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Abstract

Attention-based language models typically rely
on the softmax function to convert attention
logits into probability distributions. However,
this mechanism can lead to attention entropy
collapse, where attention is focused on a sin-
gle token, causing training instability. In this
work, we identify the high variance sensitivity
of softmax as a primary cause of this collapse.
We show that entropy-stable attention mecha-
nisms, which either control or are insensitive to
the variance of attention logits, can prevent en-
tropy collapse and enable more stable training.
We provide empirical evidence of this effect
in both large language models (LLMs) and a
small Transformer model composed solely of
self-attention and support our findings with the-
oretical analysis. Moreover, we identify that
the concentration of attention probabilities in-
creases the probability matrix norm, leading to
a gradient exploding.

1 Introduction

Attention-based language models convert the atten-
tion logits (the query-key dot product) into proba-
bility vectors using the softmax function, reflecting
each token’s relative importance. However, this
process can result in excessive focus on a single
token, leading to attention entropy collapse (also
known as attention sink) (Zhai et al., 2023; He
et al., 2024; Xiao et al., 2024; Guo et al., 2024a,b;
Yu et al., 2024). Previous studies suggest that mul-
tiple factors contribute to this collapse, including
large attention logits (Xiao et al., 2024; Wortsman
et al., 2024; Dehghani et al., 2023; He et al., 2024),
exploding norms of hidden states or activations
(Sun et al., 2024), and specific model components
such as layer normalization, residual connections,
and MLP layers (Gu et al., 2025; Cancedda, 2024).
However, there is still no clear theoretical under-
standing of why entropy collapse is caused.

The core issue of attention entropy collapse in
softmax-based attention lies in the exponential na-

ture of the softmax function. The softmax function
amplifies differences in attention logits, leading to
an increasingly disproportionate focus on a single
token as the gap between attention logits grows.
This property leads to attention entropy collapse,
forcing the attention probabilities to collapse into
one-hot-like vectors and resulting in training insta-
bility.

We compare several attention methods and
find that ReLU kernel attention (Choromanski
et al., 2021; Qin et al., 2022) and QK-LayerNorm
(Gilmer et al., 2023) consistently maintain higher
attention entropy and lead to more stable training
than softmax-based attention, including Softmax
and Window Softmax (Beltagy et al., 2020). Fig-
ure 1 illustrates this phenomenon in both open-
source LL.Ms (top) and a simple, attention-only
Transformer model (bottom). Specifically, softmax-
based attention results in a progressive decrease
in attention entropy (third column), which in turn
increases the norm of the attention probability ma-
trix (fourth column), leading to unstable gradients
and loss spikes (second and first columns, respec-
tively). In contrast, ReLLU kernel attention and QK-
LayerNorm preserve higher attention entropy and
maintain lower norms in the attention matrix and
gradient values.

To better understand the distinct behaviors of
reweighting functions in self-attention, we analyze
their insensitivity and controllability with respect
to attention logits variance. Both theoretical and
empirical evidence reveal that, in softmax, entropy
decreases with increasing variance. This implies
that higher variance results in significantly lower
entropy, highlighting a strong sensitivity to vari-
ance. By contrast, our analysis shows that ReL.U
kernel attention is theoretically entropy-stable, as
its entropy remains nearly constant even when the
variance of the input logits becomes large. We fur-
ther provide an analysis of QK-LayerNorm, intro-
duced to address the issue of large-magnitude at-
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Figure 1: The training behaviors of Llamal-1B (Top, N = 768) and a small-scale Transformer model (Bottom,
N =20, W = 8). From left to right, each column shows the training loss (Loss), gradient norm (Gradient Norm),
the attention entropy with + standard deviation across all layers (Attn. Entropy), and the average Frobenius norm of
the attention probability matrix across all layers (|| P|| 7). In the third column, as the attention probability becomes
uniform, the attention entropy reaches its maximum (log NV, dotted line). In the fourth column, || P|| reaches its
maximum (v/N, dashed-dotted line) when attention entropy collapse (V) occurs and its minimum (dotted line)
under a uniform attention distribution, following Proposition 5.3.

tention logits, and show that it effectively controls  turn enlarges the gradient of self-attention output
variance and contributes to preserving attention  during backpropagation.

entropy. However, we also find that, due to the pres- To summarize, we make the following contribu-
ence of softmax, it remains sensitive to variance,  tions:

and its behavior highly depends on the choice of

the scaling parameter.  We identify the variance sensitivity of the re-

weighting function as the cause of attention
entropy collapse. Empirically, we show that
attention methods less sensitive to attention
logit variance can prevent this collapse and
lead to more stable training, in both small and
large models.

Moreover, we provide a clear and focused anal-
ysis of a cause of training instability induced by
attention entropy collapse. Several studies have in-
vestigated this cause, including softmax saturation
and gradient exploding (Dehghani et al., 2023),
sharp loss surfaces due to query—key spectral norm
blow-up—addressed by the SigmaReparam (Zhai
et al., 2023), and outlier activations that disrupt

We provide both theoretical and empirical

gradient flow (He et al., 2024). However, the ex- evidence that the entropy of softmax-based
act mechanism behind the instability remains un- attention depends strongly on the variance
clear. Our experiments, conducted across both large of the logits, whereas ReLU kernel atten-
and small models, reveal a strong correlation be- tion remains entropy-stable. Furthermore, QK-
tween the decrease in attention entropy and spikes LayerNorm offers variance controllability, but
in the gradient norm. As shown in Figure 1 (second retains softmax-induced sensitivity that de-
column), the gradient norm explodes at the point pends on the scaling parameter.

where the attention entropy decreases sharply or
approaches zero during training (third column), in-

We establish that a decrease in attention en-

dicating a direct relationship with instability. As tropy increases the norm of the attention prob-
attention probabilities become increasingly concen- ability matrix, which increases the gradient
trated, the norm of the attention probability matrix, norm of the attention output, ultimately lead-
| P|| r, increases rapidly (fourth column), which in ing to exploding gradients.



2 Related Works

Several studies have investigated attention entropy
collapse, also known as the attention sink. The
large spectral norms of the query and the key
weights tighten the lower bound of attention en-
tropy, leading to sharper attention probability dis-
tributions and a steeper loss surface, which causes
training instability (Zhai et al., 2023). As the se-
quence length grows, a log-scale increase in the
top query-key score can cause the softmax func-
tion to disproportionately amplify that score, result-
ing in attention becoming focused on a single or
a few tokens (Deng et al., 2025). Furthermore, as
the magnitude of attention logits increases, atten-
tion probabilities tend to collapse into near-one-hot
vectors, thereby exacerbating training instability
(Kedia et al., 2024). Various normalization meth-
ods have been proposed to alleviate the attention
entropy collapse. Representative methods include
QK-LayerNorm (Dehghani et al., 2023), QKNorm
(Henry et al., 2020), Softmax-1 (Kaul et al.), and
NormSoftmax (Jiang et al., 2023). This collapse
is characterized by an excessive attention bias to-
wards initial tokens, commonly referred to as atten-
tion sink (Xiao et al., 2024). A few activation units
with disproportionately large values concentrate
attention probabilities on their corresponding to-
kens (Sun et al., 2024). Empirical analysis reveals
that factors such as QK angles, optimization strate-
gies, data distribution, loss functions, and model
architecture also influence this phenomenon (Gu
et al., 2025). Moreover, as value norms decrease,
residual-state peaks emerge, exacerbating the at-
tention sink problem by causing value-state drains
(Guo et al., 2024a). While prior works focus atten-
tion logit scale, we focus on the sensitivity to the
attention logit variance.

3 Background

3.1 Softmax-based Attention

Given an input X € RV*P where N denotes
the sequence length and D the hidden dimension,
we define the three components of a single-head
attention mechanism—query Q € RN*P| key
K € RV*P value V € RV*P_by multiplying
X by each corresponding weight Wq, Wi, Wy €
RP*D The ith row vector 4; € RY¥P of self-
attention’s output A € RV *P and (4, j)th elements
of the attention probability matrix P € RV* can
be defined as follows:

N .
i7K'
Ai=Y PVjand Pyj = ;lm(.Q ) ,
j=1 Zk:l Slm(Qia Kk)

where sim(+) is a real-valued function that mea-

sures the similarity between query and key.
Softmax-based attention uses the exponentiated

query-key dot product for the similarity function

sim(Q;, Kj) = eXP(QiK]T)

and the corresponding attention probability matrix
is
- exp(QiK))
) T N :
D k=1 eXP(Qz’KJD

ey

We referto Z = QK ' € RV*N ag the attention
logits.

Window Softmax Attention In window atten-
tion, each query at position ¢ attends only to the
keys within a fixed window from K;_w to K; 1w,
where W is the window size. Accordingly, the at-
tention probability in (1) is replaced with:

-
PV _ ‘ eXP(Qin ) '
Y L exp(QiK))

By restricting each query to attend only to tokens
within a local window, this attention prevents exces-
sive focus on a single token and promotes relatively
uniform attention probabilities (Dong et al., 2024;
Gu et al., 2025).

3.2 Query-Key Normalization (Gilmer et al.,
2023)

To alleviate large attention logits, which can lead
to the concentration of attention on a single token,
Gilmer et al. (2023) apply Layer Normalization
(LN) (Baet al., 2016) to both () and K before the
dot product, modifying the attention formulation
in (1). We define the normalized attention logits of
QK-LayerNorm as

ZH = LN(Qi)LN(K;) T, )
and compute the attention probability as

IN _ exp(ZZ%\I)
17] - N :
> k-1 exp(Zi7)
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3.3 Linear Kernerlized Attention

To mitigate the quadratic complexity of traditional
attention mechanisms, kernelized self-attention ap-
proximates the similarity function using a kernel
function ¢ : R™*P — RIXPD a5 follows:

sim(Q;, K;) ~ ¢(Q:)(K;) . )

Instead of applying softmax directly, kernelized
self-attention uses a kernel function ¢ to approx-
imate similarity. By exploiting the associativity
of matrix multiplication, it avoids explicit com-
putation of the attention matrix and reduces the
quadratic time complexity to linear, as follows:

4o - SR X 0TV
P = ~ and
A(Qi) 2= P(ER)T

¢ _ $(Qi)o(K;)T

Y 0(Qi)e(Ky)T
While prior works on kernelized attention mainly
focus on choosing kernel functions that better ap-
proximate softmax attention such as ReL.U (with
re-weighting) (Qin et al., 2022; Cai et al., 2023;
Han et al., 2023) and ELU+-1 (Katharopoulos et al.,
2020), our work instead examines kernel function
from the perspective of training stability.

In particular, we focus on Lipschitz-continuous
kernel functions, which restrict changes during re-
weighting from attention logits to probabilities. We
use ReLLU, ELU+1, and Sigmoid, widely used Lip-
schitz kernel functions, which ensure non-negative
values.

&)

3.4 Attention Entropy

The entropy of each row P; of the attention prob-
ability matrix P, also called attention entropy, is
defined as follows:

N
H(P)==3" PylgP;  ©

To compute the average attention entropy across all
rows, we take the mean of H(F;) over all N rows:

1 N

H(P) = Zizl H(P). (7)
When the attention probabilities in a given row
P; become overly concentrated on a single token,
forming a near one-hot distribution, the attention
entropy H (P;) approaches zero. If this occurs for
all rows, the attention entropy also collapses to
zero, a phenomenon known as attention entropy
collapse. This collapse is illustrated in the attention
heatmaps in Appendix G.

4 Empirical Analysis of Attention
Entropy Collapse and Training
Instability

In this section, we empirically compare softmax-
based and entropy-stable attention, focusing on at-
tention entropy collapse leading to training instabil-
ity. First, in Section 4.1, we report and analyze em-
pirical findings on attention entropy collapse and
training instability observed in open-source LL.Ms,
Llama (Touvron et al., 2023) and GPT-2 (Radford
et al., 2019). Furthermore, in Section 4.2, we con-
duct experiments on a simple regression task using
a simple and small architecture composed solely of
self-attention layers to isolate the effects of the re-
weighting functions, ensuring that the influence of
other factors is minimized. Experimental settings
are detailed in Appendix C.

4.1 LLM Pre-training

Experimental Result We observe that softmax-
based attention (Softmax, Window Softmax) expe-
riences a progressive decrease in attention entropy
over time, whereas ReLLU kernel attention and QK-
LayerNorm maintain a more stable entropy profile,
as shown in Figure 1 (Top). As training progresses,
this reduction in entropy for softmax-based atten-
tion is accompanied by an increase in the Frobenius
norm of the attention probability matrix, which
in turn leads to exploding gradient norms and, ul-
timately, causes the loss to diverge. In contrast,
ReLU kernel attention and QK-LayerNorm main-
tain relatively higher attention entropy throughout
training while keeping the attention probability ma-
trix norms and gradient norms lower. Moreover,
softmax-based attention converges to a higher train-
ing loss than those attention methods. We further
conduct experiments on GPT-2 pre-training, which
exhibit similar trends, as detailed in Appendix B.

4.2 Simple and Small Transformer

To further clarify the relationship between the re-
weighting functions in attention and attention en-
tropy collapse, we conduct additional experiments
in a simplified setting. This collapse is commonly
attributed to factors such as model scale, hidden
state dimensionality, layer stacking (Sun et al.,
2024; He et al., 2024), and MLP layers (Cancedda,
2024). However, to disentangle the role of the re-
weighting function from these other influences,
we employ a simple and small-scale Transformer
model composed solely of self-attention layers,
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Figure 2: The comparison of training stability with dif-
ferent re-weighting functions is conducted by analyzing
the variation in final loss across different learning rates.
For each learning rate, the average final loss is computed
over five independent runs, comparing softmax-based
attention (solid lines; Softmax, Window Softmax) with
entropy-stable attention (dashed lines; QK-LayerNorm,
ReLU).

along with controlled task settings. Notably, we
observe that attention entropy collapse can emerge
independent of the other factors, highlighting the
fundamental role of the self-attention mechanism
itself in driving this effect. Experimental settings
are detailed in Appendix C.

Re-Weighting Function | LR Sensitivity
Softmax (Vaswani et al., 2017) 2.30
Window Softmax (Beltagy et al., 2020) 2.20
SigmaReparam (Zhai et al., 2023) 2.18
Sigmoid Kernel 1.97
ELU+1 Kernel (Katharopoulos et al., 2020) 1.95
QK-LayerNorm (Gilmer et al., 2023) 1.14
ReLU Kernel 1.03

Table 1: LR sensitivity for various re-weighting func-
tions, as defined in Appendix C, measures the rate of
change of final loss with respect to the learning rate.
Lower LR sensitivity indicates more stable training.

Experimental Result The results are even more
definitive than those observed in the LLMs ex-
periments, as discussed in Section 4.1. In Figure
1 (Bottom), softmax-based attention (solid lines;
Softmax, Window Softmax) rapidly collapses to
the attention entropy of zero early in training. At
the same step, the gradient norm explodes, causing
the loss to spike. In contrast, ReLU kernel atten-
tion (blue dashed line) and QK-LayerNorm (green

dashed line) maintain higher attention entropy, re-
sulting in more stable training. Additional results
for other re-weighting function variants, including
Sigmoid-Kernel, ELU~+1-Kernel attention and Sig-
maReparam, are provided in Appendix A.

4.3 Comparative Analysis

Experimental results from both large and small
scale models show that softmax-based attention ex-
periences the attention entropy collapse, leading to
training instability, whereas ReLU kernel attention
and QK-Layernorm remain stable. In this section,
we assess the training stability of each re-weighting
function with learning rate sensitivity (LR sensi-
tivity), which measures the deviation in final loss
from the optimum as the learning rate is swept over
a wide range using LR-vs-loss curves (Wortsman
et al., 2024). Experimental settings are detailed in
Appendix A.

Experimental Result Figure 2 illustrates how
the final training loss of different attention mecha-
nisms varies across a broad range of learning rates,
and this trend is summarized in Table 1. ReLU
kernel attention (dashed lines) exhibits the widest
stable learning rate range and the lowest sensitiv-
ity to learning rate variation, maintaining low fi-
nal loss across nearly five orders of magnitude.
QK-LayerNorm (dashed line) also shows strong
robustness, with both stability range and sensitivity
close to those of ReLU kernel. However, softmax-
based attention methods (solid lines; Softmax and
Window Softmax) are stable only within a nar-
row learning rate range and show the highest LR
sensitivity among all attention methods. ELU+1
Kernel and Sigmoid Kernel exhibit lower sensi-
tivity than softmax-based mechanisms, including
SigmaReparam (see Appendix A).

S Why Attention Entropy Collapse
Emerges and Causes Training
Instability

Empirical results show that ReLU kernel attention
and QK-LayerNorm avoid attention entropy col-
lapse and enable more stable training than softmax-
based attention. This section provides both theoret-
ical insights and experimental analysis to explain
the reasons behind this behavior. Furthermore, it
demonstrates that the attention entropy collapse
amplifies the gradient norm, leading to training
instability.



o=1 o=2 o=4 oc=38
Entropy = 4.9 Entropy = 3.7 Entropy = 2.3 Entropy = 0.012
-‘ Softmax I I I

g
g 200 200 1 200 1 200 1 °
o
<
m

0 0 0 0

0.000  0.025  0.050 0.000  0.025  0.050 0.000  0.025  0.050 0.000  0.025  0.050

Attention Probability
Entropy = 5.0 Entropy = 4.9 Entropy = 5.0 Entropy = 5.0 3
- KC‘LU Kernel I ‘ ‘ o

- ==@==Softmax
9
g 200 1 200 1 200 1 200 E L RelU K“‘“”l |
g 10° 10*
= .
= Variance

i 8 g 0

.00 0.01 0.02 0.00 0.01 0.02 .00 0.01 0.02 .00 0.01 0.02

Attention Probability

Figure 3: Comparison of the attention probability and attention entropy between softmax-based attention (Top)
and ReLU kernel attention (Bottom) as the attention logits variance increases. The lines (Rightmost) represent the
rate of change (variance sensitivity) between softmax-based attention (red solid line; Softmax) and ReLU kernel
attention (blue dashed line) as the attention logits variance increases. Here, with N = 200, the maximum achievable

entropy is log N = 5.3.

5.1 Variance Sensitivity Induces Entropy
Collapse

Based on the experiments, attention entropy col-
lapse in self-attention heavily depends on the func-
tion used to re-weight the query—key dot product.
The main cause is that re-weighting functions ei-
ther amplify or confine differences between inputs
as the input bound increases. Softmax-based atten-
tion tends to cause entropy collapse because the
exponential function excessively amplifies differ-
ences in input values as variance increases. As a
result, the softmax disproportionately emphasizes
larger inputs while suppressing smaller ones. Win-
dow attention avoids applying softmax over the
entire sequence of length NV by dividing the se-
quence into smaller windows and restricting atten-
tion within them. This design prevents any single
token from being repeatedly attended to across the
entire sequence, which helps limit excessive focus
on single token. However, as demonstrated in pre-
vious experiments, attention entropy still tends to
decrease or even collapse despite this constraint.
Therefore, using re-weighting functions that have
low sensitivity and are less affected by input vari-
ance, such as ReL.U, or applying methods like QK-
LayerNorm that normalize the variance, can help
maintain higher attention entropy and enable stable
training.

Theorem 5.1 (Sensitivity of Softmax and ReLU
Entropy on Variance). Let z ~ N(0,02Iy), p =
softmax(z) and H(p) = — Zi]\ilpi log p;. Then,

for small o2,
H(p) =log N — (N —1)6%/2N + O(c)

and the derivative of H(p) with respect to o is

=-E, [ZZ zzz -pz} <0.

Thus, H (p) is strictly decreasing in 0.

By contrast, the entropy of the ReLU kernel at-
tention probability p is given by

on
Oo?

H(p) =log N — O(l/d)

and it does not depend on the variance o2, where
d is the query and key dimension.

The entropy of the softmax distribution de-
creases from the maximum value of log N as o2 in-
creases. This highlights the high sensitivity of soft-
max to input variance and its tendency toward en-
tropy collapse as the variance increases. In contrast,
the entropy of the ReLU kernel attention distribu-
tion remains approximately log N up to a small
correction O(1/d), and is notably independent of
input variance. The detailed proof is provided in
Appendix F.

QK-LayerNorm and Variance Controllability
As shown in both Figure 1 and 2, QK-LayerNorm
maintains high attention entropy and exhibits stable
training. This illustrates how QK-LayerNorm effec-
tively controls the variance of the attention logits in



softmax-based attention. Moreover, when the LN
scaling parameter v is bounded, QK-LayerNorm
becomes robust to shifts in input variance, thereby
ensuring stable attention behavior during training.
Let the inputs be scaled as (); = 0,Q;, K; =
oK, with arbitrary scaling factors o4, 0, > 0.
Since scaling a vector scales both its norm and vari-
ance proportionally, the effect of these scale factors
cancels out after LayerNorm is applied, resulting
in the normalized attention logits defined in (2) that
are invariant to input variance. Both the attention
probability of QK-LayerNorm PJ;N defined in (3)
and its entropy depend only on the normalized log-
its and therefore the attention entropy is invariant to
: s, OH(P) _ OH(P) _
query and key variance, i.e., =55 = —5 5~ = 0.
q k
However, if the scaling parameters -, and v, are
not bounded, attention entropy may collapse, as
detailed in Appendix D.

Controlled Experiment Theoretical analysis
demonstrates that the entropy of the softmax func-
tion decreases as variance increases, indicating
high sensitivity. Unlike softmax, ReLU kernel at-
tention entropy does not depend on the attention
logits variance. To provide empirical evidence for
the theoretical analysis, we analyze the sensitivity
of various re-weighting functions to the attention
logits variance (defined below).

Definition 5.2 (Attention Logits Variance). The
attention logits variance for each row Z; of the
attention logits Z € RV <Y is defined as the empir-
ical variance Var({Z; 1, Zi 2, -+ , ZiN}).

To examine how softmax-based and entropy-
stable attention respond to attention logits variance,
we control this variance with the unit-norm query
and keys sampled from A'(0,0%1) ato = 1,2,4, 8,
so that the logit Z; ; = QZ-KjT ~ N(0,0?%) has a
variance of o2. Figure 3 presents histograms of
the resulting attention weights for a single query
(i.e., P; for ();), illustrating how the distribution
changes as o increases. With softmax attention,
as variance increases, the attention distribution be-
comes increasingly extreme, concentrating proba-
bility mass on a few key vectors and resulting in
lower attention entropy. In contrast, ReLLU kernel
attention maintains an attention entropy of around
5.0 slightly below log IV regardless of the value
of the attention logits variance, preserving a more
evenly distributed attention probability and avoid-
ing entropy collapse. This trend is evident in Figure
3 (rightmost), confirming that softmax attention is
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Figure 4: Relationship between attention logits variance
and normalized attention entropy defined in (8) during
training, across different attention methods. Softmax-
based methods (e; Softmax, Window Softmax) and
entropy-stable methods (¥; QK-LayerNorm, ReLU ker-
nel) are included for comparison.

highly sensitive to attention logits variance, with
entropy changing steeply as variance increases. In
contrast, ReLLU kernel attention shows low sensitiv-
ity, exhibiting an almost flat rate of entropy change.

Pratical Experiment Following controlled ex-
periments, we analyze the relationship between the
attention logits variance and entropy of softmax-
based and entropy-stable attention methods during
training. We define the normalized attention en-
tropy as:

2 H(F;)
H(P) = 9(H(P) = 5 prpss ®)
where H.x denotes the maximum attention en-
tropy, which equals log N. Note that v is increas-
ingin H.

Figure 4 illustrates the relationship between at-
tention logits variance and normalized attention
entropy (H (P;)) across different attention methods.
Softmax-based attention exhibits a progressive de-
crease in entropy as the input variance increases.
In contrast, ReLU kernel attention maintains stable
attention entropy even as input variance increases,
indicating low sensitivity to variance. Even at the
same variance level, softmax-based attention pro-
duces significantly lower entropy. Notably, QK-
LayerNorm shows a trend similar to that of Soft-
max, but it prevents a sharp drop in entropy by
controlling the magnitude of the attention logits
variance. On the other hand, Window Softmax ex-
hibits a relatively flatter trend compared to Soft-
max, which suggests that Window Softmax slightly
reduces sensitivity to variance by shortening the



sequence length N, but not sufficient to mitigate
the entropy collapse.

5.2 Why Attention Entropy Collapse Leads to
Training Instability

Attention entropy collapse is associated with un-
stable gradients, leading to loss spikes and severe
training instability. In open-source LL.Ms training
with softmax-based attention, we show that the
attention entropy progressively decreases, while
the gradient norm steadily increases (see Figure 1
Top). In contrast, ReLLU kernel attention and QK-
LayerNorm maintain higher entropy and stable gra-
dients, preventing training instability. As shown in
Figure 1 (Bottom, the second panel), despite be-
ing trained with shallow layers composed only of
self-attention, the model still experiences gradient
explosion.

Entropy-Collapsed Attention Probabilities Ex-
plode Gradient The explosion of gradients,
along with attention entropy collapse, is closely
tied to the Lipschitz constant of self-attention.
Specifically, the softmax function is the primary
cause, as increases in the input bound or variance
result in disproportionately large output changes,
leading to an unbounded rate of change and a
sharply elevated Lipschitz constant. Previous re-
search has proposed alternative formulations that
replace the softmax function in attention mech-
anisms to address these issues, such as L2 self-
attention (Kim et al., 2021) and sigmoid self-
attention (Ramapuram et al., 2025), which aim to
enforce a tighter upper bound on the Lipschitz con-
stant.

According to (Dasoulas et al., 2021), the norm
of the derivative of the self-attention layers with
respect to the input X is upper bounded as follows:

IDAx||p < [ Pllr
+V2[| X 2.00) IDZx | 2,00y s (9

where HXH(Qm) = max;(D_, ng).l/Q and
I fllap = maxg),=1 [|f(2)|lo- The attention prob-
ability matrix norm || P|| ¢ controls the upper bound
in (9) and depends on whether the attention entropy

of P is low (one hot) or high (uniform).

Proposition 5.3. The norm ||P||r of the atten-
tion probability matrix P lies within the interval

[1,V N|, attaining the extreme values as follows:

1 if each row P; is uniform
if each row P; is one-hot
(10)

On the contrary, the attention entropy H (P) lies
within [0,log(N)], attaining the extreme values:

H(P) {log(N)

0 if each row P; is one-hot -
(11)

Figure 1 (Rightmost) illustrates how the atten-
tion probability matrix norms evolve for softmax-
based and entropy-stable attention. At the begin-
ning of training, both models have not yet learned
the relevance between tokens in the input sequence.
As aresult, each row of P is nearly uniform, with a
high attention entropy H (P) =~ log(NN) from (11).
This uniformity results in stable training dynamics,
as indicated by a small Frobenius norm || P||r ~ 1
from (10) in Proposition 5.3 and bounded gradi-
ents from (9). As training progresses with softmax-
based attention, attention probabilities increasingly
concentrate on a single token, forming nearly one-
hot rows with near-zero attention entropy as de-
scribed in (11). Consequently, || P|| ¢ increases to-
ward /N, following (10), leading to larger gradi-
ents and increased training instability as indicated
in (9). In contrast, entropy-stable attention main-
tains a significantly lower norm. Furthermore, the
positive correlation between the gradient norm and
| P||F, as indicated by the bound in (9) is empiri-
cally validated in Appendix E.

if each row P; is uniform

6 Conclusion

In this paper, we identify the variance sensitivity
and lack of control in softmax attention as key fac-
tors behind attention entropy collapse, as observed
even in a model composed solely of self-attention
layers. We also provide theoretical and empirical
evidence that entropy-stable attention mechanisms,
which are either insensitive to or explicitly control
attention logits variance, can maintain attention en-
tropy and enable stable training. Furthermore, we
link attention entropy collapse to training instabil-
ity by showing that increased attention matrix norm
leads to gradient exploding.

Limitations

Our analysis does not comprehensively evaluate a
wide range of model architectures, scales, or self-



attention variants. It remains important to inves-
tigate how full attention in encoders and causal
attention in decoders differ in their sensitivity to,
or ability to control, the variance of attention log-
its in the re-weighting process. Furthermore, addi-
tional analysis is needed on training-related factors
such as learning rate schedules, warm-up strategies,
weight decay, and gradient clipping, which may
also influence training stability.
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A Additional Experiments on Variants

We additionally experiment with kernelized self-
attention using ¢ as ELU+1 and sigmoid, as well
as SigmReparam (Zhai et al., 2023), a reparameter-
ization method that scales weight matrices by their
spectral norm. SigmReparam is applied to the query
and key projections in self-attention. As shown in
Figure 5, both ELU+-1 and Sigmoid kernel atten-
tion maintain stable training with consistently high
attention entropy. In contrast, the SigmReparam
variant shows a notable entropy collapse, result-
ing in unstable training. This indicates that while
SigmReparam enhances stability by constraining
spectral norms, it fails to control variance or reduce
sensitivity in small models with large learning rates
and no gradient clipping. As shown in Figure 6,
ELU+1 and Sigmoid kernels also exhibit a broader
stable learning rate range and lower sensitivity than
softmax-based attention, whereas SigmReparam
remains more sensitive with a narrower range.

B Analysis on GPT-2 Pretraining

We extend our experiments to GPT-2 in addition to
the previously conducted Llamal-1B experiments.
Figure 7 illustrates that, in softmax-based atten-
tion, attention entropy gradually decreases in the
early training steps, eventually approaching zero
(the third panel). Almost simultaneously, || P|| in-
creases (the fourth panel), and a sharp increase in
gradient magnitude occurs (the second panel), re-
inforcing the direct relationship between entropy
and training stability observed in previous exper-
iments. In contrast, entropy-stable attention pre-
serves higher entropy throughout training, exhibits
smaller || P|| r, and stabilizes gradients.

C Implementation Details

Here are the hyper-parameters we used, and we
apply the same ones across all experiments.

C.1 LLM-Pretraining Experimental Setup

In this experiment, we pre-train a Llamal-1B
model on a subset of the Pile dataset (Gao et al.,
2020), consisting of up to 5B tokens. The model is
trained with a sequence length of 768 and a batch
size of 256. We use AdamW (Loshchilov, 2017)
with a learning rate of le—3, following a cosine
scheduling strategy. We train for 10,000 steps with
a weight decay of 0.1 and gradient clipping set
to 1. Details on the GPT-2 pre-training setup are
provided in the Appendix B.

11

C.2 Linear Regression with a Simple
Transformer Experimental Setup

For this experiment, we employ a simple Trans-
former architecture composed solely of self-
attention layers. The model consists of 5-layers and
a 3-dimensional hidden state (L = 5, D = 3) and
a sequence length of 20 (N = 20). We empirically
set the attention window size to 8, as it provided
the most stable training dynamics across runs, and
use this setting throughout all experiments. Our ap-
proach is motivated by findings that Transformers
adapt to new tasks from only a few examples with-
out parameter updates, a phenomenon known as
in-context learning (Brown et al., 2020), spurring
further research, (e.g., Garg et al. 2022; Zhang et al.
2024; Mahankali et al. 2024; Von Oswald et al.
2023; Ahn et al. 2024). The simple Transformer
is trained on an in-context linear regression task,
predicting w " x,,41 from {(z;, )}, and a query
vector x,,+1, where (x;, w) are sampled i.i.d. from
N(0,Ip) and y; = w " z;. Furthermore, we evalu-
ate a broader set of re-weighting functions, includ-
ing Sigmoid-Kernel, ELU+1-Kernel attention and
SigmaReparam. Additional implementation details
are provided in Appendix C.

C.3 LR Sensitivity Experimental Setup

LR sensitivity is defined as
E;cla,p) [min (€(A(n)), €o) — €], where [a, 0]
is the learning rate range. Here, ¢* is the loss
achieved using the optimal learning rate, £
is the loss at initialization, and 6 A(n) de-
notes the model weights obtained by training
with learning rate 7. The learning rate range
as Ir € {1, 3,5} x 10* (k —5,—4,...,1,
Ir < 10). For small-scale models, we use SGD
optimizer with fixed learning rates from this range.
Each re-weighting function, we train a separate
model and report results averaged over five runs
per learning rate.

D Ablation Study on QK-LayerNorm

Figure 9 compares strategies for controlling the
LayerNorm scale parameters 7y, and 7;: Gradient
Clipping, No Clipping, Fixed v = 1, and Weight
Clipping. Gradient clipping (top row) does not fully
control the norm of the LayerNorm scale param-
eters, leading to significant variation across lay-
ers. In layers where ||y, - [[7&|| becomes large,
we observe increased attention logit variance and
decreased attention entropy. Without any clipping
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Figure 6: The average final loss over five independent
runs is presented for the ELU+-1 Kernel, Sigmoid Ker-
nel, and SigmaReparam methods across a range of learn-
ing rates.

(second row), the scale parameters grow rapidly
and without bound in certain layers, accompanied
by a corresponding increase in logit variance and a
decrease in attention entropy. Fixing v, and 7y, to
1 (third row) maintains a constant attention scale
throughout training, effectively controlling atten-
tion logit variance and resulting in stable, high-
entropy attention patterns. Weight clipping (bottom
row) also constrains the growth of the scale param-
eters and helps regulate attention behavior, though
it exhibits occasional fluctuations. These empiri-
cal results indicate that QK-LayerNorm can reduce
the sensitivity of softmax-based attention to logit
variance, thereby improving stability, although this
benefit depends critically on the behavior of the
scale parameters 7y, and 7.

12



8| ;
R R T e VN T
(Entropy Collapse)
7 g z 4 T 00T
5 = T 10
” Z. =] &,
2 Softmax = =} =
36 - ReLU Kenel g M =)
E Ex =
5 3 = T~
Uniform Dist
4 . O 1 ...........................................
0 2000 4000 0 2000 4000 0 2000 4000 0 2000 4000
Training Step Training Step Training Step Training Step

Figure 7: The training behaviors of GPT-2 (N = 200) with softmax-based attention (solid line; Softmax) and
entropy-stable attention (dashed line; ReLU). From left to right, each panel shows the training loss (Loss), gradient
norm (Gradient Norm), the first-layer attention entropy with £ standard deviation (Attn. Entropy), and the average
Frobenius norm of the attention probability matrix (|| P| ). In the third panel, as the attention probabilities of
entropy-stable attention are nearly uniform, its attention entropy reaches the maximum value (dotted line; log V),
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attention || P|| » reaches its maximum value (dashed-dotted line; v/IN), the entropy-stable attention remains close to
its minimum (dotted line) under a uniform attention distribution.
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Figure 10: The correlation between the attention en-
tropy and /o-norm of each row after sampling rows
of attention probabilities from a Dirichlet distribution.
For this setup, the concentration hyper-parameter o of
the Dirichlet distribution is configured as 0.1 and 0.001
during sampling.

To show that as attention entropy decreases, the
norm of attention probability matrix increases, we
sample attention probability vectors from a Dirich-
let distribution, defined as follows:
P; ~ Dirichlet(a1) 12)

The concentration of the distribution can be con-
trolled using the hyper-parameter a1. When a1 is
small, the distribution is concentrated on a single
value, which resembles attention entropy collapse.
In contrast, when /1 is relatively large, the distribu-
tion becomes more uniform. Experimental results
indicate that when a1 = 0.001, attention entropy
is significantly lower than at @1 = 0.1. Further-
more, it is observed that the attention entropy of
P; and its {5-norm are inversely related. As atten-

its maximum when attention entropy approaches
ZEero.

F Proof of Theorem 5.1

F.1 Entropy Approximation for Softmax
Version 1

Let z = (z1, 22, ..., 2,) € R™ be a random vector
such that z; ~ N(0, 02) independently. Define the
softmax vector p = softmax(z), where

exp(z;)

s (13)
> j—1€Xp zj

T
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The entropy of the softmax distribution is given
by

n
= _Zpibgpi- (14)
i=1

We aim to derive first-order approximation for
H (p) in the regime where 02 < 1.

When o2 is small, the random vector z is con-
centrated near zero, and hence the softmax output
is close to uniform distribution. We can express
the softmax probabilities as a perturbation of the
uniform vector:

1
pi = —+G(2), (15)
n
where  the  perturbation  (;(2)  satisfies

> im1Gi(2) = 0, and Gi(2) = O(0).

Substituting this expansion into the entropy for-

mula yields:
<1 + C¢> log (1 + Q) . (16)
n n

We perform a Taylor expansion of the logarithm
around %:

n

-2

i=1

2
log (:L + Ci) = log <Tll> +ng — %C@' +0(¢).
(17)

Therefore, the entropy becomes:

H(p)
2
( + @) <10g <1> +nG — "C?)
n 2
1\ (1
e () 32 (5 )
- HZ < + Cz) Cz
2 n 1 ' 5
Z (n + CZ) Cz :
Using the fact that >, ¢; = 0, >, 2 =1, and

i=1
neglecting higher-order terms, we simplify the ex-
pression:

H(p )Nlogn—nZg +7

_ n 2
=logn — 2;@.
1=

n

Q

+n
2

Z ¢



We now compute the expectation of the pertur-

bation energy:
n 1 2
i=1

which can be approximated by known results for
the softmax of a Gaussian:

o]

Substituting this into the entropy expression
yields:

n

D

i=1

=E, = Var(p),

n

2.

=1

n—1
~ o’

E,

n2

n n—1 4
2 n?
-1
:logn—n o2,
2n

E. [H (softmax(z))] ~ logn —

F.2 Entropy Approximation for Softmax
Version 2

Let z = (21, 22,...,2N) € RY be a random vector
such that z; ~ N(0, 02) independently. Define the
softmax vector p = softmax(z), where

Z; 2i—Z

(& (&
>

- — (18)
Z;cvzl ek Zévzl ek

Dbi

where z = % fo:l 2y 1s the empirical mean. We
assume the deviations z; — Z are small and expand
the exponentials using a Taylor expansion up to
third order:

s 1
e =140(z—2)+ 502(% —z)?

+ 103(% - 23+ 0(").

19
5 (19)
Then the denominator becomes:
N . N
Zezk*z = Z(l +o(zx —2) + %az(zk — 2)2
k=1 k=1
+ 0% (2 — 2)3> + O(o*)
(20)

By the definition of the mean, > ,_,(z; — z) = 0.

If the data are symmetric with respect to the mean,

16

then >_1_, (2 — 2)® = 0. Substituting these into
(20), we obtain:

N
D
k=1

= N(l +10°S + (’)(04)).

2N )2 O 4
7Yook =2)" 4 O

DO | =

1)

where Sy = % Z,]cvzl(zk — £)2. To approximate
the softmax, we apply a Taylor expansion to the

denominator. This yields:

1 1 1
—_——=—(1-202S+0(ch) ). 22
s = v (1 g o) @

Expanding the numerator similarly:
- 1
e =140(z—2)+ 502(21- -2 (23)
1
+ 603(zi - 2%+ 0(c") (24)
so the softmax becomes:
1 1
i=—(1-50° 1 i—Z
P N( 57 Sg)( +o(z — 2)
1 _ L 3 3 4
—1—502(% —z)2 +60 (z; —2)° )| + O(c%)
— i(l +o(z - 2)
= o(zi—z
1 1
+ o? <2(zi —2)? — 282>
1 1
3 Z(y—3)3 = = 5 4
+o <6(ZZ Z) 232(2'Z z)> +O(o ))
(25)

The negative log-probability is given by:

—logp; = —0(zi — 2) + logz erTE (26)
k

= —0(z — %) +log (1 + 20282 + (’)(04)>
(27)
Lo 4
=logN —o(z; — 2) + 5 Sa+ O(c%).
(28)

Thus the entropy term is:

—p; logp; = %[logN—i— (logN —1) 0 (2 — %)
(29)
+0%(3 (2 —2)? - 1S+ 1S logN)
+03(% (z — 2)° - %52 (zi — 2)) + 0(04)} )

(30)



Summing over ¢ and using ) ,(2; — Z) = 0 and

> i(zi — 2)2 = N S, then gives
Z—pi logp; =logN — 3o 28, +0O(ch).
i
Summing over i, using Y (% — Z) = 0, and
>i(2i — 2)? = NS, we get:
> —pilogp; =log N (31)

i

o (%82 log N — S + %82)

(32)
=log N — 3028 + O(c?).
(33)
Taking expectation over z, we obtain:
—Zm@# (34)

1
=log N — 502E2 [Sa] + O(a™).
(35)

If we assume the z; are 1.i.d. with unit variance,
then:

N-—-1

E.[Ss] = N (36)
and finally:

E.[- Y pilogp] (37)

o2

N —

=log N — ? T + O(c?)
(38)
=log N T + O(0%).
(39)

F.3 Entropy of Softmax as a Strictly
Decreasing Function of Variance

Let H (o) denote the expected entropy of the soft-
max distribution:

[Zp, log p;( ]

We reparameterize z Vo?e, where ¢ ~
N (0, Ix), and express the softmax distribution as

exp(Vole)
Z;\/:1 exp(\/(ﬁsj)

pi(€7 02) =

17

Under this reparameterization, the entropy be-

comes
H(o?) =E. [log (Z e‘/‘ﬁ%)
—Vo? Zsipi(e, 02)] .

J

Differentiating under the expectation yields

aiH - E 1 Ej &j emsj
60‘2 € 2\/0'72 Zke\/oié‘k

— 50 D cinile o)
%

— Vo? ZEgpi(&‘,o’Q)
i

2
+ \/072 <Z€ipi(€,02)> ]

The first two terms cancel, and substituting back

2z =Vo?e gives

. Zzi?pi(Z) — (Z%m(@) ]

E.[Var,(,)[2]].

OH _
do?2

2 92

Because the inner variance is strictly positive al-
most surely,
O0H
902 <0 forallo? > 0.
F.4 Entropy Approximation of ReLU kernel
Attention

We consider query and key vectors defined as

Qi =o0g, K; = o hy,

where g;, h; 13\(} N(0,I;) and o > 0. We apply
the ReLU actlvatlon function ¢(z) = max(0, )),
which is positively homogeneous of degree one,
ie., p(Ax) = Ag(x) for any A > 0. Using this
property, we obtain

#(Q:) = o 9(gi), (K;) = o ¢(hy).

Then we define the unnormalized attention logits
as
tij == (i) d(hy)", sij = B(Qi) 9(K

D=0ty



Here, ¢;; corresponds to the inner product between
the vectors g; and h;, while s;; is the scaled version
of ¢;; by a factor of 2. We then convert these logits
into probabilities by applying a row-wise softmax:

Jztij
- N - N
Zkzl Sik o? Zkzl tig;

Note that the factor o2 cancels out, the resulting at-
tention probabilities are invariant to o. Accordingly,
the row-wise entropy is defined as

Sl'j

i (o) = pij(1).

N
Hi(o) === pij(0) logpi (o),
i=1

which implies that H;(c) = H;(1) for all o > 0.
(k)

7 B

For each coordinate £k = 1,...,dlet G = ¢
H = hg-k), and define

XY = o(a”) o(n").

Each such term contributes to the dot product ¢; ;,
and its expectation and variance are given by

1
p=E[X.Y;] = 5 % = Var[ X, V3] =

By independence and linearity, the mean and
variance of ¢; ; are

d
Eltij] =Y E[XpYi] =dp,
k=1
d
Var(ti;) = ZVar(XkYk) =dr.
k=1

Moreover, since each X}, Y}, has finite variance, cen-
tral limit theorem applies, giving as d — co

d
tyj =Y XpYi=dp+Vdre;, & 5 N,

k=1

Fixing 7, define

1 & ti—t

— i — Ui

ti:Nthja 5z‘j:]Ta Z‘Sij:o'
7=1 Jj=1

Since &; = du + O,(Vd), we have §;; =

O,(d~1/?). Hence

1

pij(1) = N(l + i),

and a second-order Taylor expansion around the
uniform distribution gives

M-

Il
—

H;(1) Pij(1) log pij(1)

J

=log N — (5%—1—(’)(”(51\@)

-

|-

1

J
Finally, since
2

T — —
B[] = 25 +o(d™), Elall =o(d™),

it follows that
E[H;(1)] = log N —O(d™1).

G Attention heatmaps
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Figure 11: Heatmaps of attention probabilities for softmax-based attention (Top) and entropy-stable attention
(Bottom) during training. In softmax-based attention, each row progressively converges to a one-hot-like vector,
leading to attention entropy collapse. The attention matrices are from the first layer.
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