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ABSTRACT

Recent attempt in dataset distillation has been made to compress large-scale train-
ing datasets into compact synthetic versions, significantly reducing memory usage
and training costs. While parameterization-based approaches have shown promis-
ing results on image datasets, their application to 3D point clouds remains largely
unexplored due to the irregular and unordered nature of 3D data. In this paper,
we first introduce a parameterization-based dataset distillation framework for 3D
point clouds that enables the use of more diverse synthetic samples than conven-
tional methods under the same memory budget. We first construct an initial syn-
thetic dataset containing multiple anchor samples with a coarser resolution than
the original sample. We also generate new samples by morphing the shapes of
the anchor samples with learnable weights to improve the diversity of synthetic
dataset. Moreover, we devise a uniformity-aware matching loss to ensure the
structural consistency when comparing the original and synthetic datasets. Ex-
tensive experiments conducted on five standard benchmarks—ModelNet10, Mod-
elNet40, ShapeNet, ScanObjectNN, and OmniObject3D—demonstrate that the
proposed method effectively optimizes both the synthetic samples and the weights
for shape morphing, outperforming existing dataset distillation methods.

1 INTRODUCTION

Significant advances in data-driven techniques for computer vision have been made possible by the
availability of large-scale image datasets (Deng et al., 2009; Lin et al., 2014). However, training
deep neural networks on large-scale datasets typically involves substantial computational costs and
high memory consumption. To alleviate these issues, dataset distillation (Wang et al., 2018; Zhao &
Bilen, 2023; Zhao et al., 2021a; Cazenavette et al., 2022; Zhang et al., 2024; Yim et al., 2025) has
gained attention as a promising solution, aiming to compress extensive datasets into representative
yet significantly smaller synthetic datasets. Furthermore, recent efforts in the image domain have in-
troduced a more efficient paradigm called distilled dataset parameterization (DDP), which improves
storage efficiency.

DDP (Kim et al., 2022; Shin et al., 2023; Liu et al., 2022) represents the synthetic dataset in memory-
efficient formats to synthesize a diverse and informative set of samples under the constrained storage
budget. Specifically, some methods (Kim et al., 2022; Shin et al., 2023) attempt to reduce redun-
dancy, allowing more synthetic samples to be represented within the same budget. This includes
techniques such as removing spatial redundancy through downsampling (Kim et al., 2022) and sup-
pressing less informative frequency components (Shin et al., 2023). In addition, other methods (Liu
et al., 2022; Deng et al., 2022; Shin et al., 2025) adopt alternative representations, such as using
generative models (Liu et al., 2022) to synthesize diverse training samples and neural fields (Shin
et al., 2025) to represent datasets with a compact implicit function.

Large-scale 3D point cloud datasets have also enabled a wide range of applications in 3D
vision (Zhao et al., 2021b; Yu et al., 2022; Park et al., 2022). However, only a lim-
ited number of studies have developed dataset distillation methods tailored to 3D point
clouds (Zhang et al., 2024; Yim et al., 2025). Furthermore, the parameterization techniques
for 3D point clouds have not yet been explored, hindering the efficient use of storage space.
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In this paper, we first propose a parameterization-based dataset distillation framework for 3D
point clouds that efficiently represent the synthetic dataset through learnable shape morphing.
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Figure 1: The concept of the proposed distilled dataset pa-
rameterization approach compared to the existing dataset
distillation approach.

Figure 1 illustrates the concep-
tual difference between the proposed
method and the previous methods.
Whereas the previous methods di-
rectly optimize a synthetic point
cloud dataset to match the original
dataset, the proposed method param-
eterizes more diverse synthetic sam-
ples through learnable shape morph-
ing. Specifically, we initialize the
synthetic dataset by using multiple
anchor samples at coarser resolu-
tions, rather than representing a sin-
gle full-resolution sample. We fur-
ther extend the synthetic dataset in-
cluding additional samples generated
by blending the shapes of aligned anchor samples via learnable weights. This design enables the
use of a larger number of samples within the same memory budget than the existing approaches.
We jointly optimize the initial synthetic dataset and the set of learnable weights that minimize the
uniformity-aware matching loss between the original and synthetic samples. We conduct extensive
experiments to validate the effectiveness of our method, which consistently outperforms existing
dataset distillation methods across all benchmarks.

The key contributions are summarized as follows.

• We are the first to propose a parameterization-based dataset distillation framework for 3D
point clouds, which generates diverse synthetic samples under a constrained memory bud-
get through learnable shape morphing.

• We jointly optimized the initial synthetic dataset as well as the learnable weights by min-
imizing a uniformity-aware matching loss between the partitioned original sample and the
synthetic samples.

• We demonstrated that the proposed method achieves superior performance compared
with existing dataset distillation techniques through extensive evaluations on standard 3D
benchmarks, including ModelNet10 (Wu et al., 2015), ModelNet40 (Wu et al., 2015),
ShapeNet (Chang et al., 2015), ScanObjectNN (Uy et al., 2019), and OmniObject3D (Wu
et al., 2023).

2 RELATED WORK

Dataset Distillation. Dataset distillation (Wang et al., 2018) was first proposed as a meta-learning
problem, where a small synthetic dataset is optimized to match the model behavior trained on orig-
inal dataset. Subsequent works (Zhao & Bilen, 2023; Zhao et al., 2021a; Cazenavette et al., 2022)
have extended this idea in several directions. Gradient matching (Zhao et al., 2021a) aligns the gra-
dients between synthetic and original dataset, while trajectory matching (Cazenavette et al., 2022)
further extends this approach by mimicking full training dynamics over multiple optimization steps.
Distribution matching (Zhao & Bilen, 2023) matches feature distributions between the original and
synthetic datasets, and achieves computational efficiency by avoiding the need to train a network
during the distillation process. Recently, methods using generative models such as diffusion (Su
et al., 2024) have also been explored for distilling informative samples.

Point Cloud Dataset Distillation. Recently, dataset distillation has been extended to 3D point
cloud data, which present unique challenges due to their unordered and irregular structure. The
earliest attempt, PCC (Zhang et al., 2024), applied a gradient-matching distillation framework to
point clouds, demonstrating the feasibility of dataset distillation in the 3D domain. A subsequent
method, SADM (Yim et al., 2025), extended feature distribution matching to 3D point clouds by
introducing a semantically aligned matching loss that addresses unordered structures. Additionally,
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Figure 2: Overview of the proposed DDP framework for 3D point clouds. The adaptive 3D shape
morphing enlarges the diversity of the synthetic dataset and uniformity-aware matching ensures the
structural consistency between the synthetic and original datasets.

it jointly optimizes the rotation angles, making the distillation process more robust to variations in
orientation. DD3D (Bo & Wang, 2025) introduces a rotation-invariant dataset distillation framework
for point clouds by combining a rotator with a point-wise generator, enabling resolution-flexible
synthesis.

Parameterization. Dataset distillation parameterization aims to further reduce storage overhead
by representing distilled data in specialized formats rather than as raw inputs. An early example,
IDC (Kim et al., 2022), reduces storage cost by downsampling synthetic images to eliminate spa-
tial redundancy, then upsampling them during training, allowing more samples to be stored under
the same memory budget. FreD (Shin et al., 2023) performs dataset distillation in the frequency
domain, discarding less important frequency components to reduce redundancy. This frequency-
level compression allows more synthetic samples to be used under the same memory budget while
preserving global structure. Different strategies, such as HaBa (Liu et al., 2022) and DDiF (Shin
et al., 2025), adopt alternative parameterization strategies for efficient storage of synthetic datasets.
HaBa employs a generative parameterization that distills data in a discrete latent space instead of
the raw pixel space. In contrast, DDiF represents each synthetic instance as a neural field, which is
a continuous function that maps coordinates to data values. Other methods (Deng et al., 2022; Wei
et al., 2023) aim to represent synthetic datasets more efficiently by capturing shared patterns across
data, rather than treating each sample independently.

3 METHODOLOGY

We present the proposed dataset distillation method designed for efficient parameterization. Figure 2
shows the overall framework which consists of two main components: adaptive shape morphing and
uniformity-aware matching.

3.1 PROBLEM FORMULATION

Dataset Distillation. Let Do = {xi}Oi=1 denote the original dataset and Ds = {si}Si=1 denote
the synthetic dataset, where S ≪ O. The goal of dataset distillation (DD) is to generate an optimal
synthetic dataset D∗

s such that a model trained on D∗
s exhibits similar behavior to that trained on

Do. In practice, the optimization problem can be formulated as
D∗

s = argmin
Ds

L(Do,Ds), (1)

where L is a matching loss that measures the discrepancy between the original and synthetic datasets.
Depending on how it is defined, the dataset distillation employs different approaches, such as feature
distribution matching, gradient matching, or training trajectory matching.
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Distilled Dataset Parameterization. DDP represents the synthetic dataset in more compact forms
such as the set of latent codes Z = {zi}Zi=1 and the parameters θ of decoder gθ, such that the
synthetic dataset is defined as

Ds = {gθ(zi)}Zi=1. (2)

By storing the latent codes and the parameters of decoder rather than storing the synthetic samples
directly, DDP enables efficient use of memory allowing a larger number of synthetic samples to be
utilized under the same storage budget. Therefore, the objective of DDP is to jointly optimize the
latent codes Z∗ and the decoder parameters θ∗ such that the discrepancy between the original and
synthetic datasets is minimized.

{Z∗, θ∗} = argmin
{Z, θ}

L (Do,Ds) . (3)

3.2 SYNTHETIC DATASET PARAMETERIZATION THROUGH LEARNABLE SHAPE MORPHING

To increase the diversity of the synthetic dataset within the constrained memory budget, we pro-
pose a distilled dataset parameterization method of 3D point clouds that utilizes additional synthetic
samples generated by learnable shape morphing. As illustrated by the adaptive 3D shape morphing
module in Figure 2, we randomly sample 3D point cloud objects from the original dataset to initial-
ize the synthetic dataset. Instead of selecting an original (full-resolution) sample with N1 points,
we take M distinct coarser samples, called anchors, each containing N2 points. The set of these M
anchors is referred to as a group. Then we construct an initial synthetic dataset as

Dinit =
{
{ai,m}Mm=1

}S

i=1
, (4)

where ai,m ∈ RN2×3 denotes the m-th anchor sample in the i-th group. To ensure that the total
memory budget of M anchors is smaller than the full-resolution one, we set the constraint such that
MN2 ≤ N1.

Inspired by 3D shape morphing, we generate additional point cloud samples by blending the shapes
of the selected anchors to further enhance the diversity of the synthetic dataset. Specifically, we first
establish point-wise correspondences across the anchor samples. For each i-th group, we align the
anchor samples to the first anchor ai,1. We construct the pairwise Euclidean distance matrix be-
tween ai,1 and each of the remaining M − 1 anchor samples, and solve a linear assignment problem
to obtain one-to-one correspondence. Then the points in each sample are reordered according to
the resulting correspondences. We interpolate L additional samples from the M re-ordered anchor
samples by computing convex combination with learnable weights that adaptively control the con-
tribution of the anchors. Specifically, the l-th new sample bl

i ∈ RN2×3 in the i-th group is obtained
by blending the shapes of the re-ordered anchors ãi,m’s as

bl
i =

M∑
m=1

wl
i,m · ãi,m, (5)

using a learnable weight vector wl
i =

[
wl

i,1, . . . , w
l
i,M

]
such that

∑M
m=1 w

l
i,m = 1 and wl

i,m ≥
0. Although interpolation is performed over the aligned point cloud samples, perfect point-wise
correspondences are not guaranteed due to dataset-specific variations, such as random rotations
around the up-axis. Thus we optimize each learnable weight vector wl

i in an adaptive manner to
mitigate such potential mismatches. Note that this strategy introduces no additional memory cost as
it reuses the existing anchors.

Finally, we merge the initial synthetic dataset Dinit with the set of the combined samples to construct
a complete synthetic dataset Ds.

Ds =
{
{ãi,m}Mm=1 ∪ {bl

i}Ll=1

}S

i=1
. (6)

Note that the conventional DD setting uses only a single full-resolution synthetic sample of si, how-
ever the proposed DDP method facilitates the use of M times more diverse shapes of anchor samples
as well as L additional combined samples through the learnable convex combination, expanding the
diversity of synthetic dataset.
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3.3 DATASET DISTILLATION WITH UNIFORMITY-AWARE MATCHING LOSS

We perform the dataset distillation based on the feature distribution matching by adopting the SADM
loss (Yim et al., 2025), that matches semantically aligned feature distributions between the original
and synthetic datasets, defined as

LSADM(Do,Ds) = K̃Do,Do + K̃Ds,Ds − 2K̃Do,Ds , (7)

where K̃Do,Ds denotes the kernel function computed over the sorted feature representations. How-
ever, SADM assumes that the compared samples between Do and Ds have the same resolution,
which does not hold in our setting where Ds comprises an increased number of coarser samples
than the full-resolution ones in Do. Therefore, we partition each sample xi in Do into M non-
overlapping low-resolution samples by iteratively applying the farthest point sampling (FPS), where
each low-resolution sample contains N2 points. Then we gather the m-th partitioned samples over
all the original samples to construct the corresponding subset Cm, which are compared to the syn-
thetic dataset Ds.

Note that the resulting subsets of C1,C2, . . . ,CM may exhibit spatial non-uniformity of point dis-
tributions, that may degrade the reliability of distribution matching. We adaptively control the con-
tribution of subsets to the loss computation according to their uniformity. Specifically, as shown in
the uniformity-aware matching module of Figure 2, we estimate the uniformity score ν(D) of the
dataset D by using the average coefficient of variation (CV) of the local distances computed across
the k nearest neighbors.

ν(D) =
1

N(D) ·O

O∑
i=1

N(D)∑
j=1

σi
j

µi
j + ϵ

, (8)

where µi
j and σi

j denote the mean and standard deviation of the distances from the j-th point in the
i-th sample to its k nearest neighbors, respectively, and ϵ is a small constant for numerical stability.
N(D) is the number of points in each sample, which is identical across all samples in D. Then the
penalty of Cm is estimated by

ηm = exp
(
−λ (ν(Do)− ν(Cm))

2
)
, (9)

where λ is a scaling parameter.

Finally, the uniformity-aware distribution matching loss for dataset distillation is designed as fol-
lows:

LDistill(Do,Ds) =

M∑
m=1

ηm · LSADM(Cm,Ds). (10)

Then the overall optimization objective is to jointly optimize the initial synthetic dataset D∗
init and

the set of learnable weights W∗ that minimizes LDistill(Do,Ds).

{D∗
init,W

∗} = argmin
{Dinit,W}

LDistill(Do,Ds), (11)

where W =
{
{wl

i}Ll=1

}S

i=1
, Dinit is in (4), and Ds is in (6).

3.4 STORAGE BUDGET ANALYSIS

In the conventional DD setting, each synthetic sample is stored at full-resolution with N1 points,
where the coordinates of each point are represented by three 32-bit floating-point numbers, requiring
96N1 bits per sample. Assuming K point clouds per class (PPC) for C classes, the total memory
budget is constrained to 96N1KC bits. On the other hand, the proposed method maintains this
budget by representing each synthetic sample using M coarser anchor samples, each containing N2

points, resulting in the storage cost of 96MN2KC bits. Also, the learnable shape morphing further
enhances the diversity incurring only a small overhead of 32L(M−1)KC bits to store the learnable
weights. Hence the total memory constraint for the proposed method is

96MN2KC + 32L(M−1)KC ≤ 96N1KC. (12)

Note that the weight storage term is proportional to M−1 rather than M , because one weight is
determined by the condition

∑M
m=1 w

l
i,m = 1.
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Table 1: Classification performance of the proposed method compared with the coreset selection and
dataset distillation methods. All methods were evaluated using PointNet under the same memory
budget. ‘Whole’ refers to the result obtained by training on the entire original dataset. The best
performance in each row is highlighted in bold. OOM denotes out of memory during distillation.

Dataset PPC Coreset Selection Dataset Distillation WholeRandom Herding K-Center DM DC MTT PCC SADM Ours

ModelNet10
1 28.1±4.2 34.0±6.5 34.0±6.5 25.8±6.9 32.8±8.5 27.8±5.8 33.0±8.0 35.9±8.2 87.7±0.7

92.183 74.5±1.8 76.9±1.2 75.9±1.8 77.4±1.2 74.5±2.6 73.6±1.7 70.7±1.6 83.5±0.7 89.8±0.5
10 84.7±0.7 86.1±0.7 82.2±1.5 85.0±0.7 84.6±0.6 85.3±1.2 86.3±1.1 87.4±1.1 92.2±0.5

ModelNet40
1 34.0±2.1 54.1±2.1 54.1±2.1 31.1±4.7 50.3±2.0 33.4±2.1 55.3±1.4 54.8±1.3 73.2±1.1

88.783 59.9±1.6 69.1±1.0 62.1±2.7 61.5±2.1 66.0±1.1 59.5±0.6 66.2±1.6 71.3±0.7 80.3±0.5
10 73.3±0.9 77.6±0.6 64.3±1.3 74.9±0.8 74.3±0.9 73.4±0.5 77.9±0.9 79.6±0.6 82.5±0.6

ShapeNet
1 33.5±2.5 49.1±2.4 49.1±2.4 26.3±3.6 48.7±1.6 32.4±2.6 50.9±3.5 51.1±2.3 60.5±1.1

82.493 53.4±1.4 58.8±1.0 50.6±1.6 52.5±1.6 56.6±1.1 53.5±2.0 58.9±1.7 62.2±1.6 65.9±0.6
10 62.4±0.9 66.3±0.4 46.9±0.7 63.1±0.8 63.7±0.8 62.3±1.1 65.4±0.8 68.0±0.5 68.9±0.6

ScanObjectNN
1 13.5±1.8 15.1±1.7 15.1±1.7 13.7±1.8 15.2±2.0 14.3±2.5 16.0±2.4 17.6±1.5 32.6±1.6

63.433 19.7±0.7 26.9±1.4 18.8±1.1 26.4±2.4 24.6±2.2 20.1±1.3 25.5±2.2 32.6±1.6 41.3±1.1
10 34.1±1.6 38.3±1.6 23.5±0.9 37.4±1.2 38.5±1.6 37.1±2.0 34.6±1.4 43.7±2.0 49.8±0.7

OmniObject3D
1 24.0±0.6 30.5±1.0 30.5±1.0 15.1±0.9 31.1±0.5 25.8±1.3 35.8±0.6 33.2±0.4 41.9±1.3

74.983 40.9±1.2 42.3±1.4 35.9±1.5 40.3±1.3 44.3±1.0 44.8±1.1 46.2±0.7 51.6±0.4 58.4±1.5
10 59.5±2.1 59.3±1.7 58.3±1.6 60.0±1.6 56.5±0.8 OOM 57.0±0.6 65.2±1.7 68.4±1.2

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUPS

Datasets. We evaluate the performance of the proposed method on five standard point cloud clas-
sification datasets: ModelNet10 (Wu et al., 2015), ModelNet40 (Wu et al., 2015), ShapeNet (Chang
et al., 2015), ScanObjectNN (Uy et al., 2019), and OmniObject3D (Wu et al., 2023). ModelNet10
and ModelNet40 consist of 10 and 40 categories of clean 3D CAD models, respectively. ShapeNet
includes 55 categories of large-scale 3D CAD models with finer-grained class distinctions. ScanOb-
jectNN comprises 15 categories of real-world objects captured from RGB-D scans, and we use the
PB T50 RS variant, which is the most challenging setting in this dataset. To further validate the scal-
ability of our method, we conducted additional experiments on OmniObject3D (Wu et al., 2023),
a dataset that contains a significantly larger number of object categories compared to conventional
benchmarks. Since OmniObject3D does not provide an official train–test split, we randomly sam-
pled 80% of the data for distillation and used the remaining 20% for testing, while ensuring that
each class included at least four test samples. This resulted in a total of 156 categories used in our
evaluation. We additionally evaluate part segmentation performance using ShapeNetPart (Yi et al.,
2016).

Implementation Details. Both Dinit and W were optimized using stochastic gradient descent
with a learning rate of 10 for 2000 iterations. Training was conducted for 500 epochs with a batch
size of 8, using a step decay schedule with a step size of 250 and decay rate of 0.1. All reported
results were averaged over 10 independent runs by using a single NVIDIA RTX 3090 GPU. To
ensure a strictly fair comparison, all baselines were fully re-implemented and evaluated under an
identical and augmentation-free setting.

4.2 PERFORMANCE COMPARISON

We compared the performance of the proposed method with representative dataset distillation meth-
ods, including DM (Zhao & Bilen, 2023), DC (Zhao et al., 2021a), and MTT (Cazenavette et al.,
2022), which were originally developed for image domains and adapted to 3D point clouds. We
also compared SADM (Yim et al., 2025), and PCC (Zhang et al., 2024), recent methods tailored to
3D point cloud dataset distillation. In addition, we compared coreset selection methods such as ran-
dom selection (Rebuffi et al., 2017), Herding (Castro et al., 2018), and K-Center (Sener & Savarese,
2018), which are commonly used to reduce dataset size.
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Table 2: Comparison of cross-architecture generalization performance at PPC = 1, evaluated on
PointNet++(Qi et al., 2017b) (PN++), PointConv(Wu et al., 2019) (PC), Point Transformer (Zhao
et al., 2021b) (PT), and PointMamba (Liang et al., 2024) (PM). The best performance in each row
is highlighted in bold.

Dataset Method Random DM DC MTT PCC SADM Ours

ModelNet10
PN++ 22.4±6.9 12.1±2.9 15.3±6.5 20.4±6.9 20.7±6.1 25.9±7.1 55.4±8.6

PC 17.7±10.1 10.8±3.6 14.2±4.7 21.3±7.6 16.0±8.7 20.5±13.1 51.6±9.8
PT 44.1±6.3 22.4±9.1 26.7±6.9 39.3±7.4 45.9±7.5 49.0±7.7 57.0±10.9
PM 29.2±8.1 14.0±2.1 20.7±2.4 31.6±4.9 28.9±7.3 28.4±3.7 69.4±1.6

ModelNet40
PN++ 36.8±2.2 1.5±1.3 8.6±3.0 37.2±1.8 13.5±3.3 40.0±2.8 47.7±5.0

PC 23.1±3.8 3.9±1.9 11.1±3.4 24.2±4.6 14.7±3.8 29.1±3.0 33.2±5.9
PT 28.9±1.2 6.2±4.4 14.8±3.1 29.0±1.2 40.2±2.2 44.5±1.3 39.0±6.6
PM 34.1±1.3 12.3±2.2 24.3±1.6 33.4±1.4 38.3±2.4 35.9±2.0 59.6±0.9

ShapeNet
PN++ 25.3±2.5 2.0±1.4 7.2±2.0 24.6±2.5 21.8±3.2 35.1±1.3 44.7±2.0

PC 19.0±3.1 3.8±1.0 10.3±3.4 19.4±3.9 16.5±4.4 20.3±5.0 24.3±6.0
PT 26.3±1.3 7.4±2.9 19.1±4.9 26.3±1.7 38.3±1.6 36.3±2.6 40.2±7.6
PM 17.4±1.3 5.6±1.3 13.1±1.6 17.3±1.4 30.7±1.1 25.6±3.1 49.0±0.7

ScanObjectNN
PN++ 18.0±1.4 14.5±4.7 15.8±3.7 18.8±2.6 13.0±3.6 9.3±2.1 14.3±2.5

PC 12.4±2.2 10.0±2.1 9.9±1.8 13.1±1.8 12.0±2.5 10.9±3.4 14.6±2.1
PT 12.5±0.9 10.2±2.2 12.3±1.8 12.2±1.6 16.2±1.5 15.8±2.0 17.6±1.8
PM 18.9±1.6 14.8±1.7 17.7±1.7 18.9±1.4 13.6±2.4 13.2±0.9 19.7±1.0

Table 3: Comparison of part segmentation performance on the ShapeNet dataset with PPC set to
1. K-Center results are omitted from the comparison due to identical selections with Herding when
PPC is one.

Class Air. Bag Cap Car Chair Ear. Guitar Knife Lamp Laptop Motor. Mug Pistol Rocket Skate. Table Avg.

Whole 82.0 65.5 65.3 75.0 88.6 68.2 90.2 83.0 77.7 94.9 63.0 92.8 79.0 53.9 70.5 81.3 76.9

Random 28.1 22.8 53.0 21.6 38.8 24.0 45.0 23.1 25.1 57.1 20.3 46.0 36.4 29.7 13.7 24.1 31.8
Herding 31.7 36.1 47.1 22.1 46.4 34.9 50.4 54.2 20.9 65.2 16.3 54.9 35.0 30.8 31.5 42.3 38.7
SADM 29.9 30.6 52.3 21.6 49.4 23.1 51.3 66.0 29.3 68.8 15.0 51.7 39.8 35.4 38.5 46.5 40.6

Ours 51.5 51.8 59.0 36.5 70.8 42.6 80.1 76.6 31.8 81.0 26.4 84.3 61.8 40.5 49.2 59.1 56.4

Evaluation on PointNet. Table 1 compares the performance evaluated by using PointNet (Qi
et al., 2017a) as the classifier under the same memory budget. Specifically, we set N2 = 252,
M = 4, and L = 16 for ModelNet10 (Wu et al., 2015), and N2 = 255, M = 4, and L = 4 for the
other datasets, respectively, to satisfy the inequality in (12) with N1 = 1024 for the original datasets.
We see that the proposed method consistently outperforms all the compared methods across all the
benchmark datasets at all the PPC settings. In particular, we observe most substantial performance
gain when PPC is set to 1. For instance, on ModelNet10 at PPC = 1, our method achieves an
accuracy of 87.7%, which is a remarkable improvement over 35.9%, the state-of-the-art (SOTA)
performance of SADM. Similarly, on ModelNet40, our method reaches 73.2%, outperforming all
the baselines by a large margin. Moreover, our method improves the SOTA performance of 17.6%
to 32.6% demonstrating the reliability on challenging real dataset of ScanObjectNN at PPC = 1.
On OmniObject3D, which includes a substantially larger and more fine-grained set of categories,
our method achieves 41.9%, indicating that the proposed framework generalizes reliably even as the
number of categories increases significantly. These results demonstrate that the proposed parame-
terization technique provides more promising approach for dataset distillation of 3D point clouds
under constrained memory budgets than the existing methods.

Cross-Architecture Generalization. To evaluate the cross architecture generalization perfor-
mance, we compared the performance of the proposed method with the existing methods using
four different architectures including PointNet++ (Qi et al., 2017b), PointConv (Wu et al., 2019),
Point Transformer (Zhao et al., 2021b), and PointMamba (Liang et al., 2024), after distillation is
performed using PointNet (Qi et al., 2017a). As summarized in Table 2, the proposed method con-
sistently achieves the best performance across the most datasets and architectures, demonstrating
strong generalization ability. On ModelNet10, the proposed method achieves 55.4% with Point-
Net++, significantly outperforming 25.9%, the performance of SADM. Likewise, on PointConv,
Point Transformer and PointMamba, the proposed method provides 51.6%, 57.0%, and 69.4%,
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Figure 3: Visualization of the resulting synthetic datasets: the first four rows show initial samples
before optimization, consisting of anchor samples (orange) and combined samples (blue), while the
subsequent four rows illustrate samples obtained after applying the proposed method. (a) Model-
Net10 and (b) ScanObjectNN.

respectively, maintaining substantial performance gaps over all the baselines. Similar results of im-
provement are observed on ModelNet40 and ShapeNet. While our method generally improves the
performance across all architectures, the accuracy on ScanObjectNN with PointNet++ is slightly
low. This is because our method designs the dataset distillation loss based on SADM loss (Yim
et al., 2025), which shows relatively low performance on ScanObjectNN with PointNet++. These
results demonstrate that the synthetic samples, generated by combining diverse low-resolution an-
chors in the proposed method, are not overfitted to specific architectures and instead capture useful
geometric characteristics that generalize well across different backbone networks.

Part segmentation evaluation. To validate the generalization of the proposed method beyond
classification, we additionally performed a part segmentation experiment on the ShapeNetPart (Yi
et al., 2016) using a PointNet segmentation model. As shown in Table 3, the proposed approach
consistently achieves higher mIoU across all object categories. For example, the mIoU on guitar
increases from 51.3 to 80.1, and mug improves from 54.9 to 84.3. The average mIoU reaches
56.4, clearly surpassing the SADM average of 40.6. These results show that the distilled dataset
successfully captures the fine-grained geometric structure required for accurate part-level prediction.

Table 4: Comparison of dataset distillation performance across four variants of the ScanObjectNN
benchmark.

Variant Random Herding K-Center DM SADM Ours
PB T25 12.6 14.3 14.3 12.9 19.4 35.2

PB T25 R 10.2 15.0 15.0 12.8 18.8 36.0
PB T50 R 9.6 14.4 14.4 11.5 16.7 34.2

PB T50 RS 13.5 15.1 15.1 13.7 17.6 32.6

Evaluation on ScanObjectNN Benchmark Variants. To clearly assess the robustness of our
proposed method under various challenging real-world scenarios, we conduct our experiments on
the four variants of ScanObjectNN: PB T25, PB T25 R, PB T50 R, and PB T50 RS. As shown in
the Table 4, our method consistently outperforms the baselines across all variants, demonstrating
robust performance regardless of the increasing difficulty of the datasets.
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Table 5: Performance of the proposed adaptive
shape morphing method with learnable weights
compared with the static method of using fixed
weights, evaluated on ScanObjectNN at PPC = 1.

# of L 2 4 8 12 16 20 24

Static 19.8 30.1 30.8 32.5 31.7 31.4 30.8
Adaptive 21.0 32.6 32.4 34.8 35.1 35.6 33.0

Table 6: Effect of the proposed uniformity-
aware matching loss using the penalty coeffi-
cient η.

Datasets ModelNet10 ScanObjectNN

PPC 1 3 10 1 3 10

w/o η 88.4 88.3 90.1 30.7 40.6 47.6
w/ η 87.7 89.8 92.2 32.6 41.3 49.8

4.3 QUALITATIVE RESULTS

Figure 3 illustrates how the resulting synthetic datasets evolve through optimization. For Model-
Net10, the initial combined samples are generated by averaging anchor samples with fixed weights
and often appear as noisy point clouds lacking meaningful structure. In contrast, after applying the
proposed method, the learnable weight vectors adaptively refine the combinations, producing struc-
turally consistent 3D shapes. A similar trend is observed in the real-world dataset ScanObjectNN,
where the initial combined samples, especially for classes such as door, sofa, and pillow, suffer
from even more severe misalignment. Nevertheless, after optimization, the resulting samples ex-
hibit significantly improved structural consistency. In both datasets, some combined samples appear
as slight variations of anchor shapes, while others occasionally produce new structures not present
in the anchors, demonstrating that the proposed method effectively balances structural preservation
and shape diversity.

4.4 ABLATION STUDY
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Figure 4: Analysis of performance on ScanOb-
jectNN at PPC = 1 according to the change of
hyperparameters. (a) The accuracy versus N2,
the number of points per anchor sample, under
the same total budget. (b) The trade-off between
the classification accuracy and training time when
varying L, the number of combined samples.

Hyperparameter Selection. We analyze the
behavior of two key hyperparameters of the
number of points per anchor sample N2 and
the number of combined samples L. Figure 4
(a) shows the accuracy according to different
resolution values of N2 while keeping the to-
tal memory budget by adjusting the number of
anchors M such that MN2 = N1, where N1

is set to 1024. When evaluated with Point-
Net (Qi et al., 2017a) and PointNet++ (Qi et al.,
2017b), PointNet performs better with smaller
N2 since it mainly focuses on global features
and is less sensitive to the local structural varia-
tion of coarse anchors. In contrast, PointNet++
shows a sharp performance drop at N2 = 128,
indicating that it struggles to extract meaning-
ful information when the resolution is too low.
Based on this trade-off, we set N2 ≈ 256 within
the budget for experiments in Tables 1 and 2.

Figure 4 (b) also investigates the classification accuracy and training time in terms of the variation
of the number of combined samples L. The training time refers to the average time required to train
the network during evaluation, averaged over 10 runs. In general, as L increases, the accuracy is
improved by enabling more expressive combinations, but the computational cost is also increased.
The results show that, beyond L = 4, the accuracy almost saturates while the training time continues
to grow. Based on this trade-off, we use L = 4 to strike a balance between the accuracy and
efficiency, except using L = 16 for ModelNet10 (Wu et al., 2015) which has only 10 classes.

Effectiveness of Learnable Shape Morphing. To illustrate the contribution of the proposed learn-
able shape morphing strategy, we conducted two experiments. First, we compared the adaptive
weighting scheme against a static baseline, where the weights are randomly initialized and remain
fixed throughout the optimization. Table 5 reports the classification accuracy with varying the num-
ber of combined samples L from 2 to 24. The results show that the adaptive setting consistently

9
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Table 7: Distillation results with various backbone
architectures on ModelNet10 dataset with PPC set
to 1.

Datasets SADM Ours

Train/Test PT PC PN++ PN PT PC PN++ PN

PT 35.6 17.1 12.4 24.7 34.2 24.3 12.7 59.6
PC 21.6 11.1 15.5 16.8 18.0 11.7 11.4 24.7

PN++ 44.2 21.8 11.5 33.8 35.4 23.6 23.4 78.4
DG 50.7 20.9 17.2 38.5 68.6 44.5 23.0 77.2
PN 49.0 20.5 25.9 35.9 57.0 51.6 55.4 87.7
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Figure 5: Ablation study evaluating the ef-
fectiveness of the proposed learnable shape
morphing (LSM). (a) ModelNet10 and (b)
ScanObjectNN.

outperforms the static setting. This indicates that learning the weights allows the model to control
the relative contribution of each anchor sample more effectively, compensating for possible mis-
alignments introduced by initial registration. Second, to evaluate the overall effect of the shape
morphing strategy itself, we compared the framework with and without applying the shape morph-
ing, respectively, in Figure 5. We see that applying the shape morphing improves the performance
across all PPC settings. This validates that the shape morphing strategy enhances the diversity of
synthetic dataset while generating semantically meaningful samples.

Effectiveness of Uniformity-Aware Matching Loss. To validate the effectiveness of the proposed
uniformity-aware matching loss, we compared the models trained with and without using the penalty
coefficient η in (9). As shown in Table 6, the uniformity-aware matching loss with η improves the
performance across different PPC settings on ScanObjectNN and for higher PPC settings on Mod-
elNet10. While a slight performance drop is observed at PPC=1 on ModelNet10, the overall trend
shows that applying the uniformity-aware matching loss leads to more stable and improved perfor-
mance. In contrast, without using η, each partitioned subset C contributes equally to the overall
loss regardless of how closely its spatial uniformity aligns with that of the original dataset, which
can result in less reliable supervision. The observed performance gains suggest that the proposed
uniformity-aware matching loss effectively mitigates the limitation of the subset partitioning.

Results with Various Backbone Architectures. We also distilled the synthetic datasets using
Point Transformer (Zhao et al., 2021b), PointConv (Wu et al., 2019), PointNet++ (Qi et al., 2017b),
PointNet (Qi et al., 2017a), and DGCNN (Wang et al., 2019), respectively, and evaluated them on
ModelNet10. The results are summarized in Table 7. When a more complex backbone is used,
it becomes inherently harder to align the feature distributions between the original and synthetic
datasets. As more layers and operations such as local aggregation or attention are added, feature
maps become more unstable, making it difficult to maintain a consistent alignment between the two
distributions. In contrast, a simpler backbone produces more stable feature maps, so aligning the
two distributions is easier. Therefore, we use PointNet as the backbone for all experiments.

5 CONCLUSION

In this paper, we first proposed a parameterization-based dataset distillation framework for 3D point
clouds, capable of synthesizing informative and diverse samples under a constrained memory bud-
get. To this end, we devised a learnable shape morphing strategy that diversifies the synthetic sam-
ples by blending multiple anchor samples with coarser resolution in the initial synthetic set. More-
over, we designed a uniformity-aware matching loss that adaptively emphasizes the contribution
of partitioned subsets of point clouds, improving the reliability of distribution matching between
the original and synthetic datasets. Experimental results on five widely used benchmarks includ-
ing ModelNet10 (Wu et al., 2015), ModelNet40 (Wu et al., 2015), ShapeNet (Chang et al., 2015),
ScanObjectNN (Uy et al., 2019), and OmniObject3D (Wu et al., 2023) showed that the proposed
method achieves substantial improvements over the existing dataset distillation methods at various
PPC settings.
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APPENDIX

LLMs were used only for language refinement and the research content is entirely by the authors.

A ALGORITHM

Algorithm 1 outlines our parameterization-based dataset distillation method. The process begins by
initializing multiple coarse anchors per class and aligning them via solving the assignment problem.
During each distillation step, synthetic samples are generated through shape morphing, and the
anchors and blending weights are optimized using a uniformity-aware distillation loss.

Algorithm 1 Parameterization-Based Dataset Distillation via Learnable Shape Morphing

Require: Original dataset Do, number of anchors M , number of combined samples L, size of
synthetic dataset S

Ensure: Distilled anchors {ãi,m} and weights {wl
i}

1: Initialize Dinit = {{ai,m}Mm=1}Si=1 and W = {{wl
i}Ll=1}Si=1

2: Align the anchor samples within each group of Dinit
3: for each distillation step do
4: Construct synthetic dataset Ds =

{
{ãi,m}Mm=1 ∪ {

∑M
m=1 w

l
i,m · ãi,m}Ll=1

}S

i=1
5: Sample mini-batches Bo ∼ Do, Bs ∼ Ds
6: Partition Bo into subsets C1, . . . , CM

7: Compute penalty coefficients ηm = exp
(
− λ(ν(Bo)− ν(Cm))2

)
8: Compute distillation loss LDistill =

∑M
m=1 η

m · LSADM(Cm,Bs)
9: Update Dinit, W w.r.t. LDistill

10: end for

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

While the original LSADM consists of both Lα, which matches the entire feature map, and Lβ , which
matches only the most prominent feature, we use only Lα in our implementation. The configuration
in Table 8(a) outlines the hyperparameters used for training the evaluation network. The network
was optimized using stochastic gradient descent (SGD) with a learning rate of 0.01, a momentum of
0.9, and a weight decay of 0.0005. The batch size was set to 8, and training was conducted for 500
epochs. To adjust the learning rate during training, a StepLR scheduler was employed, with a step
size of 250 and a decay factor of 0.1.

Table 8: (a) Hyperparameters used to train the evaluation network, and (b) hyperparameter settings
of the baselines.

Param Value

Optimizer SGD
Momentum 0.9

Weight Decay 5e-4
Batch Size 8

Learning Rate 0.01
Epochs 500

(a)

DC DM MTT PCC SADM

Backbone PointNet PointNet PointNet PointNet PointNet
Initialization Random Random Random Herding Random

Batch Size Do 8 8 8 8 8
Batch Size Ds 8 8 8 8 8
Learning Rate 0.0001 1 0.0001 0.0001 10

Distillation Steps 2000 2000 2000 2000 2000
(b)

B.2 BASELINES

Since the official code for most baselines is either tailored for image-based tasks or unavailable, we
re-implemented all baseline methods in our framework for a fair comparison. Table 8(b) summarizes
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the hyperparameter settings used for each baseline, including DC (Zhao et al., 2021a), DM (Zhao
& Bilen, 2023), MTT (Cazenavette et al., 2022), PCC (Zhang et al., 2024), and SADM (Yim et al.,
2025). All methods were implemented with PointNet as the backbone network and were trained
under a consistent configuration where both the original and synthetic datasets used a batch size of
8, and each method was optimized for 2000 steps. For initialization, random initialization was used
for most methods, except PCC, which employed herding initialization. While most methods used
relatively low learning rates, DM and SADM adopted larger values of 1 and 10, respectively.

C ADDITIONAL EXPERIMENTS

C.1 PLUG-AND-PLAY APPLICATION OF THE PROPOSED METHOD

To evaluate the independence of our method from specific distillation strategies, we apply it in a
plug-and-play manner on top of DM. As shown in Table 9, our method substantially improves the
performance of DM, particularly when PPC is low. For example, on ModelNet10 with PPC 1, the
accuracy rises from 25.8% to 79.8%, indicating that our method can effectively enhance even a
weaker baseline. The last row (+Ours∗) presents the result of combining our method with SADM,
which is identical to Table 1 in the main paper. This setting also shows the largest improvements
at PPC 1. The consistent trend across both baselines suggests that our method is not tailored to
any specific distillation framework but can serve as a general plug-and-play module that improves
performance, especially under constrained memory budgets.

Table 9: Performance comparison with and without our plug-and-play method applied to DM and
SADM. ∗ indicates the result of SADM combined with our method, which is identical to the perfor-
mance already reported in the main paper.

Dataset ModelNet10 ModelNet40 ShapeNet ScanObjectNN
PPC 1 3 10 1 3 10 1 3 10 1 3 10

DC 32.8±8.5 74.5±2.6 84.6±0.6 50.3±2.0 66.0±1.1 74.3±0.9 48.7±1.6 56.6±1.1 63.7±0.8 15.2±2.0 24.6±2.2 38.5±1.6
MTT 27.8±5.8 73.6±1.7 85.3±1.2 33.4±2.1 59.5±0.6 73.4±0.5 32.4±2.6 53.5±2.0 62.3±1.1 14.3±2.5 20.1±1.3 37.1±2.0
PCC 33.0±8.0 70.7±1.6 86.3±1.1 55.3±1.4 66.2±1.6 77.9±0.9 50.9±3.5 58.9±1.7 65.4±0.8 16.0±2.4 25.5±2.2 34.6±1.4

DM 25.8±6.9 77.4±1.2 85.0±0.7 31.1±4.7 61.5±2.1 74.9±0.8 26.3±3.6 52.5±1.6 63.1±0.8 13.7±1.8 26.4±2.4 37.4±1.2
+ Ours 79.8±1.6 82.4±1.4 86.4±1.4 55.6±0.1 67.3±0.6 76.3±0.6 52.3±1.4 59.9±1.3 63.5±0.4 18.1±0.8 29.3±0.1 37.3±1.0
∆ +54.0 +5.0 +1.4 +24.5 +5.8 +1.4 +26.0 +7.4 +0.4 +4.4 +2.9 -0.1

SADM 35.9±8.2 83.5±0.7 87.4±1.1 54.8±1.3 71.3±0.7 79.6±0.6 51.1±2.3 62.2±1.6 68.0±0.5 17.6±1.5 32.6±1.6 43.7±2.0
+ Ours∗ 87.7±0.7 89.8±0.5 92.2±0.5 73.2±1.1 80.3±0.5 82.5±0.6 60.5±1.1 65.9±0.6 68.9±0.6 32.6±1.6 41.3±1.1 49.8±0.7

∆ +51.8 +6.3 +4.8 +18.4 +9.0 +2.9 +9.4 +3.7 +0.9 +15.0 +8.7 +6.1

C.2 ABLATION ON DATASET COMPOSITION AND OPTIMIZATION STRATEGY

To analyze the effect of dataset composition and optimization strategy, we compare four synthetic
dataset settings, each differing in how Ds is constructed and which parameters are optimized during
distillation.

• Ds consists only of Dcomb, and only the combination weights W are optimized.

W∗ = argmin
W

LDistill(Do,Ds) where Ds = Dcomb. (13)

• Ds includes both the fixed anchors Dinit and the generated samples Dcomb, while only W
is optimized.

W∗ = argmin
W

LDistill(Do,Ds) where Ds = Dinit ∪Dcomb (14)

• Ds consists only of Dcomb, but both the anchors Dinit and the weights W are optimized.

{D∗
init,W

∗} = argmin
{Dinit,W}

LDistill(Do,Ds) where Ds = Dcomb (15)

• Ds includes both Dinit and Dcomb, and both are optimized during distillation.

{D∗
init,W

∗} = argmin
{Dinit,W}

LDistill(Do,Ds) where Ds = Dinit ∪Dcomb (16)
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To ensure a fair comparison, we adjust the value of L to equalize the total dataset size across all
settings. As shown in Table 10, the results show that the best performance is achieved when both
Dinit and W are jointly optimized and both components are included in the final synthetic dataset.

Table 10: Ablation study on synthetic dataset composition and optimization strategy. Each row
corresponds to a different formulation described in (13)–(16).

Dataset ModelNet10 ModelNet40 ShapeNet ScanObjectNN

(13) 80.4±0.9 54.5±0.4 46.3±2.1 18.5±0.8
(14) 78.8±1.1 55.5±0.9 51.3±0.7 18.1±1.3
(15) 87.3±0.9 71.9±0.9 59.3±0.8 28.4±1.2
(16) 87.7±0.7 73.2±1.1 60.5±1.1 32.6±1.6

C.3 ABLATION ON DATA AUGMENTATION STRATEGY

Table 11: Ablation study comparing the baseline PointMixup and our method on ModelNet10 and
ScanObjectNN under PPC = 1.

Methods ModelNet10 ScanObjectNN

PointMixup 82.3 21.9
Ours 87.7 32.6

To further investigate the effectiveness of our proposed method, we additionally conduct a com-
parison against PointMixup (Chen et al., 2020), a representative data augmentation technique for
point clouds. Unlike PointMixup, which interpolates point clouds using a fixed coefficient without
considering the distillation objective, our method synthesizes both the anchors and blending coeffi-
cients jointly with the distillation process. As shown in the Table 11, our learnable shape morphing
framework consistently outperforms PointMixup across both datasets.

C.4 EFFECTIVENESS OF POINT CLOUD DATA AUGMENTATION

We evaluated the effect of standard point cloud augmentations on ScanObjectNN at PPC = 1, 3, and
10. The augmentation strategies include point jittering with Gaussian noise of standard deviation
σ = 0.001, random scaling within the range 0.8 to 1.2, point dropping with a ratio of 0.875, and
PointMixup Chen et al. (2020) with α = 0.2. Methods that are not designed for point cloud (DM,
DC, MTT) exhibited inconsistent behavior under these augmentations, with accuracy fluctuating
depending on the PPC setting, suggesting that they do not reliably preserve structural information in
point clouds. In contrast, point cloud dataset distillation methods (PCC, SADM, Ours) consistently
benefited from the use of these augmentations. Furthermore, even when all methods were trained
under the same augmented pipeline, our method achieved the highest accuracy at every PPC setting.
These results demonstrate the robustness of proposed method to standard point cloud augmentations.

Table 12: Classification accuracy on ScanObjectNN under standard augmentations. “Aug.” denotes
whether augmentations were applied.

PPC Aug. Random Herding K-Center DM DC MTT PCC SADM Ours

1 ✗ 13.5 15.1 15.1 13.7 15.2 14.3 16.0 17.6 32.6
✓ 15.5 18.1 17.4 15.3 15.3 15.9 19.4 22.7 37.6

3 ✗ 19.7 26.9 18.8 26.4 24.6 20.1 25.5 32.6 41.3
✓ 19.2 29.0 21.4 21.1 22.6 19.6 31.7 35.1 44.2

10 ✗ 34.1 38.3 23.5 37.4 38.5 37.1 34.6 43.7 49.8
✓ 33.7 40.0 25.8 35.7 38.5 33.0 40.8 45.1 51.5
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D ADDITIONAL QUALITATIVE RESULTS

Figures 6 and 7 show additional qualitative results obtained with L = 4 on the ModelNet40 and
ShapeNet datasets, respectively. These results demonstrate that our method generates slight vari-
ations from the original anchors. In all visualizations, blue point clouds represent the combined
samples, while orange point clouds denote the anchors. Figures 8 and 9 present the distilled dataset
under a storage budget of PPC = 3 on the ModelNet10 and ScanObjectNN datasets, respectively,
where the increased capacity allows the synthesis of more diverse shapes. Figures 10 illustrate the
results on the ModelNet10 datasets when L = 16, showing that our method can generate a wide
range of shapes even from a limited set of anchors.

Figure 6: Visualization of distilled samples from ModelNet40 under a storage budget of PPC=1.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Visualization of distilled samples from ShapeNet under a storage budget of PPC = 1.
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Figure 8: Visualization of distilled samples from ModelNet10 under a storage budget of PPC = 3.

Figure 9: Visualization of distilled samples from ScanObjectNN under a storage budget of PPC = 3.

Figure 10: Visualization of synthetic samples from ModelNet10 with L = 16 under a storage budget
of PPC = 1 using our method.
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