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ABSTRACT

The connection between brain activity and visual stimuli is crucial to understand
the human brain. While deep generative models have exhibited advances in re-
covering brain recordings by generating images conditioned on fMRI signals, it
is still challenge to generate consistent semantics. Moreover, the prediction of
fMRI signal from visual stimuli remains a hard problem. In this paper, we intro-
duce a unified framework that addresses both fMRI decoding and encoding. With
training two latent spaces capable of representing and reconstructing fMRI sig-
nals and visual images, respectively, we align the fMRI signals and visual images
within the latent space, thereby enabling a bidirectional transformation between
the two domains. Our Latent Embedding Alignment (LEA) model concurrently
recovers visual stimuli from fMRI signals and predicts brain activity from images
within a unified framework under user-specified direction. The performance of
LEA surpasses that of existing methods on multiple benchmark fMRI decoding
and encoding datasets. LEA offers a comprehensive solution for modeling the
relationship between fMRI signal and visual stimuli.

1 INTRODUCTION

The human brain exhibits dynamic responses to visual stimuli received through the eyes (Teng &
Kravitz, 2019), and these responses can be indirectly measured using functional Magnetic Reso-
nance Imaging (fMRI). Identifying and categorizing distinct patterns of brain activity in reaction
to visual stimuli is a crucial step to understand the human brain. One approach to achieving this
goal is through inverse modeling (Parthasarathy et al., 2017; Horikawa & Kamitani, 2017), which
involves reconstructing the observed image from the fMRI signal. Since images contain a wealth
of details that the brain may not fully capture, it is not necessary to reconstruct the visual stimuli
with absolute precision. Consequently, researchers have primarily focused on decoding the seman-
tic essence of images (Horikawa & Kamitani, 2017; Shen et al., 2019; Beliy et al., 2019; Gaziv
et al., 2022). In contrast, fMRI encoding aims to predict the fMRI signal based on visual stimuli.
It is worth noting that the semantic information contained in fMRI data is sparsely distributed and
highly correlated between neighboring elements (Chang et al., 2019). As a result, the fMRI signal
exhibits redundancy. Moreover, in practical scenarios, the available image-signal pairs is limited,
posing a challenge to deploy deep learning methods that often rely on large training datasets for
understanding fMRI data.

Recent researchs (Ozcelik et al., 2022; Ferrante et al., 2022; Chen et al., 2022; Liu et al., 2023; Du
et al., 2023; Ozcelik & VanRullen, 2023) attempted to decode fMRI signals based on pre-trained
generative models like Instance-Conditional GAN (Casanova et al., 2021), diffusion models (Ho
et al., 2020), masked autoencoders (He et al., 2022), CLIP (Radford et al., 2021), to name a few.
Despite achieving impressive results in high-fidelity generation, they face several challenges: (1)
Despite their ability to generate images of exceptional quality, pre-trained generative models strug-
gle to ensure semantic consistency with fMRI signals, presenting an ongoing challenge. (2) These
models have demonstrated the capability to produce high-quality images even when provided with
random noise disguised as fake fMRI signals (see Sec. 4 for details). This raises concerns about their
reliability, particularly when dealing with a wide range of visual stimuli, including those not seen
during training (open-vocabulary). This reliability issue is particularly relevant to fMRI decoding.
Thus when utilizing large-scale pre-trained generative models for fMRI decoding, distinguishing
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Figure 1: Our proposed LEA efficiently enables (a) fMRI encoding to estimate the brain activity
from visual stimuli; (b) fMRI decoding to recover the visual stimuli from recorded fMRI signals,
and (c) image-fMRI-image reconstruction to ensure the reliability of fMRI decoding and encoding.

between genuine fMRI signal decoding and unconditional image generation becomes a critical con-
cern.

This paper, for the first time proposes a novel approach to address the challenges associated with
fMRI signals by simultaneously tackling the tasks of fMRI decoding and encoding. Our method
begins by side-stepping the necessity for paired image-fMRI data, instead opting for an encoder-
decoder architecture designed specifically for fMRI signals and images. These encoder-decoder
structures effectively learn dense and compact latent representation spaces, directly mitigating the
issue of signal redundancy present in fMRI data. As a result, our model achieves the best perfor-
mance on fMRI zero-shot classification where the categories of fMRI signals are unseen during
training. Moreover, these encoder-decoder architectures can be trained via self-supervised learning
techniques (Vincent et al., 2008; He et al., 2020; 2022), eliminating the need for additional super-
vision. Furthermore, this learned representation serves to reduce the feature dimensionality of both
modalities, thus simplifying the task of transformation between them.

Technically, to align the two learned representation spaces effectively, we propose a lightweight
alignment module that can be trained with a relatively small set of fMRI-image pairs. Alignment
across diverse types of signals has been extensively explored in various vision-related tasks, such
as image-text (Radford et al., 2021; Jia et al., 2021; Mahajan et al., 2018) and image-audio (Arand-
jelovic & Zisserman, 2017; Morgado et al., 2021; Owens & Efros, 2018; Patrick et al., 2020). These
studies have revealed that well-encoded signals from different modalities can be effectively aligned
within a shared representation space. However, given the absence of a large-scale fMRI-image
paired dataset to support end-to-end training of such an alignment model, inspired by the linear rela-
tionships observed between text- and vision-only models (Merullo et al., 2023), we employ a linear
regression model to learn the mapping between the two latent spaces. Empirical findings suggest
that a similar linear relationship exists between fMRI- and vision-only models. Furthermore, this
lightweight linear model can be trained with a small number of fMRI-image pairs, eliminating the
need for a large-scale paired dataset and enabling the creation of individual-specific models. Within
the framework of LEA, the alignment module serves a crucial role in assessing the reliability of
both fMRI encoding and decoding models through the image-fMRI-image reconstruction assess-
ment. By initially estimating fMRI signals from images and subsequently reconstructing the visual
stimuli, the ability to generate semantically consistent images serves as a reliability indicator.

Consequently, we have devised the Latent Embedding Alignment (LEA) framework for fMRI de-
coding and encoding. LEA encompasses two distinct encoder-decoder architectures for handling
fMRI signals and images, respectively. We introduce an alignment module to facilitate the trans-
formation between the latent representation spaces of fMRI signals and images. As illustrated in
Figure 1, when reconstructing visual stimuli from fMRI signals, we encode the fMRI signal, con-
vert it into a latent image embedding, and subsequently decode it to generate images. Conversely,
when predicting brain activities, we encode the images, transform them into latent fMRI embed-
dings, and then decode them to produce fMRI signals. An important feature of LEA is its support
for image-fMRI-image reconstruction, which serves as a robust indicator of the reliability of both
fMRI encoding and decoding models. Through extensive experiments on benchmark datasets, we
demonstrate that LEA not only exhibits superiority in the domains of fMRI decoding and encoding.

Contribution. Our contributions can be succinctly summarized as follows:
1) Encoder-Decoder Architectures: We introduce specialized encoder-decoder architectures that
learn latent representations for fMRI signals and images without the need for extensive paired train-
ing data. 2) ROI-Induced Embedding Layer: We devise an innovative ROI-induced embedding
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layer to extract fMRI signals, ensuring geometric consistency in feature extraction. Additionally,
we propose the use of global representations for fMRI signal reconstruction, promoting efficient
feature compression. 3) Latent Space Alignment: We establish a linear connection between the
latent spaces of fMRI and images, enabling seamless fMRI decoding and encoding within a unified
framework called LEA. 4) Superior Performance: Through rigorous testing on multiple bench-
mark datasets, we demonstrate the exceptional performance of LEA, underscoring its effectiveness
and significant advancements in the field of fMRI decoding and encoding.

2 RELATED WORK

fMRI Coding encompasses both fMRI encoding and decoding. For fMRI encoding, it involves
learning the mapping from visual stimuli to fMRI signals. Early studies (Yamins et al., 2013; 2014;
Güçlü & van Gerven, 2015; Yamins & DiCarlo, 2016) primarily employed convolutional neural
networks to extract semantic information from visual stimuli. However, with the resurgence of
neural language models, recent research has successfully utilized models such as BERT (Devlin
et al., 2018), Transformer (Vaswani et al., 2017), and GPT-2 (Radford et al., 2019) to predict fMRI
responses from stimuli, including images and even words/sentences. Conversely, fMRI decoding fo-
cuses on the reverse mapping, from brain activity to stimuli. Previous studies (Mozafari et al., 2020;
Ozcelik et al., 2022) developed regression models specifically designed to extract valuable informa-
tion from fMRI signals. Ozcelik et al. (2022) employed a pre-trained Instance-Conditional GAN
model (Casanova et al., 2021) to reconstruct images by decoding latent variables from fMRI data.
Ferrante et al. (2022) utilized pre-trained latent diffusion models (Ho et al., 2020) to generate stim-
ulus images by mapping fMRI signals to visual features. Beliy et al. (2019) adopted self-supervised
learning on testing data to enable adaptation to testing statistics. Chen et al. (2022) introduced a
self-supervised sparse masked modeling strategy to encode fMRI data into latent embeddings and
fine-tuned latent diffusion models with double conditioning. In this paper, we present a unified
framework that efficiently realizes both fMRI encoding and decoding.

Multi-Modality Alignment aims to establish connections across different modalities, such as
image-text alignment (Radford et al., 2021; Jia et al., 2021; Mahajan et al., 2018) and image-
audio alignment (Arandjelovic & Zisserman, 2017; Morgado et al., 2021; Owens & Efros, 2018;
Patrick et al., 2020). Girdhar et al. (2023) endeavor to align multiple modalities within a unified
latent representation space. The majority of efforts in this direction are centered around the CLIP
model (Radford et al., 2021), which is trained on extensive image-text pairs to learn a shared latent
space minimizing the distances between correlated image-text pairs. For instance, Liu et al. (2023)
bridged the modality gap by leveraging CLIP’s cross-modal generalization ability to address the
limitation of limited fMRI-image paired data. Similarly, Du et al. (2023) employed multi-modal
deep generative models to capture the relationships between brain, visual, and linguistic features.
Ozcelik & VanRullen (2023) combined these techniques to predict multi-modal features from fMRI
signals and generate reconstructed images using a latent diffusion model (Rombach et al., 2022).

3 METHODOLOGY

Problem Setup. Given fMRI signal f recorded from brain activity and the corresponding visual
stimuli, image I ∈ RH×W×3 , the purpose of our work is to learn a unified framework that can
perform both fMRI decoding task that recovering the observed image from fMRI signal as well as
fMRI encoding task that predicting the brain activity from the image.

For the decoding task, the ideal scenario involves the reconstructed images Î matching the real ones
precisely. However, the unique nature of biological mechanisms suggests that individual memory or
attention can influence an individual’s brain activity response to the same image, and thus variations
may occur. In light of this, we adhere to the approach introduced in (Mozafari et al., 2020; Ozcelik
et al., 2022), requiring the recovered images Î to exhibit semantic consistency with I. Consequently,
our primary focus is on the semantic fMRI decoding task.

In the encoding task, it is challenging to make precise predictions of element-wise fMRI signals due
to their inherent noise and redundancy. Therefore, in this paper, our focus shifts towards predicting
the overall trends in fMRI signals. More specifically, we aim to generate estimated fMRI signals
that exhibit a correlation with the actual fMRI signals. This correlation serves as an indicator of
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Figure 2: LEA Overview. We learn a latent representation space via the encoder-decoder architec-
tures designed specifically for fMRI signals and images. Then a lightweight alignment module is
proposed to link the two latent spaces, enabling joint fMRI encoding and decoding.

whether a Region-Of-Interest (ROI) region is activated or not. To achieve this goal, our objective is
to produce estimated fMRI signals that maintain a linear relationship with the actual fMRI signals.
This relationship can be assessed using Pearson correlation (Pearson’s r).

3.1 LATENT SPACE CONSTRUCTION FOR FMRI

The fMRI signals indirectly record neural activity in the visual cortex of the brain by measuring the
blood-oxygen-level-dependent (BOLD) signals, which are usually represented as data of 3D voxels,
covering visual regions, like early visual cortex (EVC), lateral occipital complex (LOC), occipital
place area (OPA), parahippocampal place area (PPA), and retrosplenial complex (RSC) (Horikawa &
Kamitani, 2015). Biological principles suggest that adjacent voxels in the brain’s visual cortex often
exhibit similar intensities in their stimulus-response (Ugurbil et al., 2013), resulting in redundancy
within fMRI signals.

To investigate potential response patterns to visual stimuli and establish a reverse mapping for se-
mantic encoding, it is essential to focus on the relationships among different regions while simul-
taneously capturing activity changes across long-range voxels. Inspired by the advantages of long-
range receptive fields found in transformer layers, we follow Chen et al. (2022) by adopting masked
autoencoder (He et al., 2022) as the encoder-decoder model for fMRI signals.

ROI embedding layer. Unlike Chen et al. (2022) that equally divides the fMRI signals into patches
of equal size, we maintain the voxel structure with ROI regions. Specifically, we initially segment the
fMRI signal vector (after standard pre-processing) into distinct ROI regions, each potentially having
different dimensions. To address the dimension inconsistency, we propose the Region of Interest
(ROI) Embedding layer. Given a specific ROI region i, denote the corresponding fMRI signal is
of size Ni × 1, indicating Ni voxels and 1 dimension of BOLD response, this fMRI signal region
is first passed through a convolution layer with 32 kernels to extract multi-head features, resulting
in dimensions of Ni × 32. Subsequently, we employ a fully-connected layer to project the fMRI
signal, which may have varying lengths, into a unified dimension of 1024. We then concatenate the
embeddings from all ROI regions, yeilding the final input of size 32M×1024, where M indicates the
number of RoIs. Finally, we append a learnable [CLS] token to represent the “class” of the input.

Global feature extraction. In our encoder-decoder architecture training, we employ a masked
auto-encoder (MAE) (He et al., 2022). The original MAE employs patch-based reconstruction,
where a portion of the patches is masked, and the task is to predict these masked patches. While
this approach is effective for learning local representations, it presents challenges when we aim to
acquire a global latent code that represents the entire fMRI signal. To address this, we only preserve
the global [CLS] token of the encoded fMRI singals, and mask all the patch-based latent code and let
the decoder to learn to reconstruct fMRI signals from the learned [CLS] token. This strategy proves
advantageous for learning a dense fMRI representation within the [CLS] token, and the trained
decoder can subsequently used to generate fMRI signals based on the estimated latent fMRI code.
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Finally, the decoder’s output undergoes post-processing through a RoI Project layer. This layer
mirrors the structure of the RoI Embed layer, effectively reversing the pre-processing applied to the
fMRI signals, ensuring that the length matches that of the original fMRI signals. The overall model
is trained by minimizing the L2 reconstruction loss of the fMRI signals.

Lfmri =
1

M

M∑
i=1

||fi − f̂i||22, (1)

where fi and f̂i indicate the ground-truth and reconstructed fMRI signals, individually; M means
the totally amount of training fMRI data.

3.2 LATENT SPACE CONSTRUCTION FOR IMAGE

The image-based latent space construction is a well-established domain of research. To recover
semantic content from fMRI signals, we leverage pre-trained CLIP visual encoder as our foundation
for image latent space. CLIP benefits from extensive training on large-scale image-text paired data,
making its latent space rich in semantics and benefits the semantic consistency in our task.

Note that CLIP operates as an encoder-only model, and we cannot directly generate images from the
image latent space. To address this issue, we adapt MaskGIT as our decoder to reconstruct images
from the image latent space. In this approach, we fix the CLIP visual encoder and fine-tune the
class-conditional MaskGIT as latent-conditional generative decoder. Further details regarding the
objective functions can be found in (Chang et al., 2022).

3.3 LATENT EMBEDDING ALIGNMENT

Figure 3: LEA aligns the latent space
of fMRI signals and image features, en-
abling the bi-directional transformation.

Having established the fMRI and image latent spaces, the
subsequent and pivotal step involves aligning these spaces
to facilitate the simultaneous execution of fMRI decoding
and encoding tasks. This approach diverges from pre-
vious methodologies (Du et al., 2023; Liu et al., 2023),
which rely on additional modalities to bridge the gap be-
tween fMRI and image data. Instead, we advocate for the
connection of well-represented latent features from both
fMRI and image datasets using a linear model.

Furthermore, given the inherent instability of fMRI sig-
nals and the potential for distinct individual patterns
within latent fMRI embeddings, we adopt an individual-
specific approach. We train individual-specific linear
models to establish mappings between personalized fMRI
embeddings and image embeddings, and vice versa. We
use L2 regularization, specifically through ridge regres-
sion, to constrain the learning space.

With the construction of these two latent spaces and the acquisition of the latent embedding align-
ment module, we perform fMRI decoding and encoding tasks within a unified framework.

In the fMRI decoding task, we initially encode the fMRI signal within the learned latent fMRI space.
Subsequently, we utilize the individual-specific linear model to project the latent fMRI code onto the
latent visual feature space. This visual feature is then decoded using the fine-tuned class-conditional
MaskGIT to recover the visual stimuli.

In the context of fMRI encoding, we first encode the CLIP visual feature and then project it onto the
latent fMRI space through the individual-specific linear model. The projected latent fMRI code is
subsequently decoded to estimate the actual fMRI signals.

4 EXPERIMENT

Datasets. We validate our LEA on Brain, Object, Landscape Dataset (BOLD5000) (Chang et al.,
2019) and Generic Object Decoding Dataset (GOD) (Horikawa & Kamitani, 2017). (1) BOLD5000
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Table 1: Top-1 accuracy of zero-shot classification on the GOD dataset.
METHOD MODALITY SBJ-1 SBJ-2 SBJ-3 SBJ-4 SBJ-5 AVERAGE

CADA-VAE (Schonfeld et al., 2019) V&T 6.31 6.45 17.74 12.17 7.45 10.02
MVAE (Wu & Goodman, 2018) V&T 5.77 5.40 17.11 14.02 7.89 10.04
MMVAE (Shi et al., 2019) V&T 6.63 6.60 22.11 14.54 8.53 11.68
MoPoE-VAE (Sutter et al., 2021) V&T 8.54 8.34 22.68 14.57 10.45 12.92
BrainCLIP-Linear (Liu et al., 2023) V&T 10.00 12.00 18.00 12.00 12.00 12.80

CADA-VAE (Schonfeld et al., 2019) V 5.66 6.01 16.51 9.17 6.01 8.67
MVAE (Wu & Goodman, 2018) V 5.30 5.21 14.13 8.03 5.44 7.62
MMVAE (Shi et al., 2019) V 5.41 5.39 13.76 10.62 5.02 8.04
MoPoE-VAE (Sutter et al., 2021) V 5.20 7.42 14.05 9.25 6.37 8.46
BraVL (Du et al., 2023) V 8.91 8.51 18.17 14.20 11.02 12.16
BrainCLIP (Liu et al., 2023) V 6.00 16.00 16.00 14.00 14.00 13.20

LEA V 10.00 18.00 12.00 16.00 12.00 13.60

Table 2: fMRI encoding comparison on Pearson’s r metric (The higher the better).

METHOD
GOD BOLD5000

Sbj-1 Sbj-2 Sbj-3 Sbj-4 Sbj-5 Avg. CSI-1 CSI-2 CSI-3 CSI-4 Avg.

CLIP + MinD-Vis (Chen et al., 2022) 5.21 12.05 15.47 10.63 10.55 10.78 30.58 19.78 16.48 19.96 21.70
CLIP + Regressor (Gifford et al., 2023) 6.65 16.22 18.58 12.82 14.38 13.73 32.07 20.58 20.46 21.18 23.57
LEA(relax) 8.43 15.51 21.20 19.08 15.07 15.86 34.32 26.74 27.74 24.44 28.19
LEA 8.49 17.01 20.58 17.82 16.86 16.15 34.78 25.91 27.86 24.37 28.80

encompasses a substantial fMRI-image dataset with a total of 5254 fMRI-image stimulus trials,
involving four subjects. This dataset includes 1000, 2000, and 1916 images sourced from the Scene,
COCO, and ImageNet datasets, respectively. Following the approach of Chen et al. (2022), we
employ 4803 images from a single trial for training, reserving the remaining 113 images for testing.
Our RoI Embed layer is configured with five pre-defined ROI regions (e.g., EV, LOC, OPA, PPA,
RSC). (2) The GOD comprises data from 5 subjects, each viewing 1,250 images spanning 200
categories, resulting in a total of 1,250 fMRI-image pairs. We partition the training set into 1,200
pairs from 150 categories, while the remaining 50 categories are used exclusively for testing. The
visual cortical ROI regions include V1, V2, V3, V4, FFA, PPA, LOC and HVC.

Metrics. For the fMRI decoding task, we utilize the following metrics for comprehensive compar-
isons: N-way Classification Accuracy (Acc) (Gaziv et al., 2022) to assess the semantic correctness
of generated samples, Fréchet Inception Distance (FID) (Heusel et al., 2017) to evaluate the qual-
ity of generated images, and CLIP correlation and distance to gauge the semantic consistency of
generated images. For Acc we calculate the average top-1 accuracy over 1,000 trials. For FID
we use 64-dimensional features extracted by the Inception-v3 model to measure their similarity to
ground-truth testing images. The CLIP distance represents the average CLIP similarity among all
fMRI-image pairs, while CLIP correlation measures the correspondence of positive fMRI-image
pairs compared to others. For the fMRI encoding task, we employ the Pearson’s metric to assess the
similarity between estimated fMRI signals and the ground-truth. We calculate the Pearson correla-
tion on each vertex of the N×L matrix, where N represents fMRI signals from L vertices, and then
average these correlations across different vertices.

Setting. We follow the general principle of not using any testing data in training. We denote our
algorithm in this setting as LEA. Additionally, for a fair comparison with competitors, we follow the
previous work (Chen et al., 2022; Beliy et al., 2019) and use the fMRI test set without revealing the
label information. Specifically, the fMRI testing data is only trained for the reconstruction task via
a self-supervised manner. When learning the latent embedding alignment module, we do not access
any paired fMRI-image testing data, and the parameters of both fMRI and image reconstruction
modules are frozen. These experiments are distinguished by adding the suffix of “relax” to the
model name, as utilized in SSfMRI2IM (Beliy et al., 2019) and MinD-Vis (Chen et al., 2022).

Implementation. LEA is implemented using PyTorch. The fMRI reconstruction model is initial-
ized with pre-trained weights from HCP datasets (Chen et al., 2022), but we randomly initialize
parameters that do not match the dimensions of those from pre-trained weights (e.g., RoI Embed
layer). We further fine-tune it for each individual. The encoder and decoder have a depth of 24/8
with dimensions of 1024/512, and there are 16 multi-heads. For fine-tuning both models, we use the
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Table 3: fMRI decoding performance comparison on the GOD dataset.
METRICS METHODS SBJ-1 SBJ-2 SBJ-3 SBJ-4 SBJ-5 AVERAGE

FID ↓

Gaziv et al. (2022) 7.67 2.67 2.51 8.93 2.77 4.91
MinD-Vis (Chen et al., 2022) 1.97 1.63 1.68 1.77 2.33 1.88
LEA(relax) 1.45 1.43 1.52 1.48 1.25 1.23
LEA 2.57 1.51 1.67 1.71 1.34 1.76

CLIP Corr. ↑

Gaziv et al. (2022) 58.57 62.00 67.59 62.89 61.14 62.44
MinD-Vis (Chen et al., 2022) 66.69 77.02 83.78 74.78 80.04 76.46
LEA(relax) 73.96 78.20 80.94 78.73 70.86 76.54
LEA 73.79 79.63 79.96 76.69 76.32 77.28

CLIP Dist. ↑

Gaziv et al. (2022) 0.31 0.34 0.34 0.32 0.32 0.33
MinD-Vis (Chen et al., 2022) 0.33 0.35 0.43 0.38 0.39 0.38
LEA(relax) 0.38 0.40 0.41 0.40 0.37 0.39
LEA 0.38 0.41 0.40 0.39 0.41 0.40

Accuracy ↑

Gaziv et al. (2022) 1.88 3.79 12.99 8.45 6.26 6.67
MinD-Vis (Chen et al., 2022) 9.10 15.91 27.44 15.81 14.28 16.51
LEA(relax) 11.18 18.62 20.45 20.04 13.15 16.69
LEA 11.35 18.55 18.92 17.52 14.45 16.16

Table 4: fMRI decoding performance comparison on BOLD5000 dataset.
METRICS METHODS CSI-1 CSI-2 CSI-3 CSI-4 AVERAGE

FID ↓ MinD-Vis (Chen et al., 2022) 1.20 1.90 1.40 1.32 1.46
Ours 1.31 1.53 1.48 1.19 1.38

CLIP Corr. ↑ MinD-Vis (Chen et al., 2022) 88.29 - - 83.09 -
Ours 86.60 83.56 83.82 84.77 84.69

CLIP Dist. ↑ MinD-Vis (Chen et al., 2022) 0.41 - - 0.37 -
Ours 0.41 0.38 0.37 0.39 0.39

Accuracy ↑ MinD-Vis (Chen et al., 2022) 29.94 18.50 21.00 20.37 22.45
Ours 28.48 19.74 19.65 22.48 22.59

AdamW optimizer with hyperparameters β1 = 0.9, β1 = 0.95, and a batch size of 8. The initial
learning rate is set to 5e-5 with a weight decay of 0.01. We apply a linear learning rate schedule,
gradually reducing the learning rate until it reaches the minimum value. The total number of training
iterations for the fMRI reconstruction model is 100k, and for image reconstruction model, it is 300k.

4.1 MAIN RESULTS

Analysis of zero-shot classification. As we inherit the latent space from the original CLIP model,
LEA enables open-vocabulary recognition of fMRI signals. To assess this capability, we perform
experiments on zero-shot fMRI signal classification tasks to identify the most similar category for
each fMRI signal. Specifically, we create a set of candidate class names using various text templates.
These class names are then encoded using the CLIP text encoder. Subsequently, we calculate the
similarity between the class embeddings and the fMRI latent embeddings learned by LEA.

We conduct experiments on the GOD, which contains 50 visual stimuli from 50 categories that are
unseen during training. We report the top-1 classification accuracy (with the chance levels of 2%)
of several competitors in Table 1. Results of competitors are from Liu et al. (2023). We divide the
competitors into two groups based on their supervision modality, where V indicates visual super-
vision only and V&T indicates bothe visual and textual supervision. Our LEA trained with visual
supervision beats all competitors, indicating the superiority of our bi-directional transformation.

Analysis of fMRI encoding. With two latent spaces for fMRI signal and image, LEA can not
only recover the visual stimuli but also predict fMRI signal by visual image. As in Table 2, we
conduct experiments to validate the estimation capability of our LEA. We construct two competitors
to show the effectiveness of LEA. The ‘CLIP+Regressor’ means that we apply liner regression to
directly generate fMRI signal based over the image feature from CLIP model. With the absent of
learned fMRI embedding in LEA, the ‘CLIP+Regressor’ adopts the pipeline of ‘image features →
fMRI signals’ instead of ‘image features → fMRI features → fMRI signals’. However, such method
causes misalignment of features during reconstruction without the fMRI latent space, as validated in
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Figure 4: fMRI decoding performance comparison on the GOD dataset.
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Figure 5: fMRI decoding performance comparison on BOLD5000 dataset.

the empirical results. The ‘CLIP+MinD-Vis’ utilizes the transformer decoder to predict fMRI signal
from image CLIP feature. Such solution is too rough and not conducive to fine-grained feature
alignment and generation. Our LEA achieves the best Pearson’s score, which indicates that the
alignment between latent embedding spaces are more effective for fMRI prediction.

Analysis of fMRI decoding. We present a comprehensive comparison of fMRI decoding perfor-
mance on the GOD and BOLD5000 datasets in Table 3 and Table 4, respectively. To ensure a fair
assessment, we reproduce the results of competitors using their official released models. It is worth
noting that due to the availability of the official model of CIS-1,4 on the BOLD5000 dataset in
MinD-Vis, we exclusively report the reproduced CLIP scores for these two individuals. Our novel
LEA consistently demonstrates superior performance across various perspectives, including image
quality, semantic correctness, and correlation, on both the GOD and BOLD5000 datasets. Notably,
LEA excels in generating images of higher quality than its competitors on the GOD dataset. While
MinD-Vis may outperform LEA on specific subjects, it significantly lags behind LEA on others,
such as SUB-1,2,4 in the GOD and CSI-2,4 in BOLD5000, resulting in an overall inferior average
performance. In summary, LEA not only outperforms current competitors in fMRI decoding but
also possesses the capability for fMRI encoding, making it a comprehensive and superior solution
in the field.

4.2 QUALITATIVE RESULTS AND FURTHER ANALYSIS

To intuitively illustrate the efficacy of our method, we show some generated images in Figure 4 and
Figure 5 for the GOD and BOLD5000 datasets, respectively. We compare with MinD-Vis (Chen
et al., 2022) and Gaziv et al. (2022) on the GOD and MinD-Vis on BOLD5000.

Qualitative results. Our generated images consistently maintain the same semantic information as
the ground-truth, encompassing humans, objects, animals, architecture, and landscapes. In contrast,
competitors may falter in some instances, failing to preserve semantic consistency. For instance, in
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Figure 6: Reliable fMRI decoding analysis.

Figure 4, LEA excels in producing semantic-consistent and high-fidelity images, whereas competi-
tors struggle to preserve semantics. In the last row on the left side of Figure 5, MinD-Vis can only
generate a person while neglecting the water, whereas LEA consistently generates both the person
and the water. These results highlight our ability to not only maintain the correctness of objects but
also capture finer-grained semantics. Moreover, our approach achieves image fidelity in numerous
cases, contributing to a more comprehensive and effective solution.

Reliable fMRI decoding. Ensuring the accuracy of fMRI decoding models is paramount, as they
should decode brain activities rather than merely generate images without meaningful context. How-
ever, current approaches often rely on large pre-trained generative models capable of high-fidelity
image generation, even when conditioned on random noise. This raises concerns about whether such
high-quality images truly reflect brain activities, especially in zero-shot scenarios where the fMRI
signals were not part of the training data. To assess the reliability of fMRI decoding models, we
conduct two experiments:

(1) Zero-shot image-fMRI-image reconstruction: In this task, we use a novel image to estimate
the fMRI signals, then use the estimated fMRI signals to reconstruct the image. Successful image-
fMRI-image reconstruction implies better semantic consistency for encoding and decoding.

(2) fMRI-image with random noise as fake fMRI signals: In this task, we randomly generate
fMRI signals from a Gaussian distribution, which significantly deviates from the real fMRI signal
distribution. We then decode these fake fMRI signals to generate images. The reconstructed image
should contain non-semantic information, indicating non-informative fMRI signals.

It is important to note that these tasks are not intended to demonstrate the superiority of a model on
new tasks but rather to assess the reliability of methods designed for visual decoding. As shown in
Figure 6, LEA excels in the image-fMRI-image reconstruction task while generating unrealistic and
non-informative images when conditioned on fake fMRI signals that deviate from the distribution
of real fMRI signals. In contrast, MinD-Vis performs poorly on the image-fMRI-image reconstruc-
tion task, generating high-fidelity and informative images when conditioned on random noise. These
findings underscore that existing models have not thoroughly explored the reliability of fMRI decod-
ing models. In comparison, both the fMRI decoding and encoding components of LEA demonstrate
greater reliability than current algorithms.

5 CONCLUSIONS

In this paper, we address the challenge of jointly performing fMRI decoding and encoding within a
single, unified framework. Our proposed Latent Embedding Alignment (LEA) not only constructs
latent spaces for fMRI signals and images but also aligns them, enabling bidirectional transforma-
tion. By mitigating issues related to redundancy, instability, and data scarcity in fMRI datasets, LEA
excels at producing high-fidelity, semantically consistent fMRI decoding results. Moreover, LEA
demonstrates the capability to accurately estimate human brain activity from visual stimuli through
fMRI encoding. Our experimental results on two benchmark datasets validate the effectiveness of
LEA, highlighting its significant contributions in the field.
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matios N. Sotiropoulos, Saâd Jbabdi, Jesper L. R. Andersson, Timothy Edward John Behrens,
Matthew F. Glasser, David C. Van Essen, and Essa Yacoub. Pushing spatial and temporal resolu-
tion for functional and diffusion MRI in the human connectome project. NeuroImage, 80:80–104,
2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

Mike Wu and Noah Goodman. Multimodal generative models for scalable weakly-supervised learn-
ing. Advances in neural information processing systems, 31, 2018.

Daniel L Yamins, Ha Hong, Charles Cadieu, and James J DiCarlo. Hierarchical modular optimiza-
tion of convolutional networks achieves representations similar to macaque it and human ventral
stream. Advances in neural information processing systems, 26, 2013.

Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to understand
sensory cortex. Nature neuroscience, 19(3):356–365, 2016.

Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the national academy of sciences, 111(23):8619–8624, 2014.

12



Under review as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIALS

The supplementary document is organized as follows:

• Sec. A introduces implementation details, including data augmentation, training and testing pro-
cedures.

• Sec. B provides ablation studies to investigate the effectiveness of our proposed RoI-dependent
processing layer.

• Sec. C visualize more qualitative results of fMRI decoding and image-fMRI-image reconstruction,
further showing the efficacy and advancements of our model.

• Sec. D discusses the broader impact of our work.

A. IMPLEMENTATION DETAILS

A.1. MODEL ARCHITECTURES

Our proposed Latent Embedding Alignment (LEA) framework aims to build the bridge between
images and fMRI signals. To this end, we incorporates two distinct encoder-decoder architectures to
learn latent representations for these two modalities by performing the self-supervised reconstruction
task. Subsequently, we introduce a linear model to efficiently facilitate the transformation between
the latent representation spaces of images and fMRI signals.

fMRI Reconstruction. We adopt the architecture of masked autoencoder (He et al., 2022) as the
encoder-decnoder model for fMRI signals. More concretely, the fMRI encoder consists of 24 trans-
former layers, each of which has 1024 feature dimensions with 16 heads. We append a [CLS]
token to the input fMRI signals before feeding them into the fMRI encoder. After self-attention
processing, the [CLS] token is expected to capture the global representation of the entire input fMRI
signals. Next, we mask all other latent token, and encourage the decoder to reconstruct fMRI sig-
nals from the learned [CLS] token. Similarly, the decoder includes 8 transformer layers, with 512
feature dimensions and 16 heads. Different from (Chen et al., 2022) that equally splits fMRI sig-
nals into patches, we instead maintain the voxel structure with RoI regions by additionally adding
RoI-dependent processing layers (i.e., RoI Embed and RoI Predict) before and after the encoder
and decoder, respectively. Both RoI-dependent layers are two-layer modules with the symmetric
structure and not shared among different RoI regions. Taking RoI Embed layer as an example, it
first adopts a convolution layer with 32 kernels to extract multi-head features of input fMRI signal,
and then uses a fully-connected layer to project the different length of fMRI signal into a unified
dimension of 1024, leading to the final fMRI embeddings for one RoI as 32× 1024.

Image Reconstruction. Image-based latent space construction has been widely investigated. As our
target is to recoder the semantic content of fMRI signals, we adopt the pre-trained CLIP (ViT-H/14)1

as the image encoder and the yielding CLIP latent space as our image latent space. To generate
images from the image latent space, we utilize MaskGIT2 as the image decoder in this paper, but
other generative models are also acceptable. Specifically, the decoder is a decoder-only transformer
layer, with the depth of 24, the feature dimension of 768 and 16 heads. By conditioned on the
image latent features, the generation procedure starts from all [MASK] tokens and autoregressively
predicts logits of tokens with higher confident scores. It is a non-sequential generative procedure,
following a cosine mask scheduling function.

A.2. DATA AUGMENTATION

We utilize data augmentation to enlarge training data for both fMRI and image reconstruction, and
discard them all during the inference or the fitting of linear models. For fMRI signals, we only use
one augmentation method by randomly adding Gaussian noise with the probability of 0.25. For
image data, we apply random cropping, random horizontal flipping and finally resize images to
256× 256.

1https://github.com/mlfoundations/open_clip
2https://github.com/google-research/maskgit
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Table 5: Classification Accuracy of CSI-1 on BOLD5000 dataset
METHODS 8 16 24 32 64 96

PatchEmbed - 26.38 - - - -
RoIEmbed 24.75 24.35 26.69 28.48 23.96 26.08

A.3. TRAINING AND TESTING PROCEDURES

All experiments are implemented with the PyTorch toolkit. The encoder-decoder model for fMRI
reconstruction is initialized with pre-trained weights from HCP datasets (Chen et al., 2022). We
finetune it with both fMRI training and testing sets for each individual. Note that using fMRI
testing data is a common practice as in (Chen et al., 2022; Beliy et al., 2019), and we do not access
any paired fMRI-image testing data when learning linear models. For image reconstruction, we use
frozen CLIP encoder and utilize the image decoder of MaskGIT initialized by ImageNet (Deng et al.,
2009), and further finetune it with images from the training sets on both the GOD and BOLD5000
datasets. Once trained, it is shared for all subjects and experiments. AdamW optimizer is applied
with β1 = 0.9, β1 = 0.95 and batch size 8 to finetune both models. The initial learning rate
is defined as 5e-5 with 0.01 weight decay. We linear decrease the learning rate until it reaches
to the minimal rate. The total number of training iterations for fMRI reconstruction and image
reconstruction is 100k and 300k. For fitting linear models, we adopt ridge regression from Scipy
library. The coefficient of L2 regularization term α is set to 500 for both image-to-fMRI and fMRI-
to-image regressions. During the inference of fMRI decoding, the number of steps for MaskGIT is
11 as default, and we generate 5 samples for all evaluations.

B. FURTHER ANALYSIS

Without loss of generality, experiments in this section are conducted on CSI-1 of BOLD5000 dataset.

B.1. EFFECTIVENESS OF THE ROI-DEPENDENT PROCESSING LAYER

Human brains are known to spatially separated, that different RoI regions react to different vi-
sual stimulus. Preserving the spatial structure is beneficial to help understanding the fMRI signals.
Therefore, we design RoI Embed layers (‘RoIEmbed’ for short) to separately encode signals from
different RoI regions. Differently, previous methods (Chen et al., 2022) simply divide fMRI signals
into n = 16 equal parts to obtain sequence features of appropriate length. Zero padding is added if
the original length of fMRI signals is not a multiple of 16. We denote such method as ‘PatchEmbed’.
To evaluate the effectiveness of our design, we conduct experiments by predicting fMRI signals from
visual images and generating stimuli images from fMRI signals . As shown in Tab. 5 and Tab. 6, our
proposed RoIEmbed achieves better performance than PatchEmbed (34.32 vs. 32.88), which clearly
demonstrate its efficacy.

For RoIEmbed layer, we extract multi-head features for each RoI region. Here, the number of
multi-head is a hyper-parameter. Intuitively, if the number of head is too small (i.e., 1), it may lead
to poor representation capacity; On the contrast, a larger number of head may result in information
redundancy. To further investigate the affect of this parameter, we report results with different values
of heads in the second row of Tab. 5 and Tab. 6 . As expected, it shows a trend of first rising and
then falling. The best result is achieved when the number of head is set to 32. Note that we do not
tune it for each individual but set it 32 consistently to show the efficacy and generalizability of our
proposed layer.

C. MORE QUALITATIVE RESULTS

In this section, we show more visualizations of fMRI decoding (Figs. 7 and 8) and image-fMRI-
image reconstruction (Fig. 9).
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Table 6: Ablation studies on the effectiveness of RoI-dependent design. Here, we report Pearson cor-
relations between the ground-truth and the predicted fMRI signals of CSI-1 on BOLD5000 dataset.

METHOD
SIZE

8 16 24 32 64 96

PatchEmbed (Chen et al., 2022; He et al., 2022) - 32.88 - - - -
RoIEmbed (Ours) 30.72 30.44 31.82 34.32 29.67 31.04

GT Ours GT Ours GT Ours GT Ours GT Ours

Figure 7: Samples of fMRI decoding on Sbj-3 of the GOD dataset.
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GT Ours GT Ours GT Ours GT Ours GT Ours

Figure 8: Samples of fMRI decoding on CSI-1 of BOLD5000 dataset.
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Figure 9: Visualizations of image-fMRI-image reconstruction on CSI-1 of BOLD5000 dataset.
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Figure 10: fMRI decoding performance comparison on the GOD dataset.
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Figure 11: fMRI decoding performance comparison on BOLD5000 dataset.
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(a) Zero-shot image-fMRI-image reconstruction on GOD dataset.
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(b) Neural decoding from randomly sampled noises as fake fMRI signals.

Figure 12: Reliable fMRI decoding analysis.

D. BROADER IMPACT

Our proposed Latent Embedding Alignment (LEA) model provides a unified framework, to effi-
ciently recovers visual stimuli from fMRI signals and predicts brain activity from images. It can
serve as a tool to recognize the human perception, read people’s mind. We hope it can inspires more
valuable and innovative studies in the future, and promote the development of neuroscience. How-
ever, the potential negative impact lies in that the usage of this method may cause privacy breach,
since people don’t want others to pry into their thoughts. Besides, this technology shouldn’t be used
illegally for any commercial or cognitive strategies. As a result, governments and officials may take
action to govern the use of relevant datasets and technologies, and researchers should avoid using
datasets that may raise ethical concerns.
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