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ABSTRACT

Creating robots that can handle changing or unknown environments is a critical
step towards real-world robot applications. Existing methods tackle this problem
by training controllers robust to large ranges of environment parameters (Domain
Randomization), or by combining “Universal” Controllers (UC) conditioned on
environment parameters with learned identification modules that (implicitly or ex-
plicitly) identify the environment parameters from sensory inputs (Domain Adap-
tation). However, these methods can lead to over-conservative behaviors or poor
generalization outside the training distribution. In this work, we present a domain
adaptation approach that improves generalization of the identification module by
leveraging prior knowledge in physics. Our proposed algorithm, UC-DiffOSI,
combines a UC trained on a wide range of environments with an Online System
Identification module based on a differentiable physics engine (DiffOSI). We eval-
uate UC-DiffOSI on articulated rigid body control tasks, including a wiping task
that requires contact-rich environment interaction. Compared to previous works,
UC-DiffOSI outperforms domain randomization baselines and is more robust than
domain adaptation methods that rely on learned identification models. In addition,
we perform two studies showing that UC-DiffOSI operates well in environments
with changing or unknown dynamics. These studies test sudden changes in the
robot’s mass and inertia, and they evaluate in an environment (PyBullet) whose
dynamics differs from training (NimblePhysics).

1 INTRODUCTION

In order for robots to shine in real-world applications, they need to handle ever-changing and un-
predictable situations in real environments. For instance, a robot waiter should be able to serve
a new type of dish without spilling food, and an autonomous vehicle should take a person safely
to an unvisited destination. Creating artificial agents that can operate in changing and unknown
environments is a longstanding problem in the robotics community.

The collective wisdom of the robotic research community in recent years indicates that enabling
learning agents to work in changing and unknown environments is not about making one big break-
through, but rather making many small but informed decisions. One general approach advances
control policies such that they can operate more robustly (Tan et al., 2018) or more adaptively
(Cully et al., 2015) in testing environments. However, these methods usually exhibit sub-optimal
task performance or require additional fine-tuning in the target environment. Alternative approaches
advance simulation techniques to bring the training environment closer to the testing one prior to
learning a control policy, such as training a dynamics model (Jiang et al., 2021) or identifying sim-
ulation parameters (Tan et al., 2018) from data. These methods are often used in offline settings as
learning or identifying an accurate simulation model can be time consuming. Thus, they cannot han-
dle changing environments naturally. Work such as Yu et al. (2017) have also investigated methods
that learn models to perform online system identification. However, a learned model often does not
generalize well to unknown environments or those not seen during training.

Recent developments in differentiable physics simulation potentially offer a more effective way to
address these challenges by advancing both control and simulation techniques. By utilizing fast
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computation of analytical gradients, one can devise more computationally and sample efficient opti-
mal control and system identification algorithms. Recent differentiable physics simulators, such as
NimblePhysics (Werling et al., 2021), provide fast computation of analytical gradients in the face of
constraint satisfaction and non-differentiable contact handling. These enable generic gradient-based
optimizers to solve contact-rich optimal control problems. While promising, differentiable physics
simulation does not solve the fundamental problem of multiple local minima due to ill-conditioned
cost functions, often exacerbated by long-horizon and highly nonlinear differential equations.

This paper introduces a new approach for creating resilient and adaptive agents by combining dif-
ferentiable physics simulation for online system identification and reinforcement learning for offline
policy training. Online system identification can be formulated as a short-horizon, local optimiza-
tion problem, but must be solved fast. This plays to the strength of differentiable physics simulation
which provides analytical gradients efficiently, while avoiding the pitfalls of poor cost function land-
scapes. On the other hand, for challenging control problems with long-horizon cost functions, we
resort to a reinforcement learning approach leveraging samples (“rollouts”) generated offline at scale
to train a control policy. We explore many possible situations the agent might encounter when oper-
ating in the testing environment by varying the simulation parameters during training and learning
a Universal Controller (UC) conditioned on the simulation parameters. At test time, we use differ-
entiable physics simulation to continuously optimize the simulation parameters based on the most
recent history of observations (DiffOSI). The optimal simulation parameters will “modulate” the
universal policy to output the optimal action for the currently identified environment.

We evaluate our approach on two robotic control tasks, a cartpole balancing problem and a robot arm
table wiping task involving rich contact phenomena. We show that our proposed approach combin-
ing a Universal Controller and a Differentiable physics-based Online System Identification module
(UC-DiffOSI) can outperform pure learning-based or traditional system identification methods. Fi-
nally, we demonstrate that our approach can be applied to environments with changing dynamics or
un-modeled effects.

2 RELATED WORK

Deep Reinforcement Learning and Domain Randomization. Deep reinforcement learning has
been proven to be effective in learning complex motor skills for simulated robots, such as run-
ning (Yu et al., 2018), parkour (Heess et al., 2017), and dressing (Clegg et al., 2018). However,
these controllers often perform poorly on real robot hardware due to the discrepancies between
the simulated and real environment, also known as the sim-to-real gap (Neunert et al., 2017). Do-
main randomization of the simulation physics parameters has been extensively explored to help the
simulation-trained controller transfer to a different target environment, where a robust control policy
is trained to perform well for a wide variety of simulated environments (Peng et al., 2017; Tan et al.,
2018; Hwangbo et al., 2019; Exarchos et al., 2020; OpenAI et al., 2019). However, policies trained
from domain randomization often exhibit over-conservative behaviors, leading to sub-optimal per-
formance (Tan et al., 2018). Different from these methods, we develop a domain adaptation approach
by training adaptive controllers that can adjust behavior for different environments using an estima-
tion of the environment parameters. This enables our controller to achieve better performance than
a domain randomization controller.

Domain Adaptation. To achieve better task performance in novel situations, researchers have de-
veloped adaptive controllers that can adjust behavior for different environments. Szita et al. (2003)
showed that Q-learning, using event-learning, can find near-optimal policies in varying environ-
ments. Heess et al. (2015) demonstrated that control policies modified to use recurrent networks are
also capable of dealing with unknown kinematic parameters such as link lengths. Xu et al. (2020)
presented a deep reinforcement learning method that encodes the dynamic context online to achieve
a stable non-planar pushing task controller. Yu et al. (2017) proposed a system using a Universal
Policy and Online System Identification (OSI) function to explicitly incorporate model parameters
to adapt to varying environments. These methods usually identify the environment parameters (ex-
plicitly or implicitly) and then adjust the controllers to adapt to the new environment.

Differentiable Simulation. In recent years, researchers have built more efficient and feature-
complete differentiable physics engines. These engines support 3D rigid body and contact con-
straints between spheres and planes (Degrave et al., 2016), analytic differentiation of a linear com-
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DiffOSI

UC

Figure 1: Overview of our method, UC-DiffOSI. The Universal Controller (UC) takes as input
the current robot states xt and the dynamics parameters µ̂t identified by the differentiable physics
engine (DiffOSI), to generate optimal control actions τt.

plementarity problem (de Avila Belbute-Peres et al., 2018), modeling soft bodies via a differentiable
real-time differentiable Material Point Method (Hu et al., 2018), support differentiable cloth sim-
ulation (Liang et al., 2019), optimize for large numbers of objects and contact interactions (Qiao
et al., 2020), and support articulated rigid bodies with contact (Werling et al., 2021). Prior work,
such as Toussaint et al. (2018) and Heiden et al. (2019), also showed that differentiable physics can
be integrated for end-to-end controller learning, in addition to parameter learning. Jatavallabhula
et al. (2021) further integrated differentiable rendering to remove dependency on 3D vision in an
end-to-end learning pipeline.

3 METHODS

Our goal is to design a system that can handle changing or unknown dynamics in the environment.
The true dynamics in the target environment can be described by xt+1 = fµ(xt, τt), where x =
(q, q̇) denotes the robot’s sensed states and their time derivatives, and τ denotes the control actions.
fµ evolves the system from timestep t to t + 1 with dynamics parameters µ. We aim to predict
optimal controls τ ∗t which maximize task performance. The controls are predicted in the first part of
our system, the universal controller (UC): (x,µ) 7→ τ . The second part is a differentiable physics
engine that performs online system identification (DiffOSI): {(xi,xi+1, τi)} 7→ µ. The overview
of the system is shown in Figure 1. Together, they form a robust controller capable of handling
unknown or changing environment dynamics.

3.1 LEARNING A UNIVERSAL CONTROLLER

Universal Controller (UC) augments a regular robotic controller by conditioning it on parameters of
the environment µ, such as friction coefficient or robot payload. This information is crucial for the
controller to select appropriate actions for different environments, yet are non-trivial to infer directly
from sensory input. By providing this additional information to the UC, we expect it to outperform
a regular policy given the true environment parameters.

A successful UC should perform near-optimally for a wide range of µ’s. Given that the best way
to obtain a control policy can be different across tasks, the training of UC largely depends on the
task to be performed. In this work, we tailor the training of UC to two control tasks of interest: cart
pole balancing and table wiping. For the cart-pole balancing problem, we want to obtain a controller
that directly sends torque commands to the robot at high-frequency. Thus, we directly apply a
reinforcement learning approach to obtain a Universal Control Policy as done in Yu et al. (2017).
On the other hand, for the table wiping problem, we adopt a hierarchical control structure where
the learned UC needs to modulate the parameters of a low-level admittance controller per wiping
motion. A black-box optimization technique is more suitable for this low-frequency problem. More
details on how we train our UPs can be found in Section 4.

Note that we train our UC with a set of training environments gµ̂, which approximates the target
environment fµ̄. µ̄ and µ̂ need not represent the same set of parameters, and neither do fµ̄ and
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gµ̂ need to represent the same model, as the exact governing equations of fµ̄ is usually unknown.
We aim to use a gµ̂ diverse enough to train a robust UC and expressive enough to approximate all
possible trajectories evolved with fµ̄.

3.2 DIFFERENTIABLE PHYSICS FOR ONLINE SYSTEM IDENTIFICATION

We use differentiable physics to identify some unknown physics parameters µ̂ ∈ Rg that parameter-
ize the dynamics of the system. The numerical modeling, xt+1 = gµ̂(xt, τt), in the differentiable
physics engine should be the same as in UC training approximating the target environment dynam-
ics, xt+1 = fµ̄(xt, τt). This way, the nature of the UC’s inputs stays consistent.

To perform system identification, DiffOSI requires first collecting a small number of samples X̄ =
{x̄t, τ̄t} from target environment fµ̄. DiffOSI uses these samples to optimize for a µ̂ that minimizes
the differences between the resulted trajectory {x̂t, τ̂t} and the target state-action history {x̄t, τ̄t}.
DiffOSI requires a minimum of two samples, but if the problem is nondeterministically under-
constrained (e.g., in the presence of contact), more samples (e.g., 30-50) may be required to exercise
all dynamics of the system.

At the beginning (first iteration k = 0), we initialize µ̂ = µ0 (e.g., mean of expected distribution).
For each iteration of DiffOSI optimization k, we execute the UC for a certain number of steps
Tk ≤ |X̄k| using actions predicted with UC(x̄k, µ̂k). With the collected samples X̄k, we use
DiffOSI to optimize for the µ̂k that minimizes the following objective function:

L(X̄k) =
∑
t∈X̄k

φ(q̂t+1, q̄t+1) + φ(ˆ̇qt+1, ¯̇qt+1), (1)

where (q̂t+1, ˆ̇qt+1) = gµ̂k
(q̄t, ¯̇qt, τ̄t) (2)

and φ is any differentiable distance function.

A differentiable physics engine enables the computation of gradients of L with respect to the un-
known parameters µ:

∂L(X̄k)

∂µ̂k
(3)

Our system is agnostic to the choice of the differentiable physics engine. We use the Nimble dif-
ferentiable physics engine (based on DART) by Werling et al. (2021), which has the advantage of
being able to handle articulated rigid bodies and differentiate through contact.

4 EXPERIMENTS

4.1 TASK EVALUATION OVERVIEW

We compare our proposed algorithm (UC-DiffOSI) to six baseline methods:

1. Domain Randomization (DR): Optimize a controller in an environment where dynamics
parameters are randomized.

2. UC-Random: UC given random parameters as input.

3. UC-Average: UC given the middle parameter of the training range as input.

4. UC-MLP (Yu et al.): UC given parameters predicted with an MLP.

5. UC-CMA-ES: UC given parameters optimized using CMA-ES (Hansen, 2016).

6. UC-Oracle: UC given ground truth parameters as input.

to address the following questions:

• Does UC-DiffOSI outperform Domain Randomization (DR)?

• Is DiffOSI more robust than MLP, in generalization to new environments?

• Is DiffOSI more efficient than CMA-ES?
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Table 1: Results on the Cartpole task. We report errors on the parameter estimation of µ (lower is
better), as well as the overall task performance (higher is better). Mean and standard deviation are
reported. Results are averaged over 3 models and 10 episodes. Task performance is defined as the
number of simulation steps where the state of the cartpole is within certain thresholds.

Approach Mean Abs. Error (µ) Mean Abs. Rel. Error (µ) Task Performance

DR N/A N/A 277.77 ± 169.63

UC-Random 0.45 ± 0.11 1.42 ± 1.50 169.63 ± 127.92
UC-Average 0.39 ± 0.15 0.50 ± 0.00 215.83 ± 126.89
UC-MLP-Narrow 0.32 ± 0.12 0.60 ± 0.13 242.77 ± 157.96
UC-MLP 0.09 ± 0.03 0.38 ± 0.43 309.23 ± 72.55
UC-DiffOSI (Ours) 0.09 ± 0.07 0.13 ± 0.05 390.77 ± 95.67

UC-Oracle 0.00 ± 0.00 0.00 ± 0.00 451.33 ± 48.59

We compare our proposed algorithm with baseline methods in both task performance (total toward
over one episode) as well as prediction accuracy for the environment parameters (mean absolute
error and mean absolute relative error).

4.2 CARTPOLE

Task Description. We first evaluate our algorithm on the cartpole task from OpenAI Gym (Brock-
man et al., 2016), where the goal is to balance a pole on a cart-on-track. The state space of the
cartpole task consists of the position of the cart and pole q = (x, θ), as well as their velocities
q̇ = (ẋ, θ̇). To create different environment variations, we offset the center of mass of the pole from
its geometric center by a random displacement (µ, 0.2µ) in 2D, with µ uniformly sampled within
the range [−0.6m, 0.6m]. This is to mimic attachments of different objects on the pole We ran-
domly initialize the q and q̇ of the cart and the pole, with x ∈ [−0.05, 0.05], ẋ ∈ [−0.05, 0.05], θ ∈
[−0.05, 0.05], θ̇ ∈ [−0.05, 0.05]. The controller can apply an impulse of [−500N, 500N ]∆t to the
cart at 50 Hz. We define the task performance metric as the number of simulation steps where
|θ| ≤ π/2 (where θ = 0 means the pole is upright) and |x| ≤ 2.5 are satisfied.

Controller Details. As a classic control problem, there a numerous ways to design a controller for
the cartpole task. In this work, we leverage a reinforcement learning-based approach. Specifically,
we use Proximal Policy Optimization (PPO) (Schulman et al., 2017) to train a control policy (MLP
with 2 layers, 64 hidden units each) that takes the cartpole state s = (q, q̇) as input, and predicts the
appropriate control force applied to the cart.

For the domain randomization (DR) baseline, we train the control policy with µ̂ randomly selected
at the beginning of each training episode. We then augment the policy input with µ̂ to obtain the
universal controller (UC). By providing this critical information about the environment, the policy
can better decide the optimal action to take, which is demonstrated in our evaluation results.

System Identification. For all methods, we use the observations containing (qt, q̇t, τt, qt+1, q̇t+1).
For the UC-MLP baseline, we train an MLP (3 hidden layers with 256, 128, and 64 hidden units
respectively) to predict µ̂ from the states and actions in the history. We use a dataset collected
by executing τ̂ = UC(x, µ̂) in the cartpole simulation environment gµ̂ for uniformly sampled µ.
Both UC-CMA-ES and UC-DiffOSI optimize µ̂ to minimize the MSE between the result and target
trajectories.

Results. Results for the cartpole task can be found in Table 1. Our approach achieves better results
than the baseline methods in terms of task performance and is close to the upper bound (UC-Oracle).
This suggests our algorithm can successfully infer the environment parameters from the input his-
tory of past observations and actions. This is further supported by the low prediction error of our
algorithm. We observe that UC-MLP can achieve low mean absolute error in predicted µ̂, yet per-
forms worse in relative prediction error. This is possibly due to the model learning to focus on
regions where the true µ̂ has higher magnitude, which also leads to inferior task performance. This
can possibly be mitigated by tuning the loss function or training data further, yet these are task spe-
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(a) Evaluation curves in the Nimble physics engine
(averaged across 20 runs).

(b) Sim-to-Sim Transfer results in the Bullet physics
engine (averaged across 20 runs).

Figure 2: Evaluation curves for the DR and UC-Oracle models on the Cartpole task.

cific, non-generalizable processes. In addition, we also evaluate MLP-Narrow, which trains an MLP
model to predict the environment parameter, but with µ̂ sampled from a narrower range ([−0.2, 0.2]).
As shown in Table 1, MLP-Narrow does not generalize to parameters outside the training range.

4.3 HALF CHEETAH

In this section, we evaluate our method on a 7-link, 6-DoF 2D half cheetah task (Figure 3a).

Task Description. We adapt the half cheetah environment from OpenAI Gym (Brockman et al.,
2016), and replace the simulator with the NimblePhysics simulator. The mass of the half cheetah’s
torso is unknown, and uniformly sampled within the range [1, 50] kg (where the original torso mass
is 4.9 kg).

Controller Details. Similar to cartpole, we use the PPO algorithm to train a control policy (MLP
with 2 layers, 256 hidden units each). We train 6 different seeds for each approach, DR and UC,
where UC is trained with ground truth mutrue, corresponding to the UC-Oracle results.

System Identification. Both the MLP and DiffOSI methods for system identification use the same
inputs as those used in the cartpole task in Section 4.2. The MLP (2 hidden layers with 512 and
128 hidden units respectively) is trained on a dataset of 600K examples generated from rolling out
trajectories from the trained UC-Oracle models over uniformly sampled µ. The DiffOSI module
uses NimblePhysics as its simulator, and optimizes µ̂ (initialized to the mean of the distribution) to
minimize the L2 norm between the predicted and target next state.

Results. In Figure 3b, we show that UC-Oracle is able to outperform pure domain randomization.
This shows that observation of physical parameters is beneficial for this task. Evaluations of various
approaches using the trained DR and UC policies are shown in Table 2. We show that UC-DiffOSI
is able to perform comparably to the upper bound, UC-Oracle, due to its low parameter estimation
errors. UC-MLP has, on average, higher parameter estimation errors than UC-DiffOSI, but lower
parameter estimation errors than random or average baselines (Figure 3c). However, we found
that for some trajectory rollouts, UC-MLP errors tend to magnify over time (Figure 3d is one such
example). This shows the weakness of UC-MLP – the UC depends on a perfect MLP for system
identification, and any slight mistake the MLP makes can quickly cause errors to compound over
time. These examples can lead to an even larger scale of failure at the task performance level (relative
to the scale of µ estimation errors). Thus the overall task performance of UC-MLP is worse than
UC-Random and UC-Average.

We also analyze the runtime of UC compared to an MPC baseline. To achieve reasonable task
performance, MPC baseline needs to have a planning horizon of more than 200 timesteps and replan
every 40 timesteps. Each trajectory optimization in MPC takes 100-300 milliseconds to solve while
evaluating UC for 40 timesteps only takes roughly 40 milliseconds. As such, MPC is not a suitable
method for a setting like ours where realtime performance is important.
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(a) The 7-link, 6-DoF 2D half cheetah task, simu-
lated in NimblePhysics.

(b) Evaluation curves comparing DR and UC-Oracle
(10 seeds).

(c) Average absolute µ estimation error across
episode timesteps (3 seeds).

(d) Absolute µ estimation error on a single example
across episode timesteps.

Figure 3: Reward and µ estimation results for the half cheetah task. Results are averaged over 6
models for each approach.

Approach Mean Abs. Error (µ) Mean Abs. Rel. Error (µ) Task Performance

DR N/A N/A 2546.51 ± 1593.81

UC-Random 19.11 ± 12.97 2.27 ± 3.42 3567.45 ± 588.88
UC-Average 17.97 ± 2.85 2.24 ± 2.63 3596.58 ± 802.73
UC-MLP 9.25 ± 10.20 1.27 ± 2.25 3102.02 ± 2202.76
UC-DiffOSI 0.06 ± 0.14 0.01 ± 0.02 3930.97 ± 801.29

UC-Oracle 0.0 ± 0.0 0.0 ± 0.0 3936.30 ± 609.14

Table 2: Results on the Half Cheetah task (trained on 6 seeds each for DR and UC, each model
evaluated on 3 random seeds).

4.4 TABLE WIPING

Task Description. In this task, we wipe a tabletop using a wiping tool attached to a robot arm’s
end effector, as shown in supplementary Figure 5a. The wiping tool joint has unknown stiffness and
damping coefficients µ = {(kp,kd)}. To perform a wipe, we track a scripted wiping trajectory
{qtrajt } with an admittance controlled robot arm. The goal is to maintain a target contact force on
the contact normal direction fz,goal during the whole wiping process, i.e., to minimize the MSE
between fz,sensed and fz,goal for all observed states when the wiping tool is in contact with the
tabletop. The system overview can be found in supplementary Figure 5b with details as follows.
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Table 3: Results on the wiping task. We report errors on the parameter estimation of µ (lower is
better), as well as the overall task performance (lower is better). Mean and standard deviation are
reported. Results are averaged over 10 runs.

Approach Mean Abs. Error (µ) Mean Abs. Rel. Error (µ) Task Performance

DR N/A N/A 1.69 ± 1.58

UC-Random 39.038 ± 22.157 3.607 ± 7.874 1.07 ± 0.78
UC-Average 22.296 ± 12.333 2.120 ± 4.129 0.92 ± 0.73
UC-MLP 36.875 ± 20.324 3.508 ± 6.569 0.93 ± 0.75
UC-CMA-ES 0.418 ± 0.502 0.029 ± 0.037 0.50 ± 0.32
UC-DiffOSI 0.001 ± 0.001 4.3e-05 ± 4.0e-05 0.51 ± 0.32

UC-Oracle 0.000 ± 0.000 0.000 ± 0.000 0.51 ± 0.32

Controller Details. The task controller is defined by the combination of the admittance control law
and the admittance control parameters θ = (kτ , kξ).

For the DR baseline, we optimize for the optimal admittance control parameters θ∗ in the simulation
environment gµ̂ .

The goal of the UC is to apply admittance control with the optimal control parameters mapped from
the identified µ̂. We collect a dataset (85 examples) to train the DNN-parameterized UC (2 hidden
layers, 512 units each with ReLU activation functions and a linear FC layer). The dataset contains
paired examples of µ̂true and corresponding optimal control parameters θ∗ = (k∗τ , k∗ξ).

System Identification. Our goal with system identification for the wiping task is to predict dynamics
parameters µ̂ to condition the UC. For all approaches with UC, we first collect a trajectory in the
environment (parameterized by some unknown µ̄) using canonical admittance control parameters θ̃.
From the collected trajectory, we uniformly sample 50 segments from the history to perform system
identification, where each segment contains (qt, qt+1, q

traj
t ).

Both UC-CMA-ES and UC-DiffOSI optimize for the µ̂ that minimize the MSE between the resulted
and target sampled segments from the collected trajectory.

For UC-MLP, we feed the same 50 segments to the MLP and predict µ̂. The MLP (same architec-
ture as UC) is trained on a dataset mapping trajectory segments to µ̂true. The µ̂true is uniformly
sampled, and the trajectories are generated by executing the UC with µ̂true 7→ θ̂.

Results. We evaluate all baselines on the wiping task and report our results in Table 3. For reference,
we also include UC using random or average µ̂ as baselines. UC with average µ̂ can be seen
as an offline system identification method. For simulation, we use a timestep of 1e-3s. For all
our experiments, we set Fz,goal = 3N and uniformly sample µ̄ ∈ [1, 100]. DR performs worse
than all UC-based approaches, which indicates that UCs provide useful physics-awareness for the
wiping task. UC-MLP performs slightly better. Both UC-CMA-ES and UC-DiffOSI outperform all
baselines and are close to UC-Oracle.

Evaluating Higher Number Dimensions. To further compare UC-CMA-ES and UC-DiffOSI, we
evaluate on the same wiping task where µ is higher dimensional. We increase the number of DoFs
with unknown stiffness and damping coefficients. The convergence curves can be found in supple-
mentary Figure 6. In both the 2D and 3D optimization cases, UC-DiffOSI converges more quickly
than UC-CMA-ES.

4.5 ROBUSTNESS TO VARYING DYNAMICS

In this example, we evaluate whether our proposed algorithm can handle varying dynamics through-
out an episode. During each episode, we change µ̄ at t = 250 (halfway through the episode) to a
randomly sampled µ′ ∼ [−0.6, 0.6]. As shown in Table 4, our algorithm achieves notably better
prediction accuracy than UC-MLP. However, the task performance is not as good as the oracle ver-
sion. This is because in order to detect abrupt changes in the system dynamics, we need to collect
sufficient data with the new system, which leads to a delay in identifying the correct parameters. For
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Table 4: Results on the Cartpole task with changing µ. We report errors on the parameter estimation
of µ (lower is better), as well as the overall task performance (higher is better). Mean and standard
deviation are reported. Results are averaged over 3 episodes.

Approach Mean Abs. Error (µ) Mean Abs. Rel. Error (µ) Task Performance

UC-MLP 0.13 ± 0.06 0.92 ± 0.84 192.33 ± 160.02
UC-DiffOSI 0.02 ± 0.01 0.27 ± 0.18 222.33 ± 89.09
UC-Oracle 0.00 ± 0.00 0.00 ± 0.00 435.00 ± 91.92

Table 5: Results on sim-to-sim transfer (Nimble to Bullet) on the Cartpole task. We report errors
on the parameter estimation of µ (lower is better), as well as the overall task performance (higher is
better). Mean and standard deviation are reported. Results are averaged over 20 models and 100K
timesteps.

Approach Mean Abs. Error (µ) Mean Abs. Rel. Error (µ) Task Performance

DR N/A N/A 297.26 ± 197.85
UC-DiffOSI 0.02 ± 0.04 0.03 ± 0.06 434.10 ± 110.88
UC-Oracle 0.00 ± 0.00 0.00 ± 0.00 451.00 ± 73.81

abrupt and large changes in µ such as the one we used, the task performance can be sensitive to the
accuracy of the prediction.

4.6 ROBUSTNESS TO NOVEL DYNAMICS MODELING

To evaluate the ability of our approach to generalize to environment variations beyond the training
range, we apply our cartpole controller to the same task implemented in PyBullet physics engine.
Due to differences in how the two physics engines solves the equation of motion and performs
integration, a policy trained in UC-DiffOSI (Nimble) does not transfer directly to PyBullet. As
shown in Figure 2b, our method still outperforms baselines. The gap is even larger between our
method and DR, which suggests that in cases where the dynamics gap is larger, UC-DiffOSI can
offer larger improvements.

5 CONCLUSION

UC-DiffOSI is a learning-based approach for training control policies that can operate in changing
and unknown environments. Our method combines domain adaptation with a differentiable physics
simulator by first training a Universal Controller that is conditioned on the environment param-
eters and then using a differentiable physics engine, NimblePhysics, to identify the environment
parameters from a recent history of robot sensory inputs. By using a differentiable physics engine,
we achieve efficient and generalizable system identification compared to prior methods based on
learned models or traditional system identification. We evaluate our method on two robotic control
problems: cartpole balancing and table wiping with a robot arm. Our method achieves superior
performance than the baseline methods and is able to handle changing or un-modeled dynamics.

There are promising directions that further extend our work. For example, our algorithm currently
assumes that the Universal Controller can optimally handle different environments given an accurate
estimation of the environment parameters. However, in real applications, the robot might encounter
situations that are beyond the capability of a pre-trained UC. Determining how to efficiently fine-
tune a UC with limited data is thus important future work, where differentiable physics engines could
play a pivotal role. In addition, this work focuses on rigid body environments, while real-world
environments are filled with objects that can deform. An interesting direction could be to extend
our approach to handle deformable objects while retaining high efficiency in the online system
identification. Finally, we plan to apply our approach to real robot hardware, requiring bridging the
sim-to-real gap and running the end-to-end control pipeline in real time.
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REPRODUCIBILITY STATEMENT

To maximize reproducibility, we describe our methodology in detail in Section 3 and our experi-
mental setup in Section 4. The code, based upon on the open-source physics simulator (Nimble-
Physics (Werling et al., 2021)), will be released upon publication to facilitate future research.
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Figure 4: Analyzing the effect of the number of samples (window size from history) used by UC-
DiffOSI vs. the absolute error µ prediction for the half cheetah task. N denotes the context window
size, and the number of samples required is N − 1.

A LATENCY

We additionally analyze the effect of the number of sampled used by DiffOSI on the prediction
accuracy of µ̂. Results are shown in Figure 4. We compare different context window sizes (2, 3, and
5) and plot the absolute µ error as a function of the episode timestep for the half cheetah task. We
find that a single sample (corresponding to a single step, with context window size of 2 containing
states before and after the step) is sufficient to obtain an accurate prediction of µ; more samples
does not help. A single optimization step of DiffOSI takes 2-3 milliseconds.

B WIPING

In this section we show additional diagrams and results on the wiping task. Figure 5a and Figure 5b
depict the wiping task as well as an overview of the system we implemented. Figure 6 shows a
comparison between CMA-ES and DiffOSI in terms of absolute error µ predictions.
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(a) Visualization of the wiping task
performed in NimblePhysics simu-
lation.

Wiping Canonical Control

Wiping Universal Control

Wiping Canonical Control Loss

backdrop

DiffOSI

Admittance 
Control

Target Environment Sample 

Admittance 
Control

DNN
Universal Control

(b) Overview of applying our method, UC-DiffOSI, on the wiping task.
From bottom to top, we first collect samples X̄ in the target environment
with a canonical wiping controller. Then, DiffOSI optimizes for the en-
vironment parameters µ̂ with the same controller. Finally, a pre-trained
DNN-parameterized UC takes the identified µ̂∗ and generates optimal
wiping control.

(a) 2D Optimization. (b) 3D Optimization.

Figure 6: Comparison of CMA-ES and DiffOSI on the parameter estimation task. Results are
averaged over 3 runs and all dimensions.
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