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Figure 1: Performance of our method. Our method allows to synthesize high-quality sharp novel
views for videos with defocus blur (top) and motion blur (bottom). As shown on the right, our method
not only obtains significantly better results than existing methods, e.g., D3DGS [13], SoM [52]],
D2RF [32]], DyBIuRF [47], and De4DGS [58], but also achieves a performance of 65.143 FPS at a
resolution of 512 x 288 on an NVIDIA RTX 3090 GPU.

Abstract

This paper presents a unified framework that allows high-quality dynamic Gaussian
Splatting from both defocused and motion-blurred monocular videos. Due to the
significant difference between the formation processes of defocus blur and motion
blur, existing methods are tailored for either one of them, lacking the ability to
simultaneously deal with both of them. Although the two can be jointly modeled
as blur kernel-based convolution, the inherent difficulty in estimating accurate blur
kernels greatly limits the progress in this direction. In this work, we go a step further
towards this direction. Particularly, we propose to estimate per-pixel reliable blur
kernels using a blur prediction network that exploits blur-related scene and camera
information and is subject to a blur-aware sparsity constraint. Besides, we introduce
a dynamic Gaussian densification strategy to mitigate the lack of Gaussians for
incomplete regions, and boost the performance of novel view synthesis by incorpo-
rating unseen view information to constrain scene optimization. Extensive experi-
ments show that our method outperforms the state-of-the-art methods in generating
photorealistic novel view synthesis from defocused and motion-blurred monocular
videos. Our code is available at https://github.com/hhhddddddd/dydeblur.
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1 Introduction

Novel view synthesis of dynamic scenes from monocular videos is a very important problem, with
applications in various scenarios such as augmented reality, virtual reality, and 3D content creation.
Recent progress in this field mostly aims to learn renderable 3D Gaussian representations from
monocular videos. Although some of them have demonstrated impressive results of novel view
synthesis [24} 145/ 152, 163| 53], their performance typically deteriorates significantly on blurry videos,
making methods applicable to blurry monocular videos particularly necessary.

Some recent variants 58 147,30, 4, 32] of 3D Gaussian Splatting (3DGS) [15] and Neural Radiance
Field (NeRF) [35] have attempted to reconstruct dynamic scenes from blurry monocular videos,
where [38} 47, 130} 4] tackles motioned-blurred videos by computing a weighted sum of multiple
rendered images within the exposure period, while [32] focuses on dealing with defocus blur using
layered Depth-of-Field (DoF) volume rendering. Although these methods demonstrate promising
results, due to the significant difference between the formation process of motion blur and defocus
blur, their effectiveness is limited to either motion-blurred or defocused videos. Currently, there does
not exist a method that can effectively handle both types of blurry videos while enabling high-quality
novel view synthesis.

In this work, we present a framework that allows high-quality dynamic Gaussian Splatting from
both defocused and motion-blurred monocular videos. To this end, we employ blur kernel based
convolution to jointly model the two blur types. To obtain reliable blur kernels from dynamic scenes,
we develop a blur prediction network (BP-Net) that is subject to a blur-aware sparsity constraint to
simultaneously predict the blur kernel and pixel-level intensity. Moreover, we introduce a dynamic
Gaussian densification strategy to mitigate the lack of Gaussians for incomplete regions, and propose
to boost the performance of novel view synthesis by incorporating unseen view information to
constrain scene optimization. In summary, our main contributions are as follows:

* We introduce a unified framework for dynamic Gaussian Splatting from both defocused and
motion-blurred monocular videos, which to our knowledge, makes the first attempt in this field.

* We develop a blur prediction network equipped with a blur-aware sparsity constraint, and introduce
a dynamic Gaussian densification strategy as well as a unseen view combined scene optimization
scheme.

* We show that our method outperforms previous methods on both defocused and motion-blurred
monocular videos.

2 Related Works

4D Reconstruction. Recent works have extended 3DGS to 4D domain to model dynamic scenes
[11}164) 8129163, 126]. One line of works define motion as a time-conditioned deformation network
that warps Gaussians from canonical space to observation space [57, 163} 7, {12} [16} 13| [27]. Among
these, DeformableGS [63]] employs MLPs to predict Gaussian deformations, while 4DGaussians
[57] replaces MLPs with a multi-resolution HexPlane [5]. Another line of works model motion as
trajectories of 3D Gaussians [31} 126} 40 [14, 2,152, 48| 28]. E-D3DGS [2] introduces per-Gaussian
and temporal embeddings to encode time-aware information, whereas Shape-of-Motion [52] models
motion as a linear combination of SE(3) motion bases. However, existing dynamic 3DGS methods
rely on sharp input images and often struggle to synthesize photorealistic novel views when motion
or defocus blur is present in the inputs.

Image deblurring. Early works on image and video deblurring [19, 20,49, 136, 65]] primarily rely
on CNNs [46] and RNNs [69]. Later approaches enhance the deblurring process by incorporating
additional cues such as depth maps [39} 25150, [1]], light fields [43}44], and 3D geometry [37, 138, 155|
59, 161]]. Leveraging multi-view and 3D information, NeRF- and 3DGS-based deblurring methods
can generate sharp images with improved scene consistency [41} 21134, 22} 23| 9]. Among these,
some approaches [34} 122} 33} 13} 6] model blur by predicting deformable sparse kernels with per-pixel
bases. Others simulate the physical formation of blur by integrating multiple sharp images over the
exposure time [68, 51, [38]] or use a camera model that learns aperture and focal length parameters
[55/159]. Additionally, some works [47, 32} 158} 130} 4] incorporate 3D geometry into monocular video
deblurring. However, existing methods are typically designed for either defocus blur or motion blur.



" Canonical Space

- | Blur-aware Sparsity Constraint Lspa |

Learning Densified Dynamic Gaussians Unified Blur Synthesis
RS, 00000 T b o

1 \I
1 1
= -
\: :3, y Depth_ 0 E i | Camera Index
TAPIR ; Reprojection ' ! Bases 0 | Pixel Position
1
. 1 1 >
T;ac_kmg ! Dynamic GS ! l i Wil I]]]
oints ® 4 0 Le
___________ i Feature BP-Net 1 Ke
! Extractor
— | | Foreground ,
Remapping H
* 1
1

Convolution

Blending
N i '
h £3 15

o fim ——> 2,
Loss

Input Blurry | Output Blurry
Image 1 Image

Masks \-.G_S____g_s ------------------------------ 1

Depth e A l

cpths Observation Space i i
1
'

Blurry
Images

Figure 2: Overview of our method. We initialize static Gaussians via depth reprojection and dynamic
Gaussians from tracking points, modeling their transformations with learnable motion bases. After
stable training, we densify dynamic Gaussians using foreground remapping. For blur modeling, a
network predicts per-pixel blur kernels and intensity, enabling blur synthesis through convolution and
blending operation. The reconstruction loss between synthesized and input blurry images optimizes
the Gaussians for sharper results.

In contrast, our approach effectively removes both motion blur and defocus blur from monocular
videos, producing high-quality novel-view images of dynamic scenes.

3 Method

Our method aims to achieve dynamic Gaussian Splatting that enables high-fidelity yet sharp novel
view synthesis from any given monocular video with defocus blur or motion blur. Figure 2] presents
the overview of our method.

3.1 Learning Densified Dynamic Gaussians

Representing scene as dynamic 3D Gaussians. We adopt Shape-of-Motion [52] to initialize 3D
Gaussians and model scene motion. It separately models dynamic and static Gaussians, representing
motion with a compact set of SE(3) motion bases. Specifically, dynamic Gaussians are initialized by
reprojecting the depth of 2D tracking points in the canonical frame ¢y, obtained via Depth-Anything
[62] and TAPIR [10]. Static Gaussians are initialized by reprojecting background depth across frames
and share the same parameter composition as the original 3D Gaussians. Dynamic Gaussians include
an additional motion coefficient w € R™>, which combines SE(3) motion bases to model their
motion. The affine transformation from the canonical frame ¢, to the observation frame ¢ is computed
as follows:

Ny
Tipsr = »_ WOT,,, (1)
b=0

Where N, denotes the number of SE(3) motion bases, and ng)_,t represents the affine transformation

of motion base b. The affine transformation T, _,; consists of two components: rotation matrix Ry, _+
and translation vector t;, ;. The transformation of the pose parameters (y, R) for the dynamic
Gaussian from the canonical frame ¢ to the observation frame ¢ is defined as follows:

pe = Regsepieg +tig—t, R = Reg—eRe,- )

The transformed dynamic Gaussians in observation space, along with the static Gaussians, are then
processed through a differentiable rasterization pipeline to generate the final rendered image I, depth
map D, and mask M.

Dynamic Gaussian densification.

Shape-of-Motion [52] initializes dynamic Gaussians using point clouds by reprojecting 2D tracking
points from the canonical frame into 3D space. Although the canonical frame is selected as the one
containing the most visible 2D tracking points across all frames, tracking points that are invisible in



the canonical frame can still lead to partial dynamic Gaussians with inaccurate depth. This occurs
because the depth values at the corresponding locations of invisible 2D tracking points do not reflect
the true depth after reprojection. To address this, we initialize dynamic Gaussians using only visible
2D tracking points in the canonical frame. While this improves initialization accuracy, it may lead to
incomplete dynamic regions. To compensate, we supplement dynamic Gaussians by reprojecting
dynamic regions with depth maps from all observation frames. Then, we transform the dynamic
Gaussians in the observation frames to the canonical frame using foreground remapping. Since
this operation requires relatively stable and accurate motion bases, we perform dynamic Gaussian
densification only once after the first N, training iterations.

To this end, we first identify dynamic pixels in the training images using motion masks ), obtained
via the off-the-shelf method SAM [18]]. A random subset of pixels is selected in each observation
frame. For a dynamic pixel g in frame ¢, the mean p of the corresponding Gaussian G in observation
space is defined as:

wi =P (7 (9. D(9))), 3)
where D(g) is the depth of pixel g, 7, is the projection function for frame ¢, and P; represents the
camera extrinsics for frame ¢. We use foreground remapping to compute the corresponding position
i of Gaussian G in the canonical frame. Specifically, we first determine all affine transformations

for all existing dynamic Gaussians from ¢ to . We then select the affine transformation Tg’;/ L =

[Rg;t,.tgl_)t] corresponding to the dynamic Gaussian G’ that is closest to pf after transformation,
which gives:

wiy, = (RE )7 (1 — 16 50)- )
3.2 Unified Blur Synthesis

During training, we explicitly model the blurring process and jointly optimize a sharp 3DGS represen-
tation along with the blur parameters, ensuring that the synthesized blurry images match the input blur
image. Although the formation processes of defocus blur and motion blur are fundamentally different,
both types of blur can be approximated as a weighted combination of a pixel and its neighboring
pixels. Thus, the generation processes of motion blur and defocus blur can be unified under a simple
yet powerful mathematical model:

B(x) = Z I(z)ky(z;) st Z ky(z;) =1, Q)

z, €N (x) z; €N (z)

where T (z;) is the clear pixel value at pixel coordinates x; around the neighborhood of x, and k,
denotes the blur kernel for pixel z.

Using the per-pixel blur kernel k, from Eq. , we can generate a blurry image B from the sharp
image /. The main challenge is estimating a reasonable blur kernel k, for each pixel x. An intuitive
solution would be to use a CNN to estimate k, for each pixel in the sharp image I obtained from
rasterization. However, jointly optimizing the 3DGS and the CNN blur kernel prediction network
under the constraint of blurry images B can lead to non-rigid distortions in the reconstructed 3DGS.
This is in line with expectations because it is possible that the reconstructed 3DGS and the CNN
blur kernel prediction network deform together without affecting the reconstructed blurry result. To
address this, we design the Blur Prediction Network (BP-Net) Fg, which simultaneously predicts the
per-pixel blur kernel k, and the corresponding blur intensity m,. Using the blur intensity m,, we
compute the output blurry image pixel value B(z) by blending the sharp image pixel value () and
the blurry image pixel value B(z):

B(z) = (1 —my) - I(z) + mg - B(x). (6)

Computing the reconstruction loss between the output blurry image B and the input blurry image
B directly constrains the rendered image I using the sharp regions in B, progressively guiding it
toward a sharper 3DGS-based scene representation, while ensuring that most of the blur is explicitly
modeled by the CNN blur kernel prediction network.

Blur prediction network. The Blur Prediction Network (BP-Net) is a four-layer CNN model
that takes camera and scene information as inputs, both of which significantly contribute to blur
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Figure 3: Visual comparison of novel view synthesis on the D2RF defocus blur dataset .

in monocular videos. Camera motion and suboptimal camera settings can introduce blur, while
dynamic objects and scene depth strongly correlate with blur magnitude. The camera information
is represented by a learnable embedding vector e(4) obtained from the camera view ¢. The scene
information is encoded into fscme through a three-layer CNN Scene Feature Extractor, which uses
the rendered image I, depth D, and motion mask M as inputs. Given the variation in blur across
different pixels in real blurry images, we also include the pixel coordinate positional encoding p(z)
as input to the BP-Net:

ke, mg = F@(e(i)a fscene(x)ap(x))a @)

where k, and m, denote the blur kernel and blur intensity for pixel z, respectively. To improve the
scene information representation, we add skip connections from fy.e,. after the first two layers of
the BP-Net.

Blur-aware sparsity constraint. The blur kernel weights for mildly blurred pixels should be more
concentrated around the center, while those for severely blurred pixels should be more uniformly
distributed. To prevent unrealistic blur kernels from excessively blurring mildly blurred regions, we
use the blur intensity m, to constrain the weight distribution of the corresponding blur kernel k.
Specifically, we use the blur kernel center weight k,.(c¢) to quantify the sparsity of the blur kernel
k.. A smaller k,(c) suggests a more dispersed kernel, implying that the corresponding pixel is more
severely blurred. Based on this, we design a blur-aware center weight ¢, for the blur kernel k, as
follows:

¢, = sigmoid(scale - (1 — sg(my))), (8)

where scale is a scale factor (set to 5), and sg denotes the stop-gradient operation. Clearly, the
pixel-wise blur intensity m,, is negatively correlated with the corresponding blur-aware center weight
cz; as M, increases, ¢, decreases. We then compute the £, loss between the blur-aware center weight
¢, and the blur kernel center weight k,(c):

Cspa = »Cl (Cza kx (C)) (9)

During training, we adopt the blur-aware sparsity constraint L, for training only when the blur
intensity m, has been trained for a number of N,,, iterations to be stable.

3.3 Training Strategy

Monocular reconstruction of complex dynamic scenes is ill-posed and prone to local minima due to
the limited information provided by monocular videos, where each timestamp captures only a single
training view. This lack of sufficient views makes it difficult to accurately learn the 3D structure of
dynamic scenes, often leading to overfitting to the training views. To mitigate overfitting and extract
more cues from monocular videos, we obtain potential appearance information for unseen views
surrounding the training views. During training, we use this appearance information to supervise the
optimization process every N, iterations. Since the appearance information from unseen views is
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Figure 4: Visual comparison of novel view synthesis on the D2RF defocus blur dataset [32].
Here, we also compare with methods fed with deblurred images produced by a state-of-the-art video
deblurring method [66] to manifest the effectiveness of our method.

less accurate than that from training views, we apply slightly different loss functions for them, as
detailed in Section3.4]

We leverage the geometry and appearance information from the training views to obtain the appear-
ance of unseen views. For instance, consider a pixel p, in the training view V. The corresponding
pixel p; in the unseen view V; can be expressed as:

bt = KPtilpst(ps)K_lpsy (10)

Where K is the camera intrinsic matrix, D; is the depth map for the training view V;, Ps and P; are
the camera extrinsics for the training and unseen views, respectively. We then use the color B;(ps)
of pixel p; to derive the color By (p;) of the corresponding pixel p; in the unseen view via reversed
bilinear sampling [60, 54]. Similarly, the motion mask M;(p;) in the unseen view can be derived
from M, (ps).

To ensure the accuracy of appearance information in unseen views, we restrict the selection to unseen
views close to the training views. In most monocular videos, the camera poses of training views
typically form a sequence of consecutive poses directed towards the scene. Therefore, we select
unseen views on both sides of the training view sequence and insert unseen views between adjacent
training views. We implement this by generating two types of unseen views: (i) parallel-unseen
views: generated by interpolating between adjacent training views along the camera trajectory, (ii)
perpendicular-unseen views: generated by first computing a local perpendicular direction to the
camera trajectory and then perturbing the training view’s camera center along this perpendicular
direction by a distance of [0.5, 1] (normalized units). Importantly, the timestamp of an unseen view
matches the timestamp of the training view from which it is generated.

3.4 Loss Function

Reconstruction loss. We supervise the training process with a reconstruction loss to align per-frame
pixel-wise color input B. We compute the blurry image B according to Eq. and Eq. (EI) The
blurry image B is supervised by the following reconstruction loss:

Lree = (1= B)L1(B,B) + BLssim (B, B), (11)

where £ and L., are the ; loss and SSIMJ@] loss, re§pectively, and S is set to 0.2. We also
constrain the scene geometry using the depth D and mask M:

Egeo = /\depthﬁl(f)a D) + )\maskz'l (M, M)7 (12)
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Figure 5: Visual comparison of novel view synthesis on the DyBluRF motion blur dataset [47]].

where Agepen, and Apqsk are set to 0.075. During iterations with unseen views, we only use the
mask, excluding depth, to prevent the inaccurate geometry of unseen views from distorting the scene
geometry.

Table 1: Quantitative comparison of novel view synthesis on the D2RF defocus blur dataset
and the DyBIuRF motion blur dataset [47].

Method Defocus Blur Motion Blur Param. Training Time
PSNRT SSIMtT LPIPS| PSNRT SSIM{ LPIPS| ’
D3DGS 22.54 0.715 0.215 21.54 0.675 0.287 42.6M 10 mins
SoM [52] 28.32 0.784 0.164 26.21 0.823 0.109 164.2M 10 mins
D2RF [32] 27.04 0.808 0.128 23.67 0.745 0.120 2. M 48 hrs
DyBIuRF 26.24 0.788 0.159 24.53 0.864 0.079 1.3M 48 hrs
De4DGS 28.49 0.791 0.154 26.62 0.871 0.059  754.6M 20 hrs
Ours 29.39 0.859 0.078 27.01 0.876 0.056 192.2M 1hr

Smoothing loss. To improve scene motion representation, we introduce a smoothing constraint
L smo for the dynamic Gaussians’ deformation. Similar to Shape-of-Motion [52]], £ includes
two components: a smoothness constraint on the SE(3) motion bases across adjacent frames and a
smoothness constraint on the mean of dynamic Gaussians.

The overall training objective for the network is:

L= Erec + ﬁgeo + Lsmo + Lspa- (13)

4 Experiments

Evaluation datasets. We evaluate our method on two datasets, including the one from D2RF
[32] of defocus blur and the other one from DyBIuRF [47] of motion blur. The first dataset from
D2RF consists of 8 dynamic scenes, where each scene contains sharp stereo image sequences and
their corresponding blurry images. The other one from DyBluRF contains 6 motion-blurred scenes
composed of blurry stereo images and the corresponding sharp images. We train and evaluate our
method on all sequences from the two datasets, using their left-view blurred sequences for training
and the corresponding right-view sharp sequences for evaluation. Note that, similar to previous
methods, the downsampled images in the two datasets are utilized for training and evaluation.

Metrics. Following previous work [52, 58| 32} 47], we quantitatively evaluate our performance on
novel view synthesis using PSNR, SSIM [56]], and LPIPS [67].

Implementation Details. We set the number of motion bases N}, to 20, and the blur kernel size
K t0 9. We employ the Adam optimizer to jointly optimize the Gaussians and SE(3) motion
bases and the BP-Net. The learning rates are set to 1.6 x 10~ for motion bases, and 5 x 10~ for



Table 2: Quantitative comparison of novel view synthesis on the D2RF defocus blur dataset
[32] and the DyBluRF motion blur dataset [47]. Note, BSSTNet [660] is a state-of-the-art video
deblurring method, and “[66] + D3DGS [63]” means feeding the dynamic scene reconstruction [63]]
with deblurred images produced by [66].

Method Defocus Blur Motion Blur

PSNRT SSIM1T LPIPS| PSNR?T SSIM{T LPIPS|
D3DGS [63]] 22.54 0.715 0.215 21.54 0.675 0.287
[66] + D3DGS [63] 24.42 0.723 0.179 21.72 0.653 0.279
SoM [52] 28.32 0.784 0.164 26.21 0.823 0.109
[66] + SoM [52]] 28.56 0.786 0.164 26.33 0.825 0.105
Ours 29.39 0.859 0.078 27.01 0.876 0.056

Table 3: Quantitative ablation study on the D2RF defocus blur dataset [32] and the DyBluRF
motion blur dataset [47]]. Note, “w/o Unseen.” refers to no unseen view information utilized.

Method Defocus Blur Motion Blur
PSNR1 SSIM1T LPIPS| PSNR?T SSIM1T LPIPS |
w/o Lspa 29.03 0.842 0.086 26.63 0.854 0.072
w/o Shortcut 29.12 0.845 0.086 26.74 0.852 0.078
w/o DGD 29.19 0.843 0.085 26.53 0.847 0.109

w/o Unseen. 29.09 0.836 0.090 26.66 0.853 0.075
Full method 29.39 0.859 0.078 27.01 0.876 0.056

BP-Net. The learning rate for the Gaussians is consistent with that of the original 3DGS [[15]. We
train each scene for 40,000 iterations and introduce unseen view information to constrain the scene
starting from iteration 3,000. We set the iteration interval N,, for using unseen view information to 5.
Dynamic Gaussians densification is performed at Ny = 2,500 iterations. We introduce the unified
blur synthesis model at iteration 3,500 and incorporate the blur-aware sparsity constraint at N, =
5,500 iterations. Training on a sequence of 512 x 288 resolution takes approximately 1 hour on an
NVIDIA RTX 3090 GPU, with a rendering speed of 65.143 fps for the same resolution.

4.1 Comparison with State-of-the-Art Methods

Compared methods. We compare our method with various state-of-the-art methods including,
DeformableGS [[63]], Shape-of-Motion [52], D2RF [32], DyBIuRF [47], and Deblur4dDGS [58],
where the method of D2RF [32] is designed for defocus blur, while the methods of DyBIuRF [47] and
DeblurdDGS [58]] are tailored for motion blur. For fair comparison, we produce their results using
publicly-available implementation or trained models provided by the authors with the recommended
parameter setting.

Comparison on defocus blur. Tables [I| and [2| report the quantitative results on the defocus blur
dataset, where we can see that our method outperforms other methods, even existing methods that are
fed with deblurred images produced by a state-of-the-art video deblurring method. The reason is that
video deblurring methods cannot effectively ensure 3D scene consistency in the deblurred images.
Figures [3| and |4 further present a visual comparison of novel-view synthesis. As shown, our method
exhibits a clear advantage in producing high-quality novel views in both dynamic and static regions,
while the compared methods struggle to maintain structural details and provide sharp results. Please
see the supplementary material for additional comparison results, including both image and video
results of defocus blur.

Comparison on motion blur. As shown in Tables[I]and [2] our method quantitatively outperforms
the compared methods on all three metrics, manifesting its effectiveness in dealing with motion
blurred monocular videos. We also show the visual comparison in Figure[5] As can be seen, our
method produces results with more incomplete structure details and sharper appearance. Please see
the supplementary material for additional comparison results, including both image and video results
of motion blur.
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Figure 6: Left: Effect of dynamic Gaussian densification (DGD). Right: Effect of leveraging unseen
view information. Note, “w/o Unseen.” refers to no unseen view information utilized.

Sharp GT w/o Shortcut w/o Lg,q  Ours GT

Figure 7: Left: Effect of blur-aware sparsity Constraint L, and the shortcut in BP-Net. Right:
Effect of varying blur kernel size K.

4.2 More Analysis

Ablation study. We conduct an ablation study to evaluate the contribution of each component in
our model. Specifically, we evaluate the effect of (i) removing blur-aware sparsity constraint (w/o
Lpa), (ii) removing the shortcut in BP-Net (w/o Shortcut), (iii) initializing the dynamic Gaussians
using only the visible 2D tracking points in the canonical frame, without utilizing dynamic Gaussian
densification (w/o DGD), (iv) removing unseen view information during training (w/o Unseen.).
We report the quantitative results in Table [3] where we can see that each of our design has a clear
contribution. In addition, we in Figures [6] and [7] also qualitatively validate the necessity of each
component in our model. Besides, we also assess the influence of different blur kernel size in Figure
[7l As shown, a larger blur kernel (K) helps produce better results, but this trend becomes less obvious
when K > 9.

Limitations. Since our method relies on 2D image priors, errors arising from 2D prediction such as
depth estimation and segmentation may degrade the overall performance of our method. Moreover,
for dynamic scenes with large non-rigid motion blur, our method, as well as other state-of-the-art
methods, would fail to produce high-quality novel-view results free of visual artifacts, as demonstrated
in Figure 8] Finally, similar to the vanilla 3DGS, our method has to be optimized for each scene
separately.

Sharp GT D2RF Ded4DGS Ours GT Sharp GT D2RF De4DGS Ours GT

Figure 8: Failure case. Our method may fail to handle a dynamic scene with large non-rigid motion
blur. Note, the left column demonstrates results for defocus blur, while the right column presents
motion blur outcomes.



5 Conclusion

We have presented a unified framework for generating high-quality novel views from defocused
and motion-blurred monocular videos. In contrast to previous methods, which are either tailored
for defocus blur or motion blur, we propose to model both blur types using blur kernel-based
convolution. To this end, we develop a blur prediction network exploiting blur-related scene and
camera information to estimate reliable blur kernels and pixel-wise intensity. Besides, we introduce a
dynamic Gaussian densification strategy to mitigate the lack of Gaussians for incomplete regions
and boost the performance of novel view synthesis by incorporating unseen view information to
constrain scene optimization. Extensive experiments demonstrate that our method outperforms
the state-of-the-art methods in generating photorealistic novel view synthesis from defocused and
motion-blurred monocular videos.

Acknowledgement. This work was supported by the National Natural Science Foundation of China
(62471499), the Guangdong Basic and Applied Basic Research Foundation (2023A1515030002).

10



References

(1]
(2]

(3]

[4

—_

(5
[6]

—

(7]

(8]

[9

—

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]
[22]

(23]

[24]

Abuolaim , A. & Brown , M. S. (2020) Defocus deblurring using dual-pixel data. In ECCV

Bae, J., Kim, S., Yun, Y, Lee , H.,, Bang , G,, & Uh, Y. (2024) Per-gaussian embedding-based
deformation for deformable 3d gaussian splatting. In ECCV

Bui, M.-Q. V., Park , J., Oh, J., & Kim , M. (2023) Dyblurf: Dynamic deblurring neural radiance fields
for blurry monocular video. arXiv preprint arXiv:2312.13528

Bui , M.-Q. V., Park , J., Bello, J. L. G., Moon , J., Oh , J., & Kim , M. (2025) Mobgs: Motion deblurring
dynamic 3d gaussian splatting for blurry monocular video. arXiv preprint arXiv:2504.15122

Cao, A. & Johnson, J. (2023) Hexplane: A fast representation for dynamic scenes. In CVPR

Cao,Z.,Xu, L., Zhang , J., Yang , B., Chen, K., & Zhang , R. (2025) Dbdb: de-bimodal defocus blur in
joint infrared-visible imaging. Visual Intelligence

Cho, W. O, Cho, I, Kim, S., Bae, J., Uh, Y., & Kim, S. J. (2024) 4d scaffold gaussian splatting for
memory efficient dynamic scene reconstruction. arXiv preprint arXiv:2411.17044

Chu, W.-H., Ke , L., & Fragkiadaki , K. (2024) Dreamscene4d: Dynamic multi-object scene generation
from monocular videos. arXiv preprint arXiv:2405.02280

Dai, P, Zhang, Y., Yu, X., Lyu, X., & Qi, X. (2023) Hybrid neural rendering for large-scale scenes with
motion blur. In CVPR

Doersch , C., Yang , Y., Vecerik , M., Gokay , D., Gupta , A., Aytar, Y., Carreira , J., & Zisserman , A.
(2023) Tapir: Tracking any point with per-frame initialization and temporal refinement. In CVPR

Duan, Y., Wei, E, Dai, Q., He, Y., Chen , W., & Chen , B. (2024) 4d gaussian splatting: Towards efficient
novel view synthesis for dynamic scenes. SIGGRAPH

Guo, Z., Zhou, W., Li, L., Wang , M., & Li, H. (2024) Motion-aware 3d gaussian splatting for efficient
dynamic scene reconstruction. I[EEE Transactions on Circuits and Systems for Video Technology

Huang , Y.-H., Sun, Y.-T., Yang , Z., Lyu, X., Cao, Y.-P., & Qi , X. (2024) Sc-gs: Sparse-controlled
gaussian splatting for editable dynamic scenes. In CVPR

Katsumata , K., Vo, D. M., & Nakayama , H. (2023) An efficient 3d gaussian representation for
monocular/multi-view dynamic scenes. arXiv preprint arXiv:2311.12897

Kerbl , B., Kopanas , G., Leimkiihler , T., & Drettakis , G. (2023) 3d gaussian splatting for real-time
radiance field rendering. SIGGRAPH

Kim, M., Lim,J., & Han, B. (2024) 4d gaussian splatting in the wild with uncertainty-aware regularization.
NeurlPS

Kingma , D. P. & Ba , J. (2014) Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980

Kirillov , A., Mintun , E., Ravi, N., Mao , H.,, Rolland , C., Gustafson , L., Xiao , T., Whitehead , S., Berg ,
A.C., Lo, W.-Y., & others (2023) Segment anything. In /CCV

Kupyn, O., Budzan , V., Mykhailych , M., Mishkin , D., & Matas , J. (2018) Deblurgan: Blind motion
deblurring using conditional adversarial networks. In CVPR

Kupyn , O., Martyniuk , T., Wu , J., & Wang , Z. (2019) Deblurgan-v2: Deblurring (orders-of-magnitude)
faster and better. In CVPR

Lee, B., Lee, H., Sun, X, Ali, U., & Park, E. (2024) Deblurring 3d gaussian splatting. In ECCV

Lee, D., Lee , M., Shin, C., & Lee, S. (2023. ) Dp-nerf: Deblurred neural radiance field with physical
scene priors. In CVPR

Lee,D.,Oh,J,Rim,J.,, Cho, S., & Lee , K. M. (2023. ) Exblurf: Efficient radiance fields for extreme
motion blurred images. In ICCV

Lei, J., Weng , Y., Harley , A., Guibas , L., & Daniilidis , K. (2025) Mosca: Dynamic gaussian fusion
from casual videos via 4d motion scaffolds. CVPR

11



[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]
[45]

[40]

[47]

(48]

Li, L, Pan,J., Lai, W.-S., Gao, C., Sang , N., & Yang , M.-H. (2020) Dynamic scene deblurring by
depth guided model. IEEE Transactions on Image Processing

Li,Z.,Chen,Z,Li,Z., & Xu, Y. (2024) Spacetime gaussian feature splatting for real-time dynamic
view synthesis. In CVPR

Liang, Y., Khan, N., Li, Z., Nguyen-Phuoc , T., Lanman , D., Tompkin , J., & Xiao , L. (2023) Gaufre:
Gaussian deformation fields for real-time dynamic novel view synthesis. arXiv preprint arXiv:2312.11458

Liang , Y., Xu, T., & Kikuchi, Y. (2025) Himor: Monocular deformable gaussian reconstruction with
hierarchical motion representation. CVPR

Liu, Q., Liu, Y., Wang , J., Lyv, X., Wang , P., Wang , W., & Hou, J. (2024) Modgs: Dynamic gaussian
splatting from causually-captured monocular videos. arXiv preprint arXiv:2406.00434

Lu, Y., Zhou, Y., Liu, D., Liang , T., & Yin, Y. (2025) Bard-gs: Blur-aware reconstruction of dynamic
scenes via gaussian splatting. CVPR

Luiten , J., Kopanas , G., Leibe , B., & Ramanan , D. (2024) Dynamic 3d gaussians: Tracking by persistent
dynamic view synthesis. In 3DV

Luo, X., Sun, H,, Peng , J., & Cao, Z. (2024) Dynamic neural radiance field from defocused monocular
video. In ECCV

Luthra, A., Gantha, S. S, Song , X., Yu, H., Lin, Z., & Peng , L. (2024) Deblur-nsff: Neural scene flow
fields for blurry dynamic scenes. In WACV

Ma, L., Li, X., Liao, J., Zhang , Q., Wang , X., Wang , J., & Sander , P. V. (2022) Deblur-nerf: Neural
radiance fields from blurry images. In CVPR

Mildenhall , B., Srinivasan , P. P., Tancik , M., Barron , J. T., Ramamoorthi , R., & Ng, R. (2021) Nerf:
Representing scenes as neural radiance fields for view synthesis. ECCV

Nah, S., Hyun Kim, T., & Mu Lee , K. (2017) Deep multi-scale convolutional neural network for dynamic
scene deblurring. In CVPR

Niu, M., Zhan, Y., Zhu, Q.,Li, Z., Wang , W., Zhong , Z., Sun , X., & Zheng , Y. (2024) Bundle adjusted
gaussian avatars deblurring. arXiv preprint arXiv:2411.16758

Oh,J., Chung,J.,Lee, D., & Lee, K. M. (2024) Deblurgs: Gaussian splatting for camera motion blur.
arXiv preprint arXiv:2404.11358

Pan, L., Chowdhury , S., Hartley , R., Liu , M., Zhang , H., & Li, H. (2021) Dual pixel exploration:
Simultaneous depth estimation and image restoration. In CVPR

Park , J., Bui , M.-Q. V,, Bello , J. L. G., Moon , J., Oh , J., & Kim , M. (2025) Splinegs: Robust
motion-adaptive spline for real-time dynamic 3d gaussians from monocular video. CVPR

Peng , C., Tang , Y., Zhou, Y., Wang , N., Liu, X., Li, D., & Chellappa , R. (2024) Bags: Blur agnostic
gaussian splatting through multi-scale kernel modeling. In ECCV

Peng, J., Cao, Z., Luo, X., Lu, H, Xian, K., & Zhang , J. (2022) Bokehme: When neural rendering
meets classical rendering. In CVPR

Ruan, L., Chen, B., Li, J., & Lam , M. (2022) Learning to deblur using light field generated and real
defocus images. In CVPR

Srinivasan , P. P, Ng, R., & Ramamoorthi , R. (2017) Light field blind motion deblurring. In CVPR

Stearns , C., Harley , A., Uy , M., Dubost , F.,, Tombari , F., Wetzstein , G., & Guibas , L. (2024) Dynamic
gaussian marbles for novel view synthesis of casual monocular videos. In SIGGRAPH Asia 2024

Su, S., Delbracio , M., Wang , J., Sapiro , G., Heidrich , W., & Wang , O. (2017) Deep video deblurring
for hand-held cameras. In CVPR

Sun, H., Li, X, Shen, L., Ye, X., Xian , K., & Cao , Z. (2024. ) Dyblurf: Dynamic neural radiance fields
from blurry monocular video. In CVPR

Sun,J., Jiao, H., Li, G., Zhang , Z., Zhao , L., & Xing , W. (2024. ) 3dgstream: On-the-fly training of 3d
gaussians for efficient streaming of photo-realistic free-viewpoint videos. In CVPR

12



[49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

Tao, X., Gao, H., Shen, X., Wang , J., & Jia, J. (2018) Scale-recurrent network for deep image deblurring.
In CVPR

Torres , G. F.,, Kalliola , J., Tripathy , S., Acar , E., & Kidmériinen , J.-K. (2024) Davide: Depth-aware
video deblurring. arXiv preprint arXiv:2409.01274

Wang , P, Zhao, L., Ma, R., & Liu, P. (2023) Bad-nerf: Bundle adjusted deblur neural radiance fields. In
CVPR

Wang , Q., Ye, V., Gao, H., Austin , J,, Li, Z., & Kanazawa , A. (2024. ) Shape of motion: 4d
reconstruction from a single video. arXiv preprint arXiv:2407.13764

Wang , S., Yang , X., Shen , Q., Jiang , Z., & Wang , X. (2025) Gflow: Recovering 4d world from
monocular video. AAAI

Wang , Y., Yang, Y., Yang , Z., Zhao , L., Wang , P,, & Xu, W. (2018) Occlusion aware unsupervised
learning of optical flow. In CVPR

Wang , Y., Chakravarthula , P., & Chen , B. (2024. ) Dof-gs: Adjustable depth-of-field 3d gaussian splatting
for refocusing, defocus rendering and blur removal. arXiv preprint arXiv:2405.17351

Wang , Z., Bovik , A. C., Sheikh , H. R., & Simoncelli , E. P. (2004) Image quality assessment: from error
visibility to structural similarity. /EEE transactions on image processing

Wu, G, Yi, T, Fang,J, Xie, L., Zhang , X., Wei, W, Liu, W., Tian , Q., & Wang , X. (2024. ) 4d
gaussian splatting for real-time dynamic scene rendering. In CVPR

Wu, R, Zhang , Z., Chen , M., Fan, X., Yan , Z., & Zuo , W. (2024. ) Deblurddgs: 4d gaussian splatting
from blurry monocular video. arXiv preprint arXiv:2412.06424

Wu,Z,Li, X.,,Peng,J.,Lu, H., Cao, Z., & Zhong , W. (2022) Dof-nerf: Depth-of-field meets neural
radiance fields. In ACM MM

Xu, W, Gao, H,, Shen, S., Peng , R., Jiao, J., & Wang , R. (2024) Mvpgs: Excavating multi-view priors
for gaussian splatting from sparse input views. In ECCV

Yan, Y., Zhou , Z., Wang , Z., Gao , J., & Yang , X. (2024) Dialoguenerf: Towards realistic avatar
face-to-face conversation video generation. Visual Intelligence

Yang , L., Kang , B., Huang , Z., Xu, X., Feng , J., & Zhao , H. (2024. ) Depth anything: Unleashing the
power of large-scale unlabeled data. In CVPR

Yang , Z., Gao , X., Zhou , W, Jiao, S., Zhang , Y., & Jin , X. (2024. ) Deformable 3d gaussians for
high-fidelity monocular dynamic scene reconstruction. In CVPR

Yang , Z., Yang , H., Pan , Z., & Zhang , L. (2024. ) Real-time photorealistic dynamic scene representation
and rendering with 4d gaussian splatting. /CLR

Zamir , S. W., Arora, A., Khan, S., Hayat , M., Khan , F. S., & Yang , M.-H. (2022) Restormer: Efficient
transformer for high-resolution image restoration. In CVPR

Zhang , H., Xie , H., & Yao, H. (2024) Blur-aware spatio-temporal sparse transformer for video deblurring.
In CVPR

Zhang , R., Isola, P, Efros , A. A., Shechtman , E., & Wang , O. (2018) The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR

Zhao , L., Wang , P., & Liu, P. (2024) Bad-gaussians: Bundle adjusted deblur gaussian splatting. In ECCV

Zhong ,Z.,Gao, Y., Zheng , Y., & Zheng , B. (2020) Efficient spatio-temporal recurrent neural network
for video deblurring. In ECCV

Zhou, S., Zhang , J., Zuo , W., Xie , H., Pan, J., & Ren, J. S. (2019) Davanet: Stereo deblurring with
view aggregation. In CVPR

13



NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe the motivation and main contributions of this work in the abstract
and introduction.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations of this work and do a visualization in our paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We show the necessary theoretical proof and experimental validation in the
main PDF and supplementary materials.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide full implementation details inside the supplementary material,
while our code and trained model will be made publicly available.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The current code implementation requires additional refactoring for optimal
readability. A refined open-source release is planned following code reorganization.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide data splits, setting of hyper-parameters, details of optimizer in the
experimental data presentation and implementation details sections.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We didn’t experiment with statistical significance.
Guidelines:

e The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computer resources required to reproduce the experiment in
the implementation details.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and strictly adhere to it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is oriented towards theoretical research and does not have a negative
social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: This work involves no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets (code, data, models) are explicitly cited in the paper, with
original authors and sources clearly credited.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code assets have accompanying documentation, and we will provide the
appropriate documentation when we open source the code.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our core method development in this work does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Implementation Details

Network Architecture. The detailed architecture of Scene Feature Extractor Network and Blur
Prediction Network in our framework are illustrated in Figure[0] We enhance the ability to capture
high-frequency details by using positional encoding p for pixel coordinates = and a discrete variable
embedding module e (implemented with PyTorch) for camera indices .

ﬁscene

fscene

fscene i e(i)

D=

p(x)

Figure 9: Scene Feature Extractor Network (Left). Scene Feature Extractor Network takes rendered
image I, rendered depth D and rendered mask M as input, and outputs scene feature fs.c,.. Besides
the last layer, each layer outputs 64-dimensional features with ReLU activations. Blur Prediction
Network (Right). Blur Prediction Network takes scene feature fscene, camera embedding vector
e(#) and pixel positional encoding p(z) as input, and outputs blur kernel %, and blur intensity m,.
Each layer outputs 64-dimensional features with ReLU activations, except for the last layer. Note, in
the last layer m, is obtained via Sigmoid activations, while k,, is obtained via Softmax activations.

B Additional Quantitative and Qualitative Results

We compare our method with dynamic scene reconstruction methods [63]52] that use video-deblurred
images as input. Figure|10|presents a visual comparison of novel view synthesis on the motion blur
dataset, where we can see that our method outperforms existing methods that are fed with deblurred
images produced by a state-of-the-art video deblurring method. The reason is that video deblurring
methods cannot effectively ensure 3D scene consistency in the deblurred images. Please see the video
supplementary material for additional novel view synthesis comparison results.

B.1 Novel View Synthesis Comparison

D2RF and DyBluRF Dataset. We compare our approach against BAGS [41]] and De3DGS [21]], two
methods designed to reconstruct sharp static scenes from blurred static images, and evaluate them on
the D2RF [32] and DyBIuRF [47] datasets. Table 4] and Figure [TT] present the comparison results.
Clearly, our method demonstrates significant advantages over other methods, producing sharper novel
view images while better preserving realistic motion details.

D2RF-v2 and DyBluRF-v2 Dataset. We evaluate our method on two datasets (DyBluRF-v2 and
D2RF-v2) with both motion and defocus blur occurring simultaneously. Note that we obtain the
DyBIluRF-v2 dataset by applying depth-of-field (DoF) rendering technique in Bokehme [42] to the
original DyBIuRF dataset [47] to simulate defocus blur, and create the D2RF-v2 dataset with motion
blur by processing the original D2RF dataset [|32] using the motion blur generation method in Davanet
[70]. Table 5| present the comparison results. As shown, our method clearly outperforms all the
compared methods on the two datasets, verifying the advantage of our method in handling cases with
motion and defocus blur occurring jointly.

Deblur-NeRF Dataset. We compare our approach against De3DGS [21]], which is designed to
reconstruct sharp static scenes from blurred static images, and evaluate them on the Deblur-NeRF [34]
dataset. Table[6]and Figure [I2] present the comparison results. Clearly, our method demonstrates
significant advantages over other methods, producing sharper novel view images.
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Figure 10: Visual comparison of novel view synthesis on the DyBluRF motion blur dataset [@].
Here, we also compare with methods fed with deblurred images produced by a state-of-the-art video
deblurring method [66]] to manifest the effectiveness of our method.

Sharp GT  BAGS De3DGS Ours Sharp GT BAGS De3DGS Ours GT

Figure 11: Visual comparison of novel view synthesis. Here, we compare our method with methods
that are designed to reconstruct sharp static scenes from blurred static scene images. Note, the left
column demonstrates results for defocus blur, while the right column presents motion blur outcomes.

Table 4: Quantitative comparison of novel view synthesis on the D2RF defocus blur dataset [32]]
and the DyBluRF motion blur dataset [47].

Method Defocus Blur Motion Blur
PSNR1 SSIM1T LPIPS| PSNR?T SSIM1T LPIPS |
BAGS 24.41 0.730 0.167 24.27 0.723 0.208
De3DGS [21]] 23.74 0.716 0.190 22.45 0.689 0.253
Ours 29.39 0.859 0.078 27.01 0.876 0.056

B.2 Deblurring Comparison

We compare the deblur ring capability of our method with a broad range of existing methods,
including 3DGS- and NeRF-based methods for both dynamic and static scenes [32 [58] 41}, 21]], as
well as transformer-based video deblurring method [66]]. Specifically, we compare the sharp images
produced at training views. For 3DGS- and NeRF-based methods, these images are rendered from
the trained sharp scene representations using the same training views. Table[7]and Figure [[3|present
the comparison results. Our method outperforms 3DGS- and NeRF-based deblurring approaches and
achieves performance comparable to state-of-the-art video deblurring methods.
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Figure 12: Visual comparison of novel view synthesis on the Deblur-NeRF dataset [34].

Table 5: Quantitative comparison of novel view synthesis on the D2RF-v2 defocus blur dataset
and the DyBluRF-v2 motion blur dataset. The numerical results of defocus blur are obtained
on the Shop and Car scenes of the D2RF-v2 dataset, and the numerical results of motion blur are
obtained on the Man and Seesaw scenes of the DyBluRF-v2 dataset.

Defocus Blur Motion Blur
PSNRT SSIMT LPIPS| PSNRT SSIMtT LPIPS|

D3DGS [63] 23.66 0.739 0.257 21.75 0.655 0.289
SoM [52] 29.04 0.820 0.094 27.28 0.791 0.103
D2RF [32] 27.82 0.795 0.132 25.89 0.722 0.133
DyBIuRF [47]  27.30 0.771 0.150 26.54 0.753 0.112
De4DGS [58]] 29.74 0.856 0.078 27.97 0.824 0.087
Ours 30.26 0.885 0.062 28.55 0.859 0.064

Method

Table 6: Quantitative comparison of novel view synthesis on the Deblur-NeRF dataset [34].

Defocus Blur Motion Blur
PSNR1 SSIM1T LPIPS| PSNR?T SSIM1T LPIPS |

De3DGS [21]  23.71 0.747 0.110 26.61 0.822 0.108
Ours 24.22 0.768 0.095 27.14 0.835 0.096

Method
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Figure 13: Visual comparison of deblurring. Our method enables the synthesis of high-quality
deblurring results for videos with defocus blur (top) and motion blur (bottom).

Table 7: Quantitative comparison of deblurring on the D2RF defocus blur dataset [32] and the
DyBIluRF motion blur dataset [47].

Defocus Blur Motion Blur
PSNRT SSIMT LPIPS| PSNR1 SSIM?T LPIPS|

BSSTNet [66]  33.54 0.961 0.039 33.71 0.965 0.030

Method

D2RF [32] 34.33 0.976 0.028 32.14 0.949 0.049
De4DGS [58]] 32.92 0.953 0.044 33.27 0.958 0.035
BAGS 30.69 0.940 0.084 30.55 0.935 0.092
De3DGS [21]] 30.36 0.941 0.090 29.84 0.924 0.105
Ours 34.85 0.977 0.027 33.45 0.960 0.036

C Additional Ablation Results

C.1 Ablation on BP-Net

We conduct an ablation study to evaluate the contribution of BP-Net. Specifically, we compare
three different blur modeling methods: (i) the motion blur and defocus blur modeling method used
in De3DGS (w/ blur modeling in De3DGS [21]]), (ii) the motion blur modeling method in
De4DGS [58] (w/ blur modeling in Deblur4DGS [58]]), and (iii) the defocus blur modeling method in
D2RF (w/ blur modeling in D2RF [32]). We report the quantitative results in Table[8] where
we can see that our method with the proposed BP-Net produces better results than these alternatives,
demonstrating the effectiveness of the BP-Net.

Table 8: Effect of BP-Net.

Defocus Blur Motion Blur

Method PSNRT SSIM? LPIPS| PSNRT SSIMt LPIPS|

w/ blur modeling in De3DGS 28.31 0.812 0.098 26.05 0.823 0.118
w/ blur modeling in DedDGS [58]  28.63 0.829 0.094 26.74 0.859 0.060
w/ blur modeling in D2RF 28.96 0.832 0.094 26.30 0.825 0.109
Ours with BP-Net 29.39 0.859 0.078 27.01 0.876 0.056

C.2 Ablation on Blur Kernel Size

Table [0 further perform quantitative evaluation on how different blur kernel sizes (denoted as K)
affect the performance of our method. As shown, a larger blur kernel helps to obtain better results.
However, this trend becomes less obvious when K is larger than 9. To balance the performance and
the computational cost, we thus choose K = 9 as our default choice.
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Table 9: Effect of varying blur kernel size /. The numerical results of defocus blur are obtained on
the Gate and Dock scenes of the D2RF dataset, and the numerical results of motion blur are obtained
on the Skating and Man scenes of the DyBIuRF dataset.

Defocus Blur Motion Blur

Blurkemel size  pgNpt SSIMT LPIPS, PSNRf SSIM{ LPIPS)

K=5 27.84 0.817 0.098 29.53 0.906 0.092
K=7 28.12 0.836 0.074 29.79 0.913 0.067
K=9 28.29 0.842 0.067 30.01 0.921 0.052
K=11 28.30 0.843 0.066 30.02 0.920 0.050
K=13 28.31 0.842 0.067 30.04 0.922 0.051
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Figure 14: Visualization of the blur kernel and blur intensity predicted by BP-Net. Note that
the top row shows an image with defocus blur, while the bottom row shows an image with motion
blur. In the blur ground truth (GT) image, blue markers indicate pixels with almost no blur, green
markers denote pixels with mild blur, and red markers represent pixels with severe blur. A higher blur
intensity value corresponds to a more heavily blurred area. Clearly, BP-Net can accurately predict
blur regions in images with different types of blur and estimate the corresponding blur kernels at
pixel locations with varying blur levels.

D Robustness to Preprocessing and Segmentation Errors

Our method represents image blurring effects using two components: a blur kernel & and a blur
intensity m, as illustrated in Figure[T4] The blur intensity m effectively emphasizes the spatial regions
affected by blur within each training image. Moreover, the type of blur can be intuitively inferred
from the estimated kernels. Specifically, kernels corresponding to motion blur capture structured
trajectories that reflect the camera’s movement, while those associated with defocus blur present
Gaussian-shaped patterns that vary with the distance of the pixel from the focal plane.

To evaluate the accuracy of the blur kernel k£ predicted by BP-Net, we compare the ground truth blur
kernel with the blur kernel predicted by BP-Net on a blurry monocular video dataset with ground
truth blur kernel. To this end, we construct two datasets with ground truth blur kernels, referred to
as D2RF-v3 and DyBluRF-v3, by randomly sampling two global Gaussian and linear distribution
blur kernels of size 9 x 9 and then respectively applying them to the ground truth sharp images in
D2RF and DyBIluRF to obtain the corresponding blurry images. With the two datasets,
we quantitatively compare our estimated blur kernels and the ground truth blur kernels using PSNR
and KL divergence as metrics. Table [I0]and Figure [I5] present the comparison results. Clearly,
our estimated blur kernels are highly similar to the ground truth blur kernels in numerical metrics,
manifesting the effectiveness of the BP-Net in predicting different types of blur.
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Figure 15: Visual comparison of estimated kernel on the D2RF-v3 defocus blur dataset and
the DyBluRF-v3 motion blur dataset. Note that the top row shows an image with defocus blur,
while the bottom row shows an image with motion blur. Clearly, BP-Net can accurately estimate blur
kernels from various types of blurry images and thus recover sharp images.

Table 10: Comparison of ground truth kernels and estimated kernels.

D2RF-v3 DyBIluRF-vs

PSNR* 32.516 29.941
KL Div.{ 0.214 0.247

E Robustness to Preprocessing and Segmentation Errors

In the Table[TT] we quantitatively evaluate how errors from external preprocessing steps affect the
robustness of our method. To simulate errors from depth estimation, we randomly scale and shift the
estimated depth maps within the range of [0.8, 1.2] and [-20, 20], respectively. To simulate errors
from 2D point tracking and SAM, we randomly shift the 2D tracking points within the range of [-30,
30], and randomly add or delete five 25 X 25 mask regions towards the mask predicted by SAM. As
shown, our results produced with the artificially perturbed depth, tracking points, and motion mask
are comparable to those produced with the originally estimated depth, tracking points, and motion
mask, indicating that our method has some tolerance to errors from external preprocessing steps.

Table 11: Analysis on the impact of errors from external preprocessing steps.

Defocus Blur Motion Blur
PSNRT SSIM1T LPIPS] PSNR{T SSIMT LPIPS|

Ours w/ depth perturbation 29.19 0.844 0.088 26.79 0.862 0.074
Ours w/ tracking perturbation ~ 29.21 0.854 0.084 26.86 0.874 0.060
Ours w/ mask perturbation 29.25 0.854 0.085 26.74 0.865 0.067
Ours 29.39 0.859 0.078 27.01 0.876 0.056

Method
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