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Recurrent Spatial Pyramid CNN for Optical
Flow Estimation

Ping Hu"”, Gang Wang

Abstract—Optical flow estimation plays an important role in
many multimedia and computer vision tasks. Although great
progress has been made in applying convolutional neural networks
(CNNs) to estimate optical flow in recent works, it is still difficult
for CNNs to generate optical flow with the desired effectiveness
and efficiency. Compared to CNN-based methods, conventional
variational methods normally perform to optimize an energy
function and produce optical flow with more precise details.
Inspired by the effectiveness of variational methods and deep
CNNs, we propose a recurrent spatial pyramid (RecSPy) network
for optical flow estimation. To deal with large displacements
and to decrease the number of parameters, we formulate the
spatial pyramid as a recurrent process, and adopt a CNN to
refine optical flow at each spatial scale. Furthermore, to improve
the results with more precise details, we propose an energy
function that encodes structure and constancy constraints to help
refine the optical flow at each spatial scale. The combination of
the proposed RecSPy network and the proposed energy-based
refinement enables our system to estimate optical flow effectively
and efficiently. Experimental results on the benchmarks validate
the effectiveness and efficiency of the proposed method.

Index Terms—Optical flow estimation, convolutional neural
network, coarse-to-fine refinement.

I. INTRODUCTION

HE wide spread of multimedia systems with video
displays accentuates the importance of several computer
vision problems. Optical flow estimation, which provides the
fundamental visual information, plays a key role in these ap-
plications. For example, optical flow is widely applied in tasks
like action recognition [1]-[3], video content analysis [4]-[6],
video compression [7], video index and retrieval [8], [9],
2D-3D conversion [10], video editing [11], and so on.
The basic definition of optical flow is the displacement of in-
tensity patterns. This notion is based on the assumption that the
intensities of moving pixels remain unchanged during motion.
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However, directly estimating the correspondences by matching
pixels of similar intensity is a classical ill-posed problem since
the constraints cannot guarantee a unique solution. To address
the problem, in 1981 Horn and Schunck [12] firstly proposed to
impose additional constraints on the optical flow, and solved it
with a variational method. Since then, variational energy min-
imization has become one of the most popular frameworks for
motion field estimation, and many subsequent extensions and
improvements have been made [13]-[19]. Variational methods
succeed because they allow additional assumptions to constrain
the ill-posed problem. However, the optimization cannot guar-
antee the optimal solution and this type of models cannot handle
well large displacements since they adapt optical flow locally.
Hence, hierarchical schemes are adopted to improve the op-
tical flow field in a coarse-to-fine way based on the spatial
pyramid [17], [20]-[24]. The hierarchical matching scheme has
been shown to be effective in avoiding poor local minima for
large displacements and efficient at convergence. At each scale,
variational optimization or approximate nearest neighbor fields
(ANNF) can be applied to refine the coarse flow produced by
the previous scale. However, both of them rely on the initial flow
field and the discriminative feature matching. If the optical flow
is inaccurate at coarse scales or the features for matching can-
not discriminate different image patches, this kind of methods
may fail.

Recently, deep convolutional neural networks (CNN) has suc-
ceeded in many computer vision and multimedia tasks [25]. In
the field of optical flow estimation, several works [24], [26]—
[28] also have explored CNN, and their performance shows that
applying CNN to learn optical flow is a promising direction.
Compared to traditional methods, CNN itself is a hierarchical
structure and has the superior ability to learn features of different
scales from data. However, the CNN in previous methods usu-
ally have a large number of parameters and are typically trained
via gradient descent with L1 or L2 loss, which treat pixels in
the dense flow field as independent samples from an identical
distribution [29]. While in the context of optical flow estima-
tion, pixels in the images are highly correlated with each other
both spatially and temporally; therefore optical flow directly
generated by CNN may lose details of the motion structures. An
example is shown in Fig. 1(c).

In this work, to alleviate these limitations and train a CNN
to produce more accurate optical flow, we propose a recurrent
spatial pyramid CNN, which is denoted as RecSPyNet. The
network has two components, a Siamese network that generates
initial optical flow at a small spatial scale, and a refinement
CNN that upscales and refines optical flow at each scale of the
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(d) (e)

Comparison between methods. (a) and (b) are the image pair. (c) The result of the CNN network FlowNetS [26]. (d) The result of our recurrent spatial

pyramid CNN, denoted as RecSPy. (e) The result of RecSPy with proposed refinement.

pyramid and finally generates a full-resolution output. Since
the initial flow plays a very important role, we use a Siamese
network to extract features from input images separately and
then fuse these features to estimate the initial flow. The initial
flow is used to warp the input, and then the refinement CNN
is utilized to process the warped images and generates refined
optical flow which is then used as initialization at next scale of
the spatial pyramid. In the Siamese network and the recurrent
CNN, parameters are reused and thus our model is very small
and efficient.

To improve the optical flow with more details, we also pro-
pose an energy function that encodes constancy constraint and
structure constraint. Refinement based on this energy function
is performed at each scale of the spatial pyramid. Constancy
constraint is a widely adopted method for optical flow estima-
tion [12], [20], [21]. For fast computation, we only use data
term and smoothness term [20]. Another challenge faced by
both variational methods and CNNs is the motion discontinuity.
Both of them find difficulty in estimating optical flow accu-
rately at the motion boundaries. Since the motion discontinuity
usually occurs at object boundaries, the edges have been used
as an extra information to improve the optic flow [24], [30].
In this paper we propose to impose a structure regularity on
the refinement. Inspired by the bilateral filter [31], [32], we in-
clude an edge-preserving term into the energy function. The
edge-preserving term serves as a local constraint on the optical
flow. It adaptively utilizes the input images and avoids extract-
ing edges explicitly. The overall energy can be easily optimized
with existing techniques. Results of the proposed network and
refinement are shown in Fig. 1(d) and (e)

In summary, we make the following three following contri-
butions:

e We formulate the hierarchical optical flow estimation as a

recurrent spatial pyramid CNN. The proposed network has
a small number of parameters and runs efficiently.

e We proposed an energy function that imposes constancy
and structure constraints to refine the optical flow. The
energy function can be readily applied to improve other
algorithms for motion field estimation.

® By combining variational method with deep learning, we
present a recurrent spatial pyramid CNN that estimates
optical flow effectively and efficiently.

II. RELATED WORK

Research on optical flow estimation has a long history over
30 years since the pioneering work of Horn and Schunck [12]
as well as Lucas and Kanade [33]. In this section, we briefly
overview the recent developments.

Dense optical flow estimation is an ill-posed problem since
the flow at a pixel has to two components. Variational methods
tackle this by optimizing an objective function composed of ex-
tra constraints. The earliest original model [12] only has a data
term that imposes intensity consistency and a smoothness term
that encodes global smoothness of the optical field. Based on this
model, many extensions have been made. Non-quadratic regu-
larisers are introduced to deal with discontinuities and occlu-
sions [13], [14]. Gradient consistency [15], [16] and photomet-
ric invariant model [34] are applied to tackle the change of pixel
intensity. Dense descriptor matching is adopted into the energy
function for robustness [17], [18], [20], [21]. Local constraints
are imposed for motion details [35], [36] . Optimization on reg-
ular grids [37] is proposed to efficiently generate a good initial
flow for further refinement. MRF-based methods [38]—[41] also
treat optical flow estimation as an optimization problem and
solve it using probability models. Optimization-based models
are effective but they still face the difficulty of finding an opti-
mal solution. Another popular way to compute optical flow is
utilizing the nearest neighbor field (NNF) [22], [42]-[45]. NNF
methods target at searching for the nearest neighbors from the
next image for given regions in the reference image. When ap-
plied to dense optical flow estimation, despite the computation
complexity, NNF methods have the challenge of mismatching
and outliers. To avoid poor local minima and deal with large dis-
placement, the hierarchical matching scheme has been widely
adopted in optical flow estimation. When the optical flow is
passed from the coarsest scale to finest scale, variational meth-
ods [16], [17], [20], [21], [23], [35] or NNF methods [22], [44],
[46] can be applied at each scale to refine the flow fields com-
ing from coarser scale. Traditional methods achieved a great
development in recent years; however, researchers still need to
balance between high effectiveness and high efficiency when
designing an algorithm.

Along with the success of deep learning in other computer
vision tasks, several attempts have been made in the field of
optical flow estimation. Dosovitskiy er al. [26] present the
Flownet which is the first deep CNN model for optical flow
estimation. The Flownet is trained on the artificial Flying Chairs
dataset and achieves competitive results. Ilg et al. [27] propose a
well-designed network based on Flownet to accurately estimate
both large displacements and small displacements. The network
comprises several sub-networks and achieves state-of-the-art
performance. Bai ef al. [47] adopt CNN to separate vehicles and
background and then estimate optical flow for them separately.
Jason et al. [48] make use of differentiable warping [49] to
impose brightness constancy and motion smoothness so that
the network is able to learn end-to-end unsupervised optical
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System overview. The proposed network is composed of a Siamese network and a recurrent spatial pyramid CNN. The Siamese network takes full-

resolution images as inputs and generates an initial optical flow of 1/8 full resolution. The initial flow was upscaled and refined in the spatial pyramid recurrently.
At each scale of the pyramid, the flow from the previous scale is first scaled up and refined by our proposed energy function. Then the second image in the pair is
warped by the flow and the image pair is processed by a CNN to compute a residual flow. The input flow and the residual flow are added together to be the refined
output of current scale. With this recurrent operation on the spatial pyramid, the initial optical flow generated by the Siamese network is finally converted to be the

refined flow of full resolution.

flow. Spatial pyramid network is also utilized by Ranjan
et al. [24]. Bailer et al. [50] and Schuster et al. [51] both
perform CNN based patch matching to estimate the optical
flow. Zweig et al. [52] utilize a fully convolutional network to
interpolate sparse optical flow into dense one. In this paper, we
further formulate the spatial pyramid network with recurrent
convolution to greatly decrease the model size. We also propose
a novel energy function that encodes constancy constraint
and structure constraint to improve the results. Compared to
conventional methods for optical flow, deep neural networks
are promising due to the superior ability to learn representative
features from data and the efficiency of computation.

III. NETWORK FOR OPTICAL FLOW

In this section, we first introduce the proposed recurrent spa-
tial pyramid network, and then discuss the proposed energy
function that encodes constancy constraint and structure con-
straint to help refine optical flow. The architecture of the pro-
posed network is shown in Fig. 2.

A. Recurrent Spatial Pyramid Network

Spatial pyramid has been frequently applied in optical flow
estimation [20], [23], [24] to cope with large displacements.
The idea is to downsample the input images to different spatial
scales. At a coarse spatial scale, large displacements become
small and can be estimated more easily. For each scale, optical
flow generated by previous coarser scale is applied to warp the
input images, and then a small motion increment is estimated
based on the warped image pair. As a result, the optical flow is
iteratively upscaled and refined from the smallest scale to full
resolution. In this work, we combine this framework with deep
learning to achieve an effective and efficient model.

1) Generating Initial Optical Flow: When estimating opti-
cal flow with the spatial pyramid, the initial flow at the coarsest
scale plays an important role. To generate an accurate initial
flow, we utilize a Siamese network as shown in the left part

TABLE I
ARCHITECTURE OF THE BRANCH CNN

Name Type Output Scale
Input 384 x 512 x3
Initial Block 192 x 256 x 16
bottleneck1.0  downsampling 96 x 128 x 32
bottleneck].1 regular 96 x 128 x 32
bottleneckl.2  asymmtetric 5 96 x 128 x 32
bottleneck1.3 regular 96 x 128 x 32
bottleneck2.0  downsampling 48 x 64 x 32
bottleneck2.1 regular 48 x 64 x 32
bottleneck2.2  asymmtetric 5 48 x 64 x 32
bottleneck2.3 regular 48 x 64 x 32

Output size are given for an input of 384 * 512.

of Fig. 2. Instead of estimating optical flow from the original
images, the branch CNN in Siamese network first extracts fea-
tures from the original inputs separately, and then a decision
CNN operates on the extracted features and estimates the initial
flow. To effectively extract features for optical flow estimation
and reduce the model size, the branch CNN is built up with the
initial block and bottleneck block as used in [53]. As shown
in Table I, the branch CNN contains three scales. The initial
scale is a single block as presented in Fig. 3(a). The second and
third scales share the same structure, which is composed of four
bottlenecks. As the structure shown in Fig. 3(b). There are three
convolution layers in the bottleneck. The first and third 1 x 1
convolutional layers respectively reduce and expand the dimen-
sionality. The second convolution layer has different types. In
this work, regular convolution and asymmetric convolution (a
sequence of 5 x 1 and 1 x 5 convolution) are used and the re-
spective bottlenecks are denoted by regular and asymmetric.
All convolutional layers are followed by Batch Normalization
and PReL.U. The branch CNN converts the inputof 3 x H x W

to be a feature matrix of 32 x % X %
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Fig. 3. (a) Initial block. It takes inputs of 3 channels and out 16 feature maps
with size scaled by 0.5. (b) Bottleneck. conuv is the type of bottleneck.

TABLE II
ARCHITECTURE OF THE ESTIMATION CNN (LEFT)
AND REFINEMENT CNN (RIGHT)

Estmation CNN
Layer Output Scale
Input 48 x 64 x 64
conv7 x7x64 48 x 64 x 64
conv7 x7x32 48 x 64 x 32
conv7 x7x32 48 x 64 x 32
conv7 x7x16 48 x 64 x 16
conv7 x7x2 48 x 64 x 2

Refinement CNN
Layer Output Scale
Input wxhx38
conv7 x 7 x 64 w X h x 64
conv7 x 7 x32 w x h x 32
conv7 x7x32 w X h x 32
conv7 x7x16 w x h x 16
conv7 x7x2 w x hx2

After applying branch CNN, the extracted features of the input
images are concatenated to be 64 x % X % and processed by
an estimation CNN. As shown in the left part of Table II, the
estimation CNN contains five convolutional layers with a kernel
size of 7 x 7 and stride of 1. The number of feature maps output
by each layer is 64, 32, 32, 16, 2 respectively. PReL.U is placed
after each convolutional layer except for the last one, whose
output is the initial optical flow. At last, the estimation CNN
outputs optical flow at the scale of % X %, and is used as the
initial flow for subsequent Recurrent Spatial Pyramid network.

The branch CNN and estimation CNN are trained jointly in
a supervised setting. During training, we utilize the two-branch
structure to connect the two input images to the initial optical
flow as shown in the left part of Fig. 2. Since inputs go through
the same feature encoding process, we only need one branch
CNN. To achieve this, the two branches are constrained to be
the same model, and any updates are applied to the shared
parameters for both sides.

2) Recurrent Refinement With CNN: At first, we down-
sample the input image pair by a factor of 2 to build a spatial
pyramid. The optical flow generated by the Siamese network
is utilized as the initial flow at the coarsest scale of the spatial
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pyramid. As aforementioned that the initial flow is 1/8 the size
of the original input; hence there are four scales of the pyra-
mid and it needs 3 times of refinement to obtain optical flow of
full resolution. Specifically, refinement here means to find the
residual flow based on the initial optical flow generated by the
previous coarser scale. We adopt deep network to estimate the
motion increments. Different from [24] which trains different
CNN s for different spatial levels, we propose to use one single
CNN to recurrently estimate the residual flow from coarse to
fine scale.

At each scale of the spatial pyramid, the optical flow gener-
ated by the last coarser scale is first resized to the current scale.
Then, the second image is warped by the coarse optical flow. The
warping is performed by Iyar, (2 + te,y + ve) = Losi(z, y),
where I,,; and Iy, are the input image and warped result
respectively, w = (u., v, ) is the coarse optical flow. Then the
refinement CNN is applied on the warped image pair to estimate
the residual flow field. And finally, the initial flow and the resid-
ual flow are added together to form the output of the current spa-
tial scale. With the initial flow of the coarsest scale, we perform
the refinement with the refinement CNN scale by scale, until
reaching the full resolution. This process is depicted in the mid-
dle part of Fig. 2 by ignoring the Energy based Re finement
component which will be presented in the next subsection.
Some results for different scales are shown in Fig. 4.

The structure of the refinement CNN is shown in the right part
of Table II. It is composed of five convolutional layers with a
kernel size of 7 x 7 and stride of 1. The first four convolutional
layers are followed by PReLLU. The refinement CNN takes the
warped image pair and coarse flow as input and the numbers
of feature maps for the convolutional layers are 32, 64, 32, 16,
2 respectively. To estimate residual flow at different scales, the
refinement CNN was trained at different scales alternatively.

B. Refinement With Constancy and Structure Constraints

We now present the Energy based Re finement compo-
nent in Fig. 2 that helps to further improve the optical flow
estimation with constancy constraint and structure constraint.
Variational method combined with spatial pyramid is one of the
popular ways to cope with large displacement. At each scale
of the pyramid, an energy function that encodes matching er-
rors and other constraints is minimized to search for an optimal
motion displacement. We also adopt a similar way to further
improve estimated optical flow at each scale with the proposed
energy function.

Given a pair of consecutive images (I1, I : @ — R¢), which
are defined on 2 with ¢ channels,we propose to estimate a 2-
dimension motion fieldw = (u,v) :  — R? by minimizing the
energy:

E(w) = o 5\IJ(Eint) + ’Y\I’(Egrad) + Q\I’(Esmooth)dx
Constancy
+ / Estrudx (1)
LI
Structure
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Results at different scales of the pyramid. (b) is the initial flow produced by the Siamese network. (c)—(e) are the outputs of different scales from coarse

to fine. (g)—(i) are the motion incremental estimated by the CNN from the coarsest scale to the finest. It should be noted that the flow maps and residual flow maps

are resized to the same size for viewing.

where the first integration is constancy constraint and the second
integration is structure constraint imposed on the flow.

1) Constancy Constraint: It is a simplification of the varia-
tional model in [21]. U(s) = v/s? + €2 with e = 0.001 is a ro-
bust penalizer that suppress outlier and benefits the minimisation
process. Given the brightness constancy assumption: (V3 [ )w =

0 with V3 = [0x,0y,0t]", the intensity data term is built
(Vs 1) (Vi)

- TV>T]7+0.01"
term in Jy helps to enforce brightness constancy. In a similar
way, the gradient data term that penalizes gradient constancy

. _ . TT . 7 (V3laa)(Vilas)
is presented as Fgraq = w' Jyyw with Jpy = W +
(V3lay)(V3lay)

Tl 7 a0.01 » 14, and I, are the derivatives of I with respect
to « and y respectively. The smoothness term is defined as the
gradient flow norm, which is Eyo0tn = ||[Vul® + [|[Vv||?. The
energy function is optimised using the numerical optimization
algorithm as in [15], [21] with 2 fixed-point iterations and 10
iterations of Successive Over Relaxation (SOR) algorithm [54].

2) Structure Constraint: It is based on the fact that motion
discontinuities usually occur at the boundary of object edges.
Therefore, refining optic flow with more accurate structure de-
tails means to smooth the optical flow while preserving edges.
Inspired by bilateral filter [31], [32], we assume that optical flow
w is linearly related to the first input image I within a square
window d;, centered at pixel &k

as By = w! Jyw where J) = The normalization

w; = a1; + b, Vi € dj, 2)

where a; and by are constants adaptively decided by the window
dj.. The linear relationship ensures that the motion discontinu-
ities occur at the edges of I with Vw = a V1. To drive the optical
flow has more structure details, we minimize the structure en-

cIgy,
Estru = Z((aklt + bk; - wi)Q —+ Ta%)

1EWE

3)

where 7a; is a regularization that constrains on the value of aj.
To minimize this energy, guided filtering [32] is adopted. By ap-

1 I
. . . . mSied, liwi — 77 Yiea, w
plying linear regression, we obtain a; = X% kT

2
o) te

1 2
and b, = mziedk w; — ayfu;;, where py; and o,

are the mean
and variance of I in window dj, |d| is the number of pixels
in dj. Then by applying (2) to the entire image and taking av-
erage at each pixel, the optimised optical flow can be written
as, w, = ‘;—‘Zk;iedk aI; + bi.. As proved in [32], the expression
can be finally rewritten as,

OJ,E = Z]‘Wl‘j (I)wj (4)
with
1 (i — ) (L — )
W) =gm 2. (1 e 5)
k(i,5) €dy k

where 1, and 0'13 are the mean and variance of / in window dj,,
|d| is the number of pixels in dj.

When applying the proposed energy function to refine op-
tical flow, we perform the optimization only once on current
scale. The constancy energy and structure energy are optimized
alternatively.

IV. EXPERIMENTS

A. Network Training

The architecture of the proposed system is shown in Fig. 2.
The model is composed of two components which are the
Siamese network for initial flow at the smallest scale and a CNN
for recurrent refinement. These two networks are pre-trained
separately on the Flying Chair dataset [26]. The two-tower
Siamese network is constrained to share parameters at the two
branches and trained jointly. During training at each scale, we
first perform mean subtraction for input images and then di-
rectly drive the network to minimize the endpoint error. The loss
function is L(we,wy) = /(te — ug)? + (ve — vy)?, where
we = (4, v.) and wy, = (uy, vy ) are the estimated optical flow
and groundtruth respectively. To train the Siamese network,
Adam [56] method is adopted for optimization with §; = 0.9
and §y = 0.99. We use a batch size of 16 with 1000 iterations
per epoch. The learning is set as 2 x 10~ for the first 10 epochs,
1 x 10~* for the 11th to the 60th epochs, and 1 x 107° for the
rest epochs until converge. The CNN for recurrent refinement is
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Fig. 5.

trained iteratively from small to large resolution scale. We first
train the CNN at a coarser scale, and then utilize the trained
model as initialization for training at a finer scale. During
training at a finer scale, we fix the CNN for estimation at coarser
scales and only optimize it for the current scale. In experiments,
we find that finetuning at the scale of full resolution blemishes
the accuracy, and finetuning at the scale of 1/4 full resolution
performs best. This is because that the same CNN works at dif-
ferent scales, and training too much on the fine scale will affect
its ability to deal with coarse ones. In our method there is an
energy-based refinement step that is applied alternatively with
the refinement CNN. During training, we have also tried with
applying the energy-based refinement to the coarse optical flow,
yet don’t find improvement of performance but the training time
is greatly increased. Therefore, we don’t apply the energy-based
refinement during training. To train the refinement CNN, at each
scale we apply Adam optimization with a batchsize of 16, and
a learning rate that is 1 x 10~ for the first 20 epochs, 1 x 107>
for the rest. To increase the variety of flow fields, we also
apply data augmentation like translation, cropping, rotation,
noise addition and color jittering as in [24], [26]. The system
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EPE =1.527 EPE =5.672
EPE =2.466 EPE =7.336
EPE =1.656 EPE =7.387
EPE =1.746 EPE =7.111
EPE =1.654 EPE =6.122
EPE =1.553 EPE =5.991

Vsiual comparison of optical flow estimations.

is implemented using Torch framework, and experiments are
performed on a Nvidia Geforce Titan X GPU card.

B. Benchmarks and Evaluation Metric

In our experiments, we adopt two metrics, which are average
endpoint error (EPE) and percentage of optical flow outlier (Fl),
for evaluation and analysis. The &/ P E measures the absolute er-
ror between the estimated optical flow (u,, v.) and groundtruth
(ug,vy) by EPE = \/(u. — uy)? + (ve — vy)?. The Flis de-
fined as percentage of pixels with estimation error > 3pixels
and >5% of the true disparity. We perform experiments on
three benchmarks: Flying Chair Dataset [26], KITTI2012 [57],
and KITTI2015 Dataset [58], and compared with deep learn-
ing based methods FlowNetS [26], FlowNetC [26], SPynet [24]
(all are trained using the same dataset as us) , spatial pyra-
mid based methods DeepFlow [55], DIS-Fast [23], approximate
nearest neighbor fields(ANN) based method FlowFields [46],
and forward-backward consistency refinement based method
EpicFlow [30]. Some visual results are shown in Fig. 5. The
proposed network is denoted as RecS Py, and the system with
the proposed refinement is denoted as RecSPy™ .
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TABLE III
AVERAGE ENDPOINT ERROR(EPE) AND TESTING TIME ON THE TEST SPLIT OF THE THE FLYINGCHAIR DATASET

EpicFlow [30]  FlowFields [46]  DeepFlow [55]  DIS-Fast [22]  FlowNetS [26]  FlowNetC [26] SPyNet [24]  RecSPy RecSPy+
EPE 2.94 2.45 3.53 5.03 2.71 2.19 2.63 2.50 2.48
Time(s) 16 12 17 0.06 0.08 0.15 0.07 0.07 0.16
TABLE IV
RESULTS ON THE KITTI DATASETS
EpicFlow  FlowFields DeepFlow DIS-Fast FlowNetS+{t FlowNetC+{t SPyNet+ft RecSPy  RecSPy+ft RecSPy+ft"
kittil2  train 3.09 3.33 448 11.01 7.52 8.79 4.13 10.2 3.12 2.76
(EPE) test 3.8 3.5 5.8 14.4 9.1 - 4.7 13.7 4.5 3.6
kittil5  train 27.18% 24.43% 26.52% 53.73% - - - 41.43% 25.12% 23.02%
(Fl-all) test 27.10% - 29.18% - - - - 40.90% 26.93% 25.32%
On the KITTI2012 average endpoint error(EPE) is evaluated. On the KITTI2015 ratio of pixel with optical flow estimation error > 3 pixels and > 5% (Fl-all)
TABLE V
AVERAGE ENDPOINT ERROR(EPE) ON THE SINTEL DATASET
EpicFlow  FlowFields DeepFlow DIS-Fast FlowNetS+ft ~ FlowNetC+ft  SPyNet+ft RecSPy  RecSPy+ft  RecSPy+ft"
train 3.56 3.06 3.57 6.31 4.44 5.28 4.32 6.79 4.27 4.07
test 6.29 5.81 7.21 10.13 7.76 8.51 8.36 9.38 8.36 8.03

The Flying Chair Dataset [26] is a large synthetic dataset
created by applying affine transformations to color images and
a set of rendered 3D chair models. This dataset is composed of
22,232 training and 640 testing image pairs of resolution 512 x
384 as well as corresponding groundtruth. We pretrain our model
on the training split and the results are shown in Table III. Our
model achieves a better or comparable performance with the
pure learning based methods FlownetS [26] and SPyNet [24],
and the traditional methods FlowFields [46], EpicFlow [30],
DeepFlow [55], and DIS-Fast [23] with a fast speed. This shows
that our method is effective in learning the correspondence of
pixels from data. The FlowNetC [26] outperforms our method
with a large margin; this is because FlowNetC performs the
feature correlation which compares two feature maps pixel by
pixel. This operation works well on FlyingChair dataset due to
the small resolution and simple content of testing images. We
can see that on other datasets with complex and large images,
FlowNetC may fail.

The KITTI2012 and KITTI2015 Dataset [S57], [S8]. These
two datasets consist of realistic image pairs collected by a
wide-view camera fixed on a driving car. The KITTI2012
dataset contains 194 training and 195 testing image pairs. The
KITTI2015 comprises 200 training and 200 testing images.
The sparse groundtruth flow of the training image pairs in
these two datasets are also provided. Since the type of objects
and motion are very different from those in the Flying Chair
dataset, fine-tuning is performed on the combination of training
sets from these two datasets. As shown in Table IV, our final
result achieves a comparable performance to FlowFields and
outperforms other methods on both datasets. While it should

be noted that the ANN-based FlowFields is post refined via
EpicFlow [46] and runs near 75 times slower than our methods.
On the KITTI2012, our method and other learning based
methods, which are FlowNetS, FlowNetC, and SPyNet, all have
a high endpoint error on the training set after finetuning. This
shows the difficulty of learning optical flow with deep networks.
Especially for FlowNetC, the high estimation error on training
set shows the correlation operation performs badly. Among
these methods, our method achieves both low training error and
testing error, which shows the effectiveness of our model to learn
optical flow. There are also several other methods which are
worth mentioning, like PatchBatch [45] that adopts CNNs for
feature encoding and PH-Flow [18] that designs an energy func-
tion for piecewise homography to refine optical flow. Although
they achieve better performance on KITTI2012 (PatchBatch
EPE:3.3 and PH-Flow EPE:2.9) than ours (EPE: 3.6), their
running speed is much slower. To estimate optic flow for one
image pair PatchBatch takes about 50 seconds and PH-Flow
takes more than 265 seconds, yet our method only takes about
0.35 seconds.

The MPI-Sintel Dataset [59] is built from computer-
animated films. The image sequences in this dataset contain
large/rapid motion, which makes the dataset challenging. The
images in the ‘final’ subset of this dataset are generated with
rendering effects like defocus blur, motion blur, and atmospheric
effect. We finetune our model with the ‘final’ version training
samples and evaluate on this subset. The results are shown in
Table V. In this dataset, traditional methods DeepFlow achieve
a better performance than deep learning based methods. This
could be due to the fact that the outputs of deep networks are
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always noisy and non-smooth. As shown in Fig. 5(b) and (f), al-
though our network can estimate optical with more small motion
details, the endpoint error is still higher.

C. Method Analysis

1) Running Time: Efficiency is very important for optical
flow estimation. Since the running time is related to the resolu-
tion of input images, we perform the comparison of running time
on the FlyingChair dataset and present the results in Table III.
In the FlyingChair dataset, the input images are of resolution
512 x 384. Our method takes on average about 0.07 seconds
and 0.16 seconds to process a pair of input images with and
without the refinement step respectively. As shown in the table,
comparing to traditional coarse-to-fine or ANN based methods,
our approach achieves a comparable performance at a much
faster speed, while comparing to other CNN based approaches
like FlowNetS, FlowNetC and SPyNet our method can learn
from data more effectively.

2) Model Size: The proposed system is composed of a
Siamese network and a Refinement CNN. In the Siamese net-
work, the two-branch CNN share the same parameters to extract
features from the image. The extracted features are then con-
verted to be an initial flow by an estimation CNN. Using the
two-tower structure Siamese network enables the system to es-
timate the initial optical flow effectively with a small number
of parameters. In the second part, formulating the spatial pyra-
mid refinement as a recurrent CNN helps to further reduce the
number of parameters. As compared in Table VII, our model
further decreases the number of parameters but achieves bet-
ter performance compared with SPyNet [24]. If converting the
parameters in the model into half-precision floating point num-
ber, the model can be faster and more economical in terms of
memory.

3) Effectiveness of Recurrent Spatial Pyramid CNN: As
shown in Tables III-V, compared with FlowNet, our RecSPy
without refinement achieves a better performance on the re-
alistic dataset KITTI and a comparable performance on the
animated datasets FlyingChair and Sintel with a much smaller
model size and a faster speed. Furthermore, our RecSPy out-
performs SPyNet on all three datasets with a smaller model
size. The performance shows our RecSPy is more effective to
learn optical flow from training data. We begin with analyzing
the effectiveness of the Siamese network. We first estimate the
initial flow using the Siamese network, and then train several
refinement CNNs for different spatial scales separately as in
SPyNet [24]. On the testing set of the FlyingChair dataset, this
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Results of the proposed energy based refinement. (a) Image overlay. (b) RecSPy_ft. (c) RecSPy_ft ™. (d) GroundTruth.

TABLE VI
PERFORMANCE OF DIFFERENT LEVELS IN THE PYRAMID

Level Scale EPE  Time(s)

Initial 1/8 0.44 0.03

Level 1 1/4 0.75 0.03

Level 2 172 1.37 0.04

Level 3 171 2.50 0.07
TABLE VII

SIZES OF DIFFERENT MODELS

Method FlowNetS  FlowNetC  SPyNet  RecSPy(ours)

#Param 38M 38M 1.2M 0.42M

network with multiple refinement CNNs achieves an EPE of
2.42 and significantly outperforms SPyNet(EPE: 2.63), which
shows that a good initial estimation is important and the Siamese
network is effective considering its small model size. To eval-
uate the effectiveness of the refinement CNN, we present the
performance for outputs of different scales in our RecSPy in
Table VI. As we can see, the single refinement CNN is able to
refine the coarse optical flow at different scales. It should be
noted that comparing to our network with multiple refinement
CNNs (withan EPE = 2.42), our RecSPy with a single refine-
ment CNN halves the model size with only a slight decrease in
EPE of 0.08.

4) Energy Based Refinement: The proposed energy function
that encodes structure constraint and constancy constraint is ap-
plied as an optional refinement component in the final system.
With this component in the proposed coarse-to-fine method,
we can easily combine traditional methods to further improve
the results produced by the CNN. The energy function can
be optimized efficiently with existing methods as described in
Section III-B. To keep the system efficient, we perform the
refinement only once at each scale. As shown in Table III,
this refinement only increases about 0.1 seconds when dealing
with an input with a resolution of 512 x 384. To evaluate the
the proposed refinement, we compare the performance last two
columns in Tables III-V. On all the benchmarks except for the
Flying Chair testing set, the refinement produces a significant
improvement in accuracy for the estimated flow field. Visual re-
sults in Figs. 6 and 5 also show that the proposed refinement can
improve the optical flow with more motion details. We notice
that our energy based refinement only has a minor improvement
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TABLE VIII
ANALYSIS OF ENERGY-BASED REFINEMENT USING ENDPOINT ERROR(EPE)

KITTI12  KITTIIS  SINTEL
w/o Refinement 3.12 6.02 4.27
Constancy 2.85 5.93 4.15
Structure 291 5.97 421
Constancy+Structure 2.76 5.89 4.07

on the Flying Chair dataset. This could be caused by the unnatu-
ral objects and motion fields in the dataset which are not suitable
for the variational methods. By comparing the performance of
FlowNetS with FlowNetS+v on this dataset in Table III, we can
find that the conventional variational refinements even lead to
worse performance. We also analyze the contribution of dif-
ferent terms in the proposed energy function for refinement.
As shown in Table VIII, both the constancy constraint and
structure constraint help to improve the estimated flow field.
Applying these two constraints together can further improve
the results.

V. CONCLUSION

In this paper, we have proposed a Recurrent Spatial Pyramid
CNN for effective and efficient optical flow estimation. The
system is composed of a Siamese network and a Recurrent CNN.
The Siamese network extracts features from images in the input
pair separately with the same branch CNN and then converts
the features to be initial optical flow at a small spatial scale. The
initial flow is then refined by a CNN recurrently form a small
scale to the full resolution on the spatial pyramid. We have also
proposed an energy function that imposes structure constraints
and constancy constraints to optical flow to help refinement at
each scale of the pyramid. The combination of the Recurrent
Spatial Pyramid CNN and the energy based refinement endow
our optical flow estimation system with effectiveness, efficiency,
and a very small model size.
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