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Abstract

Di�usion models excel at generating photorealistic images from text-queries. Naturally,
many approaches have been proposed to use these generative abilities to augment training
datasets for downstream tasks, such as classification. However, di�usion models are them-
selves trained on large datasets, often with noisy annotations. It is an open question to which
extent di�usion models are useful to augment data for improved downstream classification
performance. In particular, it is unclear if they generalize enough to improve over directly
using the additional data of their pre-training process for augmentation. We perform a sys-
tematic evaluation of existing methods to generate images from di�usion models and study
new extensions to assess their benefit for data augmentation. We find that personalizing
di�usion models towards the target data outperforms simpler prompting strategies. How-
ever, using the pre-training data of the di�usion model alone, via a simple nearest neighbor
retrieval procedure, leads to even stronger downstream performance. Overall, our study
explores the potential of di�usion models in generating new training data and at the same
time surprisingly finds that these sophisticated models are not yet able to beat a simple and
strong image retrieval baseline on simple downstream vision tasks.

1 Introduction

Data augmentation is a key component of training robust and high-performing computer vision models and
given its success, it is becoming increasingly sophisticated: From the early simple image transformations
(random cropping, flipping, color jittering, and shearing) (Cubuk et al., 2020), over augmenting additional
training data by combining pairs of images, such as MixUp (Zhang et al., 2017) and CutMix (Yun et al.,
2019), all the way to image augmentations using generative models. Augmentation via image transformations
improves robustness towards distortions that resemble the transformation (Wenzel et al., 2022b) and inter-
polating augmentations are particularly helpful in situations where diverse training data is scarce (Ghiasi
et al., 2021). With the success of generative adversarial networks (GANs), generative models finally scaled
to high-dimensional domains and allowed the generation of photorealistic images. The idea of using them
for data augmentation purposes has been prevalent since their early successes and forms the basis of a new
set of data augmentation strategies (Zietlow et al., 2022; Ghosh et al., 2022; Antoniou et al., 2017; Frid-Adar
et al., 2018; Esteban et al., 2017; Motamed et al., 2021; Mariani et al., 2018; Ramaswamy et al., 2021).

Given the emergence of di�usion models (DMs) that outperform GANs in terms of visual quality and
diversity (Ramesh et al., 2022; Saharia et al., 2022b; Rombach et al., 2022), using them for data augmentation
is a natural next step. Unlike GANs, di�usion models can be easily conditioned using text queries, which
allows for more controlled data generation. These models are trained on a large dataset of billions of filtered
image text pairs retrieved from the internet, enabling them to generate images of unparalleled variety.

We benchmark a variety of existing augmentation techniques based on di�usion models and surprisingly
find that these techniques are outperformed by simply retrieving nearest neighbors from the DM’s training
dataset with simple prompts (using the same CLIP-like model (Radford et al., 2021) used in the DM).
We propose new extensions and variants of di�usion model based strategies each leading to improvements,
however, not beating our simple retrieval baseline. We show that simple text prompts based on class
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Figure 1: Are generative methods beneficial for data augmentation? Each bar shows the accuracy (along
with the standard error) of the downstream classifier based on the best augmentation methods within each
family. While di�usion model based techniques (orange and green) improve over the baseline of only using
the original 10% ImageNet data (blue), a simple, more computationally e�cient retrieval method using
images from the di�usion model’s pre-training dataset directly (red) performs best. This suggests that the
generative capabilities of di�usion models for augmentation have not yet been fully leveraged.

labels su�ce for conditioning the DMs to improve the performance of standard classifiers compared to the
unaugmented data set. As images generated by simple prompts match the training distribution of the DM
and not the training distribution of the classifiers, we test—inspired by related work on personalized DMs—
methods that fine-tune the DM conditioning and optionally the DMs denoising model component. These
fine-tuned models outperformed the best prompting strategies for their ability to create even better synthetic
data for augmentation (Figure 1). Although all investigated methods based on generating synthetic images
were sophisticated and compute intensive, none of them reached the performance of simple nearest neighbor
retrieval (Figure 1), suggesting that the true potential of DMs for data augmentation is not yet fully realized.

2 Related work

Data augmentation using generative adversarial networks. Data augmentation is widely used when
training deep networks. It overcomes some challenges associated with training on small datasets and improv-
ing the generalization of the trained models (Zhang et al., 2017). Manually designed augmentation methods
have limited flexibility, and the idea of using ML-generated data for training has attracted attention. Gen-
erative adversarial networks (GAN) such as BigGAN (Brock et al., 2018) have been used to synthesize
images for ImageNet classes (Besnier et al., 2020; Li et al., 2022). Despite early promising results, the use of
GANs to generate synthetic training data has shown limited advantages over traditional data augmentation
methods (Zietlow et al., 2022). Di�usion models, on the other hand, might be a better candidate since
they are more flexible via general-purpose text-conditioning and exhibit a larger diversity and better image
quality (Sohl-Dickstein et al., 2015; Ramesh et al., 2022; Saharia et al., 2022b; Rombach et al., 2022). Hence,
in this work, we focus on di�usion models.

Data augmentation using di�usion models. Recently, di�usion models showed astonishing results for
synthesizing images (Sohl-Dickstein et al., 2015; Ramesh et al., 2022; Saharia et al., 2022b; Rombach et al.,
2022). Numerous approaches have been published that adapt di�usion models to better fit new images and
can be used for augmentation. We evaluate methods that employ di�usion models in a guidance-free manner
or prompt them without adapting the model: Luzi et al. (2022) generate variations of a given dataset by first
adding noise to the images and then denoising them again, and Sariyildiz et al. (2022) generate a synthetic
ImageNet clone only using the class names of the target dataset. We also evaluate methods for specializing
(AKA personalizing) di�usion models into our study. Given a few images of the same object (or concept),
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Gal et al. (2022) learn a joint word embedding (pseudo word) that reflects the subject and can be used to
synthesize new variations of it (e.g., in di�erent styles) and Gal et al. (2023) recently extended their method
to significantly reduce the number of required training steps. Kawar et al. (2022) follow a similar approach
and propose a method for text-conditioned image editing by fine-tuning the di�usion model and learning a
new word embedding that aligns with the input image and the target text. We investigate the usefulness of
“personalization” for data augmentation, which was not conclusively addressed in the original papers, and
propose and evaluate extensions of these methods tailored to data augmentation and provide a thorough
evaluation in a unified setting. Additionally, we benchmark all all of these approaches against our suggested
retrieval baseline.

Given the fast moving field, there have been multiple concurrently proposed methods to synthesize images
for various downstream tasks that we could not include in our evaluation of their helpfulness for data
augmentation to train an image classifier. Some methods focus on fine-tuning the di�usion model learning
a unique identifier to personalize the DM to the given subject (Ruiz et al., 2022), Shipard et al. (2023)
create synthetic clones of CIFAR (Krizhevsky et al., 2009) and EuroSAT (Helber et al., 2019) for zero-
shot classification, employ alternative losses for image generation to improve few-shot learning (Roy et al.,
2022), and Ghalebikesabi et al. (2023) create synthetic, privacy-preserving clones of medical data. Other
methods optimize the features of the embedded images to augment specifically small datasets (Zhang et al.,
2022) and use alternative prompts to the di�usion model with class descriptions generated by a language
model (He et al., 2022). Trabucco et al. (2023) additionally employ image synthesis, image editing (Meng
et al., 2021) and in painting (Lugmayr et al., 2022; Saharia et al., 2022a), Azizi et al. (2023) combine
frozen prompt-conditioning with fine-tuning only the di�usion model, Bansal & Grover (2023) generate new
images conditioning the DM by prompts and example images leading to degraded performance when used
to augment ImageNet, and other work focuses on medical data and sample curation (Akrout et al., 2023).

3 Experimental protocol

We augment using a wide-range of generative and retrieval based techniques, evaluating performance on a
downstream classification task (Figure 2A).

Dataset. ImageNet. Unless explicitly stated, we simulate training data in a low-data regime, we sample
10% of the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) (Russakovsky et al.,
2015) training split retaining class imbalance. As the retrieval method did not return su�cient samples for
10 of the 1,000 ImageNet classes, they were excluded from augmentation, model training and evaluation.
We additionally sample a disjoint set of images of the same size from the training split for hyperparameter
optimization and model selection, which we refer to as the validation split. For results on the full ImageNet
data set, we include all but our validation split to the training set. All trained classification models are
evaluated on the original ILSVRC2012 validation split. Caltech256. We additionally verify our findings on
Caltech256 (Gri�n et al., 2007) excluding 5 of the 256 classes for which retrieval did not return su�cient
samples. We randomly sampled 80% of the data as train split and randomly partitioned the remaining 20%
of the samples into equally sized disjoint validation and test splits.

Data augmentation and classifier training. For each augmentation strategy on ImageNet, we generate
390 samples per class ensuring that the number of images at least tripled per class, as in our subsampled
dataset each class contains between 74 and 130 images. On Caltech256 we generate three-times as many
images per class as in the training set. We resample the additional data into 5 sets containing the same
number of samples per class as our target dataset and train a ResNet-50 classifier (He et al., 2016) on each
to derive variance estimates. During training, the samples are further augmented by random resizing and
cropping as is typical in ImageNet training. On ImageNet we trained the classifier with batch size 256 and a
learning rate of 0.1, on Caltech256 we used a batch size of 1024 and after an initial learning rate optimization
sweep we set the learning rate to 0.003. We divided the learning rate by 10 when validation accuracy failed
to improve for 10 epochs. We stopped training when the validation accuracy did not improve for 20 epochs
or after at most 270 epochs and used the highest validation accuracy checkpoint for final scoring. Each
model was trained on 8 NVIDIA T4 or V100 GPUs using distributed data parallel training.
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Figure 2: Experimental protocol and taxonomy of di�usion model based augmentation methods. A. We
generate images by guiding the Stable Di�usion model by text prompts or by learned conditioning, or
retrieving images by a nearest neighbor search in the CLIP embedding space of the DM’s training data.
We then train the downstream classifier on the original 10% ImageNet data augmented by the additional
data and evaluate on the original ImageNet validation split. B. All considered methods adapt di�erent
components of the prompting, conditioning mechanisms, and the fine-tuning of the di�usion model. We
reference each method by a circled number (see section 3.1 for details). Some methods edit the prompts
while keeping the DM frozen: 1 , 2 use a single prompt for each class and 3 , 4 use multiple prompts from
a set of templates. Another family of methods optimize the conditioning vectors for the given images: 5 ,
6 only optimize the conditioning vector keeping the DM frozen, while 7 also jointly fine-tunes the DM.

Instead of optimizing the conditioning vector, 8 learns a pseudo-word description of the class using multiple
prompts keeping the DM frozen, while 9 additionally fine-tunes the DM. 0 does not adapt any component
of the DM and relies on encoding and decoding to create variations of the given images.

3.1 Augmentation methods

The benchmarked augmentation methods can be grouped into four categories: (1) guidance-free di�usion
model sampling, (2) simple conditioning techniques with prompts based on the objects’ class label, and (3)
personalization techniques that fine-tune the di�usion model conditioning and optionally the di�usion model
itself to the classifier’s data domain. We compare di�usion model approaches to a simple baseline (4) using
images retrieved from the dataset that the di�usion model was trained on.

Unconditional generation. Following the procedure of 0 boomerang (Luzi et al., 2022), we investi-
gated a guidance-free method that does not require conditioning or updating the di�usion model. Instead,
the approach adds noise to individual samples before denoising them.

Prompt conditioning. We explore several prompt-based methods of guiding the DM to produce samples
for a specific class (Figure 2B). 1 simple prompt: We condition the model by simple prompts containing
the object’s class name n, prompting the DM with “A photo of n.” and a version of it, 2 simple prompt
(no ws), stripping whitespace, w(·), from class names, “A photo of w(n).”. 3 clip prompts: We add
sampling prompts from the set of CLIP (Radford et al., 2021) text-encoder templates, e.g. “a photo of many
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w(n).”, “a black and white photo of the w(n).”, etc. and 4 sariyildiz et al. prompts: a set of templates
proposed to create a synthetic ImageNet clone (Sariyildiz et al., 2022).

Fine-tuning the di�usion model. We explore various methods for fine-tuning a DM for class-
personalized sampling to improve reconstruction of the classification dataset (Figure 2B). 5 ft condition-
ing: freezing the DM and optimizing one conditioning per class. 6 ft cluster conditioning: optimizing
multiple conditionings per class instead of just one. 7 inspired by imagic (Kawar et al., 2022), jointly
fine-tuning the conditioning and the DM’s denoising component. 8 textual inversion (Gal et al., 2022):
instead of fine-tuning the conditioning, sampling prompt templates and combining them with optimizing a
pseudo-word representing the class-concept. 9 pseudoword+dm: combining the previous approach with
optimizing the DM’s denoising component.

Laion nearest neighbor retrieval. As a baseline comparison, we propose using 10 retrieval to select
images from the Laion dataset used to train the di�usion model. This method finds nearest neighbor images
to the simple prompt (no ws) class name prompts in the CLIP embedding space.

3.2 Implementation and training details

Di�usion model backbone. We used the pretrained Stable Di�usion v1.4 network, based on a latent
di�usion architecture (Rombach et al., 2022). We discarded generated images if marked as NSFW by the
provided safety checker, replacing them with new samples. As Stable Di�usion was trained on image sizes
of 512 px, we kept this resolution for all methods.

Prompt generation. For prompt-based sampling methods, we generated prompts based on the ImageNet
class names, defined by WordNet (Miller, 1995) synsets representing distinct entities in the WordNet graph.
Each synset consists of one or multiple lemmas describing the class, where each lemma can consist of
multiple words, e.g., “Tiger shark, Galeocerdo Cuvieri”. We link each class via its synset to its class name.
If a synset consists of multiple lemmas, we separate them by a comma, resulting in prompts like “A photo
of tiger shark, Galeocerdo Cuvieri.”, as we found that providing multiple lemmas led to better performance
than using only the first lemma of a synset. Whenever methods inserted the class name into prompt
templates, we sampled the templates randomly with replacement. Sariyildiz et al. (Sariyildiz et al., 2022)
provided multiple categories of prompt templates (e.g. class name only, class name with WordNet hypernyms,
additionally combined with “multiple” and “multiple di�erent” specifications, class name with WordNet
definition, and class name with hypernyms and randomly sampled backgrounds from the places dataset (Zhou
et al., 2017)). Here, we sampled for each category the same number of images and randomly across the
background templates. For Caltech256 we used the class names as provided by the data set.

Fine-tuning. For all methods that require additional fine-tuning, we trained the model with the default
Stable Di�usion optimization objective (Rombach et al., 2022) until the validation loss stagnated or increased
– no model was trained for more than 40 epochs. When fine-tuning the di�usion models on full ImageNet,
the number of training samples increased 10-fold, thus, to keep the computational budget comparable across
modalities, we stopped training after 3 epochs. We set hyperparameters in accordance with published
works (Gal et al., 2022; Kawar et al., 2022; Luzi et al., 2022) or existing code where available. Scaling
to larger batch sizes was implemented by square-root scaling the learning rate to ensure constant gradient
variance, and we performed a fine-grained grid-search for the optimal learning rate. For the ft cluster
conditioning models, we clustered the training images within a class using k-means on the inception v3
embeddings. The conditioning vectors were initialized by encoding the simple prompt (no ws) prompts
with the DM’s text encoder. For textual inversion (Gal et al., 2022) we fine-tuned the text embedding
vector corresponding to the introduced pseudoword and sample from the provided text templates (Gal et al.,
2022) to optimize the reconstruction objective for our ImageNet subset, freezing all other model components.
We initialized the pseudo-word embedding with the final word in the first synset lemma (i.e., for the class
“tiger shark” we used “shark”). Where this initialization resulted in multiple initial tokens, we initialized
with the mean of the embeddings. For each fine-tuning run we stored checkpoints with the best train and
validation loss and those corresponding to 1, 2 and 3 epochs of training. In the case of imagic (Kawar et al.,
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Table 1: Overall performance of the data augmentation methods. We report the top-1 accuracy and standard
error of the downstream classifier trained on the augmented 10% ImageNet subsplit. The methods are
described in section 3.1 and are grouped into families as described in the beginning of section 4. The circles
refer to the taxonomy in Figure 2B.

Augmentation method Accuracy (%)

10% ImageNet 57.2 ± 0.2
20% ImageNet 70.2 ± 0.3

Boomerang (Luzi et al., 2022) 0 56.3 ± 0.3

Simple prompt (no ws) 2 60.0 ± 0.3
Simple prompt 1 60.1 ± 0.2
Sariyildiz et al. prompts (Sariyildiz et al., 2022) 4 60.8 ± 0.2
CLIP prompts 3 60.9 ± 0.2

FT conditioning 5 60.8 ± 0.1
FT cluster conditioning 6 60.9 ± 0.2
Imagic (conditioning & DM; Kawar et al. (2022)) 7 61.0 ± 0.3
Textual inversion (pseudoword; Gal et al. (2022)) 8 61.0 ± 0.4
Pseudoword+DM (combining Gal et al. (2022); Kawar et al. (2022)) 9 61.2 ± 0.2

Retrieval (our suggested baseline) 10 62.6 ± 0.1

2022) we found that the validation loss was still decreasing after 40 epochs, however, as the quality of the
reconstructed images significantly deteriorated after 8 epochs, we instead stored checkpoints for the first 8
epochs. This is similar to the Imagic training scheme, which optimized the embedding for 100 steps and the
U-Net for 1,500 steps on a single image. Although we follow existing procedure as closely as possible, image
quality might improve for longer model training runs. We selected the final model checkpoint based on the
validation accuracy of a ResNet-50 classifier trained on the union of augmented samples and the target data
set.

Nearest neighbor retrieval. For retrieval, we used Laion 5b (Schuhmann et al., 2022), a publicly
available dataset of 5 billion image-caption pairs extracted via web-crawler. The data was then filtered by
only retaining images where the CLIP image embedding was consistent with the caption embedding. This
filtering acts as a weak form of supervision, that retains those images where CLIP is more likely to work.

The dataset provides a CLIP embedding nearest neighbors search index for each instance and an o�cial
package1 allows for fast search and retrieval. We used this to retrieve 130 images per class for ImageNet and
the same number as samples per class for Caltech256. Images with a Laion aesthetics score of less than 5
were discarded to allow a fair comparison with Stable Di�usion 1.4 which was trained on this subset. For a
fair comparison to our generative augmentation methods, we used the same safety checker model to discard
images that were marked as NSFW. Due to changes in the availability of the images at the URLs in the
dataset and the described filtering steps, it is often necessary to retrieve more than the desired number of
images, which we do by increasing the number of nearest neighbors gradually from 1.4·130 to 10·1.4·130 when
not enough samples were found. To avoid using the same image multiple times, we applied the duplicate
detector of the clip-retrieval package, however, this does not detect all near duplicate images and some
duplicates are still used.

4 Results

Table 1 provides a results summary of the augmented ImageNet subsplit in which each block corresponds to
the groups of augmentation methods introduced in Section 3.1. In the following, section 4.1 introduces the

1https://github.com/rom1504/clip-retrieval/releases/tag/2.35.1
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A ImageNet B Boomerang C Difference

Figure 3: Example images generated by boomerang (Luzi et al., 2022). The generated images lack diversity
and e�ectively only add noise to the original ones. A. Example images from 10% ImageNet. B. The
augmentations produced by Boomerang. C. There is only a small di�erence between the original and
augmented images (best viewed on screen).

baselines, section 4.2 benchmarks the previously suggested unconditional DM augmentation method and a
method proposed to create a synthetic ImageNet clone (Sariyildiz et al., 2022) against our simple retrieval
baseline method, section 4.3 discusses improvements of conditioning the DM with text prompts, and sec-
tion 4.4 discusses personalization approaches to di�usion models. Finally, section 4.5 provides additional
insights.

4.1 Baselines

To establish the baseline classifier performance, we train on our 10% ImageNet subset (no added data),
achieving a top-1 accuracy of 57.2 ± 0.2. Since all augmentation methods double the size of the dataset, we
consider an upper bound performance by using 20% of original ImageNet (no added data) with a classifier
accuracy of 70.2 ± 0.3.

4.2 Retrieval outperforms previously suggested di�usion-based augmentation

Unconditional generation. boomerang (Luzi et al., 2022) generates augmented images by sequentially
adding Gaussian noise and uses a di�usion model to denoise elements of the target dataset, without altering
the di�usion model or prompts. This results in a lower top-1 accuracy of 56.3 ± 0.3 compared to the original
subset of ImageNet. Figure 3 shows that this method does not induce significant diversity in the dataset
and only slightly distorts the original images, leading to an overall decrease in performance. However, since
this method is directly applied on the target dataset samples, it does not su�er from domain shift or class
ambiguity.

Prompt-conditioning. Sariyildiz et al. (2022) generate augmented training examples with a di�usion
model adapted to the target dataset via conditioning mechanisms. Their method guides image generation
by various prompts based on the class name (see section 3.2 for details) and achieves 60.8 ± 0.2 classification
accuracy, performing better than the 10% ImageNet baseline and worse than the 20% ImageNet upper bound
(Table 1).

Retrieving from the di�usion model pre-training data. We now established that di�usion models
are helpful for creating augmentation data, however, it is unclear how much value the DM’s generative
capabilities add compared to simply using their pre-training data directly for augmentation. To answer this
question, we propose a simple retrieval method fetching images from the DM’s pre-training data that
are semantically closest to the simple prompt (no ws) prompts (see section 3.2 for details). Augmenting
with this data outperformed the sophisticated di�usion model based approaches at 62.6±0.1 top-1 accuracy,
while being computationally less demanding.

Summary. Using di�usion models o� the shelf, i.e., without adaptation or conditioning using the target
dataset, is not beneficial and can even deteriorate the classifier performance compared to the ImageNet
baseline. Augmenting with generated samples adapted to the target dataset by prompt-conditioning performs
better than the unaugmented baseline. However, simply augmenting with images retrieved from the di�usion
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Figure 4: Example images obtained from the investigated augmentation methods. A. 10% ImageNet original
images. B.-D. Images generated by our prompt-based sampling techniques: (B) simple prompt, (C) simple
prompt (no ws) and (D) clip prompts, respectively, where in (D) we show images to the prompts “a bad
photo of a w(n)”, “a black and white photo of the w(n)”, “a cartoon w(n)”, and “a photo of many w(n)”.
E.-H. Images generated by the fine-tuned di�usion models, specifically (E) ft conditioning, (F) textual
inversion, (G) imagic, and (H) pseudoword+dm. I. Examples of retrieval from the di�usion model’s
training set. Best viewed when zoomed in.

model’s training data outperforms the DM based approaches, indicating that DM generated images have
significant shortcomings. As retrieved images are real-world images, they show good photorealism, variety,
and detail. However, retrieval underperforms the 20% ImageNet upper bound performance, which might be
caused by retrieval su�ering from class ambiguity (“papillon” and “mailbag, postbag” in Figure 4I), reflecting
a mismatch of concepts from CLIP latent space to ImageNet classes as we measured semantic similarity as
distance of CLIP embeddings.

4.3 Advanced prompt-conditioning improves but is not competitive with retrieval

Then, we embarked on a quest asking if we can improve di�usion model based methods over the strong
retrieval baseline. To do so, we first explored several variations of text prompt conditioning strategies.

Simple prompt conditioning. We investigate a simple prompt conditioning method that uses the
prompt “A photo of n.”, where n is replaced by the class name, e.g., “A photo of tiger shark, Galeocerdo
cuvieri.” This improved over the 10% ImageNet baseline to a top-1 classification accuracy of 60.1 ± 0.2, but
Figure 4B shows clear problems with class ambiguity and a lack of diversity.

Tackling class ambiguity by white space removal. While generally mitigating class ambiguity is a
hard problem, we focus on the ambiguity introduced by class names composed of multiple words. To this
end, we investigated the variant simple prompt (no ws) (no white space) that removed the white space
from the class name used by simple prompt, e.g., “A photo of desktopcomputer.”. While class ambiguity
reduced for some classes (e.g., desktop computer; Figure 4C) it was ine�ective for others (e.g., papillon)
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and overall resulted in slightly degraded performance 60.0 ± 0.3 compared to keeping the white space. We
explore more advanced methods in the following sections.

Improving sample diversity by diverse prompt templates. To increase the diversity of the samples,
we made use of multiple prompt templates. We use clip prompts which randomly selects one of the
text templates provided by CLIP (Radford et al., 2021) (see Figure 4D for examples and Radford et al.
(2021) for a full list), increasing classification accuracy to 60.9 ± 0.2. This method performed best among
all prompt-based techniques. Interestingly, the overall performance increased even though some prompts
lead to synthetic images that did not match the style of ImageNet samples (e.g., “a cartoon photo of the
papillon.”) or images with texture-like contents instead of objects (e.g., papillon, image to the bottom right
in Figure 4D). Surprisingly, these slightly more elaborate templates just adding few more words compared
to simple prompt (no ws) (e.g., “a bad photo of a papillon.”) improved class ambiguity in some cases
(e.g., papillon; Figure 4D).

Summary. Augmenting a dataset with images sampled by prompt-based conditioning techniques improves
the downstream classifier performance beyond the unaugmented datasets, however, none of these methods
improve over retrieval. Inspecting the generated samples, we find that various challenges remain: Ima-
geNet is more than a decade old, and some images included in the dataset are older and of di�erent style
when compared to the images created by the recently trained Stable Di�usion model (e.g., desktop computer;
Figure 4A-D). In other cases, generated images do not match the domain of ImageNet samples, for instance
because they are too artificial, sometimes even like a computer rendering (e.g., motor scooter; Figure 4A-D),
their texture does not match (e.g., papillon; Figure 4A,D) or the prompt does not match the desired style
(e.g., cartoon; Figure 4A,D). This tendency may have been amplified by Stable Di�usion v1.4 being trained
on a subset of Laion, which was filtered to contain only aesthetic images.2

4.4 Personalizing the di�usion model improves further but does not outperform retrieval

In the previous section, we found that adapting the di�usion models by only editing the prompt o�ers limited
improvement when used for augmentation. On our quest to improve di�usion models to narrow down the
performance gap to the retrieval baseline, this section explores a more advanced set of methods that
additionally fine-tune parts of the di�usion model to “personalize” it to the 10% ImageNet training images
by optimizing the DM reconstruction objective (c.f. Figure 2B). Originally, these methods were proposed in
the context of personalizing the model to a specific object or concept, i.e., a single or only a few images.

Fine-tuning the conditioning vectors. The general di�usion model architecture has multiple compo-
nents that can be fine-tuned (see Figure 2B). We start by fine-tuning one conditioning vector per class to
optimize the reconstruction objective for our ImageNet subsample, while keeping the other model weights
fixed. This method, dubbed ft conditioning (fine-tune conditioning), achieves an augmentation accuracy
of 60.8 ± 0.1 and is on par with the best prompt editing method clip prompts. Interestingly, while this
method achieves good augmentation performance, the generated images do not look photorealistic, and su�er
from noise and missing backgrounds (Figure 4E).

Fine-tuning clusters of conditioning vectors. Using a single conditioning vector for all images from
one class might be insu�cient to capture the full class variability. To see if this is the case, we explore ft
cluster conditioning. We generate k clusters of images per class, before fitting a conditioning vector to
each individual cluster (see section 3.2 for details). We find that using k = 5 clusters slightly improves the
accuracy by 0.1 percentage points over using k = 1. For larger k = 10 and k = 15, performance decreased
(60.8 ± 0.2 and 60.6 ± 0.3 accuracy). This might be due to the smaller number of images per cluster, making
the fine-tuning more prone to over-fitting.

Textual inversion. To reduce the number of unrealistic images, we explored a variant of textual in-
version (Gal et al., 2022). This method learns a pseudoword n representing the class concept combined

2https://github.com/CompVis/stable-diffusion
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Figure 5: Retrieval and di�usion model performance across classes and scaling behavior. A. The distri-
bution of classifier improvement for each class is shown for the best-performing DM-based method pseu-
doword+dm (blue) and retrieval (orange). For each class the improvement is computed by comparing
the downstream classification performance using augmentations compared to only using the original 10% Im-
ageNet samples. Images to the left and right show examples of classes with worst deterioration and greatest
improvement. B. Retrieval outperforms synthetic images across augmentation ranges. For 1000% aug-
mentation we could not retrieve su�cient samples for 7 additional classes. Assuming classifier performance
of 0% or 100% on these classes leads to best- (H) and worst-case (N) estimates.

with a randomly drawn textual description of the generated image style (e.g., “a photo of a n”, “a rendering
of a n”, etc.; see Gal et al. (2022) for a full list). While this method improves the photorealism of the gen-
erated samples (Figure 4F), it only slightly improves the augmentation accuracy over the simple fine-tuning
of conditioning vectors (ft conditioning) by 0.1 percentage points (Table 1).

Fine-tuning the denoising. We now explore fine-tuning the DMs denoising module jointly with the
conditioning vector. This idea stems from imagic (Kawar et al., 2022) and results in an augmentation
accuracy of 61.0 ± 0.3 (examples in Figure 4G), which is on par with textual inversion.

Finally, we combine the best-performing methods: jointly optimizing a pseudo-word per class (textual
inversion (Gal et al., 2022)) and the DMs denoising module (imagic (Kawar et al., 2022)). We denote this
method by pseudoword+dm and it resulted in an accuracy of 61.2±0.2, outperforming all other DM based
techniques investigated. The generated images also show improved photorealism over textual inversion
and imagic (Figure 4H).

Summary. Personalizing di�usion models improves in matching the domain of the 10% ImageNet images
better (e.g., generated images for “desktop computer” now look similarly old as in ImageNet), improve upon
prompt-based techniques to reduce class-ambiguity (e.g. papillon and desktop computer showed ambiguity
in Figure 4B but not in panels E-H), show good sample variety and the best-performing pseudoword+dm
method enhances photorealism and reduces the artistic style of generated images. This model performs best
across all generative augmentation techniques investigated, and suggests that we can leverage personalization
techniques to combine the DM’s knowledge of billions of annotated images with learning the domain distri-
bution of the data we want to augment. At the same time, none of these sophisticated methods outperformed
the simpler and computationally cheaper retrieval baseline.

4.5 When does retrieval help?

Retrieval helps for most classes. To better understand the failure cases of the augmentation methods,
we check for each class in ImageNet if the augmentation method is beneficial. To this end, for each class, we
compute the performance improvement of the downstream classifier using the augmentation method com-
pared to only using the original ImageNet samples. Figure 5A shows the distribution of improvements for
the retrieval augmentation method and the best DM-based method pseudoword+dm. Both methods
improve the performance for most of the classes, however, there are still many classes where the performance
is decreased up to 10%. The distribution of improvements for retrieval is similarly shaped as for pseu-
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doword+dm, but significantly pushed to the right. Systematically investigating these failure cases might
be a fruitful avenue to further improve generative augmentation.

Retrieval has better scaling behavior. As di�usion models can generate arbitrarily many samples,
we explored our best performing di�usion model based method’s (pseudoword+dm) scaling behavior for
higher augmentation ratios. To compare its performance to retrieval, we retrieved abundant samples and
augmented with those images which CLIP embeddings were most similar to our retrieval prompt. While
for DM generated images performance saturated for high augmentation ratios, retrieval still substantially
increased performance, outperforming the best di�usion model based approach (Figure 5B).

Retrieval works on full data sets. So far, all presented results address the case of a small data set,
simulated by drawing a subsample from ImageNet. Hence, we asked how well the best prompt-conditioned
and personalized DM augmentation techniques would perform compared to retrieval on large data sets. On
full ImageNet, we found consistent with the results on subsampled ImageNet that retrieval performed
best (79.0 ± 0.2), however, the performance gap to pseudoword+dm (78.8 ± 0.2) and clip prompts
(78.7±0.1) narrowed down compared to the small data set case we investigated before. All three approaches
outperform the ResNet-50 baseline (76.1). Additionally, we verified these results on Caltech256 (Gri�n et al.,
2007) (retrieval: 68.4 ± 0.4, pseudoword+dm: 68.1 ± 0.3, clip prompts: 68.2 ± 0.2, no augmentation:
59.3±0.7) showing that di�usion models do not outperform our simple retrieval baseline across data sets.

5 Discussion

Di�usion models have shown their e�ectiveness in many application areas, and using them for data augmen-
tation is an intriguing research direction. We have evaluated multiple methods to prompt and personalize
di�usion models on their usefulness for data augmentation, showing that none of them beat the simple base-
line of retrieving images from the di�usion model’s pre-training dataset. Why is the retrieval baseline so
hard to beat? One reason might be that retrieval potentially accesses more information, as the pre-training
dataset is usually much larger than the weights of the generative models trained on it. Although it has
been argued that di�usion models might partially compress the training data (Somepalli et al., 2022; Carlini
et al., 2023), it is still unclear if the generative model captured all relevant information. However, di�usion
models could possibly improve upon the so-far superior retrieval by generating a large number of additional
data and more diverse and compositionally novel images, for instance by generating out-of-domain samples
(e.g., “a photograph of an astronaut riding a horse”) (Ramesh et al., 2022; Saharia et al., 2022b; Rombach
et al., 2022). Furthermore, di�usion models allow, in principle, for more controlled adaptation than retrieval
methods. We showed that personalization methods are a good step in this direction, however, they typically
focus only on creating variants of specific given images. To unlock the true potential of di�usion models for
data augmentation, new methods that capture the target dataset manifold as a whole, are needed.

Limitations and future work. It would be interesting to extend our analysis to other datasets which
might not be abundantly available for retrieval (e. g. medical images) and to explore the investigated
methods for out-of-distribution generalization (Qiu et al., 2022; Wenzel et al., 2022a). Di�usion models are
a very active research area, and new methods and applications are published on a daily basis. Hence, our
experiments could only capture a subset of possible methods and newly proposed extensions of them (in total,
eleven methods). We have shown that simple retrieval is a very strong competitor for data augmentation.
Further improvements could be introduced by diversifying the retrieval set (Wenzel et al., 2020; Yue &
Guestrin, 2011) or retrieving images using linear combinations of inputs (Zietlow et al., 2022).

Conclusion. We showed that a simple retrieval baseline outperforms a wide range of di�usion model based
augmentations. However, given the fast rate of progress in this field it is not possible to definitively say that
retrieval can not be beaten, and we believe that di�usion models have the potential to improve over this
baseline. Nonetheless, the strength of retrieval’s performance makes it clear that future works using di�usion
models for augmentation should also compare against this baseline. We hope that our paper provides ground
for researchers to benchmark generative augmentation methods and assess their benefit by comparing them
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with retrieval baselines. In the longer-term, we hope that new methods can be developed which combine
retrieval and generation, leading to greater improvements in the diversity and quality of augmented images.
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