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ABSTRACT

Autoformalization, the process of transforming informal mathematical language
into formal specifications and proofs remains a difficult task for state-of-the-art
(large) language models. Existing works point to competing explanations for the
performance gap. On one hand, large language models exhibit exceptional per-
formance on translation tasks, suggesting their significant potential for autofor-
malization. On the other hand, the quantitative reasoning capabilities of standard
language models remain limited, leading to suboptimal performance on autofor-
malization and the subsequent task of formal theorem proving. To this end, we
introduce a novel methodology that leverages backtranslation with hand-curated
prompts to enhance the mathematical capabilities of language models, particu-
larly addressing the challenge posed by the scarcity of labeled data. Specifically,
we evaluate three primary variations of this strategy: (1) on-the-fly (online) back-
translation, (2) distilled (offline) backtranslation with few-shot amplification, and
(3) line-by-line proof analysis integrated with proof state information. Each vari-
ant is designed to optimize data quality over quantity, focusing on the high fidelity
of generated proofs rather than sheer data scale. Our findings provide evidence
that employing our proposed approaches to generate synthetic data, which priori-
tizes quality over volume, improves the autoformalization performance of LLMs
as measured by standard benchmarks such as ProofNet. Crucially, our approach
outperforms pretrained models using a minimal number of tokens. We also show,
through strategic prompting and backtranslation, that our approaches surpass the
performance of finetuning with extensive multilingual datasets such as MMA on
ProofNet with only 1/150th of the tokens. Taken together, our methods show a
promising new approach to significantly reduce the resources required to formal-
ize proofs, thereby accelerating AI for math.

1 INTRODUCTION

Neural machine translation has been a focal point of research since the early development of ma-
chine learning (Dong et al., 2015) (Wu et al., 2016). Autoformalization can be viewed as a spe-
cialized application of this approach, where the objective is to translate theorems from informal,
human-readable markup languages like LaTeX into formal languages such as Lean4 — a program-
ming language specifically designed to encode complex mathematical constructs (de Moura & Ull-
rich, 2021). In principle, the development of an agent capable of precise autoformalization would
significantly reduce the prohibitive costs of manually formalizing proofs. This would have pro-
found implications; such an advancement could render all mathematical knowledge, much of which
is presently recorded in natural language, programmable: substantially enhancing the usability of
interactive theorem proving systems and accelerating the expansion of human mathematical under-
standing (Klein et al., 2009).

Autoformalization first gained traction in 2018 when researchers used long short-term memory net-
works to generate statements in Mizar (Wang et al., 2018). More recently, experiments demonstrated
promising results using a naive few-shot learning approach to translate English into Isabelle code
(Wu et al., 2022). Historically, researchers have focused on merging automated theorem provers
with language models, which often struggle with quantitative reasoning, limiting the types of theo-
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rems that can be expressed and solved and reducing the models’ effectiveness in complex, real-world
scenarios. Our study adopts a novel approach by integrating interactive theorem provers with large
language models, leveraging the sequential processing capabilities of both. By fine-tuning LLMs
with intermediary statements from the LeanDojo dataset (Yang et al., 2023), we aim to enhance
our understanding of formal theorem provers’ reasoning processes and successfully incorporate this
signal into an LLM.

While LLMs have performed well on benchmarks related to various natural language understanding
tasks as evaluated by benchmarks such as MMLU (Hendrycks et al., 2020), they have continued to
struggle with tasks that require deeper quantitative reasoning (Lewkowycz et al., 2022). Moreover,
while strides have been made in using deep learning for symbolic mathematics (Lample & Charton,
2020), propositional logic (Hahn et al., 2021), and differential systems (Charton et al., 2021), the
field of autoformalization and theorem proving has generally not seen proportional advances. This
disparity can largely be attributed to two main factors:

1. Complexity: Current models exhibit a gap in their ability to translate intricate mathemati-
cal concepts from natural language to formal logic.

2. Scarcity: The available training data for fine-tuning models in formal languages like Lean
is significantly limited. Given the specialized nature of these programming languages, the
sum total of formal-math language data is a minuscule fraction of the size of modern LLMs’
training datasets. Thus, except for hand-curated benchmarks such as ProofNet (Azerbayev
et al., 2023a) and MiniF2F Zheng et al. (2021), there is virtually no paired formal-informal
data.

Example of Formal and Informal Statements

Informal: If r is rational (r ̸= 0) and x is irrational, prove that r + x is irrational.
Formal: theorem exercise 1 1a (x : R) (y : Q) : ( irrational x ) → irrational ( x + y ) :=

Informal: In an additive group G, the subtraction of vectors g1 and g2 is equal to the
subtraction of the group elements g1 and g2.
Formal: theorem vsub eq sub {G : Type*} [AddGroup G] (g2̆081 g2̆082 : G) : g2̆081 -1̆d65
g2̆082 = g2̆081 - g2̆082 := rfl #align vsub eq sub vsub eq sub section General variable G :
Type* P : Type* [AddGroup G] [T : AddTorsor G P]

Figure 1: Autoformalization Task Example. This table compares formal Lean statements with
their equivalent informal mathematical statements. The formal statements represent theorems in
Lean, while the informal statements convey the theorems in human-readable natural proof language.

We present a new autoformalization dataset, AI4Math, which pairs statements from natural lan-
guage proofs with their corresponding translations in Lean, as shown in Figure 1. Our approach to
generating this dataset leverages backtranslation: a method in neural machine translation for creat-
ing synthetic training data (Liu et al., 2021). Given a monolingual dataset in the target language,
backtranslation proceeds as follows:

1. Utilize a pretrained model to generate translations in the reverse direction, i.e., from the
target language to the source language.

2. Assemble a parallel corpus consisting of these synthetic source and ground-truth target
pairs.

3. Fine-tune or train on the generated dataset, enabling the model to translate the synthetic
source examples back to the target language.

Our dataset, AI4Math, serves two primary purposes: first, to train an autoformalizer on individual
statement pairs, and second, to fine-tune an LLM on the state of the proof before and after a specific
tactic is applied. This approach aims to closely mimic the reasoning process in theorem proving,
enhancing the LLM’s ability to understand and generate formal proofs.

Our key contributions are:
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1. We introduce a new paradigm for generating synthetic formal-informal paired statements,
emphasizing the superiority of high-quality data over large but undifferentiated datasets.

2. We advance the discussion on data efficacy in neural language model training by demon-
strating that richer prompts and high-quality Lean statement selections yield better perfor-
mance than training on large, randomly diverse data.

3. By integrating proof state matching and manually curating data to include the state before
and after a proof statement, we achieve dramatic improvements in model performance.
This method not only optimizes the training process but does so with a minimal number of
tokens, thereby enhancing computational efficiency and model effectiveness. Our approach
underlines the potential of targeted and intelligent data preparation in maximizing the value
of each token in autoformalization datasets.

2 TRAINING DATA GENERATION VIA BACKTRANSLATION

Backtranslation has been a pivotal method in neural machine translation (NMT), with its demon-
strated utility for enhancing training efficacy in the absence of sufficient labeled data (Poncelas
et al., 2018). This technique was further refined in transformer models (Han et al., 2021) and in
preliminary experiments involving distilled backtranslation within the domain of autoformalization
(Azerbayev et al., 2023a). We chose this methodology because it is one of the most prominent
and validated methods for NMT tasks (Liu et al., 2021), and has been shown to be analytically and
empirically suitable for neural model training (Jiang et al., 2023).

Our approach is to start with data in formal language (FL) and translate it into informal language
(IL). We refer to this process as informalization. We demonstrate that each of these three dataset
generation methodologies can improve model performance:

• On-The-Fly Backtranslation: This strategy for data augmentation utilized a unique back-
translation approach integrated within a custom training loop. Specifically, the training loop
itself has four main steps, as outlined in Figure 2: (1) translating a batch of FL examples to
IL (2) translating the synthetic IL examples back to FL, using the (synthetic IL, FL) pairs
as labeled training data (3) computing the loss of the generated FL translations compared
to the original FL examples and (4) backpropogating to update the model weights.
This method diverged from traditional practices by not employing separate teacher and
student models; instead, it trained a single model to simultaneously manage both directions
of the translation task. This setup was chosen because it enabled the model to iteratively
generate its own training data at each step, and this self-sufficient nature allowed us to avoid
the problem of limited labeled data without incurring large API costs.
The relatively small size of the model used in our experiments, GPT-2 with 124M param-
eters, suggested that it would not be very effective at generating high-quality synthetic
informalizations. Despite this, the on-the-fly backtranslation method led to a significant
reduction in evaluation loss after just a few hundred training steps, eventually leading to
a substantial improvement compared to the baseline as seen in Table 2. Nevertheless, we
eventually reached a performance plateau due to the inherent limitations of the baseline
model. Due to resource constraints, we were unable to validate this method with a larger,
more capable model such as Llemma-7B (Azerbayev et al., 2023b). We hypothesize that
employing a larger pretrained model could yield even more promising results. This method
thus serves as a baseline for comparison, and can highlight the potential benefits of using
more powerful models in future work.

• Distilled Backtranslation: Considering the limitations of our initial approach, we pivoted
to a more robust technique known as distilled backtranslation. For this method, we utilized
a more powerful pretrained model, GPT-4 (OpenAI, 2023), as the teacher model by feeding
it a dataset of FL examples and utilizing it to generate corresponding synthetic IL text, as
outlined in Figure 3. We capitalized on the strong in-context learning capabilities of LLMs
(Brown et al., 2020) by employing a few-shot prompt that included six labeled examples
of FL-to-IL translations. This few-shot amplification approach allowed us to develop a
comprehensive labeled dataset for training, rather than generating data on-the-fly. The full
technique and prompt can be found in 5, with a formal example in Appendix A.
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Batch of FL examples

Artificial IL examples

Generated
FL examples

Cross-entropy loss

Informalize using model

Backtranslate back to FL

Compare to original FL examples

Figure 2: On-The-Fly Backtranslation Process Graph. Given the scarcity of pairs of formal and
informal mathematics, our solution is to generate artificial informal language (IL) translations from
a formal language dataset (FL), then use the (IL, FL) pairs for training. This methodology first uses
the LLM to translate from FL to IL, and then translates back to FL. This avoids the problem of lack
of paired data by having the model generate training data on the fly to teach itself.

Specifically, we extracted theorems from the MathLib4 dataset (mathlib Community, 2019)
and then used GPT-4, enhanced by few-shot prompting, to informalize each theorem indi-
vidually. Using regular expressions, we parsed over 100,000 theorems which we could
later informalize and fine-tune on. However, due to the relatively high cost of using Ope-
nAI’s GPT-4 API, we were only able to informalize a small subset of these proofs as shown
in Table 1. Within this scope of distilled backtranslation, we compared several ways of
looking at proofs:

1. Our first method, inspired by techniques in Azerbayev et al. (2023a), involves in-
formalizing entire theorems while using the full proof as contextual support in the
prompt, generating the theorem statement in natural language. We employed a 6-shot
prompt to create a dataset of 348 training pairs for this approach.

2. Our second method focuses on informalizing not only the theorem statement but also
each individual tactic within a proof. This approach tests whether detailed explana-
tions of each tactic can enhance the overall understanding of the proof. Utilizing the
LeanDojo dataset Yang et al. (2023), which is pre-parsed into distinct tactics, our
prompts included the formal theorem statement and the states of the proof both before
and after each tactic is applied. We employed a zero-shot prompting strategy with tu-
ples of (stateBefore, tactic, stateAfter) to generate a dataset of individually translated
tactics, aiming to improve translations between the complete Lean theorem and its
natural language counterpart.

• Gathering Data from Regular Expressions: We also prepared a large dataset leveraging
only regular expressions for capturing specific lines/keywords in tactic scripts. Utilizing
regular expressions for parsing LeanDojo proof tactics allowed us precise control over the
selection of specific tactic lines and proof methodologies, enabling targeted improvements
for specific areas of interest. An example of one of the filters we used to parse data from
LeanDojo can be found in Figure 4. While these parsed informalizations are more rudi-
mentary compared to our other methods, they allowed us to generate a much larger corpus
at minimal cost. Additionally, this approach can be easily expanded upon and provides
greater explainability than other methods. However, given the complexity of Lean code,
this approach is inherently limited and can only produce rudimentary informalizations such
as the ones in Appendix B. We hypothesized that while the model fine-tuned on Regex-
parsed statements would enhance performance compared to the baseline, the simplicity

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

of the translated statements would prevent them from outperforming more sophisticated
backtranslation methods. This was confirmed by the results shown in Table 2.

Mathlib

Teacher Model

Labeled Train Dataset

Student Model (Fine-Tuned)

FL Dataset

Synthetic IL Examples

FL Examples

Figure 3: Distilled Backtranslation Process Graph. Leveraging the MathLib and ProofNet
datasets, a ”Teacher” model translates formal theorems into synthetic informal language (IL) ex-
amples, which are then backtranslated to augment a training dataset with new formal language (FL)
examples. A ”Student” model, more compact than the teacher, is fine-tuned on this enriched dataset
to improve its translation from IL to FL.

Regular Expressions
patterns = {

”induction”: r”induction .+ with .+”,
”apply”: r”apply .+”,
”rewrite”: r”rw .+”,
”reflexivity”: r”refl”,
”cases”: r”cases .+”,
”introduce”: r”intro .+—intros .+”,
”simplification”: r”simp .+”,
”contradiction”: r”contradiction”,
”exact”: r”exact .+”,
”definition”: r”def .+ := .+” }

Figure 4: Regular Expressions can be used to generate a large volume of rudimentary infor-
malizations. Certain Lean proof statements follow predictable patterns that can be captured via a
regex. More sophisticated pattern-matching solutions can be built on this framework to increase the
amount of paired data available to fine-tune on.

3 AI4MATH DATASET OVERVIEW

The integration of data collected through these methodologies resulted in the AI4Math Dataset,
which encompasses a broad spectrum of proof tactics and informal statements. The total number
of tokens from each collection method is provided in Table 1. The following datasets are labeled
according to the composition of their contents:

1. MMA Train is a large, multilingual, and multi-domain baseline dataset (Jiang et al., 2023)
which we aim to compare our generated (IL, FL) pairs against.

2. On-the-Fly Backtranslation is comprised of formal-informal pairs created as a result of the
backtranslation procedure shown in Figure 1.
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3. GPT-4 MathLib4 (Full Proof) employs regular expressions to parse the MathLib4 dataset
into individual theorems, using GPT-4 with few-shot prompting to informalize a selected
subset. Following ProofNet’s approach, we applied a 6-shot prompting technique to convert
entire theorem statements and their proofs into natural language. This process is shown in
Figure 3.

4. GPT-4 LeanDojo (Individual Tactics) not only informalizes theorem statements but also
each specific tactic within proofs from the LeanDojo dataset, capturing the proof’s state
before and after each tactic. Using a 0-shot prompting strategy, we created a dataset with
informal translations of each tactic, alongside their respective before and after states.

5. Regex-Parsed LeanDojo Proofs uses regular expressions to parse specific tactics from the
LeanDojo proofs for targeted model refinement. The filters used can be found in Appendix
B.

Data Collection Method Token Count
MMA Train 10,916,097
Regex-Parsed LeanDojo Proofs 124,782
GPT-4 MathLib4 (Full Proof) 71,550
GPT-4 LeanDojo (Individual Tactics) 1,754

Table 1: Token counts across dataset generation methods. For each dataset generation method,
we compile formal and corresponding generated informal statement data into pairings. This il-
lustrates the diversity and scale of training data available in AI4Math for fine-tuning, as well as
demonstrating the relative cost of each synthetic dataset generation methodology.

At the end of this explanation, I will give you 2 things. The first is a list of tuples that are
the translations of entire proofs written in Lean, which we will denote the formal language,
to plain English, also known as natural language, as tuples or pairs. This is not an exhaustive
list, these are just examples of informalizations. I will then have a proof written in Lean
represented as a string following the newline character after the list of pairs. Give me the
tuple pair of the proof I give you written in Lean and what you think their natural language
equivalent is given your knowledge of Lean, formatted using LaTeX. Do not output anything
else, just the python tuple I requested. In your output match the exact format ”(’formal’,
’informal’)” \n

[("Lean theorem statement 1", "Theorem 1 in natural language"),
("Lean theorem statement 2", "Theorem 2 in natural language"),
("Lean theorem statement 3", "Theorem 3 in natural language"),
("Lean theorem statement 4", "Theorem 4 in natural language"),
("Lean theorem statement 5", "Theorem 5 in natural language"),
("Lean theorem statement 6", "Theorem 6 in natural language")]

Figure 5: Formal-informal pairs used for training are generated via few-shot prompting and
distilled backtranslation. Mined proofs from mathlib are used as input into this format string for
prompting, and then GPT-4 creates examples that can be utilized for fine-tuning. In contrast to
MMA, our method used six examples to informalize theorem statements.

4 AUTOFORMALIZATION PERFORMANCE

To quantify the results of our methods, we evaluate our fine-tuned models for accuracy on ProofNet’s
test dataset, with the goal of measuring the performance gain over their initial pretrained states. All
of our models used GPT-2 as the base architecture and fine-tuned for 3 epochs using a learning rate
of 1e-5 and Adafactor optimization, as these hyperparameters for the training setup appeared to yield
the best performance. We chose GPT-2 for our experiments due to its open-source availability and
lower fine-tuning costs compared to larger, closed-source models like GPT-4. As discussed, future
research should consider using larger models to improve outcomes subject to resource availability.
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Fine-Tuning Dataset Eval Loss
GPT-2 Baseline 75.1839
GPT-4 LeanDojo (Individual Tactics) 5.1287
Regex-Parsed LeanDojo Proofs 4.4709
On-the-Fly Backtranslation 4.032
MMA Train 3.8791
GPT-4 MathLib4 (Full Proof) 3.1209

Table 2: Evaluation loss on ProofNet’s Test Dataset. The model used was GPT-2, and it was fine-
tuned on each dataset for 3 epochs before being evaluated. GPT-4 MathLib4 (Full Proof) demon-
strated higher token efficiency than MMA train, and despite the lower token count, GPT-4 LeanDojo
(Individual Tactics) improved the baseline substantially.

We included the results of fine-tuning on the training set of MMA, a dataset that also uses GPT-4
to create the formal-informal pairs that matches the approach we took with the full-proof informal-
izations (Jiang et al., 2023). However, our methodology uses a 6-shot prompt only, which appears
to improve token efficiency as evidenced by the lower token count in Table 1 and lower resulting
evaluation loss in Table 2.

We have three major observations:

• Few-Shot Beats MMA: Our GPT-4 MathLib4 (Full Proof) dataset, developed through
a hard-coded 6-shot prompting technique, outperformed the larger, diverse dataset from
Albert et al., despite being over 150 times smaller. This substantial increase in token ef-
ficiency is likely due to better informalizations of our methodology, which improves upon
the comparatively simple prompting technique of MMA. We demonstrate that more ex-
amples, though less cost-effective, can result in better autoformalization performance with
fewer tokens.

• Individual Tactics are Efficient: The GPT-4 LeanDojo (Individual Tactics) dataset, which
leverages an intensive approach of matching individual tactics to lines in the informalized
proof, demonstrated dramatic improvement from GPT-2 baseline with far fewer tokens
compared to other methods. However, this method first requires having GPT-4 informalize
the proof as a whole, and then pairing the individual tactics to a line in the translated
natural language proof: making the strategy more costly at $0.15 per proof compared to
$0.05 per proof in GPT-4 MathLib4 (Full Proof) and the $0.01 per proof in MMA, which
had 332,000 theorems informalized for $3,500 total (Jiang et al., 2023). This was the
largest barrier preventing us from generating a larger training corpus. Given the drastic
improvement compared to the baseline, we hypothesize that this is method has significant
potential and should be explored in the future with more resources.

• On-The-Fly Backtranslation Performance Plateau: When generating the distilled back-
translation dataset for the individual tactics, a review of the data showed that the model
trained on our On-the-Fly Backtranslation dataset considerably outperformed the GPT-2
baseline, but its performance plateaued below that of the MMA dataset. We hypothesize
that this is due to model size, as both of our best performing methodologies used GPT-4 to
generate data for backtranslation.

7
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Takeaway #1: Prioritize Quality over Quantity!
Utilizing few-shot prompting techniques appears to generate more accurate and higher-
quality parallel informalizations, as evidenced by the results of our GPT-4 MathLib4 (Full
Proof) and GPT-4 Lean (Individual Tactics) datasets. Investing in more sophisticated full-
proof few-shot or line-by-line matched examples can significantly enhance token efficiency,
yielding better results even with fewer tokens.

Takeaway #2: Intermediate Steps Matter
GPT-4 Lean (Individual Tactics) demonstrates remarkable proof-efficiency for the small to-
ken count despite the higher costs and poor performance compared to utilizing the full proof.

Takeaway #3: High-Quality Data Beats Diversity.
Datasets that utilize comparatively richer prompts with GPT-4 exhibit more efficient parallel
corpora for autoformalization training compared to datasets that rely on blindly training on
diverse data (On-The-Fly Backtranslation, MMA, Regex-Parsed LeanDojo Proofs).

5 RELATED WORK

The Multilingual Mathematical Autoformalization (MMA) dataset also uses powerful models GPT-4
to translate from formal language (FL) to informal language (IL) via zero-shot instruction prompting
on a large, diverse corpus of mathlib4 data (Jiang et al., 2023). Our approach enhances the efficiency
of this process by applying a more intense six-shot prompting strategy on mathlib4 statements; the
fine-tuning performance of the resulting dataset not only surpasses that of the MMA dataset on the
ProofNet benchmark but does so using only 1/150th of the tokens: significantly optimizing resource
use while enhancing output quality. Utilizing a regex, we parsed Lean files from mathlib into over
100,000 tactic proof scripts, and we call this methodology using the “Full-Proof” in pregenerating
informal-formal pairs for informalization via GPT-4. Despite the high number of parsed scripts, at
an estimated $0.05 per informalization we were only able to informalize a subset of this collection.

Our dataset also utilizes LeanDojo, an open-source platform that offers a comprehensive dataset of
over 90,000 Lean theorems. Existing models like ReProver, a retrieval-augmented language model,
have demonstrated superior performance compared to established models such as Tidy and GPT-
4 (Yang et al., 2023). However, while retrieval-augmented models like ReProver are promising in
leveraging formal corpora to enhance LLMs, they rely heavily on automated theorem provers. These
models often skip over the detailed intermediate steps that are critical for understanding complex
mathematical logic, thereby restricting the systems’ flexibility and explainability.

Moreover, the prevalent use of first-order logic in these models constrains their capacity to articulate
more sophisticated proofs. Our approach in GPT-4 LeanDojo (Individual Tactics) addresses this lim-
itation by directly modeling the incremental deduction characteristic of interactive theorem provers.
While this approach involves higher computational costs, Table 2 demonstrates its effectiveness in
significantly enhancing baseline performance. Our method achieves notable improvements over the
baseline with a very small number of tokens.

6 DISCUSSION

Our paper introduces a novel dataset that can be used for enhancing the autoformalization capabili-
ties of large language models. We demonstrate evidence that models can attain superior performance
on autoformalization benchmarks such as ProofNet by training on AI4Math, and our generation
strategies can significantly reduce the number of tokens required compared to MMA.

We also note several limitations with our method. Firstly, our fine-tuning was exclusively conducted
using GPT-2. In future research iterations, we anticipate that employing more powerful models
—– such as Mistral 7B or Llemma 7B for fine-tuning could lead to even better performance. Our
”On-The-Fly” backtranslation process was especially constrained by the smaller model size used,
and using more powerful models for fine-tuning in future iterations could enhance the quality of
informalizations.

8
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Cost constraints were another factor that limited our dataset’s expansion, as more sophisticated
prompt engineering with GPT-4, particularly for translating and segmenting entire proofs, proved
costly. Despite the higher expense, these backtranslation methods surpassed baseline performance
with fewer tokens, indicating superior data quality. Given its potential, this approach merits further
exploration if sufficient funding can support the additional costs.

7 FUTURE WORK

In our current research, we concentrated on autoformalizing theorem statements rather than gener-
ating complete formal proofs. This focus was primarily driven by our goal to streamline the process
of translating natural language into formal language theorems, which are integral to the groundwork
of interactive theorem proving (ITP). However, a significant next step in our exploration involves as-
sessing whether the entire proofs or tactic scripts, when generated by our model, can be successfully
compiled within the Lean4 environment.

Additionally, leveraging Interactive Theorem Provers (ITPs) to extract datasets of intermediate proof
steps presents a novel opportunity for advancing the task of autoformalization. By sequentially
informalizing intermediate statements within a proof, we can generate a dataset that captures the
individual steps undertaken by ITPs. This data can subsequently be used to train an LLM, effectively
replicating the sequential reasoning performed by ITPs. Since this approach looks to model the
incremental deduction used by interactive theorem provers directly, we predict that this could enable
language models to develop richer capabilities for reasoning tasks and enable generalization beyond
their training proofs.

The ability for a model to generate not just the theorem statements but also the accompanying proofs
would mark a substantial leap forward in automating the theorem proving process. It would not
only enhance the efficiency and accessibility of formal verification but also potentially transform
how complex mathematical and logical reasoning is conducted in computational settings. Thus, the
next phase of our research will be dedicated to testing the compatibility and correctness of model-
generated proofs with Lean4, aiming to bridge the gap between automated theorem generation and
its practical application in ITP systems. This endeavor will necessitate a deeper integration of our
model’s outputs with the stringent syntax and logical framework of Lean4, posing a challenging yet
essential milestone towards fully automated theorem proving.

8 CONCLUSION

Our paper has several larger implications for the field of autoformalization. By focusing on aut-
oformalizing theorem statements, we streamline the process of translating natural language into
formal language, which is critical for the groundwork of interactive theorem proving. Successfully
training an agent for precise autoformalization could drastically reduce the resources needed to con-
vert extensive natural-language mathematical proofs into formal language. This progress would
enhance the accessibility and efficiency of automated theorem proving and potentially quicken ad-
vancements in related fields like formal verification and program synthesis. Looking forward, a
skilled autoformalizer could make all mathematical knowledge, currently documented primarily in
natural language, programmable —– significantly broadening the usability of interactive theorem
proving systems and accelerating the growth of human mathematical knowledge.
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A APPENDIX A: ”FULL-PROOF” PROMPT

We used the following prompt for informalizing the MathLib4 theorems we extracted, with a six-
shot example. A complete example can be found in Figure 7.

B APPENDIX B: REGEX-PARSED LEANDOJO PROOFS

We used the regular expressions outlined in Figure 4 to parse specific patterns from Lean code. This
enabled us to format the parsed strings using the templates in Figure 6 to create a basic ’informaliza-
tion’ of the proofs. This is a tradeoff of quality for quantity, as the informalizations are rudimentary
but simple to create. Given the improvements over baseline performance, more complex regex-based
systems could contribute to increasing the volume of paired data.

Informalization
”induction”: ”We are beginning a proof by induction on {variable}.”
”apply”: ”Here, we apply the theorem/lemma {theorem name}.”
”rewrite”: ”We’re rewriting part of the expression using {equality statement}.”
”reflexivity”: ”This step concludes that both sides of our equation are identical.”
”cases”: ”We’re breaking down the problem into cases based on {variable or condition}.”
”introduce”: ”We introduce new variables {variable names}.”
”simplification”: ”We simplify the current expression or goal using the simp tactic.”
”contradiction”: ”This step shows that our assumptions lead to a contradiction.”
”exact”: ”Here, we provide the exact term {term name} that solves our current goal.”
”definition”: ”We define a function {function name} that takes {parameters}.”

Figure 6: Informalization. These strings format the parsed patterns into informal explanations.

C APPENDIX C: DATA APPENDIX

All of the models and datasets used for fine-tuning can be found on HuggingFace under the AI4M
Organization.
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At t h e end of t h i s e x p l a n a t i o n , I w i l l g i v e you 2 t h i n g s . The
f i r s t i s a l i s t o f t u p l e s t h a t a r e t h e t r a n s l a t i o n s o f
e n t i r e p r o o f s w r i t t e n i n Lean , which we w i l l d e n o t e t h e
f o r m a l l anguage , t o p l a i n E n g l i s h , a l s o known as n a t u r a l
l anguage , a s t u p l e s o r p a i r s . Th i s i s n o t an e x h a u s t i v e
l i s t , t h e s e a r e j u s t examples o f i n f o r m a l i z a t i o n s . I w i l l
t h e n have a p r o o f w r i t t e n i n Lean r e p r e s e n t e d as a s t r i n g
f o l l o w i n g t h e n e w l i n e c h a r a c t e r a f t e r t h e l i s t o f p a i r s .
Give me t h e t u p l e p a i r o f t h e p r o o f I g i v e you w r i t t e n i n
Lean and what you t h i n k t h e i r n a t u r a l l a n g u a g e e q u i v a l e n t
i s g i v e n your knowledge of Lean , f o r m a t t e d u s i n g LaTeX . Do
n o t o u t p u t a n y t h i n g e l s e , j u s t t h e py thon t u p l e I r e q u e s t e d
. In your o u t p u t match t h e e x a c t f o r m a t ” ( ’ fo rmal ’ , ’
i n f o r m a l ’ ) ” \n

[ ( ” theorem e x i s t s l e s y l o w {p : N} {G : Type *} [ group G] {P :
subgroup G} \n ( hP : i s p g r o u p p P ) : \n t h e r e e x i s t s (Q :

sylow p G) , P <= Q : = ” , ” Le t P be a p− subgroup of G. Then
P i s c o n t a i n e d i n a Sylow p− subgroup of G . ” ) ,

( ” theorem e x i s t s e q c o n s t o f b o u n d e d {E : Type u} [
normed group E ] \n [ normed space C E ] {F : Type v} [
normed group F ] [ normed space C F ] \n { f : E t o F} ( h f :
d i f f e r e n t i a b l e C f ) ( hb : m e t r i c . bounded ( s e t . r a n g e f ) ) : \
n t h e r e e x i s t s ( c : F ) , f = f u n c t i o n . c o n s t E c : = ” , ” Le t E
and F be complex normed s p a c e s and l e t f : E t o F . I f f i s
d i f f e r e n t i a b l e and bounded , t h e n f i s c o n s t a n t . ” ) ,

( ” theorem s u b s e t o f o p e n s u b s e t i s o p e n (X : Type *) [
t o p o l o g i c a l s p a c e X] \n (A : s e t X) ( hA : f o r e v e r y x i n A,

t h e r e e x i s t s U: s e t X, i s o p e n U and x i n U and U s u b s e t A
) : \n i s o p e n A : = ” , ” Le t X be a t o p o l o g i c a l s p a c e ; l e t A
be a s u b s e t o f X. Suppose t h a t f o r each x i n A t h e r e i s an
open s e t U c o n t a i n i n g x t h a t U i s a s u b s e t o f A. Then A i s
open i n X . ” ) ,

( ” theorem i s m u l t i p l i c a t i v e . e q i f f e q o n p r i m e p o w e r s {R :
Type *} \n [ comm monoid wi th zero R] ( f : n a t .
a r i t h m e t i c f u n c t i o n R) \n ( h f : f . i s m u l t i p l i c a t i v e ) ( g :
n a t . a r i t h m e t i c f u n c t i o n R) \n ( hg : g . i s m u l t i p l i c a t i v e ) :
\n f = g i f f f o r a l l ( p i : N) , n a t . p r ime p i m p l i e s f ( p ˆ
i ) = g ( p ˆ i ) : = ” , ”Two m u l t i p l i c a t i v e f u n c t i o n s f , g : N
t o R a r e e q u a l i f and on ly i f f ( p ˆ i ) = f ( g ˆ i ) f o r a l l p r im es
p . ” ) ,

( ” theorem a b s s u m l e q s u m a b s ( n : N) ( f : N t o C) : \n abs (
sum i i n f i n s e t . r a n g e n , f i ) <= sum i i n f i n s e t . r a n g e n ,
abs ( f i ) : = ” , ” I f z1 , do t s , zn a r e complex , t h e n abs ( z1 +
z2 + d o t s + zn ) <= abs ( z1 ) + abs ( z2 ) + d o t s + abs ( zn ) . ” ) ,

( ” theorem d i s t i n c t p o w e r s o f i n f i n i t e o r d e r e l e m e n t (G : Type
*) [ group G] ( x : G) \n ( h x i n f : f o r a l l n : N, x ˆ n !=
1) : \n f o r a l l m n : Z , m != n i m p l i e s x ˆ m != x ˆ n : = ” ,

” I f x i s an e l e m e n t o f i n f i n i t e o r d e r i n G, p rove t h a t t h e
e l e m e n t s x ˆ n , n i n Z a r e a l l d i s t i n c t . ” ) ]

Figure 7: Full Example of our 6-Shot Prompting Methodology. Such prompts are given to GPT-4
and used to create the formal-informal pairings in our GPT-4 MathLib4 (Full Proof) dataset. Note
that characters are translated from Unicode to ASCII for display purposes.
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