
Under review as submission to TMLR

’Explaining RL Decisions with Trajectories’:
A Reproducibility Study

Anonymous authors
Paper under double-blind review

Abstract

This work investigates the reproducibility of the paper " Explaining RL decisions with
trajectories “ by Deshmukh et al. (2023). The original paper introduces a novel approach in
explainable reinforcement learning based on the attribution decisions of an agent to specific
clusters of trajectories encountered during training. We verify the main claims from the
paper, which state that (i) training on less trajectories induces a lower initial state value, (ii)
trajectories in a cluster present similar high-level patterns, (iii) distant trajectories influence
the decision of an agent, and (iv) humans correctly identify the attributed trajectories
to the decision of the agent. We recover the environments used by the authors based
on the partial original code they provided for one of the environments (Grid-World), and
implemented the remaining from scratch (Seaquest and HalfCheetah, Breakout, Q*Bert).
While we confirm that (i), (ii), and (iii) partially hold, we extend on the largely qualitative
experiments from the authors by introducing a quantitative metric to further support (iii),
and new experiments and visual results for (i). Moreover, we investigate the use of different
clustering algorithms and encoder architectures to further support (ii). We could not support
(iv), given the limited extent of the original experiments. We conclude that, while some of
the claims can be supported, further investigations and experiments could be of interest.
We recognize the novelty of the work from the authors and hope that our work paves the
way for clearer and more transparent approaches.

1 Introduction

Reinforcement Learning (RL), formalized in the pioneering work of Sutton & Barto (2018), focuses on
learning how to map situations to actions, in order to maximize a reward signal. The agent aims to discover
which actions are the most rewarding by testing them. This addresses the problem of how agents should learn
a policy that takes actions to maximize the cumulative reward through interaction with the environment. A
recent pivotal focus in RL is the increasing attention on the explainability of these algorithms, a factor for
their adoption in real-world applications. Precedent work in the field of XRL include Puiutta & Veith (2020),
Korkmaz (2021) and Coppens et al. (2019). This reproducibility report focuses on the work of Deshmukh
et al. (2023), which proposes an innovative approach to enhance the transparency of RL decision-making
processes. Given the rising interest and applications of Offline RL (Levine et al. (2020),Kumar et al. (2020)),
obtaining explainable decision is an important desideratum. Deshmukh et al. (2023) introduces a novel
framework in the offline RL landscape. This new approach is based on attributing the decisions of an RL
agent to specific trajectories encountered during its training phase. It counters traditional methods that
predominantly rely on highlighting salient features of the state of the agent(Iyer et al. (2018)).

Despite proposing a novel approach, no subsequent work has built upon it. We believe this is primarily due
to the absence of code available online and the limited number of environments on which this method was
tested, which reduces its practical applications. Therefore, we intend to not only validate the original results
by Deshmukh et al. (2023), but also explore the robustness and generalizability of the proposed methodology
across different environments and settings. Our reproducibility study is a step toward ensuring that advance-
ments in this domain are both transparent and trustworthy, paving the way for a better understanding of
RL systems.

1

Under review as submission to TMLR

2 Scope of Reproducibility

Explainability and interpretability have recently become of great interest for the adoption of AI systems in
real-world applications. In particular, understanding and explaining the behavior and decisions of RL agents
is a crucial task considering the plausible large-scale adoption of these systems. On top of the aforementioned
ones in Section 1, other examples of Explainable Reinforcement Learning (XRL) studies include a high-level
decision language approach by Puri et al. (2019), Pawlowski et al. (2020) and Madumal et al. (2020). The
goal of this report is to analyze the reproducibility of the work by Deshmukh et al. (2023). Given the novelty
of the work, it follows that there is no existing benchmark to compare the results claimed by the authors.
Our contribution lies mostly in the implementation, verification, and interpretation per se of these results.
We proceed by verifying the claims made by the authors, which we summarize and re-state as follows here
below:

• Removing Trajectories induces a lower Initial State Value: Including all relevant trajectories
in the training data will result in higher or equal initial state value estimates compared to training
sets where key trajectories are omitted. This holds also for other metrics we may consider. The
definitions can be found in Section 3.3.

• Cluster High-Level Behaviours: High-level behaviours are defined as patterns within a trajectory
which lead to the same result and repeat over multiple trajectories. We aim to verify that different
embedding clusters represent different meaningful high-level and interpretable behaviors.

• Distant Trajectories influence Decisions of the Agents: Decisions performed by RL agents
can be influenced by trajectories distant from the state under consideration. In such scenarios looking
only at the features in the action space may not provide a full understanding of the behaviour of an
agent.

• Human Study: Humans may accurately identify the determinant trajectories that influenced the
decision of an RL agent.

3 Methodology

The original paper code is not yet publicly available. However, we obtained part of the code from the
authors: we were given the Grid-World environment, together with part of its related experiments. We
followed their code and expanded upon it, in order to verify the claims. On the other hand, we wrote from
scratch the implementation for Seaquest, HalfChetaah. Additionally, we added two environments to the
analysis of Deshmukh et al. (2023), Breakout and Q*Bert.

3.1 Environments

The investigations made in the paper regard three different types of Reinforcement Learning environments:

1. Grid-World, a grid-like environment in which the agent has a discrete state and action space. The
game consists of an agent starting from a point in the grid and moving inside it. The goal is to
reach a ’green’ cell while avoiding entering a ’red’ cell, while making the smallest number of steps
possible. The default grid has a size of 7x7.

2. Seaquest, a video-game-like environment in which the agent has a discrete state and action space.
The game consists in a submarine moving underwater. Here are more information on the Atari
Seaquest environment.

3. HalfCheetah, a video-game-like environment where the agent has a continuous state and action space.
The game consists of a 2-dimensional robot having a number of joints. The goal is to get the cat
shaped robot to run, by turning its joints using rotational forces (torque). Here are more information
on the HalfCheetah environment.

2

https://www.endtoend.ai/envs/gym/atari/seaquest/
https://www.endtoend.ai/envs/gym/atari/seaquest/
https://www.gymlibrary.dev/environments/mujoco/half_cheetah/
https://www.gymlibrary.dev/environments/mujoco/half_cheetah/

Under review as submission to TMLR

4. Breakout, one of the most played atari-produced video-games. The game consists of a paddle and
hitting a ball into a brick wall at the top of the screen, where the goal is to destroy all the bricks.
Here are more informations on Breakout environment.

5. Q*Bert is a video-game like environment. The game consists of an agent which hops on each cube
of a pyramid one at a time, and the goal is to change their color of into a specific one. Here are
more informations on Q*Bert environment.

3.2 Datasets

Datasets used in the analysis have the same composition between the five environments. Each dataset D
comprises of a set of nτ trajectories. Each τj is a k-step trajectory and each trajectory step is a tuple
τj = [τj,1, τj,2, ..., τj,k] where τj,i = (oi, ai, ri). Here oi is the observation in that step, ai is the action
taken in that step and ri is the per-step reward. However, collecting data depends on the environment in
which the experiments are made. Regarding Grid-World, agents are trained specifically to generate data
trajectories. For Seaquest data is instead downloaded from d4rl-Atari Repository, for Breakout and Q*Bert
from Expert-offline RL Repository, whereas in the case of HalfCheetah from d4rl Repository of Fu et al.
(2020).

3.3 Model Description

Across all three environments, trajectory attributions and explanations are made through the following 5
steps, also summarized in Figure 1:

Figure 1: Trajectory attribution process by Deshmukh et al. (2023)

a. In Grid-World trajectories are generated by training different agents using Model-based offline RL
through the Dyna-Q Algorithm (Appendix A.1). Trajectories are then encoded. In Grid-World
the authors define a Seq2Seq LSTM based encoder-decoder architecture. After training, only the
output of the encoder which corresponds to the trajectory embedding of Figure 1 is kept. On the
other hand, in all others (Seaquest, Breakout, Q*Bert and HalfCheetah) the trajectories encoders are
pre-trained. For the former, the model is obtained following the instructions on pre-trained decision
transformer. For the latter, the pre-trained model is downloaded from the GitHub repository pre-
trained trajectory transformer from Janner et al. (2021). Both architectures are GPTs. Last but
not least, these encodings are then embedded.

3

https://www.gymlibrary.dev/environments/atari/breakout/
https://www.gymlibrary.dev/environments/atari/qbert/
https://www.gymlibrary.dev/environments/atari/qbert/
https://github.com/takuseno/d4rl-atari
https://github.com/indrasweb/expert-offline-rl
https://github.com/Farama-Foundation/D4RL
https://huggingface.co/edbeeching/decision_transformer_atari
https://huggingface.co/edbeeching/decision_transformer_atari
https://github.com/jannerm/trajectory-transformer
https://github.com/jannerm/trajectory-transformer

Under review as submission to TMLR

b. The embeddings are passed through the XMeans clustering algorithm introduced by Pelleg et al.
(2000). The implementation used by the authors is the one from Novikov (2019). Using XMeans is
an arbitrary choice and in Section 4.5 we will investigate other options.

c. The cluster representations are embedded obtaining the representative embedding of given trajecto-
ries.

d. The so-called complementary datasets are obtained. That is, for each cluster we create a different
dataset where for each cluster j we retain all the data but those trajectories belonging to cluster j
itself. We obtain then 10, 8, and 10 complementary datasets for the three environments respectively,
and train for each complementary dataset new explanation policies and actions. In particular for
Seaquest, Breakout and Q*Bert we use DiscreteSAC Christodoulou (2019), whereas for HalfCheetah
we employ SAC Haarnoja et al. (2018). They are state-of-the-art Reinforcement Learning algorithms
merging Q-Learning with policy-optimization, used following the d4rl implementation by Seno &
Imai (2022).

e. In the end, the decision made in a given state is attributed to a trajectory cluster.

Evaluation of new policies and actions is done through 5 metrics:

• Initial State Value Estimate (ISV) · E(V (s0))
This metric is measuring the expected long-term returns in evaluating offline Reinforcement Learning
training. The higher the ISV value, the better our trained policy.

• Local Mean Absolute Action-Value Difference · E[|∆Qπorig(s)|]
Estimating how much the original policy differs from the new calculated one. High values are
desirable.

• Action Contrast Measure · E[1(πorig(s) ̸= πj(s))]
Quantifying the disparity between recommended actions coming from the new explanation policies
and original actions. Higher values are associated with better policies.

• Wasserstein distance · Wdist(d̄, d̄j)
It measures the distance over a metric space between the original data embedding set and the
complementary data embedding sets.

• Cluster attribution frequency · P(cfinal = cj)
Computes the probability of a cluster being responsible one for an RL decision.

A low Wasserstein distance and high Action Contrast Measure values correspond with a higher frequency
attribution.

3.4 Hyper-parameters

In order to reproduce the experiments of the paper we strictly used, when available, the same hyperpa-
rameters used by the authors. This was the case for Grid-World. Regarding Seaquest, Breakout, Q*Bert
and HalfCheetah we developed the code from scratch. Hence, we cannot be certain about the exact hyper-
parameters used by the authors. In all instances, we retained the default settings provided by the libraries.
If certain essential values were absent, we chose those that aligned with the settings used in Grid-World.

3.5 Experimental Set up and Code

Our experimental setup follows the approach of Deshmukh et al. (2023) in proving their claims. For claims
Clustering High Level Behaviour and Distant Trajectories influence Decisions of the Agent we visually inspect
the trajectories by plotting them, together with additional experiments. Removing Trajectories induces a
lower IVS claim is carefully taken care of by inspecting the 5 different metrics previously introduced. Human
Study claim is verified by replicating the analogous human study.

4

Under review as submission to TMLR

4 Results

In order to verify the previously stated claims, we proceed with an empirical evaluation, aiming to reproduce
the results obtained by the authors. The result from Grid-Word presents some variance with respect to the
ones reproduced in this article. Concerning the four other environments, they lack reproducibility due to
a total absence of original code. Additionally, we further investigate each claim by conducting additional
experiments. Most of these are done using the proposed number of trajectories by Deshmukh et al. (2023)
(60 in Grid-World 7x7, 717 in Seaquest, 1000 in HalfCheetah), unless specified otherwise.

4.1 Removing Trajectories induces a lower Initial State Value

Reproducibility: In the Grid-World environment, the authors introduced different metrics to show that
trajectories play an important role in obtaining high-quality policies. The values obtained by the authors
are reported in Table 1 of the original paper. We present our findings in Table 1, providing evidence for
the claim of the authors. The results are in general reproducible, with a small variation. The original
policy, trained on all the trajectories, achieves the highest ISV among all. We report the reproduced results
for the Seaquest environment in Table 2. We observe that the results are not similar to the ones in the
original papers. This discrepancy could be attributed to several factors. The setup process, involving the
installation of numerous packages and the use of outdated libraries, likely introduced minor computational
variances. Additionally, changes in game versions, such as upgrading Seaquest from v4 to v5, affected the
game-play dynamics, increasing the available action space. The choice of the difficulty level of the game
also influenced the dataset, as easier versions had shorter trajectories due to quicker game terminations.
Another motive for this is given by the limited amount of training we carried for our agent. In fact, given
computational limitations, we are not able to train for a long horizon of time. Moreover, the settings of
the experiments from the authors are unclear. There is no notion or explanation for what it means to train
an agent until saturation, and no further details on the hyperparameters of the experiments (for additional
details, see Appendix D). On the other hand, even given the differences and limitations explained above,
the Claim Removing Trajectories induces a lower Initial State Value still holds. The policy trained on the
whole dataset achieves a higher ISV than any of the other ones. At the same time, the other metrics are
consistent in terms of conclusions we can draw. Summarizing, the difference in reproducibility is due to the
limited details given by the authors, together with the limitation on our computational resources. Results
for HalfCheetah are reported in Table 6.

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 0.307 ± 2e-04 - - - -

0 0.305 ± 9e-12 0.011 ± 0.001 0.041 ± 0.047 0.241 ± 0.227 0.000 ± 0.000
1 0.303 ± 2e-03 0.007 ± 0.011 0.041 ± 0.042 0.371 ± 0.348 0.025 ± 0.050
2 0.304 ± 0e+00 0.002 ± 0.001 0.122 ± 0.049 0.924 ± 0.150 0.0000 ± 0.000
3 0.304 ± 0e+00 0.022 ± 0.001 0.0000 ± 0.049 0.111 ± 0.094 0.0000 ± 0.000
4 0.305 ± 1e-11 0.041 ± 0.004 0.122 ± 0.049 0.142 ± 0.096 0.0000 ± 0.000
5 0.300 ± 3e-03 0.029 ± 0.005 0.041 ± 0.055 0.036 ± 0.017 0.175 ± 0.231
6 0.287 ± 5e-03 0.061 ± 0.015 0.163 ± 0.049 0.040 ± 0.051 0.500 ± 0.237
7 0.301 ± 7e-03 0.030 ± 0.016 0.020 ± 0.059 0.099 ± 0.178 0.150 ± 0.183
8 0.305 ± 6e-13 0.008 ± 0.010 0.021 ± 0.049 0.022 ± 0.026 0.100 ± 0.200
9 0.304 ± 1e-11 0.017 ± 0.011 0.143 ± 0.043 0.061 ± 0.095 0.05 ± 0.061

Table 1: Quantitative Analysis and reproducibility study of Claim Removing Trajectories in-
duces a lower Initial State Value for Grid-World. Results show the mean ± standard deviation over
5 different seeds.

We perform a further analysis to highlight the reproducibility of the results. To have a better comparison of
our results with the one obtained by the authors, we report in Table 3 the average values for the metrics we
are investigating. We report an average across the clusters. We found (minimal) differences in our results.

5

Under review as submission to TMLR

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 3.569 ± 1e-04 - - - -

0 3.537 ± 2e-02 0.217 ± 0.020 0.125 ± 0.050 0.008 ± 0.005 0.050 ± 0.000
1 2.679 ± 7e-9 0.869 ± 0.002 0.375 ± 0.280 0.933 ± 0.130 0.000 ± 0.000
2 2.858 ± 3e-01 0.880 ± 0.020 0.000 ± 0.000 0.071 ± 0.010 0.025 ± 0.050
3 3.061 ± 1e-02 0.625 ± 0.003 0.125 ± 0.163 0.190 ± 0.090 0.000 ± 0.000
4 2.310 ± 0e+00 1.700 ± 0.044 0.000 ± 0.000 0.005 ± 0.001 0.175 ± 0.231
5 2.701 ± 5e-06 0.650 ± 0.051 0.125 ± 0.183 0.002 ± 0.040 0.600 ± 0.256
6 2.010 ± 4e-02 1.697 ± 0.016 0.125 ± 0.163 0.010 ± 0.020 0.000 ± 0.000
7 2.664 ± 7e-03 1.018 ± 0.001 0.000 ± 0.000 0.001 ± 0.00 0.150 ± 0.100

Table 2: Quantitative Analysis and reproducibility study of Claim Removing Trajectories in-
duces a lower Initial State Value for Seaquest. Results show the mean ± standard deviation over 5
different seeds.

The ISV for the original policy coincides to one of the original paper. We neglect the last column since all
probabilities sum to one. This further supports the claim of the authors.

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j)
Mean Clusters (Original Paper) 0.3027 0.0231 0.0821 0.0301

Mean Clusters(Reproduced) 0.3029 0.0230 0.0714 0.1098
|∆| 0.0002 0.0001 0.0107 0.0797

Table 3: Additional Quantitative Analysis on claim Removing Trajectories induces a lower
Initial State Value for Grid-World.

Additional Experiments: We further analyze if trajectories are important to obtain a good ISV. Specifi-
cally, we see if the clusters more often present in the attribution set hold a larger importance in influencing
the ISV. Figure 2 shows an inverse correlation between the number of times a cluster was responsible for a
change in the decision and the ISV of the policy trained without that cluster. This further validates claim
Removing Trajectories induces a lower Initial State Value, providing additional insights. Extra details can
be found in Appendix C.4.

Additionally, we report the ISV tables for the Q*Bert and Breakout games in Appendix section B.1, Tables
7 and 8. For Q*Bert, the highest ISV value is assigned to cluster 1, which invalidates the initial claim. On a
brighter note, for Breakout, the claim holds. In the following three experiments, due to the lack of evidence
for the other games, the experiments were discontinued for those two games. However, we report the shapes
of the clusters in Appendix section B.3 for the sake of completeness.

4.2 Cluster High-Level Behaviours

Reproducibility: In Grid-World, this claim can be verified by either observing their shared high-level
behavioural patterns or by using some quantitative metric. We deemed the latter to be a more appropriate
approach. Thus, we proceeded to define this starting from inspecting trajectories belonging to that cluster
and calculating the percentage of such manifesting a certain pattern. We show one trajectory for each of
the three analyzed clusters in Figure 3. The following high-level behaviours are retrieved: ’Achieving Goal
in Top right corner’, ’Mid-grid journey to goal’ and ’Falling into lava’. A practical explanation of this
self-defined metric can be done analyzing the trajectory behavior of ’Falling into lava’. This is spotted by
looking for a -1 reward value in the last but one state, and then calculating the percentage of trajectories
that have this wanted characteristic within each cluster. We repeat this for every cluster and pick those
with a percentage value greater then 90%. The procedure is then iterated for the other two categories, by
changing the characteristics to look for. In the ’Achieving Goal in Top right corner’ we look for a +1 reward
in the last but one state and going towards position 6. Whereas in the ’Mid-grid Journey to goal’ category
we look for trajectories starting in the middle of the grid and having a positive reward in the last but one

6

Under review as submission to TMLR

Figure 2: Correlation between Action Value and the Cluster Attribution Frequency. (i) The plot
obtained using the DBSCAN algorithms shows a (weak) correlation of the action value with the attribution
frequency of a cluster. We clearly observe that Cluster 1, which was the one attributed more often, is of
crucial importance. (ii) The plot obtained using XMeans clearly shows the phenomena of Claim 2. There is
a clear negative correlation between the two quantities, which highlights the importance of data trajectories.
Again, the cluster attributed to most agent decisions, i.e. Cluster 7, constitutes a fundamental portion of
the training data that leads to a high-value policy.

state. These align with the behaviours found by the authors. The claim is thus supported. Note that cluster
labels vary from those highlighted by the authors.

Figure 3: Reproducing and verifying claim Cluster High-Level Behaviours in Grid-World. Clus-
ter 1 showcases the presence of behaviour ’Achieving Goal in top right corner’. Cluster 6 of ’Mid-grid journey
to goal’ and cluster 2 of ’Falling into lava’. Three High-Level Behaviours found match those highlighted by
the authors.

In our Seaquest analysis, we tried to replicate the cluster findings from the original study in Figure 4.
We noticed differences in the number of data points and their distribution. Converting 717 trajectories
into around 24,000 sub-trajectories for the XMeans algorithm revealed more data points than shown in the
original graph of the authors. This discrepancy could be due to two reasons: (i) the choice of game mode
and data source might affect the length of observations, which was not detailed by the original authors, and
(ii) the authors might have used a more complex method to aggregate data post-encoding than the simple
averaging they described.

Additionally, when trying to interpret the high-level meaning of those clusters, we obtained some discrep-
ancies. Results in Figure 5 show a strong link between the ’Filling Oxygen’ behavior and cluster 7, while
the other behaviors remained unclear, questioning the specific claims of the authors. However, this does
not undermine the broader notion of ’meaningful clusters’, but, given the scope of this paper, finding those
interpretations was deemed excessively time-consuming and beyond our current objectives. More details can
be found in Appendix B.2.

7

Under review as submission to TMLR

a. Author Seaquest b. Our Seaquest c. Author HalfCheetah d. Our HalfCheetah

Figure 4: Clustering differences in Seaquest and HalfCheetah: This figure contrasts the clustering
outcomes between our study and the original paper. Figure (a) and (c) illustrate the clusters of the authors for
Seaquest and HalfCheetah, while figure (b) and (d) reflect our observations, revealing significant differences
in distribution and amount of data points. These discrepancies may highlight the influence of game mode
choices, dataset specifics, and data aggregation techniques on clustering outcomes.

In the context of the HalfCheetah environment, assessing the significance of clusters proved challenging due
to the high-dimensional and intricate nature of the observation space.

(a) Average time spent by each cluster
filling their oxygen tanks

(b) Average number of submarine de-
structions per cluster

(c) Average surface combat encounters
per cluster

Figure 5: This figure evaluates high-level player behaviours in the clusters of the Seaquest game.
Sub-figure (a) shows the average time spent on filling oxygen, sub-figure (b) details the average submarine
explosion, and sub-figure (c) counts surface combat encounters. These insights collectively enhance our
understanding of the meaning within each cluster.

Additional Experiments: The three initial patterns explained in 4.2 are found both when using XMeans
and DBSCAN and also when training with a higher number of trajectories (250). In this section, we
investigate whether other meaningful high-level behaviours exist. We successfully identified an additional
pattern. That is, each trajectory belonging to the same cluster has the same length. However, this last
behaviour emerges only when using 60 trajectories with both XMeans and DBSCAN. It is not found when
the number of trajectories used increases to 250. This phenomenon may arise due to the increased granularity
of each cluster, a scale varying with the number of trajectories. Namely, by keeping the number of clusters
fixed, less granularity is obtained. Thus each cluster can obtain worse cluster representations by grouping a
larger number of trajectories together. However, this does not negate the claim of the authors because the
original behaviours are also spotted with a higher number of trajectories.

4.3 Distant Trajectories influence Decisions of the Agents

Reproducibility: We start by analyzing claim Distant Trajectories influence Decisions of the Agents in the
discrete Grid-World environment. The authors perform a qualitative analysis to support their claim. We try
to reproduce the results and the plots given the code provided by the authors. The hyperparameters are set
equal to the default values. The results of Figure 2 in the paper by Deshmukh et al. (2023) are reproducible
using the code given by the authors. Note that it may take more than one attempt to reproduce these results.
This is due to the possible variation of clusters from each iteration of the code. Nevertheless, we found that
these results were easily reproducible with little effort. Results are shown in Figure 6. The trajectories (i),(ii),
(iii) are equivalent to the ones indicated in the paper by the authors. We plot an additional trajectory which

8

Under review as submission to TMLR

is part of the attributed cluster. It is important to stress that also (iv) is distant from the state (1, 1) we
are considering. This investigation confirms the claim of the paper. However, given the highly qualitative
justification provided by the authors, we seek a more structured and quantitative way of analyzing this claim.
We defer these experiments to Section 4.3.

Figure 6: Plot of grid and trajectories reproducing results and verifying Claim DTAG. The
original optimal action is ’right’ in the state (1,1). When removing the trajectories belonging to the attributed
clusters, all decisions are equally optimal, i.e. ’right’, ’left’,’ up’, or ’down’. This decision is attributed to 8
different trajectories, of which 4 plotted here above.

Additional Experiments: Reproducibility section 4.3 highlighted how trajectories far from our state of
interest can influence the decision of our agent. However, it is not explicitly clear to what extent this is
true. We strive to perform a more rigorous analysis, considering each state with attributed trajectories
responsible for a decision change. For each of these attribution sets, we compute the average distance from
the state to its trajectories. A rigorous definition of how we calculate the average and the distances can be
found in Appendix C.3, together with a detailed pseudo-code in 1. In our experiments, two different cluster
algorithms are employed. For DBSCAN we set ϵ = 2.04. Ten final clusters are obtained. No seed is needed
given the deterministic nature of DBSCAN. The other cluster method is XMeans. The seed is set to 0 and 99
respectively for the initialization of the centers and for the XMeans algorithm. We perform our experiments
on the Grid-World Four Room Environment introduced by Sutton et al. (1999). Its size is 11x11. Given
the larger grid and the scope of our experiment, we generate a higher number of trajectories. Namely, we
produce 250 trajectories that end in a positive terminal and 50 trajectories that achieve a negative reward.

Results: Figure 7 shows the Bar-plot of these trajectories. We can observe that the average lengths are
mostly larger than 6 in both settings. Interestingly, we note that using the XMeans algorithm we have no
state which is explained only by trajectories passing through it. From the results of the plot, we conclude
that indeed distant trajectories are important to explain the decision of an RL agent, further confirming
claim Distant Trajectories influence Decisions of the Agents.

4.4 Human Study

In order to verify this claim we reproduce the experiments as well as the study setup of the authors.
Deshmukh et al. (2023) study is conducted on 10 people, which may not itself be sufficient to support
the claim. In trying to improve this, we doubled the interviewees to 20 people, each of whom first received
an explanation of how Grid-World navigation works. Following this explanation, they all gained a full
understanding of the navigation process. 40% are university graduates in mathematics and computer science.
45% are student graduates in engineering. The remaining 5% come from different study backgrounds. We
begin by showing two Attributed Trajectories (Attr traj 1 and Attr traj 2), one Random Trajectory, and one
Trajectory belonging to an Alternate cluster for each state. We investigate two questions. (i) Which single
trajectory do you believe best explains the action suggested? (ii) Can you point out all the trajectories you
believe explain the action suggested?

9

Under review as submission to TMLR

Figure 7: Distances between states and their attributed trajectories. On the x-axis, we have 4 bins,
respectively in the range 0-3, 3-6, 6-9, and 9+. (i) shows the results using the DBSCAN algorithm. We
see that we have many trajectories with a length bigger than 9. The states that fell in the blue bin were
explained only by 1 or 2 trajectories. This is due to how DBSCAN constructs the clusters, which favors a
big variance in size between them. We had then a bigger chance of having clusters with few trajectories that
were all passing through an attributed state. (ii) shows the results using the XMeans algorithm. We note
again that the majority of the states had a large average distance to their attributed trajectories.

Averaging between both states, the results on Question (i) highlight how almost ∼ 72.5% of the interviewees
correctly identify one of the two attributed trajectories. For Question (ii), Figure 8 shows that in ∼ 63%
of the cases, humans can correctly identify all the attributed trajectories. The results obtained are similar
to the ones of the authors. However, given the very limited sample size of our experiments, we do not have
enough evidence to support the claim.

Figure 8: Human Study. The plot represents human answers to the two questions introduced. Attr traj
1 and Attr traj 2 are trajectories belonging to the cluster attributed for the decision of the agent in the
specific state. Random stands for a randomly selected trajectory from the whole set. Whereas Alternate is a
randomly selected trajectory from the whole set without those belonging to the attributed cluster. The results
presented are for states (1,1) and (5,2). In both states we notice a decent level of human understanding. This
suggests a meaningful understanding of which trajectories influence the agent’s decision-making process.

4.5 Results beyond original paper

In this section we go beyond the author claims and try to experiment with the authors design choices like
the employed encoder method as well as cluster algorithm.

Improving clustering algorithm: XMeans has proven to be useful in determining almost accurately the
correct clustering trajectories, we propose a different approach by using DBSCAN algorithm. Introduced
in Ester et al. (1996), DBSCAN is a non-parametric density-based clustering method that groups together
sets of points packed together. The density-based characteristic of DBSCAN, differently to X-Means, is
not relying on the assumption that clusters are spherical-shaped. It is rather able to find clusters with any

10

Under review as submission to TMLR

kind of variance between the points. This new algorithm could lead to new clusters, and possibly different
insights from which we may be able to extract new information. Results: Figure 9 shows a better visual
clusters representation computed by DBSCAN. This outcome is particularly visible in the reduced amount
of overlaps which are instead present in XMeans. Additional metric results are available in Appendix C.

Figure 9: Clustering Methods: XMeans vs DBSCAN . Through DBSCAN we obtain a lower number
of clusters which eliminates overlaps between XMeans clusters 2, 3 and 0, 1. This better visual representation
is mainly due to a difference in the algorithmic process.

Different encoder techniques: In Grid-World Environment the LSTM-based Seq2Seq encoding used by
the authors has proven to be efficient. However, in this section we set out to experiment with different
encoding techniques. Our hope is that they could provide a better hidden representation for trajectories.
We employed two kinds of pre-trained encoders: Trajectory Transformer originally proposed in Janner et al.
(2021). The model takes as input data in the form (state, action, reward) matching perfectly with the
one provided by the authors. BERT base model Devlin et al. (2019). Pre-trained using Masked-Language
Modelling, its capability of being adapted to many scenarios made it a good candidate to replace the LSTM
in the paper. Results: Experiments are performed over 250 trajectories. We defer the table of results to 10,
as we obtain no notable increase in performance across all metrics. Additionally, an inspection of high-level
behaviors of clusters, as in section 4.2, highlights similar results.

5 Discussion

Across this work, we performed several experiments aimed at reproducing key findings of Deshmukh et al.
(2023). The outcomes of this reproducibility study partially confirm their claims.

Grid-World Seaquest Half-Cheetah Breakout Q*Bert
Removing trajectories ✓ ✓ ✗ ✓ ✗

Cluster behaviours ✓ ✗ ✗ ? ?
Distant trajectories ✓ ? ? ? ?

Human study ? ? ? ? ?

Table 4: Summary: Reproduced Results per Game for Each Claim. A ✓represents validated results, a
✗denotes an invalidated statement for the specific game, and ?indicates that we cannot confirm or deny
the claim of the authors for this specific game. This may arise from time constraints or because the claim
itself lacks sufficient precision, making it impossible to definitively confirm or refute even with additional
experimentation.

Reproducibility: As reported in table 4, we can sustain claim Removing Trajectories induces a lower
Initial State Value for Grid-World, Seaquest and Breakout. Our results for HalfCheetah and Q*Bert do not
sustain this claim. The claim Cluster High-Level Behaviours is accepted only in Grid-World. In Seaquest we
identified only one out of three high-level behaviors. This is not enough to support the claim. We were not
able to obtain any high-level behaviour for HalfCheetah, Breakout and Q*Bert. On claim Distant Trajectories

11

https://huggingface.co/docs/transformers/model_doc/trajectory_transformer
https://huggingface.co/bert-base-uncased

Under review as submission to TMLR

influence Decisions of the Agents, we obtained results consistent with the original ones, supporting the claim
for Grid-World. Our additional experiments further show that distant trajectories have a significant impact
on the decision of the agent. The Human Study was carried out only in Grid-World. While we obtained
similar results, the claim was superficially investigated by the authors. Their original experiments were
not sufficient to support Human Study. Our survey, although more extensive, was limited due to time and
resources constraints. As a consequence, we can not confirm Human Study.

Code: Across environments, reproducibility varies significantly due to code availability. The Grid-World
code provided by the authors lacked a proper seeding mechanism. Despite this, similar reproducibility was not
highly jeopardized. All of our experiments 4 are completely reproducible. First, in Seaquest and HalfCheetah
the code was unavailable. Relevant implementation details, hyperparameters, and training techniques were
not mentioned in the paper. We coded everything from scratch. This includes the whole trajectory attri-
bution process, environment requirements, library dependencies, training and evaluation loops, and many
more. In spite of these difficulties, we were able to perform the original experiments, supporting most of
the claims of the authors when obtaining relevant evidence. We provide our complete code implementation.
Additional training and implementation details can be found in Appendix D.

What was easy: The authors shared the code for the Grid-World environment directly with us, although
it is not publicly available online. This facilitated our ability to try to reproduce some of the results of the
paper for this environment. In addition, the code provided was relatively easy to understand and adapt
in order to expand our reproducibility study further. This allowed us to extensively produce additional
experiments.

What was difficult: As mentioned throughout previous sections of the paper, the implementations for the
Seaquest and HalfCheetah environments were not provided to us, thus leading to our implementation from
scratch. Although very relevant to the results, the paper only briefly mentions Additional Training Details
in the appendix, lacking any other explanation about the Python environment being used, any data pre-
processing stage, or tweaks required for compatibility. With regards to the environment issues, it is worth
noting that, being the field very novel and active, some of the libraries implemented do not get developed
any longer. This may be the case of ’mujoco-py’, the library on which HalfChetaah relies on: because of this,
we had to backtrack compatibility between dependencies of libraries that are in constant development and
some whose support has been interrupted for years. On top of this, we also encountered compatibility issues
between different Operative Systems: MacBooks produced post-2020 abandoned Intel-based processors to
adopt natively built Apple Silicon processors. This required the community to rebuild packages to support
a new architecture (arm64 vs x86/x64), in order for these libraries to be able to run on these devices.
Co-occurrently, support for Mujoco-py has been halted, thus requiring a somewhat convoluted installation
procedure, consisting of manual pointers definition, third-party compilers requirement and many other details
we decided not to bother the reader with. Needless to say, the lack of code in this delicate instance, required
extensive trial and error experimentation with dependencies and installation procedures, thus slowing down
the overall process for housekeeping operations rather than actual development. We believe the lack of
transparency with regards to the aforementioned environments led to such striking differences in absolute
value results between our reproduced results and the original ones: again, details on the training procedure
and model implementation should have been made public, given the rather complex nature of the task at
hand, along with hyperparameters setup, which we go over in further detail in Appendix D.

Communication with the authors: Communication with the authors was carried out by the course
coordinators themselves at the beginning of the course. We received the aforementioned subset of the
original implementation halfway through the course, thus leading to the issues discussed in the previous
section. No further communication with the authors has been conducted by us.

Key takeaways and original paper limitations: In our investigation we find that the proposed method-
ology is of questionable effect, as it is not yet generalizable to many environments. Another key limitation is
allowing only one cluster per attribution. We believe that allowing the method to consider trajectories from
more then one cluster could lead to more a comprehensive analysis. Nonetheless we believe that this work
Deshmukh et al. (2023) and its proposed attribution process have the possibility of unlocking new streams
of research into a better understanding of Reinforcement Learning systems.

12

Under review as submission to TMLR

References
Petros Christodoulou. Soft actor-critic for discrete action settings, 2019.

Youri Coppens, Kyriakos Efthymiadis, Tom Lenaerts, Ann Nowé, Tim Miller, Rosina Weber, and Daniele
Magazzeni. Distilling deep reinforcement learning policies in soft decision trees. In Proceedings of the
IJCAI 2019 workshop on explainable artificial intelligence, pp. 1–6, 2019.

Shripad Vilasrao Deshmukh, Arpan Dasgupta, Balaji Krishnamurthy, Nan Jiang, Chirag Agarwal, Georgios
Theocharous, and Jayakumar Subramanian. Explaining rl decisions with trajectories, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In kdd, volume 96, pp. 226–231, 1996.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-
driven reinforcement learning, 2020.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-
driven reinforcement learning, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290, 2018. URL http:
//arxiv.org/abs/1801.01290.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Pi-
cus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with
NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https:
//doi.org/10.1038/s41586-020-2649-2.

Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia Sycara. Transparency and
explanation in deep reinforcement learning neural networks. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pp. 144–150, 2018.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. In Advances in Neural Information Processing Systems, 2021.

Ezgi Korkmaz. Investigating vulnerabilities of deep neural policies. In Cassio de Campos and Marloes H.
Maathuis (eds.), Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence,
volume 161 of Proceedings of Machine Learning Research, pp. 1661–1670. PMLR, 27–30 Jul 2021. URL
https://proceedings.mlr.press/v161/korkmaz21a.html.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. CoRR, abs/2006.04779, 2020. URL https://arxiv.org/abs/2006.04779.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. CoRR, abs/2005.01643, 2020. URL https://arxiv.org/abs/2005.
01643.

Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. Explainable reinforcement learning through
a causal lens. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 2493–2500,
2020.

Andrei V. Novikov. Pyclustering: Data mining library. Journal of Open Source Software, 4(36):1230, 2019.
doi: 10.21105/joss.01230. URL https://doi.org/10.21105/joss.01230.

13

http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://proceedings.mlr.press/v161/korkmaz21a.html
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://doi.org/10.21105/joss.01230

Under review as submission to TMLR

Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. Deep structural causal models for tractable
counterfactual inference. Advances in Neural Information Processing Systems, 33:857–869, 2020.

Dan Pelleg, Andrew W Moore, et al. X-means: Extending k-means with efficient estimation of the number
of clusters. In Icml, volume 1, pp. 727–734, 2000.

Erika Puiutta and Eric M. S. P. Veith. Explainable reinforcement learning: A survey. CoRR, abs/2005.06247,
2020. URL https://arxiv.org/abs/2005.06247.

Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishnamurthy,
and Sameer Singh. Explain your move: Understanding agent actions using specific and relevant feature
attribution. arXiv preprint arXiv:1912.12191, 2019.

Matthias C Rillig, Marlene Ågerstrand, Mohan Bi, Kenneth A Gould, and Uli Sauerland. Risks and benefits
of large language models for the environment. Environmental Science & Technology, 57(9):3464–3466,
2023.

Takuma Seno and Michita Imai. d3rlpy: An offline deep reinforcement learning library, 2022.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Machine learning proceedings 1990, pp. 216–224. Elsevier, 1990.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

14

https://arxiv.org/abs/2005.06247

Under review as submission to TMLR

A Methodology

A.1 Model description

Dyna-Q Algorithm
Introduced in Sutton (1990), Dyna-Q is a Model based Reinforcement Learning Algorithm. Conceptually
it is an algorithm that illustrates how real and simulated experience can be combined in building a policy.
Dyna-Q algorithm (10) introduced in Section 3.3 starts by initializing a so-called Q table. A table made of
all possible states vs all possible actions. The model also contains a state, action, next state, and reward
tuples. This way the model can be both improved and queried to get the next state in the planning part. The
process begins by observing state S (a), and then selecting the next action A, in a greedy manner (b). After
taking the action A, we observe a reward R and a state S′. These two values are then used in the formula
in (d) to update the Q table cell corresponding with state s and action a. After these classic Q-Learning
steps we perform a loop (f) which consists of the added Dyna-Q part. First, we randomly select a state S
and an action A and then we deduce a new state S′ and a new reward R which will then be used to update
the Q-table as before.

Figure 10: Dyna-Q algorithm

A.2 Computational Requirements & Environmental Impacts

The experiments were performed using a MacBook with Apple M2 Pro silicon chip with 10 CPU cores (1),
MacBook with Apple M1 silicon chip with 8 CPU cores (2), and a Microsoft Windows 11 Pro with Intel(R)
Core(TM) i7-10710U with 6 CPU cores (3). Most of the experiments in Grid-World run easily and in seconds
on our local machines. On the other hand the running time for Seaquest and HalfCheetah with machine (1),
can vary between 50 minutes (with 10 steps per epoch) and 8 hours (with 100 steps per epoch). We employed
pre-trained models both for Seaquest and HalfCheetah as explained in Sections 3.3 and 3.2. The same is done
for some additional experiments on Grid-World (Section C.2). Discussion on the environmental impact of
these models has been addressed in previous literature (Rillig et al. (2023)). In addressing our own ecological
footprint, we used the Code Carbon Tool (on machine (1)) to estimate our total energy consumption in
obtaining cluster attributions. In Grid-World the estimated consumption is approximately 0.000170 kWh of
electricity. Whereas in Seaquest we use 0.005133 kWh of electricity. Similarly, in HalfCheetah we consume
0.004783 kWh. We then use the CO2e equation to obtain the corresponding CO2 emissions. The formula

CO2e = CI · PUE · P · t

is comprised of CI Carbon Intensity (fixed value of 0.954), PUE Power Usage Effectiveness (also fixes to
1.58), P Power required (estimated through Code Carbon Tool) and the training time t in hours. Our final
emissions are available in Table 5.

15

https://codecarbon.io

Under review as submission to TMLR

π Grid-World Seaquest HalfCheetah
CO2e lbs (10 steps per epoch) 0.0000021 0.0064470 0.0060070

CO2e lbs (100 steps per epoch) - 0.0618965 0.0576760

Table 5: Emission levels in training our models from top to bottom. The results highlight our CO2
equivalent levels in training the models. Seaquest and HalfCheetah were both trained using a two different
number of iterations per epoch. However, Grid-World was not trained with a different configuration as a
good performance was attained when using the standard hyper-parameters employed by the authors.

B Results reproducing original paper and verification of the claims

B.1 Removing trajectories induces a lower ISV

Despite the challenges in replicating the exact clustering outcomes for Half Cheetah as highlighted earlier,
6 reveals some interesting patterns. The table provides a quantitative analysis that, despite reproducibility
issues, still shows consistent trends across different metrics.

π E[V (s0)] E[|∆Qπorig (s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 3.3615 - - - -

0 3.4558 0.0942 0.0038 1.0000 0.1000
1 3.4691 0.1076 0.0028 0.3047 0.3000
2 3.2958 0.0656 0.0035 0.8730 0.0000
3 3.3621 0.0006 0.0017 0.8483 0.0000
4 3.3624 0.0009 0.0022 0.2986 0.6000
5 3.5280 0.1665 0.0041 0.5340 0.0000
6 3.3444 0.0170 0.0016 0.5245 0.0000
7 3.3206 0.0408 0.0052 0.6162 0.0000
8 3.3745 0.0602 0.0028 0.6039 0.0000
9 3.3826 0.0337 0.0013 0.7855 0.0000

Table 6: Quantitative Analysis and reproducibility study of Claim Removing Trajectories in-
duces a lower Initial State Value for HalfCheetah

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 1.075 - - - -

0 0.962 0.116 1.000 0.333 0.000
1 1.118 0.045 0.000 0.501 0.933
2 1.104 0.031 0.000 1.000 0000
3 1.006 0.0945 0.933 0.158 0.067
4 1.059 0.029 0.986 0.167 0.000

Table 7: Quantitative Analysis and reproducibility study of Claim Removing Trajectories in-
duces a lower Initial State Value for Q*bert.

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 0.812 - - - -

0 0.797 0.018 0.512 0.579 0.000
1 0.811 0.001 0.000 1.000 0.000
2 0.798 0.013 0.000 0.954 0.000
3 0.764 0.048 1.000 0.159 0.000
4 0.791 0.021 0.000 0.254 1.000

Table 8: Quantitative Analysis and reproducibility study of Claim Removing Trajectories in-
duces a lower Initial State Value for Breakout.

16

Under review as submission to TMLR

B.2 Meaningful Clusters

In order to obtain Figure 5, we specifically analyzed the oxygen tank indicator at the bottom of the
screen, recognizable by its unique color. An increase in the bar is interpreted as the submarine refilling
its oxygen tank, while a empty tank resulted in a submarine explosion. This might occur either from
running out of oxygen or sustaining damage from enemies. For the ’Fighting with head out’ behavior, we
monitored the position of the submarine within the top 30 pixels of the screen. We would consider it as
engaging in surface combat if it remained in this area for more than 10 out of the 30 frames in a sub-trajectory.

The analysis highlights distinct behaviors: Cluster 7 is linked to ’Filling Oxygen’, and Clusters 2 and 3 to
’Submarine Burst’, with no clear trend for ’Fighting with Head Out’. 11 shows overlapping behaviors across
clusters, complicating the attribution of specific actions. Consequently, the most representative cluster
appears to be the one of refueling oxygen: two frames depict the submarine at the surface (directly implying
oxygen refueling), while the remaining three suggest imminent game resets, indirectly associated with oxygen
refill.

(a) Filling Oxygen – Cluster 9

(b) Submarine Bursts – Cluster 2

(c) Fighting with Head Out – Cluster 5

Figure 11: Reproducing Figure 8 of the authors paper. High-level Behaviours found in clusters
for Seaquest formed using trajectory embeddings produced using decision transformer. The figure shows
3 example high-level behaviours along with the action description and id of the cluster representing such
behaviour

B.3 Clusters for Q*Bert and Breakout

Displayed in Figure 12 are the clusters for Q-Bert and Breakout. The choice of five clusters was made for
both games, as they independently feature significantly more rewards within the trajectories as well as fewer
action states (only 6 and 4, respectively), compared to their Seaquest counterpart. Consequently, we opted

17

Under review as submission to TMLR

to reduce the length of the sub-trajectories to 15 and to decrease the number of clusters to account for these
differences.

(a) Clusters Q*Bert (b) Cluster Breakout

Figure 12: Clusters for the new games Q*Bert and Breakout

C Results beyond original paper

C.1 Improving clustering algorithm

Table 9 is mirroring the results produced in Table 1. In this section however we produce metrics results
using DBSCAN clustering algorithm, instead XMeans. As introduced before the values are similar to those
attained in the original table.

π E[V (s0)] E[|∆Qπorig (s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j) P(cfinal = cj)
orig 0.3059 - - - -

0 0.3056 0.0018 0.0613 1.0000 0.0000
1 0.2980 0.0326 0.1429 0.0009 0.1250
2 0.3045 0.0406 0.1225 0.0020 0.0000
3 0.3058 0.0281 0.0000 0.00007 0.0000
4 0.3045 0.0026 0.1021 0.0003 0.5000
5 0.3045 0.0288 0.1225 0.0005 0.0000
6 0.2859 0.069 0.0817 0.0018 0.3750
7 0.3058 0.0204 0.0205 0.0457 0.0000

Table 9: Quantitative Analysis of DBSCAN algorithm

C.2 Implementing different encoder techniques

π E[V (s0)] E[|∆Qπorig(s)|] E[1(πorig(s) ̸= πj(s))] Wdist(d̄, d̄j)
Mean Clusters (Original Paper) 0.3451 0.0224 0.9035 0.1821

Mean Clusters (Traj. Transformers) 0.3413 0.0325 0.039 0.0723
Mean Clusters (BERT) 0.3427 0.04074 0.8645 0.1098

Table 10: Quantitative comparison of LSTM, Bert and Trajectory Transformers

C.3 Are distant trajectories really important?

Distance State-Trajectory and its importance Let us formally define the following variables:

• S: set containing all states with at least one attributed trajectory

18

Under review as submission to TMLR

• Ts: set of all the attributed trajectories for the state s ∈ S

• ti,s: i-th trajectory in the attribution set Ts. Each trajectory i has length li

• a∗(b; c): distance from point b to point c in our grid. It is calculated by implementing the A∗ search
algorithm.

• d(ti,s; s): distance from state s to trajectory ti,s. Mathematically, for each point pj ∈ ti,s,

d(ti,s; s) =
{0 : if ∃ pj ∈ ti,s s.t. pj = s

1
li

∑li

j=1 a∗(pj , s) : otherwise

• d(Ts, s): Average distance of the attribution set Ts from its respective state s. We implement it as:

d(Ts, s) = 1
|Ts|

|Ts|∑
k=1

d(tk,s; s)

Given the elements introduced above, we can calculate the average distance of a state from its attributed
trajectories, denoted by d(Ts, s). Note that in the formulation above, if a trajectory ti,s passes through the
state s, we set d(tk,s; s) = 0. This is a design choice, which can be further justified. In fact, we are interested
in considering ’far’ only the trajectories where there is no interaction with the state s itself.

We designed and implemented Algorithm 1. We provide a high-level pseudo-code for a better understanding
of the steps we perform.

Algorithm 1: Algorithm for calculating the average distance State - Attributed Trajectories
1 Inputs: S, Ts for s ∈ S
2 foreach s ∈ S do
3 D = empty list
4 foreach ti,s ∈ Ts do
5 M = empty list
6 foreach pj ∈ ti,s do
7 point distance = a∗(pj , s)
8 append point distance to M
9 end

10 end
11 m = Average of the list M
12 Append m to D
13 Set m = 0
14 end
15 return the list D. It contains the average distances of each state s from its attributed trajectories.

We introduced a clear metric, together with an algorithm that provides details on how to compute it.

C.4 Are data trajectories important to obtain a good action value? Are some more important than
others?

In this section, we aim to provide further details on experiments on the assumptions of Claim Removing
Trajectories induces a lower Initial State Value. Values from both the original paper and from Table 1 suggest
that data trajectories are important to obtain a good ISV for our state. We are interested to see if some
of the clusters are more important than others in determining this value. The setting of the experiments is
equivalent to the one introduced in Section 4.3

Figure 2 shows that data trajectories play a factor in obtaining a satisfying action value. For simplicity, the
original policy is not plotted, but its value is higher than any other policy in both cases. This again connects

19

Under review as submission to TMLR

with and proves claim Removing Trajectories induces a lower Initial State Value, even with a higher grid size
and number of trajectories. The plot illustrates the action value for each of the policies π1, . . . , πm illustrated
in Figure 1. For each cluster Ci, we show the action value obtained with the policy πi, plotted against the
number of times this cluster Ci has been the responsible cluster for a change in the decision of the agent
(on the x-axis). In Figure 2 we observe a clear inverse correlation between the two. Clusters that have been
attributed more often to a change in decision are important in obtaining a high ISV. In fact, keeping this
data out of our policy training induces a lower action value for our state. This shows that the higher the
importance of the cluster, the higher the gap in performance. We believe this is an interesting result, which
further indicates the conceptual importance of the trajectory attribution method. In fact, it is not only a
matter of the number of trajectories we train on. We found that specific clusters can hold a larger weight in
the decision of an agent. This suggests that some trajectories are more fundamental than others.

C.5 Additional Hyper-Parameters Experiments

In this section we investigate the change in metrics when hyperparameters regarding the agent training are
changed. We play with the values of alpha, gamma and number of evaluation epochs. We proceed to generate
offline data for each combination of the above mentioned hyperparameter and successively train the authors
Seq2Seq model.

The best results in terms of loss value are shown in Table 11. However while we reach better loss results we

Table 11: Experimental Results

Alpha Gamma Eval. Epochs Loss Value
0.1 0.95 15 0.0678
0.1 0.5 5 0.0965
0.1 0.5 10 0.0965
0.01 0.01 5 0.0369
0.001 0.1 15 0.0815

do not necessarily obtain better overall metrics.

D Training setting for Seaquest and HalfCheetah

As mentioned throughout the paper, we implemented from scratch the code for the Seaquest and HalfCheetah
environments. Due to the lack of details provided in the original study, we provide our own setup for the
training of the aforementioned environments.

For Seaquest, we train a Discrete SAC model based on the original work by Christodoulou (2019), developed
by Seno & Imai (2022). Observations for the game were in the form of 84x84 greyscale frames, which we
stacked, forming for each observation a 4x84x84 array. This allowed the model to incorporate some degree of
temporal awareness, also referred to as context in the original work. Subsequently, in order to preserve spatial
information, we implemented a custom encoder for the model, in the form of a Convolutional Neural Network.
We are not aware whether the authors pursued this approach in their study, but due to the nature of the data
itself, we are sure this implementation helped the training and performance by a significant margin. Once
more, due to the nature of the data (images), we implemented a ’pixel’ scaler for preprocessing purposes to
act as a pixel value normalizer.

For HalfCheetah, on the other hand, we implemented a SAC model based on the original work by Haarnoja
et al. (2018). We kept the standard hyperparameters provided in the documentation of the library by Seno
& Imai (2022). One critical missing piece of information we extensively discussed upon implementation was
given by the notion of difference in action between models: due to the continuous nature of the actions in
this environment, it becomes almost impossible for two policies to predict the same set of actions. For this
purpose, we decided to implement a way of comparing actions based through ’numpy.isclose(a,b)’, by Harris

20

Under review as submission to TMLR

et al. (2020). The similarity formula given by the above method is

|a − b| ≤ (abs. tolerance + rel. tolerance ∗ |b|)

Unlike the built-in ’math.isclose’, the above equation is not symmetric in a and b: it assumes b is the reference
value – so that ’isclose(a, b)’ might be different from ’isclose(b, a)’. Furthermore, the default value of ’abs.
tolerance’ is not zero, and is used to determine what small values should be considered close to zero. Once
again, we are not aware of what the authors did on this end, but we have reasons to believe this approach
has grounds for a correct interpretation. We acknowledge potential sensitivity to the results based on the
choice of the hyperparameters of the method, for which we kept the default ones.

Finally, although the authors mention a training schedule until saturation without further explanation, we
followed the guidelines provided in the DR3RLpy framework as outlined by Fu et al. (2021), training both
our models for 10 epochs, each taking 100 steps. We are not aware of whether our approach matches the
one suggested by the authors, but results, although not in absolute value, are relatively consistent with
those provided in the original study. Thus we can conclude that our hyperparameters setting is sufficient for
reproducing the results.

21

	Introduction
	Scope of Reproducibility
	Methodology
	Environments
	Datasets
	Model Description
	Hyper-parameters
	Experimental Set up and Code

	Results
	Removing Trajectories induces a lower Initial State Value
	Cluster High-Level Behaviours
	Distant Trajectories influence Decisions of the Agents
	Human Study
	Results beyond original paper

	Discussion
	Methodology
	Model description
	Computational Requirements & Environmental Impacts

	Results reproducing original paper and verification of the claims
	Removing trajectories induces a lower ISV
	Meaningful Clusters
	Clusters for Q*Bert and Breakout

	Results beyond original paper
	Improving clustering algorithm
	Implementing different encoder techniques
	Are distant trajectories really important?
	Are data trajectories important to obtain a good action value? Are some more important than others?
	Additional Hyper-Parameters Experiments

	Training setting for Seaquest and HalfCheetah

