T ≥ 0. In this case, we have

W x
T ≤ 2G2

λ
R̃x

T + kλG2D2.

From the assumption of Theorem 5.6, there exists a positive constant C > 0 such that

R̃x
T ≤ C

(√
W x

T r1(T ) + r2(T )
)

≤ C

(√(
2G2

λ
R̃x

T + kλG2D2
)

r1(T ) + r2(T )
)

≤
√

2G2

λ
C2r1(T )R̃x

T + CGD
√

kλr1(T ) + Cr2(T ).

Last inequality holds from the inequality
√

x + y ≤
√

x + √
y for x, y ≥ 0. Here, we use Lemma 5.4 with

a = (2G2/λ)C2r1(T ) and b = CGD
√

kλr1(T ) + Cr2(T ),

R̃x
T ≤ 3

2

(
2G2

λ
C2r1(T ) + CGD

√
kλr1(T ) + Cr2(T )

)
.

From this inequality and Rx
T ≤ R̃x

T , Theorem 5.6 follows.

B.9 Proof of Corollary 5.7 for MetaGrad and Maler

This subsection presents the proof of Corollary 5.7 for MetaGrad and Maler.

Proof. As for MetaGrad and Maler, from Theorem 5.1 and Theorem 5.2,

R̃x
T = O(

√
W x

T d̃ log T + GDd̃ log T )
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holds for any x ∈ X , where d̃ is d and 1 in the case of MetaGrad and Maler, respectively. Therefore, by
Theorem 5.6, we have

Rx
T = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
kλd̃ log T

)
.

Here, kλ satisfies

kλ =
T∑

t=1
max

{
1 − λt

λ
, 0
}

=
∑

t : λt<λ

(
1 − λt

λ

)
≤ k.

Hence, we have

Rx
T = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
kd̃ log T

)
,

and especially,

RT = O

((
G2

λ
+ GD

)
d̃ log T + GD

√
kd̃ log T

)
.

B.10 Proof of Corollary 5.7 for USC

This subsection presents the proof of Corollary 5.7 for USC.

Proof. The same as the proof of Corollary 5.5, we have

RT = Rmeta
T + Rexpert

T .

From Theorem A.1, we have

Rmeta
T ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉

≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2

log |E|

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉2

≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2G2

log |E|

T∑
t=1

∥xt − xi
t∥2.

From the definition of strong convexity, we have

Rmeta
T =

T∑
t=1

(ft(xt) − ft(xi
t))

≤
T∑

t=1

(〈
∇ft(xt), xt − xi

t

〉
− λ

2 ∥xt − xi
t∥2
)

+
T∑

t=1

λ

2 max
{

1 − λt

λ
, 0
}

∥xt − xi
t∥2

≤
T∑

t=1

〈
∇ft(xt), xt − xi

t

〉
− λ

2

T∑
t=1

∥xt − xi
t∥2 + λ

2 kλD2.

If Rmeta
T < 0, 0 is the upper bound, so it is sufficient to think of the case Rmeta

T ≥ 0. In this case, we have

T∑
t=1

∥xt − xi
t∥2 ≤ 2

λ

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
+ kλD2.
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By combining these inequalities, we have

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 2ΓGD

(
2 + 1√

log |E|

)
+

√√√√ Γ2G2

log |E|

(
2
λ

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
+ kλD2

)

≤ ΓGD

(
4 + 2 +

√
kλ√

log |E|

)
+

√√√√ 2Γ2G2

λ log |E|

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
.

From Lemma 5.4 with a = 2Γ2G2/(λ log |E|) and b = ΓGD(4 + (2 +
√

kλ)/
√

log |E|), we have

Rmeta
T ≤

T∑
t=1

〈
∇ft(xt), xt − xi

t

〉
≤ 3

2

(
ΓGD

(
4 + 2 +

√
kλ√

log |E|

)
+ 2Γ2G2

λ log |E|

)
.

Since |E| = O(log T ) in USC, we obtain the following loose upper bound:

Rmeta
T = O

((
G2

λ
+ GD

)
log T + GD

√
k log T

)
.

On the other hand, by thinking of the case that ith expert is Maler, from Corollary 5.7 for Maler, we have

Rexpert
T = O

((
G2

λ
+ GD

)
log T + GD

√
k log T

)
.

Combining these bounds, we get

RT = O

((
G2

λ
+ GD

)
log T + GD

√
k log T

)
.

B.11 The Lemma in the Proof of Theorem 6.2

In this subsection, we introduce the following lemma used in the proof of Theorem 6.2.
Lemma B.5. (Hazan, 2016) Let A ⪰ B ≻ O be positive definite matrices. We then have

tr
(
A−1(A − B)

)
≤ log |A|

|B|
.

C Numerical Experiments

In this section, we explain experimental results. We compare the performances of 5 OCO algorithms; OGD
with stepsizes ηt = D/(G

√
t), ONS, MetaGrad, Algorithm 1 with S1 = ∅ (Con-ONS), and Algorithm 1

with S2 = ∅ (Con-OGD). We include OGD, ONS, and MetaGrad because OGD and ONS are famous OCO
algorithms, and MetaGrad is one of the universal algorithms. All the experiments are implemented in Python
3.9.2 on a MacBook Air whose processor is 1.8 GHz dual-core Intel Core i5 and memory is 8GB.

C.1 Experiment 1: Contaminated Exp-Concave

In this experiment, we set d = 1, X = [0, 1] and the objective function is as follows:

ft(x) :=
{

100x t ∈ I,

− log(x + 0.01) otherwise,

where I ⊂ [T ] is chosen uniformly at random under the condition that |I| = k. (f1, f2, . . . , fT ) is k-
contaminated 1-exp-concave and the minimum value of

∑T
t=1 ft is T − 2k − (T − k) log((T − k)/(100k)) if
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Table 2: Parameter setting in Experiment 1.

x1 x∗ T k D G α

0 0.02 1000 250 1 100 1

Figure 1: The comparison of the time variation of regret (left) and xt (right) in Experiment 1.

2k < T . We repeat this numerical experiment in 100 different random seeds and calculate their mean and
standard deviation. Other parameters are shown in Table 2.

We compare the performances of 4 OCO algorithms: OGD, ONS, MetaGrad, and Con-ONS. The parameters
of ONS are set as γ = 0.005 and ε = 1/(γ2D2) = 40000.

The time variation of regret and xt is shown in Figure 1. In the graphs presented in this paper, the error
bars represent the magnitude of the standard deviation. Standard deviations in the graphs are large because
contamination causes fluctuation in the sequence of solutions. Only points where t is a multiple of 25
are plotted to view the graph easily. The left graph shows that the regrets of all methods are sublinear.
MetaGrad and ONS perform particularly well, followed by Con-ONS. From the right graph, we can confirm
that xt of all methods converge to the optimal solution quickly. OGD seems influenced by contamination a
little stronger than other methods.

C.2 Experiment 2: Contaminated Strongly Convex

In this experiment, d = 1, X = [0, 1] and the objective function is as follows:

ft(x) :=

x t ∈ I,

1
2(x − 1)2 otherwise,

where I ⊂ [T ] is chosen uniformly at random under the condition that |I| = k. (f1, f2, . . . , fT ) is k-
contaminated 1-strongly convex and the minimum value of

∑T
t=1 ft is (2kT − 3k2)/(2T − 2k) if 2k < T .

We repeat this numerical experiment in 100 different random seeds and calculate their mean and standard
deviation. Other parameters are shown in Table 3.

We compare the performances of 3 OCO algorithms: OGD, MetaGrad, and Con-OGD.

The time variation of regret and xt is shown in Figure 2. Only points where t is a multiple of 25 are plotted to
view the graph easily. The left graph shows that the regrets of all methods are sublinear. The performance of

Table 3: Parameter setting in Experiment 2.

x1 x∗ T k D G λ

0 2/3 1000 250 1 1 1
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Figure 2: The comparison of the time variation of regret (left) and xt (right) in Experiment 2.

Table 4: Parameter setting in Experiment 3.

x1 n d T k D

0 10 5 1000 250
√

5

Con-OGD is the best, followed by MetaGrad and OGD, showing correspondence with the theoretical results.
From the right graph, we can confirm that xt of all methods converge to the optimal solution quickly.

C.3 Experiment 3: Mini-Batch Least Mean Square Regressions

Experimental settings are as follows. We use the squared loss as the objective function:

ft(x) := 1
n

n∑
i=1

(⟨at,i, x⟩ − bt,i)2,

which is exemplified in Example 3.7. In this experiment, each component of the vector at,i is taken from a
uniform distribution on [1, 2] independently. We set X = [0, 1]d and assume there exists an optimal solution
x∗ which is taken from a uniform distribution on X , i.e., we take bt,i = ⟨at,i, x∗⟩. We set k firstly and
compute thresholds α and λ based on k, though this is impossible in real applications. Parameters G, λ, α
are calculated for each at,i and bt,i, e.g., G ≃ 429, λ ≃ 0.0969, and α ≃ 5.28 × 10−7 for some sequence. The
parameters of ONS are set as described in Section A.2. Other parameters are shown in Table 4.

The time variation of regret and ∥xt∥ is shown in Figure 3. The performances of OGD, Con-OGD, and
Con-ONS are almost the same in this experiment. The left graph shows that OGD’s, MetaGrad’s, and our
proposed method’s regrets are sublinear and consistent with the theoretical results. Though this is out of
the graph, ONS’s regret is almost linear even if we take T = 10000. From the right graph, we can confirm
that ∥xt∥ of OGD, MetaGrad, and proposed methods converge to some point quickly, and that of ONS does
not change so much. The poor performance of ONS is because γ is too small to take large enough stepsizes.
This result shows the vulnerability of ONS.

Figure 3: The comparison of the time variation of regret (left) and ∥xt∥ (right).
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