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ABSTRACT

We introduce InVirtuoGen, a discrete flow generative model for fragmented
SMILES for de novo and fragment-constrained generation, and target-property/lead
optimization of small molecules. The model learns to transform a uniform source
over all possible tokens into the data distribution. Unlike masked models, its train-
ing loss accounts for predictions on all sequence positions at every denoising step,
shifting the generation paradigm from completion to refinement, and decoupling
the number of sampling steps from the sequence length. For de novo genera-
tion, InVirtuoGen achieves a stronger quality-diversity pareto frontier than prior
fragment-based models and competitive performance on fragment-constrained
tasks. For property and lead optimization, we propose a hybrid scheme that
combines a genetic algorithm with a Proximal Property Optimization fine-tuning
strategy adapted to discrete flows. Our approach sets a new state-of-the-art on the
Practical Molecular Optimization benchmark, measured by top-10 AUC across
tasks, and yields higher docking scores in lead optimization than previous baselines.
InVirtuoGen thus establishes a versatile generative foundation for drug discovery,
from early hit finding to multi-objective lead optimization. We further contribute
to open science by releasing pretrained checkpoints and code, making our results
fully reproducible1.

1 INTRODUCTION

Fragment-based drug discovery (FBDD) is widely used in both academia and industry for its efficient
exploration of chemical space (Kirkman et al., 2024). FBDD relies on fragment-constrained design,
in which new candidate molecules are generated by preserving specific substructures, such as active
scaffolds or pharmacophores, and modifying surrounding regions to tune properties (Kirsch et al.,
2019). However, FBDD is typically guided by expert-defined heuristics based on chemical intuition,
limiting exploration of the vast chemical space. In contrast, in silico molecular generation seeks to
formalize and automate this intuition, leveraging data-driven generative models to navigate chemical
space more systematically. While many such models have emerged as promising candidates to
accelerate the drug discovery pipeline (Zeng et al., 2022), their adoption in practice remains limited.
A key barrier is that their molecular representations are often poorly aligned with medicinal chemistry
workflows, making them difficult to integrate into existing pipelines. Although graphs provide
a natural representation for molecules, generative frameworks tailored to graph-structured data
remain limited in performance. For instance, the state-of-the-art AutoGraph (Chen et al., 2025)
sidesteps direct graph generation by linearizing graphs into sequences via depth-first traversal and
relying on next token prediction. Similarly, the Simplified Molecular Input Line Entry System
(SMILES) (Weininger, 1988) is commonly used when working with small molecules. SMILES
encodes molecular graphs as sequences via depth-first traversal of a spanning tree with annotations for
branches and ring closures. However, both linearizations disrupt chemically meaningful substructures,
offering limited control over scaffold retention or fragment assembly and making them poorly suited
for fragment-based drug discovery (Jinsong et al., 2024). We propose InVirtuoGen, a continuous-time
discrete flow model (Campbell et al., 2024; Gat et al., 2024) that operates directly on fragmented
SMILES.

∗In Virtuo Laboratories
†Max Planck Institute of Biochemistry
1https://github.com/invirtuolabs/InVirtuoGen_results
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(a) Autoregressive (b) Masked Diffusion (c) Discrete Flow & Uniform Source
Figure 1: Comparison of generation paradigms: (a) autoregressive models generate tokens sequen-
tially (here simplified by omitting BOS/EOS tokens), (b) masked diffusion models iteratively reveal
masked positions, and (c) discrete flows refine all positions starting from a uniform source distribution,
where shading indicates the transition from random tokens to data.

2 RELATED WORK

While numerous generative models have been proposed for small-molecule drug design (Jensen,
2019; Olivecrona et al., 2017; Morrison et al., 2024; Gao et al., 2022b; Nigam et al., 2020; Bou et al.,
2024), few are explicitly designed for fragment-level control. In this work, we focus on approaches
that operate on sequential fragment-based representations. Several alternative approaches construct
molecules via graph-based operations on substructures, for example by adding or deleting fragments
through Markov Chain Monte Carlo sampling (Xie et al., 2021), using graph-based Variational
Auto-Encoders conditioned on identified substructures (Jin et al., 2020; 2018; Maziarz et al., 2024),
or applying graph-based genetic algorithms (GA) (Jensen, 2019; Tripp and Hernández-Lobato,
2023). Although these models encode domain-specific priors, they often suffer from poor scalability
and limited generalization beyond known chemical regions, in part due to their reliance on graph
operations and discrete mutation strategies. By contrast, generative models operating on linear
sequential representations of fragmented SMILES, such as SAFE-GPT (Noutahi et al., 2023) and
GenMol (Lee et al., 2025), offer a more scalable and expressive alternative, and form the primary
baselines for our work2.

Autoregressive Models Autoregressive approaches, such as SAFE-GPT (Noutahi et al., 2023),
generate molecular sequences token by token in a fixed left-to-right order. This ordering is arbitrary
with respect to molecular structure, which is inherently unordered3.

Masked Diffusion Models Masked discrete diffusion models, such as GenMol (Lee et al., 2025),
iteratively unmask tokens starting from a fully masked input. While predictions are produced for the
entire sequence at each denoising step, the training objective accounts for errors only on the masked
positions. As a consequence, once a token is unmasked during sampling, it is treated as fixed and no
longer updated. This introduces a fundamental limitation: the number of sampling steps is bounded
by the number of initially masked tokens, unless arbitrary remasking heuristics are included.

Our Contributions Our method departs from completion-style generation and instead refines all
positions simultaneously at every denoising step (Figure 1). This training paradigm enables coordi-
nated updates across the molecule and decouples sampling steps from sequence length, aligning with
our central principle: refine drugs, don’t complete them. Concurrent to our work (Schiff et al., 2025)
proposed Uniform Discrete Language Models, which similarly allow simultaneous token updates but
remain within a diffusion-based framework. Concretely, we present the first discrete flow model for
fragmented SMILES with a refinement-based training paradigm, show state-of-the-art performance
in de novo generation and competitive performance on fragment-constrained generation tasks, and
introduce a hybrid optimization framework combining Proximal Property Optimization (Schulman
et al., 2017), adapted to discrete flows, with a genetic algorithm. Our framework achieves state-of-
the-art results on the Practical Molecular Optimization (PMO) benchmark (Gao et al., 2022a) and
improved results in lead optimization over prior baselines (Lee et al., 2025).

2We compare against GenMol using the results reported in their paper. While the source code is publicly
available, to the best of our knowledge, the pretrained checkpoints are only distributed through NVIDIA
NIM/NGC under the NVIDIA Open Model License, which currently does not allow unrestricted download. As
a result, we were unable to run GenMol directly and rely on the published numbers for comparison.

3Although, there exist a canonical SMILES encoding scheme, it is still an arbitrary imposed ordering.
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2.1 DISCRETE FLOW MODELS

We adopt the discrete flow model framework of Gat et al. (2024), where the goal is to transform
samples from a source distribution X0 ∼ p into samples from a target distribution X1 ∼ q. Training
data consists of interpolation pairs (X0, X1), sampled independently from the source and target. We
choose the linear scheduler κt

j of Gat et al. (2024), resulting in following the probability path:

pt(x
i | x0, x1) = (1− t) δx0(x

i) + t δx1(x
i), t ∈ [0, 1]. (1)

During sampling, each token Xi
t is updated according to the discrete-time Markov update

Xi
t+h ∼ δXi

t
(·) + hui

t(·, Xt), (2)

where ut is the probability velocity and h > 0 is the step size. Following Gat et al. (2024), ut must
satisfy the validity constraints∑

xi∈[d]

ui
t(x

i, z) = 0, ui
t(x

i, z) ≥ 0 for all i and xi ̸= z. (3)

For our scheduler choice, the training objective becomes

L(θ) = −Et∼U(0,1),(X0,X1),Xt

1

1− t2

∑
i

log p1|T (X
i
1 | Xt), (4)

where p1|T denotes the model prediction and the sum is over the sequence. The time-dependent loss
weighting term, not present in its original formulation, was inspired by Sahoo et al. (2024) and places
greater emphasis on later timesteps, encouraging higher accuracy near the end of the trajectory. As
a backbone model, we use a diffusion transformer (Peebles and Xie, 2022) to parameterize p1|T ,
leveraging its bidirectional self-attention to capture long-range dependencies between fragments
while predicting the target token distribution at each position. More details about our experimental
setup is given in Appendix A.1.

2.2 FRAGMENTED SMILES NOTATION & PREPROCESSING

Figure 2: Comparison between SMILES, SAFE,
and our notation for the same molecule. Our nota-
tion preserves fragment integrity while providing
explicit attachment point numbering that facilitates
bidirectional modeling of molecular structure.

Our molecule representation is based on and
marginally extends the Sequential Attachment-
Based Fragment Embedding (SAFE) framework
of Noutahi et al. (2023) by encoding molecules
as sequences of fragment blocks with explicit
attachment points, improving readability and di-
rect control over molecular substructures. To
produce chemically meaningful fragments, the
molecules are decomposed using the revised
BRICS algorithm (Degen et al., 2008), with the
locations of bond breaks marked by attachment
points of the form [i∗], where i enumerates the
broken bonds and we separate fragments with
spaces. In Fig. 2, we illustrate the difference
between the SMILES, SAFE, and our notation.
To remove any implicit ordering bias, the result-
ing fragments are randomly shuffled rather than
ordered by their attachment point in the original
molecule. The resulting fragmented SMILES strings are tokenized at the atomic level4, yielding a
vocabulary of 204 tokens.

2.3 FINETUNING

While de novo generation or fragment-constrained generation of small molecules is certainly an inter-
esting and challenging topic, its practical utility in drug discovery is limited. A central contribution
of our work is therefore the exploration of tasks with direct real world relevance, such as property
optimization, docking score improvement, and lead refinement. These tasks require models not only

4Note that we do not tokenize e.g. ‘Cl‘ as two tokens, but as a single one. The same holds for the attachment
point tokens.
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to generate chemically valid structures, but to navigate chemical space in a goal directed manner
under realistic computational constraints. Because the finetuning strategies we employ are tightly
coupled to the requirements of each experimental setting, we introduce them directly within the
corresponding sections (Sec. 3.3 onwards).

3 EXPERIMENTS

We evaluate InVirtuoGen on four molecular design tasks: (i) de novo generation of diverse, synthe-
sizable, drug-like molecules; (ii) fragment-constrained design with predefined scaffolds or pharma-
cophores; (iii) target property optimization on the PMO benchmark (Gao et al., 2022a), assessing
sample efficiency and oracle performance; and (iv) lead optimization, optimizing docking scores
under similarity, synthesizability and drug-likeness constraints.
For a fair comparison, we pretrain on the same datasets as GenMol (Lee et al., 2025) and SAFE-
GPT (El Mesbahi and Noutahi, 2024): ZINC (Sterling and Irwin, 2015) and UniChem (Chambers
et al., 2013), containing roughly one billion molecules.
The non-autoregressive formulation enables bidirectional attention, making the model well-suited
for the inherently unordered representation. However, this also implies that we explicitly decouple
sequence length from the generation process by factorizing the output distribution as

pθ(x) = p(n) pθ(x | n), (5)

where p(n) models the sequence length. To compare with GenMol, our base distribution is also
chosen to be the empirical length distribution of ZINC250k, a curated subset of ZINC (Sterling and
Irwin, 2015) containing synthesizable, drug-like compounds.

3.1 De Novo GENERATION

For drug discovery, generated molecules must be diverse, synthesizable, and drug-like. We evaluate
these aspects with four metrics, following prior work on fragmented SMILES: Validity (fraction
of valid SMILES), Uniqueness (fraction of unique valid molecules), Diversity (average Tanimoto
distance of Morgan fingerprints (Polykovskiy et al., 2018; Rogers and Hahn, 2010)), and Quality (Lee
et al., 2025) (fraction of valid, unique molecules with QED ≥ 0.6 (Bickerton et al., 2012) and
SA≤ 4 (Ertl and Schuffenhauer, 2009)). Quality and diversity are the main criteria, but they trade off
against each other. As in GenMol, we tune this balance via the softmax temperature T and a noise
scale r (modulating Gumbel noise5). During generation, r is damped as (1− t) and T is annealed,
promoting early exploration and late refinement. Empirically, sampling directly from the predicted
token-wise distribution

Xi
t+h ∼ p̂it(Xt), (6)

outperforms Eq. 2 significantly. Importantly, our update departs from masked discrete diffusion mod-
els: instead of replacing only masked tokens, all sequence positions possibly change simultaneously
at every step, leading to a refinement process rather than arbitrary order completion. We provide
more details and investigate the benefits of our sampling method in Appendix B.1.

Results In Figure 3, we present and compare our results to other state-of-the-art fragment-based
generative models. Increasing the time-granularity (i.e., using smaller timestep sizes h) consistently
improves both quality and diversity. InVirtuoGen consistently achieves a superior pareto frontier,
with the largest gains at high time-granularity (h = 0.001), outperforming all baselines across the
full quality-diversity spectrum. As described in Appendix B.1, sampling with h = 0.01 yields a
comparable number of model calls, while still showing a modest performance increase over GenMol,
particularly in the lower-diversity regime. We provide the ZINC250k sequence length distribution,
non-curated samples, timing studies and additional results in Appendix B.1, including the pareto
frontier obtained by sampling according to Eq. 2.

3.2 FRAGMENT-CONSTRAINED GENERATION

A core task in FBDD is to generate molecules given one or more fragments the molecule should
contain. However, both next-token prediction models and masked discrete diffusion models such
as GenMol can be prompted in a straightforward manner by using a prefix. In contrast, our model
predicts a potential completely different sequence at every timestep. Thus strictly requiring the
presence of the exact prompt significantly impacts the performance our model, since to ensure that the

5GenMol instead perturbs the order of the confidence-based token unmasking
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Figure 3: Quality-diversity trade-off for GenMol, SAFE-GPT (single point, as no quality-
diversity scan data is available), and our model at different simulation time granularities (h ∈
{0.1, 0.01, 0.001}). Curves correspond to varying sampling noise (T, r), where T is the softmax
temperature and r is the Gumbel noise scale.

generated molecules remain consistent with given fragments, the corresponding positions are naively
overwritten at every timestep of the simulation. We note that fragment-constrained generation is
fundamentally at odds with our refinement philosophy. It requires fixing certain positions, preventing
the holistic refinement that makes our approach powerful. Nevertheless, we include additional results
in Appendix B.2. That said, prompting remains an important feature of our model. Unlike strict
fragment enforcement, soft prompting enables controlled exploration in the neighborhood of an input
molecule, making it a useful mechanism for guided search and local optimization, as we show in the
following section.

3.3 TARGET PROPERTY OPTIMIZATION

The PMO benchmark evaluates molecular optimization under conditions that mirror practical drug
discovery, with limited oracle calls and diverse pharmacologically relevant objectives. We introduce
a hybrid approach that combines a genetic algorithm, which provides fast convergence through
recombination of high-scoring molecules, with PPO-based reinforcement learning adapted to discrete
flows, which enables gradient-guided refinement under shaped reward signals. Importantly, the
combination of the two methodologies is simplified by our model’s ability to accept full sequences as
input. Note, that for this experiment we used the standard discrete flow sampling from Eq. 2, a short
explanation for this choice is given in App. B.3.1.

Genetic Algorithm Because our model operates on full-length sequences, the initial state xt=0 is
constructed as a mixture of top-performing molecules. We maintain a vocabulary of high-scoring
molecules with pairwise Tanimoto distance ≥ 0.7 on Morgan fingerprints. To produce an offspring,
two parents are sampled without replacement using rank-based probabilities p(m) = 1/(rank(m) +
κM), where M is the vocabulary size and κ controls the contribution of lower-ranked entries. Parents
are then decomposed by the fragmentation rule, and offspring are formed by replacing one fragment
of the first parent with a fragment from the second, joined by a separator token in the fragmented
SMILES space (i.e. simple string concatenation). GenMol joins fragments at fixed dummy attachment
points, while our refinement method can adjust the local context and explore structural variants around
the fragment. Naturally, most resulting offspring are not valid molecules, but they only provide the
starting state xt=0 for our model. While in traditional GA the offspring is mutated, we adopt the
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mutation operators of Jensen (2019) and apply them to the best-performing molecules found so far to
explore their neighborhood.

Reinforcement Learning We adapt PPO (Schulman et al., 2017) to fine-tune the discrete flow
policy. Unlike autoregressive models, where the policy log-probability is directly available as the sum
of next-token log-likelihoods, discrete flows do not yield a tractable log p(x) over entire sequences.
Instead, following the discrete flow matching framework of Gat et al. (2024), we approximate the
log-probability via Monte Carlo estimation over perturbed states. For every sequence, we draw
timesteps t ∼ U(0, 1), apply the noise schedule to obtain a partially noised state xt and optimize the
time-weighted loss

L =
1

1− t2

∑
noised positions

log πθ(x
i
1 | xt, t). (7)

Our rewards are computed as A = r−r̄
σr+ϵ , where r is the oracle scores, r̄ denotes the batch mean,

σr the standard deviation and ϵ provides numerical stability. The clipped PPO surrogate ρ(θ) =
exp

(
log πθ − log πold

)
is optimized in the standard way.

Adaptive Sequence Length Sampling As mentioned previously, our model requires a sequence
length as input during generation. To accelerate convergence to well-performing molecule lengths,
we employ an adaptive bandit that favors lengths with consistently high rewards while still retaining
exploration through the prior distribution. We use a peak-seeking variant that blends best-so-far
performance, reward quantiles, and an exploration bonus (see Appendix A.3.1).

Combined Optimization Algorithm The overall procedure, combining GA exploration with PPO
fine-tuning of the discrete flow, is summarized in Alg. 1, and additional implementation details are
provided in Appendix A.3. Unlike GenMol or f -RAG, our method uses a single hyperparameter
configuration across all tasks, highlighting that the performance gains arise from the algorithmic
design rather than extensive hyperparameter tuning.

Algorithm 1 Target-Property Optimization (GA + PPO)

Require: Model π, frozen prior πold, oracle O, population P , bandit B, maximum oracle calls Nmax,
fragmentation ruleR, mutation op, PPO params (ϵ, cneg, β)
while oracle calls < Nmax do

sample parent pairs from P; draw lengths ℓ ∼ B
Poff ← {X ∼ π(· | crossover(R(p1),R(p2)), ℓ)}
Poff ← Poff ∪ {mutate(x) : x ∈ topN (P)}
r← O(Poff)
for k = 1 to K do

θ ← θ −∇θL(θ; r, πθ, πold)
end for
update B with (ℓ, r); P ← top{P ∪ Poff}
πold ← π

end while
return top molecules

Results The PMO benchmark comprises 23 single-objective molecular optimization tasks. Evalua-
tion considers the achieved score and sample efficiency, summarized by the top10 AUC metric: the
area under the curve of the mean score of the top ten molecules as a function of oracle calls. The
scores are normalized to [0, 1], and each run is limited to 10,000 oracle evaluations. GenMol (Lee
et al., 2025) and f-RAG (Lee et al., 2024) initialize their populations by screening the entire ZINC250k
dataset, i.e. performing 250,000 additional oracle calls before optimization begins. Thus, while they
nominally report results with 10k oracle calls, the effective budget is closer to 260,000. To ensure
comparability, we evaluate our method under both setups: with prescreening on ZINC250k (Tab.1),
directly comparable to GenMol and f-RAG, and without prescreening (Tab.2), directly comparable
to baselines such as REINVENT (Olivecrona et al., 2017), MolGA (Tripp and Hernández-Lobato,
2023), and Genetic GFN (Kim et al., 2024), which do not use any prior oracle information. Due
to space constraints, we only include up to three top-performing baselines, ranked by the sum of
AUC-top10 scores across all benchmark tasks. In both setups, InVirtuoGen consistently achieves the
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Table 1: Comparison of models on the PMO benchmark that screen ZINC250k before initialization.
We report the AUC-top10 scores, averaged over three runs with standard deviations. Best results and
those within one standard deviation of the best are indicated in bold. The scores for f -RAG (Lee
et al., 2024) and GenMol (Lee et al., 2025) are taken from the respective publications.

Oracle InVirtuoGen GenMol f-RAG

albuterol similarity 0.975 (± 0.016) 0.937 (± 0.010) 0.977 (± 0.002)

amlodipine mpo 0.836 (± 0.031) 0.810 (± 0.012) 0.749 (± 0.019)

celecoxib rediscovery 0.839 (± 0.013) 0.826 (± 0.018) 0.778 (± 0.007)

deco hop 0.968 (± 0.012) 0.960 (± 0.010) 0.936 (± 0.011)

drd2 0.995 (± 0.000) 0.995 (± 0.000) 0.992 (± 0.000)

fexofenadine mpo 0.904 (± 0.000) 0.894 (± 0.028) 0.856 (± 0.016)

gsk3b 0.988 (± 0.001) 0.986 (± 0.003) 0.969 (± 0.003)

isomers c7h8n2o2 0.988 (± 0.002) 0.942 (± 0.004) 0.955 (± 0.008)

isomers c9h10n2o2pf2cl 0.898 (± 0.018) 0.833 (± 0.014) 0.850 (± 0.005)

jnk3 0.898 (± 0.031) 0.906 (± 0.023) 0.904 (± 0.004)

median1 0.386 (± 0.003) 0.398 (± 0.000) 0.340 (± 0.007)

median2 0.377 (± 0.006) 0.359 (± 0.004) 0.323 (± 0.005)

mestranol similarity 0.991 (± 0.002) 0.982 (± 0.000) 0.671 (± 0.021)

osimertinib mpo 0.881 (± 0.012) 0.876 (± 0.008) 0.866 (± 0.009)

perindopril mpo 0.753 (± 0.019) 0.718 (± 0.012) 0.681 (± 0.017)

qed 0.943 (± 0.000) 0.942 (± 0.000) 0.939 (± 0.001)

ranolazine mpo 0.854 (± 0.012) 0.821 (± 0.011) 0.820 (± 0.016)

scaffold hop 0.711 (± 0.081) 0.628 (± 0.008) 0.576 (± 0.014)

sitagliptin mpo 0.743 (± 0.022) 0.584 (± 0.034) 0.601 (± 0.011)

thiothixene rediscovery 0.652 (± 0.024) 0.692 (± 0.123) 0.584 (± 0.009)

troglitazone rediscovery 0.853 (± 0.003) 0.867 (± 0.022) 0.448 (± 0.017)

valsartan smarts 0.935 (± 0.012) 0.822 (± 0.042) 0.627 (± 0.058)

zaleplon mpo 0.624 (± 0.040) 0.584 (± 0.011) 0.486 (± 0.004)

Sum 18.993 (± 0.219) 18.362 16.928

best overall performance, considering the sum over all tasks. Ablations in Appendix B.3.1 show that
all components of our optimization stack matter. In particular, PPO without prescreening and any
genetic algorithm yields higher performance than REINFORCE, a common baseline used in industry.

3.4 LEAD OPTIMIZATION

Given an initial seed molecule, the goal in lead optimization is to generate leads that exhibit improved
binding affinity to a target protein while satisfying constraints on the generated molecules. For the
following experiments, the constraints are QED ≥ 0.6, SA ≤ 4, and Tanimoto similarity ≥ δ to the
seed molecule, where δ ∈ {0.4, 0.6}. We follow the benchmark of Lee et al. (2025) and evaluate on
five target proteins (parp1, fa7, 5ht1b, braf, jak2), each with three active ligands as molecule seeds.
Performance is measured by the docking score (DS) of the most optimized lead (lower is better). We
use the same optimization method as in the previous section, but we scale the docking score DS by
constraint satisfaction:

S(m) =
DS

15

(
1− penalty(QED(m),SA(m),SIM(m)

)
. (8)

where the penalty increases when QED < 0.6, SA > 4, or SIM < δ.

Results Table 3 compares our approach against GenMol, RetMol, and GraphGA. Our model
consistently achieves competitive or superior docking scores across most proteins and similarity
thresholds. Notably, our method remains effective even under the stricter δ = 0.6 constraint, where
baseline methods frequently fail to produce improved leads. For example, on parp1 and jak2, our
model obtains substantially better docking scores than the baselines. The use of a soft-constraint
oracle during training proves advantageous, allowing our model to explore chemical space more
effectively while still converging to molecules that meet all constraints. While Tanimoto similarity is
a standard proxy for structural similarity, it has known limitations as it reduces complex molecular
relationships to a single fingerprint overlap score. To give a more complete view, we also report
results without this constraint in Appendix B.4.
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Table 2: The results of the best performing models on the PMO benchmark, where we quote the AUC-
top10 averaged over 3 runs with standard deviations. The best results are highlighted in bold. Values
within one standard deviation of the best are also marked in bold. The results for Genetic GFN (Kim
et al., 2024) and Mol GA (Tripp and Hernández-Lobato, 2023) are taken from the respective papers.
The other results are taken from the original PMO benchmark paper by (Gao et al., 2022a).

Oracle InVirtuoGen
(no prescreen)

Gen. GFN Mol GA REINVENT

albuterol similarity 0.950 (± 0.017) 0.949 (± 0.010) 0.896 (± 0.035) 0.882 (± 0.006)

amlodipine mpo 0.733 (± 0.043) 0.761 (± 0.019) 0.688 (± 0.039) 0.635 (± 0.035)

celecoxib rediscovery 0.798 (± 0.028) 0.802 (± 0.029) 0.567 (± 0.083) 0.713 (± 0.067)

deco hop 0.748 (± 0.109) 0.733 (± 0.109) 0.649 (± 0.025) 0.666 (± 0.044)

drd2 0.985 (± 0.002) 0.974 (± 0.006) 0.936 (± 0.016) 0.945 (± 0.007)

fexofenadine mpo 0.845 (± 0.016) 0.856 (± 0.039) 0.825 (± 0.019) 0.784 (± 0.006)

gsk3b 0.952 (± 0.016) 0.881 (± 0.042) 0.843 (± 0.039) 0.865 (± 0.043)

isomers c7h8n2o2 0.968 (± 0.005) 0.969 (± 0.003) 0.878 (± 0.026) 0.852 (± 0.036)

isomers c9h10n2o2pf2cl 0.874 (± 0.013) 0.897 (± 0.007) 0.865 (± 0.012) 0.642 (± 0.054)

jnk3 0.825 (± 0.016) 0.764 (± 0.069) 0.702 (± 0.123) 0.783 (± 0.023)

median1 0.342 (± 0.008) 0.379 (± 0.010) 0.257 (± 0.009) 0.356 (± 0.009)

median2 0.288 (± 0.008) 0.294 (± 0.007) 0.301 (± 0.021) 0.276 (± 0.008)

mestranol similarity 0.797 (± 0.033) 0.708 (± 0.057) 0.591 (± 0.053) 0.618 (± 0.048)

osimertinib mpo 0.870 (± 0.005) 0.860 (± 0.008) 0.844 (± 0.015) 0.837 (± 0.009)

perindopril mpo 0.645 (± 0.032) 0.595 (± 0.014) 0.547 (± 0.022) 0.537 (± 0.016)

qed 0.942 (± 0.000) 0.942 (± 0.000) 0.941 (± 0.001) 0.941 (± 0.000)

ranolazine mpo 0.848 (± 0.010) 0.819 (± 0.018) 0.804 (± 0.011) 0.760 (± 0.009)

scaffold hop 0.589 (± 0.021) 0.615 (± 0.100) 0.527 (± 0.025) 0.560 (± 0.019)

sitagliptin mpo 0.709 (± 0.029) 0.634 (± 0.039) 0.582 (± 0.040) 0.021 (± 0.003)

thiothixene rediscovery 0.625 (± 0.014) 0.583 (± 0.034) 0.519 (± 0.041) 0.534 (± 0.013)

troglitazone rediscovery 0.595 (± 0.053) 0.511 (± 0.054) 0.427 (± 0.031) 0.441 (± 0.032)

valsartan smarts 0.210 (± 0.297) 0.135 (± 0.271) 0.000 (± 0.000) 0.178 (± 0.358)

zaleplon mpo 0.536 (± 0.006) 0.552 (± 0.033) 0.519 (± 0.029) 0.358 (± 0.062)

Sum 16.676 (± 0.256) 16.213 14.708 14.184

4 CONCLUSION

We have presented InVirtuoGen, a discrete flow-based generative model for fragmented SMILES. It
is a versatile model employable in various stages of common practical drug discovery tasks allowing
fragment-level control. By decoupling sequence length from token generation, we can show that
a finer granularity during the simulation trajectory leads to more diverse and drug-like molecules
in de novo generation. The uniform-source formulation also enables seamless integration with a
genetic algorithm and PPO-motivated fine-tuning. Across de novo generation, fragment-constrained
design, and target property optimization, our approach advances the state-of-the-art, achieving a new
pareto frontier in quality-diversity trade-offs, with competitive quality and diversity in fragment-
constrained tasks, a higher sum of top10 AUC in the PMO benchmark and similarly better results in
lead optimization, where docking scores are optimized under constraints.

5 LIMITATIONS

Our fragmented SMILES representation discards stereochemistry, preventing modeling of stereospe-
cific interactions. The rBRICS decomposition may miss chemically relevant fragmentation patterns,
and the SA/QED metrics are coarse heuristics that poorly correlate with actual drug-likeness (Sko-
raczyński et al., 2023; Chen and Jung, 2024). Missing ADMET assessments limit our conclusions
and all results remain proxy-based, requiring experimental validation. However, these issues are
shared by all compared baselines.
Our sampling modification (Eq. 6) lacks theoretical justification despite strong empirical evidence.
For fragment-constrained generation, we employ naive overwriting that disrupts the learned flow
dynamics by forcing certain positions to remain fixed throughout the trajectory, contradicting the
refinement paradigm central to our approach.
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Table 3: Docking scores (lower is better) averaged over 3 random seeds. Bold indicates the best result
per seed molecule. Values in parentheses indicate solutions with QED> 0.6 and SA< 4 that do not
improve the docking score over the seed. For each seed molecule, its docking score, the quantitative
estimate of drug-likeness and synthetic accessibility is given.
Protein

(DS/QED/SA) δ = 0.4 δ = 0.6

GenMol RetMol GraphGA InVirtuoGen GenMol RetMol GraphGA InVirtuoGen

parp1
-7.3/0.888/2.61 -10.6 -9.0 -8.3 -14.1 (±0.4) -10.4 - -8.6 -12.3 (±0.2)

-7.8/0.758/2.74 -11.0 -10.7 -8.9 -13.4 (±0.6) -9.7 - -8.1 -11.7 (±0.5)

-8.2/0.438/2.91 -11.3 -10.9 - −9.0 (±1.3) -9.2 - - -10.7 (±0.9)

fa7
-6.4/0.284/2.29 -8.4 -8.0 -7.8 -8.4 (±0.4) -7.3 -7.6 -7.6 -7.7 (±0.4)

-6.7/0.186/3.39 -8.4 - -8.2 -8.9 (±0.5) -7.6 - -7.6 −7.5 (±0.3)

-8.5/0.156/2.66 - - - (−8.0 (±0.3)) - - - (−7.4 (±0.4))
5ht1b
-4.5/0.438/3.93 -12.9 -12.1 -11.7 -13.3 (±0.1) -12.1 - -11.3 -12.4 (±0.5)

-7.6/0.767/3.29 -12.3 -9.0 -12.1 −12.0 (±0.7) -12.0 -10.0 -12.0 -12.0 (±0.4)

-9.8/0.716/4.69 -11.6 - - −10.9 (±0.2) -10.5 - - -10.6 (±0.1)

braf
-9.3/0.235/2.69 -10.8 -11.6 -9.8 −10.1 (±0.0) - - - -9.7 (±0.1)

-9.4/0.346/2.49 -10.8 - - -10.8 (±0.1) -9.7 - - -10.4 (±0.3)

-9.8/0.255/2.38 -10.6 - -11.6 −10.6 (±0.4) -10.5 - -10.4 −10.3 (±0.3)

jak2
-7.7/0.725/2.89 -10.2 -8.2 -8.7 -10.2 (±0.8) -9.3 -8.1 - -9.7 (±0.3)

-8.0/0.712/3.09 -10.0 -9.0 -9.2 -10.5 (±0.3) -9.4 - -9.2 -10.4 (±0.1)

-8.6/0.482/3.10 -9.8 - - -10.2 (±0.2) - - - -10.3 (±0.2)

Sum -148.7 -88.5 -96.3 -152.4 (-160.4) -117.7 -25.7 -74.8 -145.7 (-153.1)

6 IMPACT, REPRODUCIBILITY & LLMS USAGE

Impact The method enables efficient fragment-based design with potential benefits for drug
discovery but carries risks if misused for harmful molecule design.

Reproducibility We release model checkpoints, scripts, a Dockerfile, and instructions to replicate
the experimental results.

LLM Usage We used language models for text polishing and LaTeX/coding assistance. However,
all experiments, analyses, and results were designed and conducted by the authors.
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A EXPERIMENTAL DETAILS

A.1 IMPLEMENTATION DETAILS

The backbone model, adapted from Peebles and Xie (2022), has 36 layers6, 12 heads, the hidden
dimension is chosen as 768, and uses rotary positional embeddings (Su et al., 2023). Training is
performed for one epoch with batch size of 300. Sequences of similar length are bucketed together to
reduce the padding per batch. The maximal number of tokens per batch is limited to 25, 000. The
AdamW (Loshchilov and Hutter, 2019) optimizer, with (β1 = 0.99, β2 = 0.999) is used with a
learning rate of 10−4. Additionally, the learning rate is varied according to a linear warm-up cosine
annealing scheduler.

A.2 FRAGMENT-CONSTRAINED GENERATION PARAMETERS

The time-granularity of 0.01 is used together with our proposed sampling from Eq. 6. We see
a slight performance increase when increasing the sampling time-granularity, as demonstrated in
Appendix B.2.

A.3 TARGET-PROPERTY OPTIMIZATION PARAMETERS

A smaller model is used in this setting, with 12 layers instead of 36. The population for the genetic
algorithm, which provides the starting points of the trajectory {xt=0}, is updated every 50 scored
samples. Out of 80 generated samples, 20 are obtained by mutating the top 20 candidates generated
so far, using the mutation operators from Jensen (2019). For rank-based sampling, we set κ = 0.001.
For the calculation of the Tanimoto distance, we use Morgan fingerprints with 2048 bits and a radius
of 2 nodes. The model is updated with PPO after every 100 scored SMILES. For each sequence, 50
timesteps t ∼ U(0, 1) are sampled to construct the training dataset {xt} by interpolating between a
sequence of random tokens and the sampled values. During each epoch, 10 optimization steps are
performed with a learning rate of 10−4. The clipping coefficient for PPO is set to η = 0.2.
When constructing the initial population by prescreening ZINC250K, no experience replay is used.
Otherwise, an experience replay buffer of 300 samples is maintained.

A.3.1 PEAK-SEEKER BANDIT

Our peak-seeking bandit, given in Alg. 2 is a heuristic that combines elements of UCB bandits (Auer
et al., 2002) with quantile-based bandit updates (David and Shimkin, 2016).

Algorithm 2 Peak-Seeker Bandit for Adaptive Length Sampling

Require: Candidate lengths {nk}, prior π(0), quantile target q, learning rate ηq, weights
(wbest, wquant), bandwidth σ, exploration bonus c, temperature τ , floor probability ϵ

1: while generating molecules do
2: For each arm k, track visit count Nk, best reward bk, and running quantile estimate q̂k
3: Compute score sk ← wbestbk + wquantq̂k + UCB(Nk) + neighborhood(Lbest, nk)

4: For unvisited arms: use prior π(0) as fallback
5: Convert scores to probabilities pk ∝ exp(sk/τ), apply floor ϵ, normalize
6: Sample sequence length L ∼ Categorical(p)
7: Generate molecules of length L and obtain reward r
8: Update Nk, bk ← max(bk, r), q̂k by quantile SGD
9: Update global best (Lbest, rbest) if r > rbest

10: end while

6For the results in the fragment-constrained generation and target property/lead optimization a smaller model
with 12 layers was used to improve speed and reduce memory use.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 DE NOVO GENERATION

Validity and Uniqueness versus Diversity. Since the Quality metric represents a combined sum-
mary of Uniqueness and Validity, here we report the individual relationships between Uniqueness,
Validity, and Diversity, as shown in Figures 4.
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Figure 4: Trade-offs between Validity, Uniqueness, and Diversity in the generated molecules.

Sequence Length Distribution In Fig. 5 we show the sequence length distribution of ZINC250K.
The maximum observed length is 84, which implies that a masked model would require up to 84
steps to produce a sample. In contrast, our discrete flow model with a uniform source decouples the
number of steps from the sequence length, allowing shorter sequences to be refined more within the
same compute budget.
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Figure 5: Sequence length distribution of ZINC250K. The maximum observed length is 84, which
implies that a masked model requires at least 84 sampling steps, putting it close to our step size
h = 0.01.

Non-Curated Samples In Fig. 6 we provide non-curated samples from de novo generation with
temperature T = 1 and randomness r = 0.

14



Published as a conference paper at ICLR 2026

Figure 6: Non curated samples for de novo generation
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Comparison of Sampling Methods In Fig. 7, we compare the quality versus diversity trade-off
generated by sampling according to our proposed sampling method (Eq. 6) and for the one proposed
by Gat et al. (2024) (Eq. 2). The benefit of increasing the sampling granularity disappears when
standard sampling is used. In the following, we investigate possible causes for this.
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(a) Our Sampling (Eq. 6)
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(b) Discrete Flow Model Sampling (Eq. 2).
Figure 7: Comparison of the different sampling methods in terms of quality vs diversity.
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(b) Average number of token changes per sequence.
Figure 8: Dynamic behavior during sampling. Our method rapidly concentrates token probabilities
and progressively reduces the number of token changes, while standard sampling (DFM) increases
confidence linearly and keeps changes nearly constant.

We provide statistics aggregated from the sampling trajectories. As shown in Fig. 8a, for our sampling
method the probability density of the current tokens p1|T (xt) quickly saturates at 1, while for standard
sampling (Eq.2) it increases almost linearly across steps. This difference is mirrored in the dynamics
of token changes (Fig. 8b): our approach begins with many parallel updates that gradually decay into
a refinement phase, whereas standard sampling maintains a nearly constant but low rate of changes
throughout. Our decay pattern is closer to the intuitive notion of refinement, where the number of
modifications decreases as the sequence converges towards a high-probability solution. Finally, the
cumulative number of token changes (Fig. 9) highlights a fundamental distinction: DFM sampling
yields a step-size-invariant total number of modifications, effectively fixing the update budget, while
our method scales with the granularity h, allowing more structured refinements when smaller steps
are used. The observation that the number of token changes is independent of time granularity for
standard DFM sampling provides a plausible explanation for the lack of improvement in standard
sampling at higher resolutions.
Additionally, Figs. 10a and 11b show QED and SA distributions across time resolutions h. Under our
sampling (Eq. 6), the QED distribution shifts markedly upward to higher values, while SA also seems
to move to smaller values (Figs. 10a, 10b). In contrast, the standard discrete flow update (Eq. 2)
more closely follows ZINC250k for both metrics (Figs. 11a, 11b). This upward shift in QED and
downward shift in SA under our sampling method is consistent with the stronger quality–diversity
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Figure 9: Cumulative number of token changes per sequence for different time resolutions h. DFM
sampling shows step-size invariance, while our method scales the number of refinements with stepsize
h.
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Figure 10: Distributions of QED and SA for molecules generated with our sampling rule (Eq. 6) at
different time resolutions h. ZINC250k is shown as a dashed baseline.

frontier reported earlier. Although one might expect the generated distributions to overlap with
ZINC250k, it is important to emphasize that ZINC250k contributed only a small fraction of the
training data (2.5×105 molecules vs. 109 in total). The training dataset contains biological compoinds,
which tend to be longer and complex and therfore exhibit higher synthetic accessibility. Moreover,
the objective of our framework is not to reproduce the underlying training distribution but to generate
drug-like molecules with optimized properties. Figure 12 compares standard sampling (Eq. 2) and
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Figure 11: Distributions of QED and SA for molecules generated with the standard discrete flow
update (Eq. 2) across different time resolutions h. ZINC250k is shown as a dashed baseline.
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our sampling (Eq. 6) at (T = 1, r = 0). The left panel shows the average number of carbon atoms
per sequence. Our sampling results in a slightly higher carbon frequency, though the difference is
modest.
The right panel reports the distribution of the number of fragments per sequence, estimated from the
maximal attachment index observed. Standard sampling produces a higher fraction of sequences
with many fragments, whereas our sampling shifts weight toward intermediate fragment counts.
We hypothesize that this structural difference translates into improved drug-likeness, but further
investigation is necessary.
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Figure 12: Sampling comparison at temperature T = 1 and noise r = 0. Left: average number of
carbon atoms per sequence. Right: distribution of the number of fragments per sequence.
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Impact of Time-Weighting Loss In Fig. 13, we show results obtained by training the same model
as for the other de novo generation experiments, but without time-weighting the loss terms. While the
performance under sampling with Eq. 2 is nearly unchanged, the results with Eq. 6 are significantly
worse without time-weighting, showing that our modification has a significant impact on the result.
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(a) Our sampling (Eq. 6).
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Figure 13: Quality-diversity trade-off without using the time-weighting 1

1−t2 of the loss, given in
Eq. 4. Left: results from sampling with Eq. 6. Right: results from sampling with Eq. 2.

Timing Studies To compare with GenMol, we also report results for the smaller 12-layer model
used in the target-property optimization section. Its quality-diversity frontier is shown in Fig. 14.
Sampling with time granularity h = 0.01 on an RTX 4090 yields 20.2 ± 0.3 s for 1000 samples.
Using the same setup with GenMol (instantiated from the provided configuration rather than a
released checkpoint) we obtain 33.2± 0.3 s. We emphasize, however, that speed is a minor factor in
drug discovery, since downstream steps such as docking or wet-lab experiments typically dominate
runtime.
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Figure 14: Quality-diversity frontier for the 12-layer model. At h = 0.01, InVirtuoGen achieves
higher maximum quality to GenMol while attaining substantially higher diversity in the high-quality
regime.
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B.2 FRAGMENT-CONSTRAINED GENERATION

We follow the benchmark of Noutahi et al. (2023), which uses fragments from ten known drugs, and
evaluate five subtasks: linker design (connecting two or more terminal fragments with a feasible
linker), scaffold morphing (modifying the core scaffold while preserving pharmacophoric features),
motif extension (growing a fixed motif with new substituents), scaffold decoration (attaching func-
tional groups at predefined positions), and superstructure generation (assembling multiple fragments
into a coherent larger molecule). In our notation, as for GenMol, linker design and scaffold morphing
yield identical prompts and therefore identical results.

Updated comparison to prior work. In contrast to the results reported in the original GenMol
paper, our analysis of the public implementation shows that the official fragment-constrained results
for linker design and scaffold morphing are produced through a multi-step rejection-filtering proce-
dure. This procedure discards invalid, unparsable, or non-matching generations and therefore inflates
the observed quality and validity. To ensure a fair comparison, we instead report the more relevant
single-step linker-design results released in the GenMol repository update, which do not rely on this
filtering. We include these values for completeness and comparability with prior work only.
In Table 4, we present the fragment-constrained generation results for all methods. Averaging over
all five tasks and three random seeds, our model achieves competitive performance in terms of both
quality and diversity. While the validity is lower across all tasks, we emphasize that validity in
isolation is not the most informative metric in this benchmark. Validity and uniqueness contribute
symmetrically to the quality metric, which more effectively captures the tradeoff between producing
valid molecules and producing diverse ones. This avoids degenerate cases, such as models that
repeatedly generate the same valid molecule. Moreover, lower validity can be compensated by
generating additional samples, whereas low diversity or low quality cannot. For these reasons, we
regard quality as the more practically meaningful metric. Finally, we note that GenMol tunes its
generation parameters separately for each task, whereas our method uses a single unified parameter
setting across all tasks.

Table 4: Performance across five fragment-constrained generation tasks, averaged over three random
seeds: motif extension, linker design, superstructure generation, scaffold morphing, and scaffold
decoration. In our setup, similar as for GenMol, scaffold decoration is identical to linker design, so
results are shared.

Task Method Diversity Quality Uniqueness Validity

Motif Extension
SAFE-GPT 0.56± 0.003 18.60± 2.100 66.80± 1.200 96.10± 1.900

GenMol 0.62± 0.002 30.10± 0.400 77.50± 0.100 82.90± 0.100

InVirtuoGen 0.62± 0.005 39.27± 1.078 96.83± 0.290 68.97± 0.759

Linker Design
SAFE-GPT 0.55± 0.007 21.70± 1.100 82.50± 1.900 76.60± 5.100

GenMol 0.53± 0.002 4.30± 0.400 97.80± 0.500 16.70± 0.2

InVirtuoGen 0.52± 0.004 22.33± 1.250 84.76± 1.620 60.37± 0.573

Scaffold Morphing
SAFE-GPT 0.51± 0.011 16.70± 2.300 70.40± 5.700 58.90± 6.800

GenMol 0.53± 0.002 4.30± 0.400 97.80± 0.500 16.70± 0.2

InVirtuoGen 0.52± 0.004 22.33± 1.250 84.76± 1.620 60.37± 0.573

Superstructure Design
SAFE-GPT 0.57± 0.028 14.30± 3.700 83.00± 5.900 95.70± 2.000

GenMol 0.60± 0.009 34.80± 1.000 83.60± 1.000 97.50± 0.900

InVirtuoGen 0.73± 0.001 27.43± 0.953 99.41± 0.157 75.70± 0.898

Scaffold Decoration
SAFE-GPT 0.57± 0.008 10.00± 1.400 74.70± 2.500 97.70± 0.300

GenMol 0.59± 0.001 31.80± 0.500 82.70± 1.800 96.60± 0.800

InVirtuoGen 0.56± 0.003 36.37± 1.096 88.58± 1.130 90.70± 0.616

Average
SAFE-GPT 0.55± 0.006 16.26± 1.031 75.48± 1.773 85.00± 1.788

GenMol 0.57± 0.002 21.06± 0.263 87.88± 0.436 62.08± 0.242

InVirtuoGen 0.59± 0.001 29.55± 0.813 90.87± 0.445 71.22± 0.399

In Fig. 15 we provide non-cherry picked samples for the fragment-constrained generation task. The
left-most figure in every row depicts the starting fragment(s).
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Prompt InVirtuoGen

(a) Motif ExtensionPrompt InVirtuoGen

(b) Linker Design/Scaffold MorphingPrompt InVirtuoGen

(c) Superstructure GenerationPrompt InVirtuoGen

(d) Scaffold Decoration
Figure 15: Non cherry-picked samples generated by InVirtuoGen on fragment-constrained design
tasks. The left-most figure in every row depicts the starting fragment(s).
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B.3 TARGET-PROPERTY OPTIMIZATION

B.3.1 ABLATION STUDIES

In Table 5 we show the results of ablation studies of the core components of our optimization
framework. We include results for the following ablations:

• Including the experience replay in the prescreened setting.
• Sampling according to eq. 6 but with start time tstart = 0.2.
• Sampling according to eq. 6.
• Sampling sequence lengths from the Zinc250K distribution instead of using our Peak-Finder

Bandit.
• No mutation applied to the best performing molecules.
• No PPO, relying only on the genetic algorithm.
• No prescreening, but leaving out the experience replay, yielding a significantly lower

performance.
• A baseline without GA, mutation, or prescreening, which allows a fair comparison to

REINVENT (Olivecrona et al., 2017) and slightly better performance.

As the table shows, the results obtained with our sampling method depend strongly on the start time
of the trajectory simulation. We attribute this sensitivity to the dynamics in Fig. 8b: at early times
many positions are simultaneously updated, which can diminish the performance gains provided by
the genetic algorithm component. And because we did not want to tune our parameters, we stuck to
sampling according to Eq 2.
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Figure 16: Validity versus Number Oracle Calls

B.3.2 VALIDITY VS ORACLE CALLS

In Fig. 16, we illustrate the potential instability of our optimization routine. The plot shows both
the fraction of valid samples and the top-10 AUC as functions of the number of oracle calls. We
report two runs with identical configurations that differ only in their random seed. While one run
remains stable throughout optimization, the other exhibits signs of policy collapse. Interestingly,
the collapsing run achieves higher top-10 AUC, a pattern we repeatedly observed. We attribute this
behavior to an overly exploitative optimization regime, and addressing this—potentially through
stabilizing techniques such as proposed by Xi et al. (2025), is an important direction for future work.

B.4 LEAD OPTIMIZATION

We provide the results obtained when not requiring similarity to the seed molecule in Tab. 6, showing
that performance improves significantly when this restriction is removed. Constraints on drug-likeness
and synthesizability are still enforced.
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Table 6: Docking scores (lower is better) averaged over 3 seeds. Bold indicates the best result per seed.
For each seed molecule, its docking score, the quantitative estimate of drug-likeness and synthetic
accessibility is given.

Protein
(DS/QED/SA) No sim

InVirtuoGen

5ht1b
-4.5/0.438/3.93 -12.5 (±1.0)

-7.6/0.767/3.29 -13.4 (±0.5)

-9.8/0.716/4.69 -13.0 (±0.3)

braf
-9.3/0.235/2.69 -12.5 (±0.2)

-9.4/0.346/2.49 -12.3 (±0.8)

-9.8/0.255/2.38 -12.2 (±0.4)

fa7
-6.4/0.284/2.29 -9.9 (±0.4)

-6.7/0.186/3.39 -10.2 (±0.5)

-8.5/0.156/2.66 -9.4 (±0.2)

jak2
-7.7/0.725/2.89 -12.0 (±0.3)

-8.0/0.712/3.09 -12.1 (±0.2)

-8.6/0.482/3.10 -11.6 (±0.7)

parp1
-7.3/0.888/2.61 -13.5 (±0.2)

-7.8/0.758/2.74 -13.3 (±0.7)

-8.2/0.438/2.91 -13.5 (±0.5)

Sum -181.4
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Figure 17: QED Distribution for QED-Conditioned Samples

B.5 CONDITIONAL GENERATION VERSUS TARGET PROPERTY OPTIMIZATION

Here we briefly clarify the conceptual and practical differences between conditional generation and
our target-property optimization framework. Conditional generation provides a model with an explicit
property value (for example, a desired LogP or QED level) as an additional input during training
as prior work explored (Lim et al., 2020; Seo et al., 2023). In our implementation, the condition
is passed through a small neural module and added to the timestep embedding. Recent advances
further introduce explicit guidance mechanisms for discrete flow models (Nisonoff et al., 2025),
which could potentially improve the results adherance further. Figure 17 depicts the results obtained
from fine-tuning our model with conditional inputs. The model produces QED distributions that shift
consistently with the provided conditioning input, confirming that the model can be guided toward
desired property regimes.
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