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Abstract
Attention-based language models typically rely001
on the softmax function to convert attention002
logits into probability distributions. However,003
this mechanism can lead to attention entropy004
collapse, where attention is focused on a sin-005
gle token, causing training instability. In this006
work, we identify the high variance sensitivity007
of softmax as a primary cause of this collapse.008
We show that entropy-stable attention mecha-009
nisms, which either control or are insensitive to010
the variance of attention logits, can prevent en-011
tropy collapse and enable more stable training.012
We provide empirical evidence of this effect013
in both large language models (LLMs) and a014
small Transformer model composed solely of015
self-attention and support our findings with the-016
oretical analysis. Moreover, we identify that017
the concentration of attention probabilities in-018
creases the probability matrix norm, leading to019
a gradient exploding.020

1 Introduction021

Attention-based language models convert the atten-022

tion logits (the query-key dot product) into proba-023

bility vectors using the softmax function, reflecting024

each token’s relative importance. However, this025

process can result in excessive focus on a single026

token, leading to attention entropy collapse (also027

known as attention sink) (Zhai et al., 2023; He028

et al., 2024; Xiao et al., 2024; Guo et al., 2024a,b;029

Yu et al., 2024). Previous studies suggest that mul-030

tiple factors contribute to this collapse, including031

large attention logits (Xiao et al., 2024; Wortsman032

et al., 2024; Dehghani et al., 2023; He et al., 2024),033

exploding norms of hidden states or activations034

(Sun et al., 2024), and specific model components035

such as layer normalization, residual connections,036

and MLP layers (Gu et al., 2025; Cancedda, 2024).037

However, there is still no clear theoretical under-038

standing of why entropy collapse is caused.039

The core issue of attention entropy collapse in040

softmax-based attention lies in the exponential na-041

ture of the softmax function. The softmax function 042

amplifies differences in attention logits, leading to 043

an increasingly disproportionate focus on a single 044

token as the gap between attention logits grows. 045

This property leads to attention entropy collapse, 046

forcing the attention probabilities to collapse into 047

one-hot-like vectors and resulting in training insta- 048

bility. 049

We compare several attention methods and 050

find that ReLU kernel attention (Choromanski 051

et al., 2021; Qin et al., 2022) and QK-LayerNorm 052

(Gilmer et al., 2023) consistently maintain higher 053

attention entropy and lead to more stable training 054

than softmax-based attention, including Softmax 055

and Window Softmax (Beltagy et al., 2020). Fig- 056

ure 1 illustrates this phenomenon in both open- 057

source LLMs (top) and a simple, attention-only 058

Transformer model (bottom). Specifically, softmax- 059

based attention results in a progressive decrease 060

in attention entropy (third column), which in turn 061

increases the norm of the attention probability ma- 062

trix (fourth column), leading to unstable gradients 063

and loss spikes (second and first columns, respec- 064

tively). In contrast, ReLU kernel attention and QK- 065

LayerNorm preserve higher attention entropy and 066

maintain lower norms in the attention matrix and 067

gradient values. 068

To better understand the distinct behaviors of 069

reweighting functions in self-attention, we analyze 070

their insensitivity and controllability with respect 071

to attention logits variance. Both theoretical and 072

empirical evidence reveal that, in softmax, entropy 073

decreases with increasing variance. This implies 074

that higher variance results in significantly lower 075

entropy, highlighting a strong sensitivity to vari- 076

ance. By contrast, our analysis shows that ReLU 077

kernel attention is theoretically entropy-stable, as 078

its entropy remains nearly constant even when the 079

variance of the input logits becomes large. We fur- 080

ther provide an analysis of QK-LayerNorm, intro- 081

duced to address the issue of large-magnitude at- 082
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Figure 1: The training behaviors of Llama1-1B (Top, N = 768) and a small-scale Transformer model (Bottom,
N = 20,W = 8). From left to right, each column shows the training loss (Loss), gradient norm (Gradient Norm),
the attention entropy with ± standard deviation across all layers (Attn. Entropy), and the average Frobenius norm of
the attention probability matrix across all layers (∥P∥F ). In the third column, as the attention probability becomes
uniform, the attention entropy reaches its maximum (logN , dotted line). In the fourth column, ∥P∥F reaches its
maximum (

√
N , dashed-dotted line) when attention entropy collapse (▼) occurs and its minimum (dotted line)

under a uniform attention distribution, following Proposition 5.3.

tention logits, and show that it effectively controls083

variance and contributes to preserving attention084

entropy. However, we also find that, due to the pres-085

ence of softmax, it remains sensitive to variance,086

and its behavior highly depends on the choice of087

the scaling parameter.088

Moreover, we provide a clear and focused anal-089

ysis of a cause of training instability induced by090

attention entropy collapse. Several studies have in-091

vestigated this cause, including softmax saturation092

and gradient exploding (Dehghani et al., 2023),093

sharp loss surfaces due to query–key spectral norm094

blow-up—addressed by the SigmaReparam (Zhai095

et al., 2023), and outlier activations that disrupt096

gradient flow (He et al., 2024). However, the ex-097

act mechanism behind the instability remains un-098

clear. Our experiments, conducted across both large099

and small models, reveal a strong correlation be-100

tween the decrease in attention entropy and spikes101

in the gradient norm. As shown in Figure 1 (second102

column), the gradient norm explodes at the point103

where the attention entropy decreases sharply or104

approaches zero during training (third column), in-105

dicating a direct relationship with instability. As106

attention probabilities become increasingly concen-107

trated, the norm of the attention probability matrix,108

∥P∥F , increases rapidly (fourth column), which in109

turn enlarges the gradient of self-attention output 110

during backpropagation. 111

To summarize, we make the following contribu- 112

tions: 113

• We identify the variance sensitivity of the re- 114

weighting function as the cause of attention 115

entropy collapse. Empirically, we show that 116

attention methods less sensitive to attention 117

logit variance can prevent this collapse and 118

lead to more stable training, in both small and 119

large models. 120

• We provide both theoretical and empirical 121

evidence that the entropy of softmax-based 122

attention depends strongly on the variance 123

of the logits, whereas ReLU kernel atten- 124

tion remains entropy-stable. Furthermore, QK- 125

LayerNorm offers variance controllability, but 126

retains softmax-induced sensitivity that de- 127

pends on the scaling parameter. 128

• We establish that a decrease in attention en- 129

tropy increases the norm of the attention prob- 130

ability matrix, which increases the gradient 131

norm of the attention output, ultimately lead- 132

ing to exploding gradients. 133
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2 Related Works134

Several studies have investigated attention entropy135

collapse, also known as the attention sink. The136

large spectral norms of the query and the key137

weights tighten the lower bound of attention en-138

tropy, leading to sharper attention probability dis-139

tributions and a steeper loss surface, which causes140

training instability (Zhai et al., 2023). As the se-141

quence length grows, a log-scale increase in the142

top query-key score can cause the softmax func-143

tion to disproportionately amplify that score, result-144

ing in attention becoming focused on a single or145

a few tokens (Deng et al., 2025). Furthermore, as146

the magnitude of attention logits increases, atten-147

tion probabilities tend to collapse into near-one-hot148

vectors, thereby exacerbating training instability149

(Kedia et al., 2024). Various normalization meth-150

ods have been proposed to alleviate the attention151

entropy collapse. Representative methods include152

QK-LayerNorm (Dehghani et al., 2023), QKNorm153

(Henry et al., 2020), Softmax-1 (Kaul et al.), and154

NormSoftmax (Jiang et al., 2023). This collapse155

is characterized by an excessive attention bias to-156

wards initial tokens, commonly referred to as atten-157

tion sink (Xiao et al., 2024). A few activation units158

with disproportionately large values concentrate159

attention probabilities on their corresponding to-160

kens (Sun et al., 2024). Empirical analysis reveals161

that factors such as QK angles, optimization strate-162

gies, data distribution, loss functions, and model163

architecture also influence this phenomenon (Gu164

et al., 2025). Moreover, as value norms decrease,165

residual-state peaks emerge, exacerbating the at-166

tention sink problem by causing value-state drains167

(Guo et al., 2024a). While prior works focus atten-168

tion logit scale, we focus on the sensitivity to the169

attention logit variance.170

3 Background171

3.1 Softmax-based Attention172

Given an input X ∈ RN×D, where N denotes173

the sequence length and D the hidden dimension,174

we define the three components of a single-head175

attention mechanism—query Q ∈ RN×D, key176

K ∈ RN×D, value V ∈ RN×D—by multiplying177

X by each corresponding weight WQ,WK ,WV ∈178

RD×D. The ith row vector Ai ∈ R1×D of self-179

attention’s outputA ∈ RN×D and (i, j)th elements180

of the attention probability matrix P ∈ RN×N can181

be defined as follows:182

Ai =

N∑
j=1

Pi,jVj and Pi,j =
sim(Qi,Kj)∑N
k=1 sim(Qi,Kk)

, 183

where sim(·) is a real-valued function that mea- 184

sures the similarity between query and key. 185

Softmax-based attention uses the exponentiated 186

query-key dot product for the similarity function 187

sim(Qi,Kj) = exp(QiK
⊤
j ) 188

and the corresponding attention probability matrix 189

is 190

Pi,j =
exp(QiK

⊤
j )∑N

k=1 exp(QiK⊤
k )
. (1) 191

We refer to Z = QK⊤ ∈ RN×N as the attention 192

logits. 193

Window Softmax Attention In window atten- 194

tion, each query at position i attends only to the 195

keys within a fixed window from Ki−W to Ki+W , 196

where W is the window size. Accordingly, the at- 197

tention probability in (1) is replaced with: 198

PW
i,j =

exp(QiK
⊤
j )∑i+W

k=i−W exp(QiK⊤
k )
. 199

By restricting each query to attend only to tokens 200

within a local window, this attention prevents exces- 201

sive focus on a single token and promotes relatively 202

uniform attention probabilities (Dong et al., 2024; 203

Gu et al., 2025). 204

3.2 Query-Key Normalization (Gilmer et al., 205

2023) 206

To alleviate large attention logits, which can lead 207

to the concentration of attention on a single token, 208

Gilmer et al. (2023) apply Layer Normalization 209

(LN) (Ba et al., 2016) to both Q and K before the 210

dot product, modifying the attention formulation 211

in (1). We define the normalized attention logits of 212

QK-LayerNorm as 213

ZLN
i,j = LN(Qi)LN(Kj)

⊤, (2) 214

and compute the attention probability as 215

P LN
i,j =

exp(ZLN
i,j )∑N

k=1 exp(Z
LN
i,k )

. (3) 216
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3.3 Linear Kernerlized Attention217

To mitigate the quadratic complexity of traditional218

attention mechanisms, kernelized self-attention ap-219

proximates the similarity function using a kernel220

function ϕ : R1×D → R1×D as follows:221

sim(Qi,Kj) ≈ ϕ(Qi)ϕ(Kj)
⊤. (4)222

Instead of applying softmax directly, kernelized223

self-attention uses a kernel function ϕ to approx-224

imate similarity. By exploiting the associativity225

of matrix multiplication, it avoids explicit com-226

putation of the attention matrix and reduces the227

quadratic time complexity to linear, as follows:228

Aϕ
i =

ϕ(Qi)
∑N

j=1 ϕ(Kj)
⊤Vj

ϕ(Qi)
∑N

k=1 ϕ(Kk)⊤
and

P ϕ
i,j =

ϕ(Qi)ϕ(Kj)
⊤∑N

k=1 ϕ(Qi)ϕ(Kk)⊤
.

(5)229

While prior works on kernelized attention mainly230

focus on choosing kernel functions that better ap-231

proximate softmax attention such as ReLU (with232

re-weighting) (Qin et al., 2022; Cai et al., 2023;233

Han et al., 2023) and ELU+1 (Katharopoulos et al.,234

2020), our work instead examines kernel function235

from the perspective of training stability.236

In particular, we focus on Lipschitz-continuous237

kernel functions, which restrict changes during re-238

weighting from attention logits to probabilities. We239

use ReLU, ELU+1, and Sigmoid, widely used Lip-240

schitz kernel functions, which ensure non-negative241

values.242

3.4 Attention Entropy243

The entropy of each row Pi of the attention prob-244

ability matrix P , also called attention entropy, is245

defined as follows:246

H(Pi) = −
∑N

j=1
Pi,j logPi,j . (6)247

To compute the average attention entropy across all248

rows, we take the mean of H(Pi) over all N rows:249

H(P ) =
1

N

∑N

i=1
H(Pi). (7)250

When the attention probabilities in a given row251

Pi become overly concentrated on a single token,252

forming a near one-hot distribution, the attention253

entropy H(Pi) approaches zero. If this occurs for254

all rows, the attention entropy also collapses to255

zero, a phenomenon known as attention entropy256

collapse. This collapse is illustrated in the attention257

heatmaps in Appendix G.258

4 Empirical Analysis of Attention 259

Entropy Collapse and Training 260

Instability 261

In this section, we empirically compare softmax- 262

based and entropy-stable attention, focusing on at- 263

tention entropy collapse leading to training instabil- 264

ity. First, in Section 4.1, we report and analyze em- 265

pirical findings on attention entropy collapse and 266

training instability observed in open-source LLMs, 267

Llama (Touvron et al., 2023) and GPT-2 (Radford 268

et al., 2019). Furthermore, in Section 4.2, we con- 269

duct experiments on a simple regression task using 270

a simple and small architecture composed solely of 271

self-attention layers to isolate the effects of the re- 272

weighting functions, ensuring that the influence of 273

other factors is minimized. Experimental settings 274

are detailed in Appendix C. 275

4.1 LLM Pre-training 276

Experimental Result We observe that softmax- 277

based attention (Softmax, Window Softmax) expe- 278

riences a progressive decrease in attention entropy 279

over time, whereas ReLU kernel attention and QK- 280

LayerNorm maintain a more stable entropy profile, 281

as shown in Figure 1 (Top). As training progresses, 282

this reduction in entropy for softmax-based atten- 283

tion is accompanied by an increase in the Frobenius 284

norm of the attention probability matrix, which 285

in turn leads to exploding gradient norms and, ul- 286

timately, causes the loss to diverge. In contrast, 287

ReLU kernel attention and QK-LayerNorm main- 288

tain relatively higher attention entropy throughout 289

training while keeping the attention probability ma- 290

trix norms and gradient norms lower. Moreover, 291

softmax-based attention converges to a higher train- 292

ing loss than those attention methods. We further 293

conduct experiments on GPT-2 pre-training, which 294

exhibit similar trends, as detailed in Appendix B. 295

4.2 Simple and Small Transformer 296

To further clarify the relationship between the re- 297

weighting functions in attention and attention en- 298

tropy collapse, we conduct additional experiments 299

in a simplified setting. This collapse is commonly 300

attributed to factors such as model scale, hidden 301

state dimensionality, layer stacking (Sun et al., 302

2024; He et al., 2024), and MLP layers (Cancedda, 303

2024). However, to disentangle the role of the re- 304

weighting function from these other influences, 305

we employ a simple and small-scale Transformer 306

model composed solely of self-attention layers, 307

4
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Figure 2: The comparison of training stability with dif-
ferent re-weighting functions is conducted by analyzing
the variation in final loss across different learning rates.
For each learning rate, the average final loss is computed
over five independent runs, comparing softmax-based
attention (solid lines; Softmax, Window Softmax) with
entropy-stable attention (dashed lines; QK-LayerNorm,
ReLU).

along with controlled task settings. Notably, we308

observe that attention entropy collapse can emerge309

independent of the other factors, highlighting the310

fundamental role of the self-attention mechanism311

itself in driving this effect. Experimental settings312

are detailed in Appendix C.313

Re-Weighting Function LR Sensitivity

Softmax (Vaswani et al., 2017) 2.30

Window Softmax (Beltagy et al., 2020) 2.20

SigmaReparam (Zhai et al., 2023) 2.18

Sigmoid Kernel 1.97

ELU+1 Kernel (Katharopoulos et al., 2020) 1.95

QK-LayerNorm (Gilmer et al., 2023) 1.14

ReLU Kernel 1.03

Table 1: LR sensitivity for various re-weighting func-
tions, as defined in Appendix C, measures the rate of
change of final loss with respect to the learning rate.
Lower LR sensitivity indicates more stable training.

Experimental Result The results are even more314

definitive than those observed in the LLMs ex-315

periments, as discussed in Section 4.1. In Figure316

1 (Bottom), softmax-based attention (solid lines;317

Softmax, Window Softmax) rapidly collapses to318

the attention entropy of zero early in training. At319

the same step, the gradient norm explodes, causing320

the loss to spike. In contrast, ReLU kernel atten-321

tion (blue dashed line) and QK-LayerNorm (green322

dashed line) maintain higher attention entropy, re- 323

sulting in more stable training. Additional results 324

for other re-weighting function variants, including 325

Sigmoid-Kernel, ELU+1-Kernel attention and Sig- 326

maReparam, are provided in Appendix A. 327

4.3 Comparative Analysis 328

Experimental results from both large and small 329

scale models show that softmax-based attention ex- 330

periences the attention entropy collapse, leading to 331

training instability, whereas ReLU kernel attention 332

and QK-Layernorm remain stable. In this section, 333

we assess the training stability of each re-weighting 334

function with learning rate sensitivity (LR sensi- 335

tivity), which measures the deviation in final loss 336

from the optimum as the learning rate is swept over 337

a wide range using LR-vs-loss curves (Wortsman 338

et al., 2024). Experimental settings are detailed in 339

Appendix A. 340

Experimental Result Figure 2 illustrates how 341

the final training loss of different attention mecha- 342

nisms varies across a broad range of learning rates, 343

and this trend is summarized in Table 1. ReLU 344

kernel attention (dashed lines) exhibits the widest 345

stable learning rate range and the lowest sensitiv- 346

ity to learning rate variation, maintaining low fi- 347

nal loss across nearly five orders of magnitude. 348

QK-LayerNorm (dashed line) also shows strong 349

robustness, with both stability range and sensitivity 350

close to those of ReLU kernel. However, softmax- 351

based attention methods (solid lines; Softmax and 352

Window Softmax) are stable only within a nar- 353

row learning rate range and show the highest LR 354

sensitivity among all attention methods. ELU+1 355

Kernel and Sigmoid Kernel exhibit lower sensi- 356

tivity than softmax-based mechanisms, including 357

SigmaReparam (see Appendix A). 358

5 Why Attention Entropy Collapse 359

Emerges and Causes Training 360

Instability 361

Empirical results show that ReLU kernel attention 362

and QK-LayerNorm avoid attention entropy col- 363

lapse and enable more stable training than softmax- 364

based attention. This section provides both theoret- 365

ical insights and experimental analysis to explain 366

the reasons behind this behavior. Furthermore, it 367

demonstrates that the attention entropy collapse 368

amplifies the gradient norm, leading to training 369

instability. 370
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Figure 3: Comparison of the attention probability and attention entropy between softmax-based attention (Top)
and ReLU kernel attention (Bottom) as the attention logits variance increases. The lines (Rightmost) represent the
rate of change (variance sensitivity) between softmax-based attention (red solid line; Softmax) and ReLU kernel
attention (blue dashed line) as the attention logits variance increases. Here, with N = 200, the maximum achievable
entropy is logN ≈ 5.3.

5.1 Variance Sensitivity Induces Entropy371

Collapse372

Based on the experiments, attention entropy col-373

lapse in self-attention heavily depends on the func-374

tion used to re-weight the query–key dot product.375

The main cause is that re-weighting functions ei-376

ther amplify or confine differences between inputs377

as the input bound increases. Softmax-based atten-378

tion tends to cause entropy collapse because the379

exponential function excessively amplifies differ-380

ences in input values as variance increases. As a381

result, the softmax disproportionately emphasizes382

larger inputs while suppressing smaller ones. Win-383

dow attention avoids applying softmax over the384

entire sequence of length N by dividing the se-385

quence into smaller windows and restricting atten-386

tion within them. This design prevents any single387

token from being repeatedly attended to across the388

entire sequence, which helps limit excessive focus389

on single token. However, as demonstrated in pre-390

vious experiments, attention entropy still tends to391

decrease or even collapse despite this constraint.392

Therefore, using re-weighting functions that have393

low sensitivity and are less affected by input vari-394

ance, such as ReLU, or applying methods like QK-395

LayerNorm that normalize the variance, can help396

maintain higher attention entropy and enable stable397

training.398

Theorem 5.1 (Sensitivity of Softmax and ReLU399

Entropy on Variance). Let z ∼ N (0, σ2IN ), p =400

softmax(z) and H(p) = −∑N
i=1 pi log pi. Then,401

for small σ2, 402

H(p) = logN − (N − 1)σ2/2N +O(σ4) 403

and the derivative of H(p) with respect to σ2 is 404

∂H

∂σ2
= −Ez

[∑
i
z2i · pi

]
< 0. 405

Thus, H(p) is strictly decreasing in σ2. 406

By contrast, the entropy of the ReLU kernel at- 407

tention probability p̃ is given by 408

H(p̃) = logN −O
(
1/d
)

409

and it does not depend on the variance σ2, where 410

d is the query and key dimension. 411

The entropy of the softmax distribution de- 412

creases from the maximum value of logN as σ2 in- 413

creases. This highlights the high sensitivity of soft- 414

max to input variance and its tendency toward en- 415

tropy collapse as the variance increases. In contrast, 416

the entropy of the ReLU kernel attention distribu- 417

tion remains approximately logN up to a small 418

correction O(1/d), and is notably independent of 419

input variance. The detailed proof is provided in 420

Appendix F. 421

QK-LayerNorm and Variance Controllability 422

As shown in both Figure 1 and 2, QK-LayerNorm 423

maintains high attention entropy and exhibits stable 424

training. This illustrates how QK-LayerNorm effec- 425

tively controls the variance of the attention logits in 426

6



softmax-based attention. Moreover, when the LN427

scaling parameter γ is bounded, QK-LayerNorm428

becomes robust to shifts in input variance, thereby429

ensuring stable attention behavior during training.430

Let the inputs be scaled as Qi = σqQi, Kj =431

σkKj , with arbitrary scaling factors σq, σk > 0.432

Since scaling a vector scales both its norm and vari-433

ance proportionally, the effect of these scale factors434

cancels out after LayerNorm is applied, resulting435

in the normalized attention logits defined in (2) that436

are invariant to input variance. Both the attention437

probability of QK-LayerNorm P LN
ij defined in (3)438

and its entropy depend only on the normalized log-439

its and therefore the attention entropy is invariant to440

query and key variance, i.e., ∂H(Pi)
∂σ2

q
= ∂H(Pi)

∂σ2
k

= 0.441

However, if the scaling parameters γq and γk are442

not bounded, attention entropy may collapse, as443

detailed in Appendix D.444

Controlled Experiment Theoretical analysis445

demonstrates that the entropy of the softmax func-446

tion decreases as variance increases, indicating447

high sensitivity. Unlike softmax, ReLU kernel at-448

tention entropy does not depend on the attention449

logits variance. To provide empirical evidence for450

the theoretical analysis, we analyze the sensitivity451

of various re-weighting functions to the attention452

logits variance (defined below).453

Definition 5.2 (Attention Logits Variance). The454

attention logits variance for each row Zi of the455

attention logits Z ∈ RN×N is defined as the empir-456

ical variance Var({Zi,1, Zi,2, · · · , Zi,N}).457

To examine how softmax-based and entropy-458

stable attention respond to attention logits variance,459

we control this variance with the unit-norm query460

and keys sampled from N (0, σ2I) at σ = 1, 2, 4, 8,461

so that the logit Zi,j = QiK
⊤
j ∼ N (0, σ2) has a462

variance of σ2. Figure 3 presents histograms of463

the resulting attention weights for a single query464

(i.e., Pi for Qi), illustrating how the distribution465

changes as σ increases. With softmax attention,466

as variance increases, the attention distribution be-467

comes increasingly extreme, concentrating proba-468

bility mass on a few key vectors and resulting in469

lower attention entropy. In contrast, ReLU kernel470

attention maintains an attention entropy of around471

5.0 slightly below logN regardless of the value472

of the attention logits variance, preserving a more473

evenly distributed attention probability and avoid-474

ing entropy collapse. This trend is evident in Figure475

3 (rightmost), confirming that softmax attention is476
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Figure 4: Relationship between attention logits variance
and normalized attention entropy defined in (8) during
training, across different attention methods. Softmax-
based methods (•; Softmax, Window Softmax) and
entropy-stable methods (▼; QK-LayerNorm, ReLU ker-
nel) are included for comparison.

highly sensitive to attention logits variance, with 477

entropy changing steeply as variance increases. In 478

contrast, ReLU kernel attention shows low sensitiv- 479

ity, exhibiting an almost flat rate of entropy change. 480

Pratical Experiment Following controlled ex- 481

periments, we analyze the relationship between the 482

attention logits variance and entropy of softmax- 483

based and entropy-stable attention methods during 484

training. We define the normalized attention en- 485

tropy as: 486

H̃(Pi) = ψ(H(Pi)) =
H(Pi)

Hmax −H(Pi)
, (8) 487

where Hmax denotes the maximum attention en- 488

tropy, which equals logN . Note that ψ is increas- 489

ing in H . 490

Figure 4 illustrates the relationship between at- 491

tention logits variance and normalized attention 492

entropy (H̃(Pi)) across different attention methods. 493

Softmax-based attention exhibits a progressive de- 494

crease in entropy as the input variance increases. 495

In contrast, ReLU kernel attention maintains stable 496

attention entropy even as input variance increases, 497

indicating low sensitivity to variance. Even at the 498

same variance level, softmax-based attention pro- 499

duces significantly lower entropy. Notably, QK- 500

LayerNorm shows a trend similar to that of Soft- 501

max, but it prevents a sharp drop in entropy by 502

controlling the magnitude of the attention logits 503

variance. On the other hand, Window Softmax ex- 504

hibits a relatively flatter trend compared to Soft- 505

max, which suggests that Window Softmax slightly 506

reduces sensitivity to variance by shortening the 507

7



sequence length N , but not sufficient to mitigate508

the entropy collapse.509

5.2 Why Attention Entropy Collapse Leads to510

Training Instability511

Attention entropy collapse is associated with un-512

stable gradients, leading to loss spikes and severe513

training instability. In open-source LLMs training514

with softmax-based attention, we show that the515

attention entropy progressively decreases, while516

the gradient norm steadily increases (see Figure 1517

Top). In contrast, ReLU kernel attention and QK-518

LayerNorm maintain higher entropy and stable gra-519

dients, preventing training instability. As shown in520

Figure 1 (Bottom, the second panel), despite be-521

ing trained with shallow layers composed only of522

self-attention, the model still experiences gradient523

explosion.524

Entropy-Collapsed Attention Probabilities Ex-525

plode Gradient The explosion of gradients,526

along with attention entropy collapse, is closely527

tied to the Lipschitz constant of self-attention.528

Specifically, the softmax function is the primary529

cause, as increases in the input bound or variance530

result in disproportionately large output changes,531

leading to an unbounded rate of change and a532

sharply elevated Lipschitz constant. Previous re-533

search has proposed alternative formulations that534

replace the softmax function in attention mech-535

anisms to address these issues, such as L2 self-536

attention (Kim et al., 2021) and sigmoid self-537

attention (Ramapuram et al., 2025), which aim to538

enforce a tighter upper bound on the Lipschitz con-539

stant.540

According to (Dasoulas et al., 2021), the norm541

of the derivative of the self-attention layers with542

respect to the input X is upper bounded as follows:543

∥DAX∥F ≤ ∥P∥F544

+
√
2∥X∥(2,∞) ∥DZX∥F,(2,∞) , (9)545

where ∥X∥(2,∞) = maxj(
∑

iX
2
i,j)

1/2 and546

∥f∥a,b = max∥x∥b=1 ∥f(x)∥a. The attention prob-547

ability matrix norm ∥P∥F controls the upper bound548

in (9) and depends on whether the attention entropy549

of P is low (one hot) or high (uniform).550

Proposition 5.3. The norm ∥P∥F of the atten-551

tion probability matrix P lies within the interval552

[1,
√
N ], attaining the extreme values as follows: 553

∥P∥F =

{
1 if each row Pi is uniform√
N if each row Pi is one-hot

.

(10)

554

On the contrary, the attention entropy H(P ) lies 555

within [0, log(N)], attaining the extreme values: 556

H(P ) =

{
log(N) if each row Pi is uniform
0 if each row Pi is one-hot

.

(11)

557

Figure 1 (Rightmost) illustrates how the atten- 558

tion probability matrix norms evolve for softmax- 559

based and entropy-stable attention. At the begin- 560

ning of training, both models have not yet learned 561

the relevance between tokens in the input sequence. 562

As a result, each row of P is nearly uniform, with a 563

high attention entropy H(P ) ≈ log(N) from (11). 564

This uniformity results in stable training dynamics, 565

as indicated by a small Frobenius norm ∥P∥F ≈ 1 566

from (10) in Proposition 5.3 and bounded gradi- 567

ents from (9). As training progresses with softmax- 568

based attention, attention probabilities increasingly 569

concentrate on a single token, forming nearly one- 570

hot rows with near-zero attention entropy as de- 571

scribed in (11). Consequently, ∥P∥F increases to- 572

ward
√
N , following (10), leading to larger gradi- 573

ents and increased training instability as indicated 574

in (9). In contrast, entropy-stable attention main- 575

tains a significantly lower norm. Furthermore, the 576

positive correlation between the gradient norm and 577

∥P∥F , as indicated by the bound in (9) is empiri- 578

cally validated in Appendix E. 579

6 Conclusion 580

In this paper, we identify the variance sensitivity 581

and lack of control in softmax attention as key fac- 582

tors behind attention entropy collapse, as observed 583

even in a model composed solely of self-attention 584

layers. We also provide theoretical and empirical 585

evidence that entropy-stable attention mechanisms, 586

which are either insensitive to or explicitly control 587

attention logits variance, can maintain attention en- 588

tropy and enable stable training. Furthermore, we 589

link attention entropy collapse to training instabil- 590

ity by showing that increased attention matrix norm 591

leads to gradient exploding. 592

Limitations 593

Our analysis does not comprehensively evaluate a 594

wide range of model architectures, scales, or self- 595

8



attention variants. It remains important to inves-596

tigate how full attention in encoders and causal597

attention in decoders differ in their sensitivity to,598

or ability to control, the variance of attention log-599

its in the re-weighting process. Furthermore, addi-600

tional analysis is needed on training-related factors601

such as learning rate schedules, warm-up strategies,602

weight decay, and gradient clipping, which may603

also influence training stability.604
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A Additional Experiments on Variants814

We additionally experiment with kernelized self-815

attention using ϕ as ELU+1 and sigmoid, as well816

as SigmReparam (Zhai et al., 2023), a reparameter-817

ization method that scales weight matrices by their818

spectral norm. SigmReparam is applied to the query819

and key projections in self-attention. As shown in820

Figure 5, both ELU+1 and Sigmoid kernel atten-821

tion maintain stable training with consistently high822

attention entropy. In contrast, the SigmReparam823

variant shows a notable entropy collapse, result-824

ing in unstable training. This indicates that while825

SigmReparam enhances stability by constraining826

spectral norms, it fails to control variance or reduce827

sensitivity in small models with large learning rates828

and no gradient clipping. As shown in Figure 6,829

ELU+1 and Sigmoid kernels also exhibit a broader830

stable learning rate range and lower sensitivity than831

softmax-based attention, whereas SigmReparam832

remains more sensitive with a narrower range.833

B Analysis on GPT-2 Pretraining834

We extend our experiments to GPT-2 in addition to835

the previously conducted Llama1-1B experiments.836

Figure 7 illustrates that, in softmax-based atten-837

tion, attention entropy gradually decreases in the838

early training steps, eventually approaching zero839

(the third panel). Almost simultaneously, ∥P∥F in-840

creases (the fourth panel), and a sharp increase in841

gradient magnitude occurs (the second panel), re-842

inforcing the direct relationship between entropy843

and training stability observed in previous exper-844

iments. In contrast, entropy-stable attention pre-845

serves higher entropy throughout training, exhibits846

smaller ∥P∥F , and stabilizes gradients.847

C Implementation Details848

Here are the hyper-parameters we used, and we849

apply the same ones across all experiments.850

C.1 LLM-Pretraining Experimental Setup851

In this experiment, we pre-train a Llama1-1B852

model on a subset of the Pile dataset (Gao et al.,853

2020), consisting of up to 5B tokens. The model is854

trained with a sequence length of 768 and a batch855

size of 256. We use AdamW (Loshchilov, 2017)856

with a learning rate of 1e−3, following a cosine857

scheduling strategy. We train for 10,000 steps with858

a weight decay of 0.1 and gradient clipping set859

to 1. Details on the GPT-2 pre-training setup are860

provided in the Appendix B.861

C.2 Linear Regression with a Simple 862

Transformer Experimental Setup 863

For this experiment, we employ a simple Trans- 864

former architecture composed solely of self- 865

attention layers. The model consists of 5-layers and 866

a 3-dimensional hidden state (L = 5, D = 3) and 867

a sequence length of 20 (N = 20). We empirically 868

set the attention window size to 8, as it provided 869

the most stable training dynamics across runs, and 870

use this setting throughout all experiments. Our ap- 871

proach is motivated by findings that Transformers 872

adapt to new tasks from only a few examples with- 873

out parameter updates, a phenomenon known as 874

in-context learning (Brown et al., 2020), spurring 875

further research, (e.g., Garg et al. 2022; Zhang et al. 876

2024; Mahankali et al. 2024; Von Oswald et al. 877

2023; Ahn et al. 2024). The simple Transformer 878

is trained on an in-context linear regression task, 879

predicting w⊤xn+1 from {(xi, yi)}ni=1 and a query 880

vector xn+1, where (xi, w) are sampled i.i.d. from 881

N (0, ID) and yi = w⊤xi. Furthermore, we evalu- 882

ate a broader set of re-weighting functions, includ- 883

ing Sigmoid-Kernel, ELU+1-Kernel attention and 884

SigmaReparam. Additional implementation details 885

are provided in Appendix C. 886

C.3 LR Sensitivity Experimental Setup 887

LR sensitivity is defined as 888

Eη∈[a,b] [min (ℓ(A(η)), ℓ0)− ℓ∗], where [a, b] 889

is the learning rate range. Here, ℓ∗ is the loss 890

achieved using the optimal learning rate, ℓ0 891

is the loss at initialization, and θ = A(η) de- 892

notes the model weights obtained by training 893

with learning rate η. The learning rate range 894

as lr ∈ {1, 3, 5} × 10k (k = −5,−4, . . . , 1, 895

lr ≤ 10). For small-scale models, we use SGD 896

optimizer with fixed learning rates from this range. 897

Each re-weighting function, we train a separate 898

model and report results averaged over five runs 899

per learning rate. 900

D Ablation Study on QK-LayerNorm 901

Figure 9 compares strategies for controlling the 902

LayerNorm scale parameters γq and γk: Gradient 903

Clipping, No Clipping, Fixed γ = 1, and Weight 904

Clipping. Gradient clipping (top row) does not fully 905

control the norm of the LayerNorm scale param- 906

eters, leading to significant variation across lay- 907

ers. In layers where ∥γq∥ · ∥γk∥ becomes large, 908

we observe increased attention logit variance and 909

decreased attention entropy. Without any clipping 910
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Figure 5: The training behaviors of ELU+1, Sigmoid kernel attention and SigmaReparam. The experiments are
conducted in a simple and small Transformer, and the figure includes training loss, gradient norm, attention entropy
(with ± standard deviation across all layers), and the average Frobenius norm of the attention probability matrix.
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Figure 6: The average final loss over five independent
runs is presented for the ELU+1 Kernel, Sigmoid Ker-
nel, and SigmaReparam methods across a range of learn-
ing rates.

(second row), the scale parameters grow rapidly911

and without bound in certain layers, accompanied912

by a corresponding increase in logit variance and a913

decrease in attention entropy. Fixing γq and γk to914

1 (third row) maintains a constant attention scale915

throughout training, effectively controlling atten-916

tion logit variance and resulting in stable, high-917

entropy attention patterns. Weight clipping (bottom918

row) also constrains the growth of the scale param-919

eters and helps regulate attention behavior, though920

it exhibits occasional fluctuations. These empiri-921

cal results indicate that QK-LayerNorm can reduce922

the sensitivity of softmax-based attention to logit923

variance, thereby improving stability, although this924

benefit depends critically on the behavior of the925

scale parameters γq and γk.926
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Figure 7: The training behaviors of GPT-2 (N = 200) with softmax-based attention (solid line; Softmax) and
entropy-stable attention (dashed line; ReLU). From left to right, each panel shows the training loss (Loss), gradient
norm (Gradient Norm), the first-layer attention entropy with ± standard deviation (Attn. Entropy), and the average
Frobenius norm of the attention probability matrix (∥P∥F ). In the third panel, as the attention probabilities of
entropy-stable attention are nearly uniform, its attention entropy reaches the maximum value (dotted line; logN ),
whereas softmax-based attention exhibits an attention entropy close to 0. In the fourth panel, while the softmax-based
attention ∥P∥F reaches its maximum value (dashed-dotted line;

√
N ), the entropy-stable attention remains close to

its minimum (dotted line) under a uniform attention distribution.
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Figure 8: The training behaviors of the scaling parameters γq and γk are shown under various conditions—including
weight clipping, gradient clipping, fixed weights, and no clipping. The experiments are conducted in a simple and
small Transformer. From left to right, each column shows the training loss, gradient norm, attention entropy (with ±
standard deviation across all layers), and the average Frobenius norm of the attention probability matrix. Note that
the results for weight clipping are shown in Figure 1.
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Figure 10: The correlation between the attention en-
tropy and ℓ2-norm of each row after sampling rows
of attention probabilities from a Dirichlet distribution.
For this setup, the concentration hyper-parameter α of
the Dirichlet distribution is configured as 0.1 and 0.001
during sampling.

To show that as attention entropy decreases, the929

norm of attention probability matrix increases, we930

sample attention probability vectors from a Dirich-931

let distribution, defined as follows:932

Pi ∼ Dirichlet(α1) (12)933

The concentration of the distribution can be con-934

trolled using the hyper-parameter α1. When α1 is935

small, the distribution is concentrated on a single936

value, which resembles attention entropy collapse.937

In contrast, when α1 is relatively large, the distribu-938

tion becomes more uniform. Experimental results939

indicate that when α1 = 0.001, attention entropy940

is significantly lower than at α1 = 0.1. Further-941

more, it is observed that the attention entropy of942

Pi and its ℓ2-norm are inversely related. As atten-943

tion entropy decreases, ∥P∥F increases, reaching944

its maximum when attention entropy approaches945

zero.946

F Proof of Theorem 5.1947

F.1 Entropy Approximation for Softmax948

Version 1949

Let z = (z1, z2, ..., zn) ∈ Rn be a random vector950

such that zi ∼ N (0, σ2) independently. Define the951

softmax vector p = softmax(z), where952

pi =
exp(zi)∑n
j=1 exp zj

. (13)953

The entropy of the softmax distribution is given 954

by 955

H(p) = −
n∑

i=1

pi log pi. (14) 956

We aim to derive first-order approximation for 957

H(p) in the regime where σ2 ≪ 1. 958

When σ2 is small, the random vector z is con- 959

centrated near zero, and hence the softmax output 960

is close to uniform distribution. We can express 961

the softmax probabilities as a perturbation of the 962

uniform vector: 963

pi =
1

n
+ ζi(z), (15) 964

where the perturbation ζi(z) satisfies 965∑n
i=1 ζi(z) = 0, and ζi(z) = O(σ). 966

Substituting this expansion into the entropy for- 967

mula yields: 968

H(p) = −
n∑

i=1

(
1

n
+ ζi

)
log

(
1

n
+ ζi

)
. (16) 969

We perform a Taylor expansion of the logarithm 970

around 1
n : 971

log

(
1

n
+ ζi

)
= log

(
1

n

)
+ nζi −

n2

2
ζi +O(ζ3i ).

(17)

972

Therefore, the entropy becomes: 973

H(p) 974
975

≈ −
n∑

i=1

(
1

n
+ ζi

)(
log

(
1

n

)
+ nζi −

n2

2
ζ2i

)
976

= − log

(
1

n

) n∑
i=1

(
1

n
+ ζi

)
977

− n

n∑
i=1

(
1

n
+ ζi

)
ζi 978

+
n2

2

n∑
i=1

(
1

n
+ ζi

)
ζ2i . 979

Using the fact that
∑

i ζi = 0,
∑

i
1
n = 1, and 980

neglecting higher-order terms, we simplify the ex- 981

pression: 982

H(p) ≈ log n− n
n∑

i=1

ζ2i +
n2

2
· 1
n

n∑
i=1

ζ2i 983

= log n− n

2

n∑
i=1

ζ2i . 984
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We now compute the expectation of the pertur-985

bation energy:986

Ez

[
n∑

i=1

ζ2i

]
= Ez

[
n∑

i=1

(
pi −

1

n

)2
]
= Var(p),987

which can be approximated by known results for988

the softmax of a Gaussian:989

Ez

[
n∑

i=1

(
pi −

1

n

)2
]
≈ n− 1

n2
σ2.990

Substituting this into the entropy expression991

yields:992

Ez [H(softmax(z))] ≈ log n− n

2
· n− 1

n2
σ2993

= log n− n− 1

2n
σ2.994

F.2 Entropy Approximation for Softmax995

Version 2996

Let z = (z1, z2, ..., zN ) ∈ RN be a random vector997

such that zi ∼ N (0, σ2) independently. Define the998

softmax vector p = softmax(z), where999

pi =
ezi∑N
k=1 e

zk
=

ezi−z̄∑N
k=1 e

zk−z̄
, (18)1000

where z̄ = 1
N

∑N
k=1 zk is the empirical mean. We1001

assume the deviations zi − z̄ are small and expand1002

the exponentials using a Taylor expansion up to1003

third order:1004

ezk−z̄ = 1 + σ(zk − z̄) +
1

2
σ2(zk − z̄)21005

+
1

6
σ3(zk − z̄)3 +O(σ4). (19)1006

Then the denominator becomes:1007

N∑
k=1

ezk−z̄ =
N∑
k=1

(
1 + σ(zk − z̄) + 1

2σ
2(zk − z̄)2

+ 1
6σ

3(zk − z̄)3
)
+O(σ4)

(20)

1008

By the definition of the mean,
∑n

k=1(zk − z̄) = 0.1009

If the data are symmetric with respect to the mean,1010

then
∑n

k=1(zk − z̄)3 = 0. Substituting these into 1011

(20), we obtain: 1012

N∑
k=1

ezk−z̄ = N +
1

2
σ2

N∑
k=1

(zk − z̄)2 +O(σ4) 1013

= N
(
1 + 1

2 σ
2S2 +O(σ4)

)
. (21) 1014

where S2 = 1
N

∑N
k=1(zk − z̄)2. To approximate 1015

the softmax, we apply a Taylor expansion to the 1016

denominator. This yields: 1017

1∑
k e

zk−z̄
=

1

N

(
1− 1

2
σ2S2 +O(σ4)

)
. (22) 1018

Expanding the numerator similarly: 1019

ezi−z̄ = 1 + σ(zi − z̄) +
1

2
σ2(zi − z̄)2 (23) 1020

+
1

6
σ3(zi − z̄)3 +O(σ4) (24) 1021

so the softmax becomes: 1022

pi =
1

N

(
1− 1

2
σ2S2

)
(1 + σ(zi − z̄) 1023

+
1

2
σ2(zi − z̄)2 +

1

6
σ3(zi − z̄)3

)
+O(σ4) 1024

=
1

N

(
1 + σ(zi − z̄) 1025

+ σ2
(
1

2
(zi − z̄)2 − 1

2
S2

)
1026

+ σ3
(
1

6
(zi − z̄)3 − 1

2
S2(zi − z̄)

)
+O(σ4)

)
.

(25)

1027

The negative log-probability is given by: 1028

− log pi = −σ(zi − z̄) + log
∑
k

ezk−z̄ (26) 1029

= −σ(zi − z̄) + log

(
1 +

1

2
σ2S2 +O(σ4)

)
(27)

1030

= logN − σ(zi − z̄) +
1

2
σ2S2 +O(σ4).

(28)

1031

Thus the entropy term is: 1032

−pi log pi =
1

N

[
logN + (logN − 1)σ (zi − z̄)

(29)

1033

+ σ2
(
1
2 (zi − z̄)2 − 1

2 S2 +
1
2 S2 logN

)
1034

+ σ3
(
1
6 (zi − z̄)3 − 1

2 S2 (zi − z̄)
)
+O(σ4)

]
.

(30)

1035
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Summing over i and using
∑

i(zi − z̄) = 0 and1036 ∑
i(zi − z̄)2 = N S2 then gives1037 ∑
i

−pi log pi = logN − 1
2 σ

2 S2 +O(σ4) .1038

Summing over i, using
∑

i(zi − z̄) = 0, and1039 ∑
i(zi − z̄)2 = NS2, we get:1040 ∑

i

−pi log pi = logN (31)1041

+ σ2
(
1
2 S2 logN − S2 +

1
2 S2

)
(32)

1042

= logN − 1
2 σ

2 S2 +O(σ4).
(33)

1043

Taking expectation over z, we obtain:1044

Ez

[
−
∑
i

pi log pi

]
(34)1045

= logN − 1

2
σ2Ez[S2] +O(σ4).

(35)

1046

If we assume the zi are i.i.d. with unit variance,1047

then:1048

Ez[S2] =
N − 1

N
, (36)1049

and finally:1050

Ez

[
−
∑
i

pi log pi

]
(37)1051

= logN − σ2

2

N − 1

N
+O(σ4)

(38)

1052

= logN − N − 1

2N
σ2 +O(σ4).

(39)

1053

F.3 Entropy of Softmax as a Strictly1054

Decreasing Function of Variance1055

Let H(σ2) denote the expected entropy of the soft-1056

max distribution:1057

H(σ2) = Ez

[
−

n∑
i=1

pi(z) log pi(z)

]
.1058

We reparameterize z =
√
σ2 ε, where ε ∼1059

N (0, IN ), and express the softmax distribution as1060

pi(ε, σ
2) =

exp(
√
σ2 εi)∑N

j=1 exp(
√
σ2 εj)

.1061

Under this reparameterization, the entropy be- 1062

comes 1063

H(σ2) = Eε

[
log

(∑
j

e
√
σ2 εj

)
1064

−
√
σ2
∑
i

εi pi(ε, σ
2)

]
. 1065

Differentiating under the expectation yields 1066

∂H

∂σ2
= Eε

[
1

2
√
σ2

∑
j εj e

√
σ2 εj∑

k e
√
σ2 εk

1067

− 1

2
√
σ2

∑
i

εi pi(ε, σ
2) 1068

−
√
σ2
∑
i

ε2i pi(ε, σ
2) 1069

+
√
σ2

(∑
i

εi pi(ε, σ
2)

)2]
. 1070

The first two terms cancel, and substituting back 1071

z =
√
σ2 ε gives 1072

∂H

∂σ2
= − 1

2σ2
Ez

[
n∑

i=1

z2i pi(z)−
(

n∑
i=1

zi pi(z)

)2]
1073

= − 1

2σ2
Ez

[
Varp(z)[z]

]
. 1074

Because the inner variance is strictly positive al- 1075

most surely, 1076

∂H

∂σ2
< 0 for all σ2 > 0. 1077

F.4 Entropy Approximation of ReLU kernel 1078

Attention 1079

We consider query and key vectors defined as 1080

Qi = σ gi, Kj = σ hj , 1081

where gi, hj
i.i.d.∼ N (0, Id) and σ > 0. We apply 1082

the ReLU activation function ϕ(x) = max(0, x)), 1083

which is positively homogeneous of degree one, 1084

i.e., ϕ(λx) = λϕ(x) for any λ > 0. Using this 1085

property, we obtain 1086

ϕ(Qi) = σ ϕ(gi), ϕ(Kj) = σ ϕ(hj). 1087

Then we define the unnormalized attention logits 1088

as 1089

tij := ϕ(gi)ϕ(hj)
⊤, sij := ϕ(Qi)ϕ(Kj)

⊤ = σ2 tij . 1090
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Here, tij corresponds to the inner product between1091

the vectors gi and hj , while sij is the scaled version1092

of tij by a factor of σ2. We then convert these logits1093

into probabilities by applying a row-wise softmax:1094

p̃i,j(σ) =
sij∑N
k=1 sik

=
σ2tij

σ2
∑N

k=1 tik
= p̃i,j(1).1095

Note that the factor σ2 cancels out, the resulting at-1096

tention probabilities are invariant to σ. Accordingly,1097

the row-wise entropy is defined as1098

Hi(σ) := −
N∑
j=1

p̃i,j(σ) log p̃i,j(σ),1099

which implies that Hi(σ) = Hi(1) for all σ > 0.1100

For each coordinate k = 1, . . . , d let G = g
(k)
i ,1101

H = h
(k)
j , and define1102

XkYk = ϕ
(
g
(k)
i

)
ϕ
(
h
(k)
j

)
.1103

Each such term contributes to the dot product ti,j ,1104

and its expectation and variance are given by1105

µ = E[XkYk] =
1

2π
, τ2 = Var[XkYk] =

π2 − 1

4π2
.1106

By independence and linearity, the mean and1107

variance of ti,j are1108

E[tij ] =
d∑

k=1

E[XkYk] = dµ,1109

Var(tij) =
d∑

k=1

Var(XkYk) = d τ2.1110

Moreover, since eachXkYk has finite variance, cen-1111

tral limit theorem applies, giving as d→ ∞1112

tij =
d∑

k=1

XkYk = dµ +
√
d τ ξij , ξij

d−→ N (0, 1).1113

Fixing i, define1114

t̄i =
1

N

N∑
j=1

tij , δij =
tij − t̄i
t̄i

,
N∑
j=1

δij = 0.1115

Since t̄i = dµ + Op(
√
d), we have δij =1116

Op(d
−1/2). Hence1117

p̃i,j(1) =
1

N
(1 + δij),1118

and a second-order Taylor expansion around the 1119

uniform distribution gives 1120

Hi(1) = −
N∑
j=1

p̃ij(1) log p̃ij(1) 1121

= logN − 1

2N

N∑
j=1

δ2ij +O
(
∥δi∥33

)
. 1122

Finally, since 1123

E[δ2ij ] =
τ2

dµ2
+ o(d−1), E∥δi∥33 = o(d−1), 1124

it follows that 1125

E[Hi(1)] = logN −O(d−1). 1126

G Attention heatmaps 1127
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Figure 11: Heatmaps of attention probabilities for softmax-based attention (Top) and entropy-stable attention
(Bottom) during training. In softmax-based attention, each row progressively converges to a one-hot-like vector,
leading to attention entropy collapse. The attention matrices are from the first layer.
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