
Hybrid Mamba for Few-Shot Segmentation

Qianxiong Xu1, Xuanyi Liu2, Lanyun Zhu3, Guosheng Lin1∗, Cheng Long1∗, Ziyue Li4, Rui Zhao5

1S-Lab, Nanyang Technological University 2Peking University
3Singapore University of Technology and Design 4University of Cologne 5SenseTime Research

{qianxiong.xu, gslin, c.long}@ntu.edu.sg, xuanyi@stu.pku.edu.cn,
lanyun_zhu@mymail.sutd.edu.sg, zlibn@wiso.uni-koeln.de, zhaorui@sensetime.com

Abstract

Many few-shot segmentation (FSS) methods use cross attention to fuse support
foreground (FG) into query features, regardless of the quadratic complexity. A
recent advance Mamba can also well capture intra-sequence dependencies, yet the
complexity is only linear. Hence, we aim to devise a cross (attention-like) Mamba
to capture inter-sequence dependencies for FSS. A simple idea is to scan on support
features to selectively compress them into the hidden state, which is then used as the
initial hidden state to sequentially scan query features. Nevertheless, it suffers from
(1) support forgetting issue: query features will also gradually be compressed when
scanning on them, so the support features in hidden state keep reducing, and many
query pixels cannot fuse sufficient support features; (2) intra-class gap issue: query
FG is essentially more similar to itself rather than to support FG, i.e., query may
prefer not to fuse support features but their own ones from the hidden state, yet the
success of FSS relies on the effective use of support information. To tackle them,
we design a hybrid Mamba network (HMNet), including (1) a support recapped
Mamba to periodically recap the support features when scanning query, so the
hidden state can always contain rich support information; (2) a query intercepted
Mamba to forbid the mutual interactions among query pixels, and encourage them
to fuse more support features from the hidden state. Consequently, the support
information is better utilized, leading to better performance. Extensive experiments
have been conducted on two public benchmarks, showing the superiority of HMNet.
The code is available at https://github.com/Sam1224/HMNet.

1 Introduction

In the realm of computer vision, the advent of deep learning has ushered in remarkable advancements,
e.g., in semantic segmentation [14, 26, 33, 62, 63, 65, 67]. However, the realization of such feats
demands extensive time and human efforts dedicated to annotating pixel-wise masks. Furthermore,
semantic segmentation methods will falter when confronted with previously unseen classes, thus
impeding the generalization of segmentation to arbitrary classes. Inspired by the phenomenon that
human can learn to recognize new objects by referring to a handful of samples, researchers have
introduced few-shot segmentation (FSS) [34, 36, 46, 59, 66], which aims to use a few manually
annotated support samples to help the segmentation of a query image, with arbitrary classes.

Recent advances in FSS consist of prototypical methods [2, 40, 46, 59] and attention-based meth-
ods [31, 48, 54, 60]. According to the support annotations, prototypical methods extract support
foreground (FG) and compress their features into single or a few prototypes, which are then used
to segment the query image through either feature comparison [2, 46] or feature fusion [40, 59].

∗Co-corresponding authors

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Sam1224/HMNet


Intro – v1 – Prof. Lin

Query Features
(Q)

Support FG
(S)

(a) Existing Cross Mamba
Enhanced

Query
Features

Query Features
(Q)

Support FG
(S)

S (100%) S↓ Q↑

Updated
Hidden State

Less
similar

More
similar

(b) Our Support Recapped Mamba

S (100%) S↓ S↑ S↓ S↑

Enhanced
Query

Features

Changes of Support FG in Hidden State

Reshape

Reshape

Reshape

Reshape

Downsample (S)
Split (Q) Merge (Q)

S (100%)

Downsample (Q)

Reshape

Enhanced
Query

FeaturesReshape

Upsample (Q)

(c) Our Query Intercepted Mamba

Similar

Pixel

Downsampled Features

Patch

Hidden State

Feature Exchange

Split (⋅):      Patch Split

Merge (⋅):  Patch Merge

Figure 1: Illustrations of (a) existing cross Mamba, (b) our support recapped Mamba (SRM); and (c)
our query intercepted Mamba (QIM). In (a), the support features are firstly scanned and selectively
compressed into the hidden state, which is expected to be fused into query FG. Nevertheless, (1) with
the scan on query, the compressed support FG is gradually reduced, and (2) query FG is essentially
more similar to itself rather than support FG. Thus, the support FG cannot well enhance the query FG
features. In (b) and (c), we design (1) a SRM to periodically re-scan the support FG, so the hidden
state always contain sufficient support features, and (2) a QIM to intercept the mutual interactions
among query pixels, thus, they are forcibly fused with support features.

Unfortunately, the compression would inevitably lose much support FG information [47] and disrupt
the structure of FG objects [52]. Instead, others employ cross attention [41] to fuse query features
with the uncompressed support FG features, so as to prevent from the information loss. Nevertheless,
the computational complexity of attention is quadratic to the pixel number, hindering the processing
of larger images and the deployment of more attention blocks.

Recently, selective state space model (SSM) [5, 6], also known as Mamba, appears to be an alternative
approach to attention, which can effectively capture long-range dependencies but only with linear
complexity, and has shown promising results in various vision tasks [25]. Specifically, Mamba flattens
the 2D image features into a 1D pixel sequence, and iteratively scans the sequence to (1) selectively
compress each pixel’s features into a finite hidden state, and (2) use the hidden state, including the
filtered features of previously scanned pixels, to enhance the current pixel’s features. Although there
exist many follow-up works of Mamba, they mainly focus on capturing the dependencies within the
same image (i.e., self Mamba) [25, 68], and not much attention has been paid to the case where the
dependencies between different images should be captured (i.e., cross Mamba), which is required by
FSS. Therefore, we aim to design a cross Mamba for FSS in this paper.

As shown in Figure 1(a), one possible solution [32, 61] is to put the query pixel sequence right after
the support FG pixel sequence, and use the standard Mamba to scan the concatenated sequence. Once
the scan on support is finished, the hidden state has already included useful support FG features, which
can then enhance the query features (i.e., cross attention) during the scan on query. Nevertheless,
two issues would arise: (1) Support forgetting: With the scan on query, the hidden state will turn
from pure support FG features to the mixture of support and query features, i.e., the proportion of
support features will gradually reduce because the size of hidden state is fixed. As a result, the support
information cannot be sufficiently utilized by many query pixels, especially for those pixels at end;
(2) Intra-class gap: Although query and support FG objects belong to the same class, they can still
be visually different [2, 54]. Therefore, the query FG features may prefer not to fuse the support
information from the hidden state, but focus more on themselves, thereby leading to ineffective FSS
since the success of FSS relies on effective utilization of the support information.

To address the aforementioned issues, we follow two intuitive design principles and present a hybrid
Mamba block (HMB) that includes a couple of Mambas for more effective support-query features
fusion: (1) Support recapped Mamba: Due to the fact that continuously scanning query features
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will gradually reduce the support FG features in the hidden state, as shown in Figure 1(b), we
adopt a simple yet effective strategy to periodically recap (i.e., re-scan) support FG features when
scanning query features. Specifically, we split query features into small patches, and downsample
the support FG features to the same size as a patch. Then, we rearrange a sequence in the form of
alternatively appeared support features and query patches. In this way, the support FG features can
be regularly recalled, and each query patch can witness sufficient support information during the
scan; (2) Query intercepted Mamba: To tackle the intra-class gap issue, we simply intercept the
mutual interactions among query pixels when propagating the hidden state (with pure support FG)
to each query FG pixel, so each query FG pixel would have no choice (i.e., inaccessible to other query
FG) but to inevitably fuse support FG. As illustrated in Figure 1(c), the query pixels are scanned in
parallel (for query-query interception), instead of the sequential scan in standard Mamba.

To the best of our knowledge, we are the first to introduce the efficient Mamba to FSS. Particularly,
we indicate two issues suffered by the original Mamba when being applied to the cross attention case,
namely, the support forgetting issue and the intra-class gap issue. To address them, we design a
hybrid Mamba block (HMB), which can effectively incorporate query FG features with the support
FG features, thereby leading to better FSS performance. Extensive experiments have been conducted
on two public benchmark datasets PASCAL-5i and COCO-20i, demonstrating the superiority of
our design. Notably, our model can surpass existing state-of-the-arts by up to 2.2% and 3.2% on
PASCAL-5i and COCO-20i, in terms of mean intersection over union (mIoU).

2 Related Work

Few-shot segmentation. The success of FSS relies heavily on the effective use of support samples,
based on which existing methods can be divided into prototypical methods [2, 16–18, 24, 29, 34, 39,
40, 45, 46, 57] and attention-based methods [11–13, 15, 22, 30, 31, 35, 44, 48, 50, 52–54, 58, 60, 64].
Prototypical methods compress support FG features into prototype(s) [18, 46], which are used to
segment the query image through either feature comparisons [2, 46] or feature concatenation [40].
Notably, SSP [2] first introduces the intra-class gap issue, i.e., query FG tends to be more similar to
itself rather than support FG. They use the support prototype to mine discriminative query features
first, which are then used to find other similar query features, where the query-query matching will not
suffer from the issue. The prototypes are obtained at the cost of information loss, so attention-based
methods build up pairwise relationships between query and support pixels instead. Despite of their
performance, attentions have quadratic complexity to the feature sizes, impeding the use of more
attention blocks, and making the inference speed slow. In this paper, we propose to incorporate
Mamba [5] into FSS, which has linear complexity but can also capture long-range dependencies.

Mamba. Mamba [5] improves state space models (SSMs) [3, 6, 27, 38] by introducing a selection
mechanism to make the parameters input-dependent, and has shown appealing performance on
language and speech tasks, with linear complexity. Inspired by this, researchers have applied Mamba
to various vision tasks, and we divide existing methods into self [4, 7, 20, 25, 51, 55, 68] and cross
Mamba [10, 19, 32, 43, 56, 61], for capturing the intra- and inter-sequence correlations, respectively.
Self Mamba methods mainly focus on defining different scanning rules, e.g., vision Mamba [68]
and VMamba [25] introduce bidirectional and 4-directional scans to better capture long-range
dependencies for 2D images, some methods [7, 51, 55] define rules for 3D data, etc. Most cross
Mamba methods study the scenario where different modalities have already been pixel-wise aligned,
e.g., Sigma [43] exchanges the parameters of two Mambas that correspond to the aligned RGB and
infrared images, Pan-Mamba [10] and CFMW [19] swap the different-modality features for a pixel.
Besides, ReMamber [56] channel-wise concatenate two modalities, and perform a channel-wise
Mamba to propagate the information from one modality to another. Unfortunately, the query and
support images in FSS cannot be pixel-wise aligned, as they contain different objects. The only
possible way [32, 61] is to flatten the query and support features into sequences, and concatenate
them to be a longer sequence. Hence, the support features (the first half) can be gradually compressed
into the hidden state, and be fused into query features when scanning the query features.

3 Problem Definition

FSS aims at segmenting objects with arbitrary classes, with a few support pairs that contain the
same-class objects. To this end, a training paradigm called episodic training [42] is introduced, where
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Figure 2: Overview of HMNet. Mamba blocks consist of alternatively appeared self Mamba
blocks (SMB) and hybrid Mamba blocks (HMB). Self Mamba aims at capturing the intra-sequence
correlations, while hybrid Mamba attempts to capture the support-query intra-sequence dependencies.
Hybrid Mamba further includes a support recapped Mamba (SRM) and a query intercepted Mamba
(QIM) to address the support forgetting and intra-class gap issues.

the dataset is split into a train set Dtrain and a test set Dtest, encompassing a series of episodes. Each
episode comprises a query set Q = {IQ,MQ} and a support set S = {IkS ,Mk

S}Kk=1 in the K-shot
setting, where I and M represent the input images and the binary masks. Note that the classes
involved in Dtrain form a base class set Cbase, and those in Dtest form a novel class set Cnovel, FSS
studies a scenario where Cbase ∩ Cnovel = ∅. In brief, FSS would sample some episodes from Dtrain to
learn the pattern of using support information to segment the query image, and directly applying the
learned pattern to the episodes sampled from Dtest for segmenting previously unseen classes. The
methodology is described under 1-shot setting.

4 Methodology

4.1 Revisit Mamba

The essence of Mamba [5] is a structured state space model (SSM), which originates from the
continuous system, i.e., linear time-invariant (LTI) system, that maps a 1D sequence from x(t) to y(t).
Such mapping is achieved through an intermediate hidden state h(t) and a linear ordinary differential
equations (ODEs) [25] as follows:

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)

where A is a evolution parameter, B and C denote two projection parameters. Then, SSM employs a
zero-order hold (ZOH) strategy to transform the contiguous system into a discrete one:

Ā = exp(∆A)

B̄ = (∆A)−1(exp(∆A)− I)∆B
(2)

where ∆ denotes the timescale parameter, and Equation 1 can be rewritten as:

ht = Āht−1 + B̄xt

yt = Cht
(3)

As described in Mamba [5], the discrete parameters Ā and B̄ are constant dynamics, so they cannot
effectively compress information into the hidden state and fuse correct information from the context,
leading to the failure of capturing long-range dependencies. To this end, Mamba proposes to equip
SSM with a selection mechanism (denoted as selective SSM) to make parameters B, C and ∆
input-dependent, which is validated to be capable of capturing complex correlations.

4.2 Hybrid Mamba Network (HMNet)

As shown in Figure 2, we present hybrid Mamba network (HMNet) to incorporate the efficient
Mamba with FSS. Following existing FSS methods [16, 40, 48, 54], the query image IQ and the
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support image IS are forwarded to a pretrained backbone, like VGG16 [37] or ResNet50 [9], to obtain
the mid-level query and support features. Then, they are forwarded to some alternatively appeared
self Mamba block (SMB) and hybrid Mamba block (HMB) for feature enhancement. Specifically,
SMB aims at modeling the intra-sequence correlations for query and support features, while HMB
(Section 4.2.1 aims to fuse sufficient support FG features into query FG features. Particularly, HMB
further contains a support recapped Mamba (SRM) and a query intercepted Mamba (QIM), to mitigate
the aforementioned support forgetting and intra-class gap issues (in Section 1). Finally, the enhanced
query features are processed by a decoder [54] to obtain the predictions M̂Q.

Kindly remind that our contribution is to improve cross Mamba for capturing support-query inter-
sequence dependencies, instead of improving self Mamba. Hence, we take VMamba [25] to build
SMB, whose details are displayed in Figure 6 (in Appendix D.1). The 2D image features would
be reshaped into 4 sequences, according to different scanning directions. Then, these sequences
are scanned with separate Mambas (with distinct parameters) for feature enhancement. Finally, 4
sequences are reshaped back to 4 features, which are summed up to obtain the output features.

4.2.1 Hybrid Mamba Block (HMB)
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Figure 3: Illustration of HMB. (1) Based on different scanning directions [25], SRM arranges support
and query features into 4 sequences in the form of alternatively appeared support and query patches,
which are sequentially scanned with 4 sets of parameters Θ. (2) After scanning support features
for the first time in SRM, 4 hidden states are averaged into HS . In QIM, HS is used to scan query
features in parallel. Note that QIM’s parameter is shared with the first SRM.

The details of HMB are shown in Figure 3, which is formally described as follows. For ease of
illustration, we omit the batch size and hidden dimension when describing the shape of variables.

Feature preparation. Although query and support images share the same FG class, they usually
have different BG classes, so it is a common practice to mask the support BG [16, 40], i.e., the
support features are sparse. Some methods [31, 48] have validated that downsampling the support
features to some extent will not decrease the performance, but can save much memory. Hence, we
adopt the same strategy to obtain F ↓

S ∈ R h
α×w

α . Then, we make two copies of the query features: (1)
For SRM, we keep the original granuarity for dense segmentation, but split the features into patches
FQ ∈ Rα2× h

α×w
α , where each patch has the same size as the downsampled support features; (2) For

QIM, we downsample the query features as F ↓
Q ∈ R h

α×w
α , so its granuarity will be consistent with

that of F ↓
S for better feature fusion.

F ↓
S = Down(FS , α), F

↓
Q = Down(FQ, α), FQ = Split(FQ, α) (4)

where α is the downsample/split ratio, and it is empirically set as 4 in this paper.
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SRM. As shown in Figure 3(1), SRM is designed to periodically recap the support features during
the scan on query. We first reshape the query patches FQ into 4 query sequences Li

Q ∈ R
hw
α2 ×α2

, i ∈
[0, 3], with different scanning directions. Take L0

Q as an example:

L0
Q = (F 0

Q||F 1
Q|| · · · ||Fα2−1

Q ) (5)

where F j
Q, j ∈ [0, · · · , α2 − 1] denotes a reshaped query patch (the inner-patch pixel-wise scan

direction is the same as patch-wise scan direction), || means patch concatenation. Then, we repeat
and recap F ↓

S by α2 times, and reshape them into 4 support sequences Li
S ∈ R

hw
α2 ×α2

, i ∈ [0, 3]:

L0
S = (F ↓

S ||F
↓
S || · · · ||F

↓
S) (6)

Next, we concatenate the support and query sequences along the pixel dimension as:

Li
SRM = (Li

S ||Li
Q) (7)

where Li
SRM ∈ R

2hw
α2 ×α2

denote α2 pairs of support and query patches. Support is put ahead of
query because we aim to propagate the former to the latter. Thereafter, Li

SRM are flattened to 1D
sequences, and we use 4 sets of Mamba parameters Θi to scan the sequences with Equation 3:

F̂ i
Q, (F̂

i
S , H

i
S) = SRM(Li

SRM ,Θi) (8)

where F̂ i
Q ∈ Rh×w are enhanced query features, detached from the sequences and then reshaped.

F̂ i
S ∈ R h

α×w
α are the reshaped support features taken from the head of the sequences, we do not

consider support features in other positions, as they have already been mingled with query features.
Hi

S is the hidden state obtained from the ith sequence after scanning the first support features.

QIM. To encourage query features to fuse more support features, we further design a QIM (in
Figure 3(2)) to intercept the mutual interactions among query pixels, and propagate the hidden state to
each query pixel in parallel. Hence, there is no need to reshape query pixels into multiple sequences
based on different directions. We directly flatten F ↓

Q into a 1D sequence, and take the averaged
hidden states (with pure support features) obtained from SRM as the initial hidden state for QIM:

HS = Avg(Hi
S), i ∈ [0, 3] (9)

Then, Equation 3 can be directly calculated with matrix multiplication and rewritten as:

F̂ ↓
Q = QIM(F ↓

Q, HS ,Θ
0) = CĀHS +CB̄F ↓

Q (10)

where C, Ā and B̄ form a set of Mamba parameters. Equation 10 can be interpreted as a special case
of Equation 3, where the length of each sequence is 1. To facilitate better parameters learning, we
share the parameters Θ0 of SRM with QIM, which are learned with long sequences.

Feature ensemble. At last, we use sum fusion to obtain the output features of hybrid Mamba:

F̂Q = Sum(F̂ i
Q) + Up(F̂ ↓

Q, α)

F̂S = Up(Sum(F̂ i
S), α)

(11)

where Up(·) means upsampling features to the original size.

4.2.2 Computational Complexity

We follow Vim [68] to analyze the computational complexity. Given an input sequence L ∈ RM×D,
the complexity of attention [41], Mamba [5] (1 direction) and VMamba [25] (4 directions) are:

Ω(Attention) = 4MD2 + 2M2D

Ω(Mamba) = 8MDN

Ω(VMamba) = 4× Ω(Mamba) = 32MDN

(12)

where M = h × w indicates the length of the sequence, D is the hidden dimension, N is a small
constant (e.g., 16), denoting the size of hidden state. In hybrid Mamba, SRM assembles query and
support sequences into 4 Li

SRM ∈ R2M×D (4 directions, longer sequence), while QIM deals with
flattened F ↓

Q ∈ R
M
α2 ×D (1 direction, shorter sequence), so the total complexity is:

Ω(Hybrid Mamba) = 2× Ω(VMamba) + Ω(Mamba)/α2 = (64 + 8/α2)MDN (13)
where α is the downsample ratio (e.g., 4), and the complexity is still linear to the sequence length.
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5 Experiments

5.1 Experiment Setup

Datasets. The methods are evaluated on two benchmark datasets, including PASCAL-5i [34] and
COCO-20i [28]. PASCAL-5i is built on top of PASCAL VOC 2012 [1], with additional annotations
obtained from SBD [8], while COCO-20i is created from MSCOCO dataset [21]. PASCAL-5i

comprises 20 distinct classes, and COCO-20i is a larger benchmark that includes 80 classes. Following
existing works [40, 46, 59], both of them are evenly split into four folds based on the classes, and
each fold would consist of 5 and 20 classes for PASCAL-5i and COCO-20i, respectively. Then, cross
validations are carried out, with each fold being taken as the test set once, while the union of other
folds is adopted for training. In the test phase, 1,000 (for PASCAL-5i) and 4,000 (for COCO-20i)
episodes are randomly sampled to comprehensively evaluate the performance of various models.

Evaluation metrics. Following existing baselines [16, 31, 40, 48, 54], mean intersection over union
(mIoU) and foreground-background IoU (FB-IoU) are deployed as the evaluation metrics.

5.2 Comparisons with State-of-the-Arts

Table 1: Performance comparisons with state-of-the-arts on PASCAL-5i. “5i” denotes the mIoU
score of the i-th fold, “Mean” is the averaged mIoU score of 4 folds, “FB-IoU” is averaged from 4
folds. Bold values show the best performance.

Backbone Method 1-shot 5-shot
50 51 52 53 mIoU FB-IoU 50 51 52 53 mIoU FB-IoU

VGG16

PFENet (TPAMI’20) [40] 56.9 68.2 54.4 52.5 58.0 72.0 59.0 69.1 54.8 52.9 59.0 72.3
DACM (ECCV’22) [52] 61.8 67.8 61.4 56.3 61.8 75.5 66.1 70.6 65.8 60.2 65.7 77.8
FECANet (TMM’23) [22] 66.5 68.9 63.6 58.3 64.3 76.2 68.6 70.8 66.7 60.7 66.7 77.6
SCCAN (ICCV’23) [54] 63.3 70.8 66.6 58.2 64.7 77.2 67.2 72.3 70.5 63.8 68.4 79.1
BAM (CVPR’22) [16] 63.2 70.8 66.1 57.5 64.4 77.3 67.4 73.1 70.6 64.0 68.8 81.1
SVF (NIPS’22) [39] 64.1 71.1 66.8 57.5 64.9 - 67.8 74.1 71.0 63.6 69.1 -
HDMNet (CVPR’23) [31] 64.8 71.4 67.7 56.4 65.1 - 68.1 73.1 71.8 64.0 69.3 -

HMNet (ours) 66.7 74.5 68.9 59.0 67.3 79.2 70.5 76.0 72.2 65.7 71.1 82.6

ResNet50

PFENet (TPAMI’20) [40] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9
CyCTR (NIPS’21) [60] 67.8 72.8 58.0 58.0 64.2 - 71.1 73.2 60.5 57.5 65.6 -
VAT (ECCV’22) [11] 67.6 72.0 62.3 60.1 65.5 77.8 72.4 73.6 68.6 65.7 70.1 80.9
DACM (ECCV’22) [52] 66.5 72.6 62.2 61.3 65.7 77.8 72.4 73.7 69.1 68.4 70.9 81.3
ABCNet (CVPR’23) [49] 68.8 73.4 62.3 59.5 66.0 76.0 71.7 74.2 65.4 67.0 69.6 80.0
SCCAN (ICCV’23) [54] 68.3 72.5 66.8 59.8 66.8 77.7 72.3 74.1 69.1 65.6 70.3 81.8
FECANet (TMM’23) [22] 69.2 72.3 62.4 65.7 67.4 78.7 72.9 74.0 65.2 67.8 70.0 80.7
BAM (CVPR’22) [16] 69.0 73.6 67.6 61.1 67.8 79.7 70.6 75.1 70.8 67.2 70.9 82.2
SVF (NIPS’22) [39] 69.4 74.5 68.8 63.1 69.0 80.1 72.1 76.2 72.0 68.9 72.3 83.2
HDMNet (CVPR’23) [31] 71.0 75.4 68.9 62.1 69.4 - 71.3 76.2 71.3 68.5 71.8 -
AMNet (NIPS’23) [48] 71.1 75.9 69.7 63.7 70.1 - 73.2 77.8 73.2 68.7 73.2 -

HMNet (ours) 72.2 75.4 70.0 63.9 70.4 81.6 74.2 77.3 74.1 70.9 74.1 84.4

Quantitative results. The quantitative comparisons between the proposed HMNet and the state-
of-the-arts are presented in Table 1 and Table 2 for PASCAL-5i and COCO-20i, respectively, and
we could observe that HMNet can outperform existing methods by considerable margins in almost
all cases. For instance, with VGG16 as the backbone, HMNet can surpass HDMNet by 1.8% in
terms of mean mIoU under both 1-shot and 5-shot settings. Besides, the 1-shot and 5-shot FB-IoU
scores can be as high as 81.6% and 84.4%, when ResNet50 is taken as the backbone. Notably, we
observe that the performance gain appears to be larger on COCO-20i, e.g., 3.2% (VGG16, 1-shot)
and 1.6% (ResNet50, 5-shot). We attribute it to the fact that COCO-20i is a more complicated dataset,
compared to PASCAL-5i, e.g., the image samples not only have more complex background, but the
intra-class gap issue tends to be much more severer, while the designed QIM can help to address this
issue well, i.e., encourage query features to fuse more support features.

Qualitative results. We pick some episodes from PASCAL-5i and COCO-20i, then visually compare
one of the best baselines, HDMNet [31], with our HMNet in Figure 4. We can observe that our
model is better at distinguishing the query FG and BG objects than HDMNet, e.g., HDMNet would
sometimes (1) wrongly classify query BG objects as FG (column 1, 2, 3, 5, 8); and (2) fail to ensure
the integrity of the predicted FG objects (column 4, 5, 7). We refer to the BG mismatch and FG-BG
entanglement issues [54], mainly raised by the fact that query BG cannot find matched features from
support FG, for the possible reasons to the failure of HDMNet. Instead, (1) in our hybrid Mamba
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Table 2: Performance comparisons with state-of-the-arts on COCO-20i. “20i” denotes the mIoU
score of the i-th fold, “Mean” is the averaged mIoU score of 4 folds, “FB-IoU” is averaged from 4
folds. Bold values show the best performance.

Backbone Method 1-shot 5-shot
200 201 202 203 mIoU FB-IoU 200 201 202 203 mIoU FB-IoU

VGG16

PFENet (TPAMI’20) [40] 35.4 38.1 36.8 34.7 36.3 63.3 38.2 42.5 41.8 38.9 40.4 65.0
FECANet (TMM’23) [22] 34.1 37.5 35.8 34.1 35.4 65.5 39.7 43.6 42.9 39.7 41.5 67.7
SCCAN (ICCV’23) [54] 38.3 46.5 43.0 41.5 42.3 66.9 43.4 52.5 54.5 47.3 49.4 71.8
BAM (CVPR’22) [16] 39.0 47.0 46.4 41.6 43.5 - 47.0 52.6 48.6 49.1 49.3 -
SVF (NIPS’22) [39] 40.2 46.6 46.2 42.0 43.8 - 45.1 53.6 48.4 49.3 49.1 -
HDMNet (CVPR’23) [31] 40.7 50.6 48.2 44.0 45.9 - 47.0 56.5 54.1 51.9 52.4 -

HMNet (ours) 44.2 51.8 51.9 48.4 49.1 72.6 48.8 58.0 57.9 53.2 54.5 75.5

ResNet50

PFENet (TPAMI’20) [40] 36.5 38.6 35.0 33.8 35.8 - 36.5 43.3 38.0 38.4 39.0 -
CyCTR (NIPS’21) [60] 38.9 43.0 39.6 39.8 40.3 - 41.1 48.9 45.2 47.0 45.6 -
VAT (ECCV’22) [11] 39.0 43.8 42.6 39.7 41.3 68.8 44.1 51.1 50.2 46.1 47.9 72.4
DACM (ECCV’22) [52] 37.5 44.3 40.6 40.1 40.6 68.9 44.6 52.0 49.2 46.4 48.1 71.6
ABCNet (CVPR’23) [49] 42.3 46.2 46.0 42.0 44.1 69.9 45.5 51.7 52.6 46.4 49.1 72.7
FECANet (TMM’23) [22] 38.5 44.6 42.6 40.7 41.6 69.6 44.6 51.5 48.4 45.8 47.6 71.1
SCCAN (ICCV’23) [54] 40.4 49.7 49.6 45.6 46.3 69.9 47.2 57.2 59.2 52.1 53.9 74.2
BAM (CVPR’22) [16] 43.4 50.6 47.5 43.4 46.2 - 49.3 54.2 51.6 49.6 51.2 -
SVF (NIPS’22) [39] 46.9 53.8 48.4 44.8 48.5 - 52.3 57.8 52.0 53.4 53.9 -
HDMNet (CVPR’23) [31] 43.8 55.3 51.6 49.4 50.0 72.2 50.6 61.6 55.7 56.0 56.0 77.7
AMNet (NIPS’23) [48] 44.9 55.8 52.7 50.6 51.0 72.9 52.0 61.9 57.4 57.9 57.3 78.8
HMNet (ours) 45.5 58.7 52.9 51.4 52.1 74.5 53.4 64.6 60.8 56.8 58.9 77.6
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Figure 4: Qualitative comparisons with HDMNet [31] on PASCAL-5i and COCO-20i.

block, both query FG and BG can be fused with matched features, thus, these issues [54] would not
arise; and (2) the proposed SRM and QIM can help to effectively utilize the support FG information,
leading to better FSS performance. We include more qualitative results in Appendix 8, 9 and 10.

5.3 Ablation Study

Table 3: Component-wise ablation study.

SMB HMB BAM 1-shot
SRM QIM 50 51 52 53 mIoU

65.6 71.5 64.6 59.2 65.2
✓ 68.8 72.6 67.6 60.3 67.4
✓ Basic 68.6 72.6 67.0 62.0 67.5
✓ Recap 70.1 73.5 67.1 61.6 68.1
✓ Basic 69.1 73.4 67.9 60.9 67.8
✓ Share 70.0 73.4 67.4 61.7 68.1
✓ Recap Share 70.1 73.6 67.7 62.9 68.6
✓ Recap Share ✓ 72.2 75.4 70.0 63.9 70.4

Table 4: Parameter study on the num-
ber of Mamba blocks, under 1-shot set-
ting. FLOPs are measured with query
and support images whose shapes are
473×473×3.

#Blocks mIoU #Params #FLOPs FPS

4 67.8 32.8M 449.4G 11.9
6 68.2 35.0M 466.8G 10.3
8 68.6 37.1M 484.3G 9.6
10 67.5 39.2M 501.8G 8.5

Component-wise ablation. We present the detailed component-wise ablation study in Table 3 to
validate the effectiveness of different modules. To have better comparisons with attention-based
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methods, we start from a basic model tailored from SCCAN [54], with all attention-related modules
removed, and the mIoU score is initialized as 65.2%. When we merely add self Mamba blocks (SMB)
into the basic model, the mIoU score has already been boosted to 67.4%, showing the superiority of
Mamba [5]. Then, we further incorporate hybrid Mamba blocks (HMB) to capture the intra-sequence
dependencies. An HMB consists of a pair of support recapped Mamba (SRM) and query intercepted
Mamba (QIM). For SRM, “Basic” means Equation 6 is not performed, and we sequentially scan the
support and query features to achieve cross Mamba. Nevertheless, the performance gain is only 0.1%,
for which we explain as the support forgetting issue. When we periodically recap the support features
during the scan on query, the mIoU score can increase to 68.1%. As for QIM, the “Basic” version
corresponds to the case where QIM’s Mamba parameter Θ is not shared with the first support features
in SRM. From the table, we could observe that parameter sharing can improve the performance by
0.3%. After that, we employ both SRM and QIM, and the mIoU score can be as high as 68.6%.
Following [31, 48], we finally ensemble our model with BAM’s finetuned backbones and base class
annotations to boost the score to 70.4%.

Also note that under the same condition, our model can outperform attention-based SCCAN by 1.8%
(68.6% v.s. 66.8%), while the computational cost is lower, demonstrating the proposed Mamba-based
modules can be both more effective and efficient than previous attention-based modules.

Parameter study on block number. Kindly remind that we alternatively employ SMB and HMB for
capturing intra- and inter-sequence dependencies. To show the impacts of different number of Mamba
blocks, we employ 4, 6, 8 and 10 blocks for experiments, and show the results in Table 4.Note that the
parameter number and floating point operations (FLOPs) cover all modules, including the pretrained
backbone. We can observe that (1) the best performance can be achieved when the number of blocks
is 8, and (2) each pair of SMB and HMB only has about 2M parameters, and the corresponding
FLOPs are approximately 18G, proving that the proposed Mamba blocks are cost-effective.

SRM Visualization

0 7 8 15
0 1 2 3

4 5 6 7
8 9 10 11

12 13 14 15

Support Recapped Mamba (Θ0)

Query FeaturesSupport FG
93.6% 56.7% 89.7% 64.1% 90.2% 56.8% 93.2% 65.3%

Maximum cosine similarities between support FG and hidden state (across time)

Figure 5: Changes of the hidden state in SRM across time, take the first SRM as an example.

Visualization of SRM. Existing methods sequentially scan the support and query sequences, to
incorporate the former to the latter. However, they will suffer from the support forgetting issue,
where the support features in hidden state will gradually be replaced as query features. To tackle
this, we design SRM, and provide an visual example in Figure 5. Recall that query features will
be split into patches, and support features will be downsampled to the same size as a query patch.
Then, a sequence of alternatively appeared support FG features and query patches will be scanned by
SRM for feature enhancement. To prove the existence of the issue, as well as the effectiveness of
SRM, we obtain the hidden states after scanning each support or query patch, and apply the cosine
similarity operator to measure the maximum similarity between support pixels and the hidden states.
We could observe: (1) The support forgetting issue really exists, as the blue scores are much smaller
than the red scores; (2) Our mechanism of periodically recapping the support features, though simple,
is effective, because the small values can be brought back to larger ones consistently.

6 Conclusion

In this paper, we first incorporate Mamba into FSS to capture inter-sequence dependencies. A simple
way is to scan the support sequence first, then use its last hidden state to start scanning query sequence.
However, this method suffers from support forgetting and intra-class gap issues. To alleviate them,
we design a hybrid Mamba block (HMB) that further contains a support recapped Mamba (SRM) and
a query intercepted Mamba (QIM). SRM will periodically recap the support features when scanning
on query features, leading to better utilization of support information. Besides, QIM will intercept the
mutual interaction of query pixels, so they can fuse more information from support features, instead
of themselves. Extensive experiments have been conducted to validate the effectiveness of HMB.
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A Code

The source code is provided in the supplementary material. The instructions for obtaining the datasets,
pretrained backbones and our trained models are detailed in the README file.

B Implementation Details

VGG16 [37] and ResNet50 [9] are deployed as the pretrained backbones. Then, we target two
FSS settings in this paper, namely, with and without BAM’s ensemble [16]. Specifically, BAM
proposes to (1) finetune the previous backbones with Cbase, and (2) also use base classes’ predictions
during testing. We use AdamW to optimize Mamba-related parameters [5], and SGD to optimize the
remaining parameters (e.g., decoder), with their learning rates initialized as 6e-5 and 5e-3. Following
AMNet [48] and AENet [53], the model is trained for 300 epochs on PASCAL-5i, and 75 epochs on
COCO-20i, with batch size set as 8 and 16, respectively. We enable DDP for model training, e.g.,
use 4 and 8 NVIDIA V100 GPUs for two datasets. Automatic mixed precision is enabled to make
the training on COCO-20i faster. During training, all images are randomly cropped to 473×473
and 633×633 for PASCAL-5i and COCO-20i, and we employ the same set of data augmentation
techniques as [40]. We employ 8 Mamba blocks (i.e., 4 self and hybrid Mamba pairs), and set the
hidden dimension as 256. Other Mamba-related hyperparameters are set as the same as [25]. For
K-shot setting, when K > 1, we follow [40, 54] to average the support features.

C Additional Experiments

In this section, we provide some additional experiments to show the superiority of the proposed
HMNet, including the use of more cost-effective weak support labels (Section C.1), the performance
with different random seeds on COCO-20i (Section C.2), the performance with different number of
testing episodes on COCO-20i (Section C.3), as well as the efficiency of HMNet (Section C.3).

C.1 Weak Support Labels

Table 5: Study on weak support annotations. “Mask” represents pixel-wise support masks, and
“Bounding box” means only drawing bounding boxes to wrap the support FG objects, whose annota-
tion cost is much smaller.

Method Label 1-shot
50 51 52 53 mIoU FB-IoU

HMNet Mask 72.2 75.4 70.0 63.9 70.4 81.6
Bounding box 71.60.6↓ 74.50.9↓ 68.81.2↓ 62.11.8↓ 69.21.2↓ 80.70.9↓

Following existing methods [23, 46, 54, 59], we also experiment with the scenario where only weak
support labels, e.g., bounding boxes, are provided. Generally, the time cost for annotating with weak
labels is usually much smaller than that of the precise pixel-wise masks. Therefore, the cost for
manual attention can be further reduced. The results are shown in Table 5, and it could be observed
that the performance drop raised by weak support labels is minor, showing the effectiveness of the
proposed HMNet.

C.2 Error Bars Evaluation

To show the robustness towards different random seeds, we compare the 1-shot performance of
HDMNet [31] and our model on COCO-20i dataset. Specifically, we use random seeds 0, 1, 2, 3
and 321 (default seed) to randomly sample 4,000 testing episodes from COCO-20i, where the query
samples, as well as their support samples, would be different. Note that COCO-20i is a challenging
dataset, as (1) there exist many small objects, of which the mIoU scores tend to be small, and (2)
the image samples are quite complicated, e.g., multiple objects, complex background, etc. Hence,
the scores with different random seeds are likely to differ much. The testing results are displayed
in Table 6, and we can could observe: (1) Our HMNet can consistently outperform HDMNet by
large margins in all situations. Notably, our mIoU score averaged from 5 random seeds is 52.3%,
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Table 6: Error bars evaluation with ResNet50 on COCO-20i, under 1-shot setting. The random seeds
are taken from {0, 1, 2, 3, 321} to generate 4,000 testing episodes. Bold values denote the best cases.

Method Seed 1-shot
200 201 202 203 mIoU FB-IoU

HDMNet [31]

0 45.5 55.3 49.6 46.7 49.3 71.9
1 45.3 54.9 50.8 48.3 49.8 71.8
2 44.9 54.2 50.0 48.7 49.5 72.2
3 44.1 54.9 51.9 48.6 49.9 72.1

321 44.8 54.9 50.0 48.7 49.6 72.0

Mean 44.9 54.9 50.5 48.2 49.6 72.0
Std 0.6 0.4 0.9 0.9 0.3 0.2

HMNet (Ours)

0 45.6 58.8 52.9 49.9 51.8 74.4
1 47.4 58.2 53.1 51.3 52.5 74.6
2 47.0 58.4 53.7 50.3 52.3 74.6
3 47.2 58.6 54.5 50.0 52.6 74.8

321 45.5 58.7 52.9 51.4 52.1 74.5

Mean 46.5 58.5 53.4 50.6 52.3 74.6
Std 0.9 0.2 0.7 0.7 0.3 0.1

2.7% better than HDMNet. In addition, the FB-IoU scores of HDMNet and our model are 72.0%
and 74.6%, respectively; (2) In almost all cases, our model appears to be more robust than HMNet,
i.e., the standard deviation (std) values of HMNet are smaller than those of HDMNet. To summarize,
our model not only has good performance, but could also ensure the robustness towards randomness,
showing the superiority of our module designs.

C.3 Different Number of Testing Episodes

Table 7: Performance on COCO-20i with different number of testing episodes. The experiments are
conducted with ResNet50, under 1-shot setting. The number of episodes are chosen from {4,000,
10,000, 20,000, 40,000}. Bold values denote the best cases.

Method #Episode 1-shot
200 201 202 203 mIoU FB-IoU Avg. time (s)

HDMNet [31]

4,000 44.8 54.9 50.0 48.7 49.6 72.0 681.2
10,000 43.9 55.1 49.0 48.5 49.1 71.9 1806.2
20,000 44.0 54.7 49.7 48.6 49.3 71.9 3555.4
40,000 43.5 54.9 48.8 48.6 48.9 71.8 6728.0

Mean 44.1 54.9 49.4 48.6 49.2 71.9 3192.7

HMNet (Ours)

4,000 45.5 58.7 52.9 51.4 52.1 74.5 578.0
10,000 44.0 58.6 52.8 51.4 51.7 74.4 1438.1
20,000 44.5 58.3 53.1 51.5 51.8 74.4 2920.4
40,000 44.1 58.4 52.2 51.0 51.4 74.3 5728.5

Mean 44.5 58.5 52.7 51.3 51.8 74.4 2666.3

In this section, we further test some models with different number of testing episodes on COCO-20i.
As displayed in Table 7, we not only provide with the testing performance, but also show the average
time cost for testing one fold, It can be observed from the table: (1) Our model consistently performs
better than HDMNet; (2) There is no prominent performance drop when testing on more episodes;
(3) Kindly remind that HDMNet is an attention based method, while our HMNet is built based on
Mamba. HDMNet employs 6 attention blocks, while our HMNet utilizes 8 Mamba blocks. Besides,
the hidden dimensions of HDMNet and our model are 64 and 256, respectively. Moreover, HDMNet
would downsample features with a ratio of 4 to calculate cross attention (i.e., the pixel number is
reduced by 16 times), while we mainly conduct Mamba with the concatenation of query and support
features (i.e., the pixel number is doubled). In brief, our model uses more blocks, higher hidden
dimensions, and larger features sizes, but our HMNet still costs much less than HDMNet for testing,
e.g., the average time costs for testing are 2,666.3 and 3,192.7 seconds for our model and HDMNet,
showing that our HMNet is effective and efficient, and Mamba can be a good alternative to attention.
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C.4 Different Ways of Feature Fusion

Recall that we propose HMNet to employ memory-efficient Mamba to fuse support FG features
into query features and activate query FG features accordingly. Alternatively, previous methods
also use feature concatenation [16] and cross attention [54, 60] to achieve this goal. Specifically,
(1) feature concatenation methods would first extract support FG features and compress it into
prototype(s). Then, the prototype(s) would be expanded and concatenated with query features for
further processing; (2) cross attention methods would measure the similarity between each pair of
query and support pixels, based on which the support FG features will be dynamically aggregated
into query features.

Table 8: Performance on PASCAL-5i with different feature fusion methods. The experiments are
conducted with ResNet50, under 1-shot setting. Bold values denote the best cases.

Method 1-shot
50 51 52 53 mIoU

BAM [16] 65.6 71.5 64.6 59.2 65.2
CyCTR [60] 67.0 71.5 65.9 57.1 65.4
SCCAN [54] 68.3 72.5 66.8 59.8 66.8

HMNet (Ours) 70.1 73.6 67.7 62.9 68.8

Note that the values of BAM [16], CyCTR [60] and SCCAN [54] are reproduced under the same
condition. Specifically, (1) we remove the unfair ensembles of BAM [16], and re-train the feature
concatenation model; (2) CyCTR [60] designs the cycle-consistent attention, and we fairly reproduce
its results; (3) the comparisons with SCCAN [54] is the fairest, which designs a self-calibrated cross
attention. Particularly, we both use 8 attention/Mamba blocks, hidden dimensions, etc.

From Table 8, we can observe (1) our model behaves much better than others; (2) in the fairest case,
our Mamba method is more effective than previous feature fusion methods, showing the superiority
of our design.

C.5 Efficiency Comparisons with Different Image Sizes

Recently, Mamba is well known for its ability to capture long-range dependencies as attention, while
the memory cost is only linear to the number of pixels. Therefore, we further conduct experiments to
show the effectiveness and efficiency of our Mamba-based HMNet.

Specifically, we interpolate COCO-20i’s testing episodes to different sizes of 473×473, 633×633,
793×793, 953×953, 1113×1113, and the extracted feature sizes would be of 60×60, 80×80,
100×100, 120×120, 140×140. We compare our method with the cross attention-based HDMNet [31],
and the time costs (seconds) for testing 4,000 episodes (ResNet50, 1-shot, with single 32GB V100
GPU) are shown in Table 9.

Table 9: Efficiency comparisons (seconds) on COCO-20i with different image sizes. The experiments
are conducted with ResNet50, under 1-shot setting. Bold values denote the best cases. “OOM” means
out-of-memory.

Method Image sizes
473×473 633×633 793×793 953×953 1113×1113

HDMNet [31] 415.4 676.5 1113.4 1713.7 OOM
HMNet (Ours) 402.4 576.9 768.9 1125.5 1440.6

Difference 13.0 99.6 344.5 588.2 -

Note that (1) HDMNet employs 6 attention blocks, while we use 8 Mamba blocks; (2) the hidden
dimensions of HDMNet and our model are 64 and 256, respectively; (3) starting with the same-size
image features, e.g., 60×60, HDMNet would downsample them by 4 times (15×15) to calculate
attention, while our Mamba scans the features with the original sizes. In brief, we use more blocks,
much higher hidden dimensions, and much larger feature sizes, while our model is still much faster
than HDMNet. Besides, with the increase of image sizes, the superiority of our method would be
much more prominent.
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D Additional Figures

In this section, the detailed structure of self Mamba block (SMB) is depicted in Section D.1, the visual
impacts of query intercepted Mamba (QIM) are highlighted in Section D.2, and more qualitative
comparisons between HDMNet and our method on PASCAL-5i and COCO-20i are included in
Section D.3.

D.1 Details of Self Mamba BlockSelf Mamba Block – v0
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Figure 6: Details of (a) self Mamba block (SMB), devised from an attention block, (b) self Mamba,
and (c) self selective selective state model (SSM), taken from VMamba [25].

As illustrated in Figure 6, we implement Mamba blocks in the form of attention blocks [41]. Specifi-
cally, a SMB(Figure 6(a)) includes two layer normalization (LN), a self Mamba module, a feedforward
network (FFN), and two skip connections. Then, in Figure 6(b), the structure is the same as the
standard Mamba [5], while in Figure 6(c), we follow VMamba [25] to use 4 selective state space
models (SSMs) to scan the features with 4 different directions, thus, the long-range dependencies can
be better captured.

Finally, we would like to emphasize the following points: (1) Each SMB actually contains two
branches for separately enhancing query and support features. Particularly, query and support features
would share all the layer normalization, as well as the self SSM (Figure 6(c)), for the consistency of
feature spaces. Instead, other modules are not shared, because the query and support features are
actually a bit different, as the former contains both FG and BG objects, while the latter only consists
of FG objects; (2) Hybrid Mamba block (Section 4.2.1) adopts similar structure as SMB, we just
need to replace Figure 6(c) as Figure 3.

D.2 Visualization of Query Intercepted Mamba
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Figure 7: Visualization of QIM module.
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QIM is designed to address the intra-class gap issue, where query FG objects are essentially more
similar to themselves rather than support FG objects, so they may prefer not to fuse information from
support FG objects, i.e., the support information is not sufficiently utilized. As shown in Figure 7,
we take two models with and without QIM for comparisons. The initial average cosine similarity
between query features and support FG features is 58.0%, if we do not use QIM, but adapt existing
methods [32, 61] for cross Mamba, the enhanced query features F̂w/o QIM

Q appears to aggregate more
information from themselves, and lead to a similarity drop of 12%, which validates the existence of
intra-class gap issue. Instead, the similarity between F̂w/ QIM

Q and FS can even slightly increase by
1.0%, validating the effectiveness of the proposed QIM.

D.3 More Qualitative Results
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Figure 8: More qualitative results on PASCAL-5i and COCO-20i.
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Figure 9: More qualitative results on COCO-20i.

We provide more qualitative results of HDMNet [31] and our model in Figure 8, 9 and 10, where we
can witness stable and prominent improvements of our model over HDMNet.
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Figure 10: More qualitative results on COCO-20i.

E Limitation and Future Direction

To briefly recap, we firstly introduce Mamba into the field of FSS, and present a hybrid Mamba
network (HMNet) to effectively fuse query features with support FG features. HMNet further consists
of self Mamba block (SMB) and hybrid Mamba block (HMB), where our contributions are mainly in
HMB, including a pair of support recapped Mamba (SRM) and query intercepted Mamba (QIM). One
limitation of the HMNet is that QIM has not been implemented with CUDA yet, which would make
the training and testing time longer. We will include a CUDA implementation in the near future.

Furthermore, Mamba [5] essentially belongs to meta learning, because its input-dependent selection
mechanism would project some parameters from the input sequences, and they are used during the
scan. Kindly remind that FSS also belongs to meta learning, so a future direction is to explore whether
it is feasible to generate query sequence’s Mamba parameters directly from the support sequence.
A similar work is DPCN [23] which generates dynamic kernels for query features from the support
features, and the idea behind is quite different from that of this paper.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: See Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5.1 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Appendix C.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we confirm.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There are no potential negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no such problems in our task.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Appx 5.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We use existing public benchmark datasets for experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No such experiments or research are involved in our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No such experiments or research are involved in our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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