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Abstract

Reducing bias while learning and inference is an important requirement to achieve
generalizable and better performing models. The method of stacking took the first
step towards creating such models by reducing inference bias but the question
of combining stacking with a model that reduces learning bias is still largely
unanswered. In statistical relational learning, ensemble models of relational trees
such as boosted relational dependency networks (RDN-Boost) are shown to reduce
the learning bias. We combine RDN-Boost and stacking methods with the aim of
reducing both learning and inference bias subsequently resulting in better overall
performance. However, our evaluation on three relational data sets shows no
significant performance improvement over the baseline models.

1 Introduction

Statistical relational learning (SRL) [10, 17] combines the two formalisms of probability (capturing
uncertainty) and first order logic (capturing symmetries). This has resulted in the ability to represent
complex relations between objects or entities. One of the key success stories inside SRL models
have been ensembles of relational regression trees that overcome the assumption of a propositional
representation of the data. This model called boosted relational dependency networks (RDN-Boost)
[15], has been shown to reduce the learning bias since it combines multiple prediction models while
learning thereby resulting in far stronger discriminative relational models. A common assumption is
that simple reduction in the learning bias is not generally sufficient to learn generalizable models
especially in relational domains. A recent work presented theoretical frameworks for relational
models that can reduce the bias in both learning and inference time [6]. Kou et al. [11] proposed the
method of relational stacking for collective inference which is a meta learning algorithm consisting
of a base learner, that can be any relational machine learning model. The base learner is augmented
by expanding an instance’s features with predictions on other related instances. Stacking has shown
to improve collective inference by reducing the inference bias [7] and thus we hypothesized that
a combination model that integrates the stacking model (reduces inference bias) with RDN-Boost
(reduces learning bias) can result in better performing models.

We propose the combination of the stacking method and RDN-Boost using three relational templates
which are dependent on the notion of distance between entities in the given relational data set. This is
based on the observation that the entire data set can be viewed as a graph G = (V,E) where V is the
set of nodes denoting the entities and E is the set of edges denoting the relations between the entities.
This transformation allows for efficient computation of the distances. We test our model with three
relational data sets and show that, against expectations, using any of these relational templates do not
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improve the performance of the combination model when compared to the underlying RDN-Boost
model. We speculate that the reason could be the direct dependence of the stacking model on the
strength of the underlying base model.

We make a few key contributions: (1) We propose a combination model of relational ensemble
learner RDN-Boost (lower learning bias) and stacking (lower inference bias). (2) We propose 3
relational templates for effective combination of RDN-Boost and stacking models. (3) Our empirical
results demonstrate that such a combination does not yield in a statistically significant increase in
performance.

2 Related work

Relational dependency networks An effective and efficient way of learning relational depen-
dency networks (RDNs) [16] by turning learning RDNs into a sequence of relational function-
approximations was introduced in [15]. The key idea was to learn each conditional distribution using
a set of relational gradient-boosted trees. Given that dependency networks approximate the true joint
distribution as a product of the conditionals, i.e., P (x1, ..., xn) = πP (yi|yß), one could imagine
learning each conditional separately and combine them using Gibbs sampling [9]. This has the added
advantage that unlike a directed probabilistic model such as a Bayesian network, one does not have
to ensure acyclicity, thus resulting in faster learning and inference.

Schulte et al. [20] transformed Bayesian networks (BNs) to RDNs. RDNs have further been used for
problems pertaining to hybrid domains [18], collective classification [12] and applications such as
relation extraction [21].

Stacking method Kou et al. [11] introduced stacked graphical learning, which takes an efficient
way of approaching the problem of collective classification by composing additional feature sets from
predictions on related instances to enhance the performance of base learner. The stacked graphical
learning combines the underlying approaches by Cohen [3] and Wolpert [23] to build stacks and
predict labels for instances respectively. Fast et al. [7] demonstrated further that the stacked graphical
learning can achieve effectiveness while being efficient. On synthetic data, RDN gets much lower
learning bias while stacked graphical model gets much lower inference bias. Brophy et al. [2]
combines stacked graphical learning with probabilistic graphical models to build a relational model
for social network spam.

Eldardiry et al. [6] evaluated the performance of relational ensemble models via both theoretical
analysis and experimental results. It is shown that relational ensemble learning approach combined
with relational ensemble inference approach can target the error in both learning and inference
processes resulting in a better performing model. As mentioned earlier, Natarajan et al. [15] proposed
boosted relational dependency networks (RDN-Boost) by learning relational dependency networks
through boosting approach, which reduces the learning bias of relational dependency network and as
analyzed in [6]. Combination of gradient boosting with collective inference has been investigated
in [1] focusing on continuous prediction. A recent work [19] transfers RDN-Boost by mapping
predicates in learnt trees from one domain to another similar domain and modifying the mapped trees
to achieve better performance.

3 Stacking Boosted RDNs

Stacking [11] can reduce the inference bias with respect to the underlying base algorithm but
combining it with relational machine learning algorithms that reduce learning bias is still largely an
unexplored problem. In this work, we combine the stacking method with RDN-Boost [15] as the base
learner which have shown to reduce the learning bias.
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(a) Learning Stacked models (b) RDN-Boost

Figure 1: A general overview of methods used in our approach.

Algorithm 1: Stacked RDN-Boost
Stacked-RDN-B-learn(Dtrain, C, J, K);
Dtrain is training data, C is relational template, J is the number of folds, K is the number of
iterations;

learn a local model RDN-B0← RDN-B(Dtrain);
learn stacked models RDN-B1 · · ·RDN-BK;
for i=1 · · ·K do

randomly evenly split Dtrain into J folds: Dtrain1, · · · ,DtrainJ;
for j=1 · · ·J do

learn RDN-B′j ← RDN-B(Dtrain\Dtrainj);
predict ŷj = RDN-B′j(Dtrainj) ;

end
Dtrain

′ = Dtrain ;
ŷ = ŷ1 ∪ · · · ∪ ŷJ ;
(N is the number of instances) ;
for n=1 · · ·N do

new predicate of instancen = C(ŷ, instancen, Dtrain) ;
Dtrain

′ = Dtrain
′ ∪ {new predicate of instancen} ;

end
learn RDN-Bi ← RDN-B(Dtrain

′);
end
Stacked-RDN-B = ensemble(RDN-B0,RDN-B1,· · · ,RDN-BK);
;
Stacked-RDN-B-infer(Stacked-RDN-B, Dtest);
ŷ0 = RDN-B0(Dtest);
for i=1 · · ·K do

for n=1 · · ·N do
new predicate of instancen = C(ŷi−1, instancen, Dtest) ;
Dtest

′ = Dtest
′ ∪ {new predicate of instancen} ;

end
predict ŷi = RDN-Bi(Dtest

′) ;
end
inference = ŷK ;
;
C(ŷ, instance, D) ;
find all related instances {instancem, m ∈M} (M is the set of the indices of all related instances
to this instance) of this instance in the data D using relational templates ;

aggregate predictions {ŷm,m ∈M} of those related instances to generate new predicate for this
instance ;
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An overview of the stacking approach is shown in figure 1a. Stacking consists of two components:
the learning component and the inference component. Both of these components need to be consistent
to guarantee collective classification. During the learning step of stacking, initially a local model f0 is
learned from the given training data. After learning the local model, K stacked models f1 · · · fK are
learned in K iterations. For each iteration, label predictions of instances are generated by following
a procedure similar to cross-validation and a new feature/predicate is created for each instance
according to label predictions of its related instances. A stacked model fi is learned from the training
data including the new predicates for this iteration i. In the subroutine, the training data is split into J
folds, where, one fold j ∈ J constitutes the testing data and the other folds make up the training data.
A model is then trained on the training data and predict on the testing data. The predictions on the
testing data become the label predictions for this fold j. After J iterations, instances in each fold have
their label predictions.

Figure 1b shows an overview of RDN-Boost which learns a new first-order logic regression tree ∆j

based on all previous relational regression trees F (ψ0,∆1, · · · ,∆j−1). At each step, a new relational
regression tree ∆j is fitted to reduce the predicting error (I − F ) further from the combination of
previous trees F (ψ0,∆1, · · · ,∆j−1) and is run for a specified number of iterations, say t, to learn t
trees. The overall model is an ensemble of all the learned trees. For each gradient step, regression
examples are first updated using the functional gradient ∂logP (yi;xi)

ψ(yi=1;xi)
= I(yi = 1;xi)−P (yi = 1;xi),

where yi is the target predicate, xi is other predicates and ψ(yi = 1;xi) is the potential function.
Then a relational regression tree ∆j is fitted on the regression examples and the ensemble model is
updated with the new fitted relational regression tree. The final model is simply a sum of these trees.
Note that the trees follow single path semantics – each example will satisfy only one branch of the
trees. Thus for every example, each tree returns a single regression value and all the values are then
summed to get the final value.

The stacking framework requires the design of a relational template. The relational template is
important for the performance of the system, since it is used to collect predictions from related
examples. In [11], the collected predictions are aggregated to generate a new feature for assisting
the inference. Since RDN-Boost learns and extracts logic rules from the data, a new predicate is
generated for assisting the inference.

We present our method Stacked RDN-Boost in algorithm 1 which consists of 2 procedures describing
the learning process Stacked-RDN-B-learn and the inference process Stacked-RDN-B-infer. The
learning procedure, Stacked-RDN-B-learn, consists of first learning a local model RDN-B0 by
fitting the base learner RDN-Boost (RDN-B) on the training data Dtrain. The stacked models,
RDN-B1 · · ·RDN-BK, are then learned in K iterations. For each iteration i = 1 · · ·K, the training
data Dtrain is split into J folds where every fold forms the testing data with rest of the folds serving
as training data. We then learn RDN-B′j on Dtrain\Dtrainj using the base learner RDN-B, and
predict on Dtrainj to get ŷj for this fold Dtrainj . After J iterations and thus predictions on the J
folds, let us denote the label predictions for all instances as ŷ. For each instance n = 1 · · ·N, we
create a new predicate by aggregating label predictions of related instances retrieved by relational
template C on the relations (facts) in Dtrain. The new predicates are included into Dtrain although
only for the present iteration, say i. At the end of this iteration, we learn the stacked model RDN-Bi
on Dtrain

′ (=Dtrain∪ {all new predicates}) using the base learner RDN-B.

For the inference process Stacked-RDN-B-infer, we first predict on the testing data Dtest using
the local model RDN-B0 to get label predictions ŷ0. Then, for each instance n = 1 · · ·N, a new
predicate is created via aggregating label predictions from ŷi−1 of related instances retrieved by
relational template C, as in the training phase, on the relations in Dtest. These new predicates are
included into Dtest only for this iteration i as in training. At the end of the iteration, we predict on
the Dtest

′ (=Dtest∪ {all new predicates}) using the stacked model RDN-Bi, and obtain the label
predictions ŷi. The inference result ŷK of the last iteration is the final inference result of our model.
The relational template C is used to find all related instances {instancem, m ∈ M} (M is the set
of the indices of all related instances to the current instance) to the current instance via relations
in the data D, and then generate a new predicate for the current instance by aggregating over label
predictions {ŷm,m ∈M} of those related instances. The details of the different relational templates
considered in this work are given next.
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3.1 Relational template

We propose 3 relational templates to combine the methods of stacking and RDN-Boost effectively.

3.1.1 Aggregate over adjacent entities

For each entity, all other entities which appear in any relation with this entity are retrieved and their
label predictions are collected. If the majority of predictions of related entities is positive, then a new
predicate is created for this entity. Otherwise, no new predicate is created. This is akin to a majority
vote from related entities. The predictions for entities here are inferred by the model during each
cross-validation step similar to the subroutine of stacking method.

3.1.2 Aggregate over entities within fixed depth

The given relational data set can be treated as a graph G = (V,E) where relations are treated as
edges E and the entities are treated as nodes V . The depth is the least number of edges between two
entities. For each entity, all other entities within the the depth are retrieved and their label predictions
are collected. If the majority of predictions of related entities is positive, a new predicate is created
for this entity. Otherwise, no new predicate is created for this entity.

3.1.3 Aggregate by Hsu-Lyuu-Flandrin-Li distance

This distance metric [4, 13] is based on the concept of m-diameter, and is given as,

DG
m(a, b) = min

Q
(max

q
(len(pathq(a, b)))),∃Q ∀q ∈ Q, |Q| ≥ m,

∪x,y∈Q ∩x 6=y (pathx(a, b),pathy(a, b)) = {a, b}
(1)

The definition of graph G = (V,E) is similar as aggregate over entities within fixed depth. Relations
are treated as edges E and entities in the relations are treated as nodes V . The m-diameter DG

m(a, b)
between node a and node b is the minimum integer d such that there are at least m internally disjoint
paths of length at most d between two nodes [13]. Since the time complexity of this distance metric
is very high and there is no available implementation, to simplify this distance metric, m is set to be 1
and we have a special case. Then the Hsu-Lyuu-Flandrin-Li distance between two nodes DG

1 (a, b)
is simplified to be the length of the shortest path between two nodes. Thus, for every entity ei,
breadth-first search is applied here to find the length dj of the shortest path between entity ei and
entity ej . The positive and negative label predictions ŷ are mapped to +1 and -1. For each entity ei,
the inverse 1/dj of distance between entity ei and entity ej is used as the weight wj of entity ej . A
weighted voting

∑N
j=1,j 6=i wj · ŷj is done over all other entities. If the weighted sum is larger than or

equal to 0, then a new predicate is created for entity ei else no new predicate is created.

4 Experiments and analysis

4.1 Datasets

We consider 3 relational data sets: Carcino: is a biomedical data set [22] of the structures of various
chemical compounds and the task is to predict if these compounds are carcinogenic in nature. PPMI:
is a study [14] designed to identify bio-markers that impact Parkinson’s and the task is to predict if a
patient has Parkinson’s [5]. UW-CSE: is a task over a representation of staff, students and faculty of
5 different computer science departments; the target is to predict whether someone is a professor.

4.2 Experiments setup

Each dataset is split into training data and testing data with a ratio of 60% - 40%. We varied relational
templates, number of trees of RDN-Boost, number of iterations and number of folds of stacking
method. The details of the three relational templates are displayed in the section 3. We ran the
experiments on a Intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz with 32 GB RAM machine. We
implemented our approach in Python. For the base learner/baseline RDN-Boost, we used the srlearn
python wrapper [8] and implemented the stacking approach.
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Table 1: Evaluation on the Carcino data set with relational template aggregate over adjacent entities.
The mean and standard deviation are displayed for each setting of parameters with each model
running 5 times. K is number of iterations and J is number of folds of the stacking method.

Stacked RDN-Boost (K,J)

10 trees RDN-Boost (1,3) (2,3) (1,5) (2,5)

Accuracy 0.398 (0.007) 0.396 (0.003) 0.397 (0.006) 0.396 (0.004) 0.394 (0.004)
Recall 0.485 (0.020) 0.483 (0.035) 0.493 (0.031) 0.5 (0.037) 0.490 (0.030)

Precision 0.197 (0.006) 0.195 (0.009) 0.198 (0.008) 0.199 (0.010) 0.197 (0.008)
F1 0.280 (0.010) 0.278 (0.015) 0.283 (0.013) 0.285 (0.016) 0.281 (0.013)

AUC-PR 0.228 (0.002) 0.228 (0.004) 0.229 (0.003) 0.222 (0.021) 0.230 (0.002)
AUC-ROC 0.399 (0.007) 0.397 (0.014) 0.401 (0.010) 0.407 (0.009) 0.403 (0.007)

Table 2: Evaluation on the dataset PPMI with relational template aggregate over adjacent entities.
The mean and standard deviation are displayed for each setting of parameters with each model
running 5 times. K is number of iterations and J is number of folds of the stacking method.

Stacked RDN-Boost (K,J)

10 trees RDN-Boost (1,3) (2,3) (1,5) (2,5)

Accuracy 0.914 (0.008) 0.917 (0.014) 0.918 (0.006) 0.919 (0.009) 0.915 (0.003)
Recall 0.864 (0.053) 0.868 (0.052) 0.867 (0.050) 0.879 (0.036) 0.839 (0.020)

Precision 0.865 (0.020) 0.870 (0.005) 0.876 (0.040) 0.868 (0.014) 0.886 (0.013)
F1 0.863 (0.018) 0.868 (0.026) 0.870 (0.010) 0.873 (0.016) 0.862 (0.007)

AUC-PR 0.937 (0.007) 0.937 (0.009) 0.933 (0.010) 0.936 (0.007) 0.940 (0.012)
AUC-ROC 0.971 (0.006) 0.971 (0.007) 0.970 (0.005) 0.972 (0.004) 0.974 (0.003)

4.3 Results

We first present our results with the relational template aggregate over adjacent entities. The number
of trees of RDN-Boost is set at 10 and the values of K and J are varied as on [(1,3), (2,3), (1,5),
(2,5)], since as shown in [11], large K does not help the performance. And the results on the dataset
UW-CSE with this relational template are not shown due to lack of space as well as because there is
no significant improvement compared to RDN-Boost, which is similar in behavior with the data sets
Carcino and PPMI, the results for which are shown in tables 1 and 2 respectively.

From these results it can be seen that the improvement is not significant or consistent as expected.
A better relational template may be needed to exploit the strengths of stacking method. Thus, we
next implemented the relational template aggregate over entities within fixed depth. The depth is
varied, such as 2 or 3, to evaluate the model and the performance is not improved as expected. The
experiment results with this relational template are omitted since there is no significant improvement
in the results and are similar to previous results. Since assisting prediction from neighbors in a
fixed range does not work well, the next approach may be to try an appropriate distance metric for
aggregating predictions from related entities.

We next used the Hsu-Lyuu-Flandrin-Li distance [4, 13] for the relational template. Besides the
updating of relational template, parameters of RDN-Boost and stacking method are explored more
in order to capture the performance trends of our approach. For the base learner RDN-Boost, we
changed the number of trees from small to large (2 to 20) in order to see the effect of different learning
ability of base learner on the system. For each such setting of the number of trees, we generated
results for settings of the number of iteration K and the number of folds J of stacking method as
[(1,3), (2,3), (1,5), (2,5), (3,5)]. The results for the 3 data sets are shown in tables 3, 4 and 5. The
results for the setting of (K,J) of stacking method = (3,5) is not shown since there is no significant
difference with other (K,J) settings. As mentioned in Kou et al. [11], the stacking method converges
very fast and the larger number of iterations does not raise the level of performance. The results of
the number of trees as 5 are not shown since the results are also similar and the case of the number of
trees as 2 can cover the cases with small number of trees.
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Table 3: Evaluation on the dataset Carcino with relational template aggregate by Hsu-Lyuu-Flandrin-
Li distance. The mean and standard deviation are displayed for each setting of parameters with each
model running 5 times. K is number of iterations and J is number of folds of the stacking method.

Stacked RDN-Boost (K,J)

2 trees RDN-Boost (1,3) (2,3) (1,5) (2,5)

Accuracy 0.391 (0.005) 0.394 (0.004) 0.392 (0.003) 0.392 (0.003) 0.391 (0.007)
Recall 0.507 (0.044) 0.517 (0.044) 0.480 (0.016) 0.507 (0.044) 0.527 (0.053)

Precision 0.199 (0.011) 0.203 (0.011) 0.194 (0.003) 0.200 (0.011) 0.204 (0.014)
F1 0.286 (0.018) 0.291 (0.018) 0.276 (0.006) 0.287 (0.018) 0.294 (0.023)

AUC-PR 0.204 (0.004) 0.204 (0.004) 0.202 (0.002) 0.203 (0.005) 0.202 (0.004)
AUC-ROC 0.397 (0.017) 0.401 (0.017) 0.389 (0.013) 0.398 (0.019) 0.396 (0.019)

10 trees

Accuracy 0.395 (0.003) 0.396 (0.006) 0.397 (0.004) 0.397 (0.0) 0.397 (0.004)
Recall 0.466 (0.020) 0.476 (0.023) 0.493 (0.043) 0.451 (0.0) 0.493 (0.043)

Precision 0.191 (0.004) 0.194 (0.006) 0.198 (0.011) 0.188 (0.0) 0.198 (0.011)
F1 0.271 (0.007) 0.275 (0.010) 0.282 (0.018) 0.265 (0.0) 0.282 (0.018)

AUC-PR 0.202 (0.002) 0.205 (0.002) 0.204 (0.002) 0.203 (0.002) 0.205 (0.004)
AUC-ROC 0.395 (0.008) 0.403 (0.010) 0.398 (0.010) 0.395 (0.008) 0.404 (0.013)

20 trees

Accuracy 0.403 (0.007) 0.399 (0.006) 0.402 (0.006) 0.399 (0.007) 0.398 (0.004)
Recall 0.498 (0.005) 0.493 (0.043) 0.461 (0.022) 0.493 (0.031) 0.468 (0.024)

Precision 0.201 (0.004) 0.199 (0.012) 0.192 (0.007) 0.199 (0.009) 0.193 (0.007)
F1 0.287 (0.004) 0.283 (0.019) 0.271 (0.011) 0.283 (0.014) 0.273 (0.011)

AUC-PR 0.206 (0.002) 0.205 (0.002) 0.205 (0.002) 0.206 (0.003) 0.204 (0.002)
AUC-ROC 0.406 (0.008) 0.402 (0.010) 0.400 (0.009) 0.403 (0.011) 0.397 (0.009)

Table 4: Evaluation on the dataset PPMI with relational template aggregate by Hsu-Lyuu-Flandrin-Li
distance. The mean and standard deviation are displayed for each setting of parameters with each
model running 5 times. K is number of iterations and J is number of folds of the stacking method.

Stacked RDN-Boost (K,J)

2 trees RDN-Boost (1,3) (2,3) (1,5) (2,5)

Accuracy 0.878 (0.028) 0.876 (0.022) 0.876 (0.020) 0.886 (0.016) 0.865 (0.022)
Recall 0.764 (0.123) 0.770 (0.131) 0.751 (0.140) 0.816 (0.111) 0.707 (0.095)

Precision 0.840 (0.030) 0.836 (0.051) 0.852 (0.052) 0.831 (0.044) 0.845 (0.028)
F1 0.795 (0.063) 0.793 (0.056) 0.789 (0.056) 0.817 (0.046) 0.766 (0.051)

AUC-PR 0.842 (0.025) 0.839 (0.034) 0.842 (0.044) 0.850 (0.026) 0.794 (0.040)
AUC-ROC 0.916 (0.019) 0.921 (0.015) 0.915 (0.039) 0.915 (0.023) 0.879 (0.034)

10 trees

Accuracy 0.917 (0.005) 0.920 (0.013) 0.917 (0.003) 0.914 (0.008) 0.914 (0.009)
Recall 0.854 (0.028) 0.866 (0.064) 0.859 (0.036) 0.830 (0.035) 0.836 (0.026)

Precision 0.881 (0.011) 0.882 (0.020) 0.878 (0.023) 0.892 (0.012) 0.886 (0.019)
F1 0.867 (0.010) 0.872 (0.026) 0.868 (0.008) 0.859 (0.016) 0.860 (0.015)

AUC-PR 0.927 (0.009) 0.937 (0.010) 0.936 (0.008) 0.941 (0.003) 0.933 (0.011)
AUC-ROC 0.966 (0.009) 0.972 (0.006) 0.971 (0.005) 0.972 (0.001) 0.968 (0.006)

20 trees

Accuracy 0.921 (0.007) 0.921 (0.008) 0.927 (0.014) 0.927 (0.005) 0.920 (0.006)
Recall 0.884 (0.027) 0.85 (0.037) 0.868 (0.039) 0.866 (0.015) 0.851 (0.024)

Precision 0.869 (0.015) 0.895 (0.010) 0.898 (0.019) 0.900 (0.005) 0.892 (0.015)
F1 0.876 (0.012) 0.871 (0.016) 0.883 (0.024) 0.883 (0.008) 0.871 (0.011)

AUC-PR 0.950 (0.003) 0.954 (0.005) 0.952 (0.005) 0.949 (0.007) 0.945 (0.003)
AUC-ROC 0.977 (0.002) 0.980 (0.002) 0.979 (0.003) 0.978 (0.003) 0.976 (0.002)
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Table 5: Evaluation on the dataset UW-CSE with relational template aggregate by Hsu-Lyuu-Flandrin-
Li distance. The mean and standard deviation are displayed for each setting of parameters with each
model running 5 times. K is number of iterations and J is number of folds of the stacking method.

Stacked RDN-Boost (K,J)

2 trees RDN-Boost (1,3) (2,3) (1,5) (2,5)

Accuracy 0.959 (0.014) 0.953 (0.004) 0.960 (0.012) 0.964 (0.017) 0.951 (0.005)
Recall 0.984 (0.036) 0.984 (0.036) 1.0 (0.0) 0.984 (0.036) 0.984 (0.036)

Precision 0.856 (0.040) 0.837 (0.008) 0.852 (0.041) 0.874 (0.048) 0.832 (0.016)
F1 0.915 (0.028) 0.904 (0.011) 0.920 (0.023) 0.925 (0.035) 0.901 (0.012)

AUC-PR 0.947 (0.017) 0.924 (0.045) 0.933 (0.051) 0.956 (0.015) 0.894 (0.075)
AUC-ROC 0.990 (0.004) 0.986 (0.007) 0.988 (0.009) 0.992 (0.003) 0.980 (0.015)

10 trees

Accuracy 0.964 (0.006) 0.966 (0.013) 0.964 (0.006) 0.966 (0.004) 0.964 (0.006)
Recall 0.992 (0.018) 0.984 (0.036) 0.992 (0.018) 1.0 (0.0) 0.992 (0.018)

Precision 0.867 (0.014) 0.879 (0.030) 0.867 (0.014) 0.868 (0.014) 0.867 (0.0145)
F1 0.925 (0.013) 0.928 (0.029) 0.925 (0.013) 0.929 (0.008) 0.925 (0.013)

AUC-PR 0.993 (0.005) 0.979 (0.024) 0.991 (0.002) 0.986 (0.007) 0.989 (0.005)
AUC-ROC 0.998 (0.002) 0.995 (0.005) 0.997 (0.001) 0.997 (0.002) 0.997 (0.001)

20 trees

Accuracy 0.966 (0.004) 0.968 (0.008) 0.959 (0.008) 0.964 (0.0) 0.964 (0.006)
Recall 1.0 (0.0) 0.992 (0.018) 0.976 (0.036) 1.0 (0.0) 0.992 (0.018)

Precision 0.868 (0.014) 0.880 (0.018) 0.859 (0.005) 0.862 (0.0) 0.867 (0.014)
F1 0.929 (0.008) 0.932 (0.017) 0.914 (0.018) 0.926 (0.0) 0.925 (0.013)

AUC-PR 0.992 (0.005) 0.995 (0.004) 0.993 (0.005) 0.991 (0.002) 0.991 (0.009)
AUC-ROC 0.997 (0.002) 0.999 (0.001) 0.998 (0.002) 0.997 (0.001) 0.998 (0.002)

The improvement of performance is not statistically significant contrary to our hypothesis and
expectations. Most importantly, the improvement is not consistent through all settings of the number
of iterations K and the number of folds J of the stacking method. There appears to be no discernable
pattern in the results that would provide a deeper understanding of the effects of stacking. From
tables 3 and 4, it can be seen that though the variation of the number of trees of RDN-Boost changes
its learning ability, it still performs fairly well on both data sets. The selected data sets may be not
complex enough for the strong base learner RDN-Boost so that there is not much space left for the
stacking method to improve.

As analyzed in Fast et al. [7], on synthetic data, RDN gets lower learning bias and higher inference
bias; stacked graphical learning gets higher learning bias and lower inference bias. Combining them
together may not necessarily improve the overall performance since their under-performance on
inference and learning respectively also decides the final performance. On real data, it shows that
stacked graphical learning gets much lower inference variance than RDN which is not obvious in our
experiments either. Since the system was run only 5 times under each setting to get the mean and
standard deviation, more runs may be required to get a precise evaluation of variance.

5 Conclusion

Initial results clearly show that the approach of combining RDN-Boost with stacking method does
not perform significantly better than the baseline i.e. RDN-Boost as expected. The reasons might
be from the design of the approach or the complexity of data. The relational template is key part
of the stacking method. A proper relational template could potentially facilitate the combination
of RDN-Boost and stacking method. On a different note, the data sets in the section 4 may not
necessarily be complex. Since RDN-Boost is a strong base learner, though the paper [6] mentioned
that boosted approach introduces inference bias, the inference bias on those data sets might not be
significant enough in performance. Investigating this deeper is an interesting direction.

8



Acknowledgments

SY, DSD and SN gratefully acknowledge DARPA Minerva award FA9550-19-1-0391. Any opinions,
findings, and conclusion or recommendations expressed in this material are those of the authors and
do not necessarily reflect the view of the DARPA or the US government.

Broader Impact

Machine learning models encounter issues of bias, variance and noise while handling real problems.
Advancing boosted-RDN with stacking method attempts to leverage strengths of different deliberate
approaches to target multiple aspects of the error. An approach may be outstanding at one part
of solving problems while the cooperation of different approaches makes the whole system more
complete and robust.
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