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Abstract— We study how robots navigate dynamic environ-
ments while following instructions. Unlike prior work where
the instructions only specify the navigation goals in static
environments, our work focuses on instructions that specify
robot behaviors (e.g., “yield to a pedestrian”). This problem
poses two key challenges: (1) the robot must learn to satisfy
an exponential number of specification combinations across
different instructions, and (2) the robot must reasoning about
multiple specifications concurrently rather than processing
them sequentially when operating in dynamic environments.
To address these challenges, we propose ComposableNav, based
on the insight that following an instruction amounts to inde-
pendently satisfying its constituent specifications, each satisfied
by a different motion primitive. ComposableNav uses diffusion
models to individually learn these primitives and composes them
in parallel at deployment to generate an instruction-following
trajectory. For example, “overtake the pedestrian in front and
stay on the sidewalk” is achieved by composing the primitives
“overtake the pedestrian” and “stay on the sidewalk.” In
addition, we introduce a two-stage training procedure consisting
of supervised pre-training followed by reinforcement learning
fine-tuning, enabling effective learning of each motion primitive
without requiring primitive-specific demonstrations. Through
both simulation and real-world experiments, we show that
ComposableNav enables robots to follow a broad range of in-
structions and significantly outperforms both non-compositional
VLM-based policies and baselines that compose costmaps.

I. INTRODUCTION

Developing robots that can effectively navigate by follow-
ing instructions has been a long-standing goal in robotics
research. Existing work has predominantly tackled the
instruction-following navigation problem in static environ-
ments [1], [2], [3], with instructions specifying the navigation
goals. In contrast, we focus on instruction-following navi-
gation in dynamic environments. Specifically, we consider
the under-explored settings where the instructions describe
specific robot behaviors (e.g., “yield to a pedestrian”) with
respect to the other dynamic obstacles or agents in the
environments. Addressing this problem requires developing
methods capable of grounding high-level instructions into
fine-grained, low-level actions that account for the dynamic
behaviors of other agents. Solving this problem would allow
end users (human or AI agents) to customize robotic behav-
iors beyond their default settings, in ways that align with
user preferences and nuanced social interactions.
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Two major challenges arise when addressing instruction-
following navigation in dynamic environments. First, a single
instruction may contain multiple specifications for the robot
to follow, and as the robot’s capabilities expand, the potential
combinations of these specifications grow exponentially. This
exponential increase makes popular learning-based methods,
such as imitation learning [4] or reinforcement learning [5],
[6], impractical as they demand substantial data and com-
putational resources. Second, in dynamic environments, the
effects of individual specifications become interleaved along
the robot’s trajectory, and multiple specifications can si-
multaneously influence the robot’s behavior. This challenge
requires methods to reason about multiple specifications in
parallel, rather than treating each one in sequence [7], [8].
With the advancements of large vision language models
(VLMs), leveraging the strong reasoning capabilities of these
VLMs may appear to be promising. However, these methods
struggle with fine-grained control to align the robot behaviors
with instructions in dynamic environments [9], [10], [11].

To address these challenges, we build our solution upon
the idea of composition: following an instruction often
amounts to independently satisfying each of its constituent
specifications. For example, the instruction “overtake the
pedestrian in front and stay on the sidewalk” can be de-
composed into two specifications: “overtake the pedestrian”
and “stay on the sidewalk.” This insight allows us to simplify
the problem. Instead of training a single model to handle all
possible combinations of specifications—which can grow ex-
ponentially—we train individual motion primitives for each
specification. At deployment time, we compose the relevant
primitives in parallel based on the instruction. This approach
reduces complexity, requiring only a number of primitives
that scales linearly with the number of specification types.

We propose ComposableNav, a composable, diffusion-
based motion planner. The key insight behind our approach
is that diffusion models [12], [13] can effectively represent
complex probability distributions and multiple models can
be composed to form a joint distribution. This enables
us to model each motion primitive as a distribution over
trajectories that satisfy a instruction specification. At de-
ployment time, a trajectory is sampled from the composed
joint distribution, resulting in behavior that simultaneously
satisfies all instruction specifications. To learn each motion
primitive, we introduce a two-stage training procedure con-
sisting of supervised pre-training followed by reinforcement
learning fine-tuning. This approach addresses the challenge
of the lack of demonstration data for individual primitives.
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Fig. 1: Compose motion primitives for the Instruction-Following Navigation in Dynamic Environments problem.
Given an instruction that specifies how a robot should interact with entities in the scene, ComposableNav leverages the
composability of diffusion models to compose motion primitives to generate instruction-following trajectories.

Finally, to ensure real-time performance, we incorporate
a model predictive controller (MPC) [14] for low-latency
action execution and introduce a fast replanning strategy.

We demonstrate the effectiveness of ComposableNav
through experiments in both simulation and the real world.
With just six motion primitives (See Table I for the in-
struction list), we build a testbed with 24 different scenarios
composed from the atomic instructions representing different
instructions. We show that ComposableNav excels at follow-
ing unseen instructions compared to baseline approaches.

Our main contributions are summarized as follows:
1) We introduce the use of composition as a strategy

for instruction-following navigation in dynamic envi-
ronments, making the problem more tractable under
limited training data and computational resources.

2) We propose a diffusion-based learning method to
model motion primitives as probability distributions,
enabling their composition at deployment time.

3) We develop a two-stage training procedure, combin-
ing supervised pre-training and reinforcement learning
fine-tuning, that effectively learns motion primitives
without the need for specialized demonstration datasets
for each primitive.

II. PROBLEM FORMULATION

We consider the problem of instruction-following robot
navigation in dynamic environments, where the objective
is to generate a motion trajectory τ that follows a given
instruction I , based on the robot’s observation O of the
environment. We represent the motion trajectory τ as a
sequence of 2D waypoints at fixed-time intervals, which are
then tracked by a model predictive controller to produce fine-
grained actions in real time. The observation O encodes the
state of entities relevant to the instruction, such as the current
and predicted positions of dynamic agents. Note that other
representations are also possible, such as full SE(3) poses
for τ or RGB images for O.

In this work, we assume an instruction I can be de-
composed into a set of independent specifications I →
⟨ϕ(1), ϕ(2), . . . , ϕ(k)⟩. Each specification ϕ(i) : τ×O → [0, 1]
evaluates whether the trajectory meets the corresponding
requirement, returning 1 if it does and 0 otherwise. To

determine whether a trajectory τ follows an instruction I ,
τ must satisfy all relevant specifications. Formally,

τ follows I iff ∀i ∈ [1, · · · , k], ϕ(i)(O, τ) = 1. (1)

Solving this problem is challenging because the trajectory
must simultaneously satisfy all specifications, whose com-
binations can grow exponentially. In the following sections,
we explain how leveraging the diffusion models enables us
to compose motion primitives and generate trajectories that
can follow instructions during robot deployment.

III. PRELIMINARIES

A. Conditional Diffusion Models

In this work, we consider conditional diffusion probabilis-
tic models [12], [13], [15], which belong to a family of
generative models trained to represent a conditional distri-
bution p(x | c), where c is the corresponding context. These
models are trained to reverse a forward diffusion process
q(xt | xt−1) that gradually adds Gaussian noise to the data
x0 ∼ p(x|c). To learn this reverse process, the model is
trained to predict the noise at each step t using a denoising
network, fθ(xt, t, c), where xt is the noisy data at step t. The
network is optimized using the following training objective:

LMSE(θ) = Ex0,ϵ,t,c

[
∥ϵ− fθ(xt, t, c)∥2

]
, (2)

which is justified as maximizing a variational lower bound
on the log-likelihood of the data [12].

At inference time, the model generates a data sample by
starting from Gaussian noise xT ∼ N (0, I) and progressively
denoising it using the learned denoising network for T steps.
The reverse process at each timestep t follows a Gaussian
distribution:

pθ(xt−1 | xt, c) = N (xt − fθ(xt, t, c), σ
2
t I), (3)

where σ2
t I is a time-dependent covariance matrix treated as

a hyperparameter [16]. This iterative process continues until
a final sample x0 is obtained, which approximates the true
conditional distribution p(x | c).



B. Denoising Diffusion Policy Optimization (DDPO)

ComposableNav follows the denoising diffusion policy
optimization technique (DDPO) proposed by Black et al [17]
to use RL to fine-tune diffusion models to generate the
motion primitives corresponding to the atomic instructions.
DDPO models the multi-step denoising process as a multi-
step Markovian Decision Process (MDP), defined as a tuple
M = ⟨S,A, ρ0,P, R⟩, where S is the state space, A is the
action space, ρ0 is the distribution of initial states, P is the
transition kernel, and R is the reward function. We denote the
timestep of this multi-step MDP as i. The denoising process
is mapped into this MDP as follows:

si ≜ ⟨xt, t, c⟩ ∈ S,
ai ≜ xt−1 ∈ A,

π(ai | si) ≜ pθ(xt−1 | xt, c),

ρ0(s0) ≜ ⟨N (0, I), δT , p(c)⟩,
P (si+1 | si, ai) ≜ ⟨δxt−1 , δt−1, δc⟩,

R(si, ai) ≜

{
r(x0, c) if t = 0,

0 otherwise,
(4)

where δy denotes the Dirac distribution with nonzero density
only at y.

The key insight behind this technique is that the reverse
process in a diffusion model is a Markovian process, where
each denoising step pθ(xt−1 | xt, c) is modeled as a Gaussian
distribution (see Eq. 3). By interpreting each denoising step
as the policy π(ai | si) in an MDP, the policy itself becomes
Gaussian, which allows for the exact evaluation of log-
likelihoods and their gradients with respect to the diffusion
model parameters. As a result, this formulation enables the
use of policy gradient methods such as Proximal Policy
Optimization (PPO) [18] to optimize the diffusion model’s
denoising network.

The DDPO algorithm alternates between (1) collecting
denoising trajectories ⟨xT , xT−1, . . . , x0⟩ via sampling and
(2) updating the model parameters using gradient descent.
Finally, the policy gradient objective used in DDPO can be
expressed as:

L = E

[
T∑

t=1

pθ(xt−1 | xt, c)

pθold(xt−1 | xt, c)
∇θ log pθ(xt−1 | xt, c)r(x0, c)

]
,

(5)
where the expectation is taken over denoising trajectories
generated by the previous model parameters θold.

IV. COMPOSABLENAV

In this section, we introduce ComposableNav, a compos-
able, diffusion-based motion planner. As shown in Fig. 2,
ComposableNav learns and composes motion primitives
from instructions to generate trajectories that satisfy the
corresponding specifications. We begin by describing how
ComposableNav learns individual motion primitives without
requiring primitive-specific demonstration data in Sec. IV-
A. Next, we explain how these primitives are composed

to follow instructions in Sec. IV-B. Finally, we present
additional techniques that enable ComposableNav to operate
in real-time during deployment in Sec. IV-C.

A. Learning Motion Primitives Without Primitive-Specific
Demonstration Data

Diffusion planners are typically trained in a supervised
manner using large-scale demonstration datasets [19], [20],
[21]. However, our problem lacks a specialized dataset for
different robot motion primitives. It prevents us from fol-
lowing the common practice to train these motion primitives
through supervised learning.

To address this problem, we leverage two key design
choices. First, although we lack specialized datasets for
individual motion primitives, it is relatively easy to obtain
a general-purpose navigation dataset consisting of diverse,
collision-free, and goal-reaching trajectories in dynamic en-
vironments — either from existing real-world datasets [22],
[23] or simulation [24]. Such datasets allow us to pre-train
a base diffusion planner to generate diverse and feasible
trajectories across various environments. Second, inspired
by denoising diffusion policy optimization (DDPO) [17],
we adopt reinforcement learning (RL) techniques to fine-
tune the pre-trained base model for different primitives given
primitive-specific reward functions. The core intuition is that
evaluating whether a trajectory aligns with an instruction
specification (e.g., using rule-based heuristics or black-box
vision-language models (VLMs)) is often easier than directly
collecting such a trajectory. Building on these insights, we
propose a two-stage procedure involving supervised pretrain-
ing followed by RL fine-tuning.

Supervised Pre-training. To pre-train a base diffusion
model, we first generate diverse trajectory data in simulation
for simplicity and scalability. Following prior works [19],
[24], we randomly synthesize environments with varying
entities (e.g., dynamic agents or terrain regions) and goal
locations. We then use a geometric planner to generate
a diverse set of collision-free, goal-reaching, and smooth
trajectories. To account for dynamic environments, these
trajectories must be time-dependent, so we employ a spatio-
temporal Hybrid A* planner. In addition, we also want
to capture the distribution of diverse feasible trajectories
within the same environment (e.g., both detouring left or
right around an obstacle in front are feasible trajectories).
Hence, we use a Rapidly-Exploring Random Tree planner
to randomly generate candidate trajectories and then select
waypoints along the trajectories as subgoals for Hybrid A*
to track. We also vary the hyperparameters for the planners
(e.g., velocity cost) to further enhance trajectory diversity.

Once a diverse set of time-dependent trajectories is gen-
erated, we pretrain a base diffusion model via supervised
learning, using the objective in Eq. 2. The model learns a
conditional denoising network f (base)

θ (τt, t, O), which pre-
dicts the noise ϵ to denoise the trajectory τt at step t,
conditioned on environment observations O. We adopt an
object-centric representation for the observations, encoding
each entity separately and then using a transformer encoder
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Fig. 2: ComposableNav framework. The training phase learns multiple motion primitives corresponding to different
instruction specifications. It consists of a supervised pre-training stage followed by reinforcement learning fine-tuning. During
deployment, ComposableNav composes the primitives based on the given instruction specifications using a diffusion-based
denoising process to generate instruction-following navigation trajectories.

to attend over these embeddings to produce a global context
feature. To handle varying trajectory lengths (e.g., due to
differing goal locations), we pad shorter trajectories with the
final goal position to ensure uniform length during training.

RL Fine-tuning. We then fine-tune the base model sep-
arately for each motion primitive using RL, following the
DDPO approach described in Sec. III-B. For each primitive,
we randomly generate simulation environments containing
only the entities relevant to the corresponding instruction
specification. The diffusion model then generates trajectories
for these environments, which are evaluated using a reward
function based on how well they align with the instruction.
While the reward function can take various forms (e.g.,
black-box VLMs or RLHF-style reward models), we adopt
a simple rule-based heuristic approach, as the primitives
considered in this work are straightforward to evaluate. The
resulting trajectories and rewards are stored in a replay
buffer, and the model is updated using the Proximal Policy
Optimization algorithm [18]. Finally, after fine-tuning, we
obtain multiple diffusion models fϕ(i)

θ (τt, t, O), each repre-
senting a motion primitive associated with a specification
ϕ(i). These models can be composed at deployment time
to generate trajectories that follow more complex, unseen
combinations of instructions.

B. Trajectory Generation via Composing Motion Primitives

ComposableNav generates an instruction-following mo-
tion trajectory τ by sampling from the conditional distri-
bution p(τ |ϕ(1), o(1), · · · , ϕ(k), o(k)), where each ϕ(i) is a
specification extracted from the instruction I , i.e., I →
⟨ϕ(1), · · · , ϕ(k)⟩, and each o(i) is the environment obser-
vation corresponding to ϕ(i). We assume that both the
specifications and the environment observations can be ex-
tracted using off-the-shelf large language models and vision
foundation models; the details of these extraction processes

are left as implementation details not discussed in this work.
Following prior work [25], we can factorize the condi-

tional distribution as follows:

p(τ |ϕ(1), o(1), · · · , ϕ(k), o(k))

∝ p(τ, ϕ(1), o(1), · · · , ϕ(k), o(k))

= p(τ)

k∏
i=1

p(ϕ(i), o(i) | τ)

∝ p(τ)

k∏
i=1

p(τ | ϕ(i), o(i))

p(τ)

(6)

Here, each p(τ | ϕ(i), o(i)) is represented by a motion
primitive learned using a diffusion model with denoising net-
work fϕ(i)

θ (τt, t, o
(i)). In contrast, p(τ) is the unconditioned

motion primitive obtained by replacing the observation with
a null input ∅, i.e., fϕ(i)

θ (τt, t,∅), following the classifier-
free guidance approach [15].

Based on Eq. 6, we compose motion primitives by sum-
ming the predicted noise outputs from the denoising net-
works for each specification, with the user-defined hyper-
parameter wi controlling the guidance strength for the ith
primitive [25], [19]. Specifically, we compute the composed
noise ϵ̂ as:

ϵ̂ =
1

k

i=k∑
i=1

fϕ(i)

θ (τt, t,∅)

+

k∑
i=1

wi(f
ϕ(i)

θ (τt, t, o
(i))− fϕ(i)

θ (τt, t,∅))

(7)

Finally, ComposableNav generates trajectories by itera-
tively applying the reverse diffusion process. Starting from



TABLE I: Instruction Specifications for Navigation Motion Primitives

Motion Primitive (MP) Instruction Specification

Pass a person from the left (L) The robot should pass the person from the left side.

Pass a person from the right (R) The robot should pass the person from the right side.

Follow behind a person (F) The robot should stay in a specific region behind the person relative to the person’s position.

Yield to a person (Y) The robot should not cross the region in front of the person.

Walk through a region (W) The robot’s trajectory should overlap with the specified region.

Avoid walking through a region (A) The robot’s trajectory should not overlap with the specified region.

a noisy trajectory τT ∼ N (0, I), we follow Eq. 3:

pcompose(τt−1 | τt, ϕ(1), o(1), · · · , ϕ(k), o(k)) = N (τt−ϵ̂, σ2
t I),
(8)

and after T denoising steps, the process yields a trajectory
τ0 that is more likely to satisfy all specifications of the given
instruction.

C. Real-time Deployment

To enable ComposableNav to run in real-time on a robot,
we employ a model predictive controller (MPC) [14] to
track the time-dependent trajectories generated by the com-
posed diffusion models. During navigation, the MPC uses
a kinematic model to predict the robot’s future positions
and minimizes the difference between these predictions and
the target time-dependent trajectory over a short planning
horizon. It also enforces constraints on acceleration and
velocity to ensure that each control input is feasible and safe
for execution.

To support real-time replanning, ComposableNav draws
inspiration from adaptive online replanning methods [26].
The key insight is that the current planned trajectory is likely
already close to a good solution. Instead of discarding the
current trajectory and replanning from scratch, Composable-
Nav perturbs it by applying a few steps of the diffusion
forward process, then partially denoises it to generate an up-
dated trajectory conditioned on the latest observations. This
procedure uses significantly fewer diffusion steps compared
to full trajectory generation from scratch, allowing the system
to efficiently replan in real-time.

V. EXPERIMENT

In this section, we present experiments and results to
evaluate ComposableNav in simulation and real-world. We
are guided by the following research questions:

1) Can ComposableNav learn individual motion primi-
tives that satisfy each instruction specification without
relying on demonstration data?

2) To what extent can ComposableNav compose motion
primitives to generate trajectories that satisfy unseen
combinations of specifications, in comparison to base-
line approaches?

3) Can ComposableNav operate in real-time when de-
ployed on a real-world robot and enable the robot to
follow instructions in dynamic environments involving
pedestrian interactions?

A. Experiment Setup

Motion Primitives. In this work, we consider six instruc-
tion specifications representing common navigation motion
primitives, summarized in Tab. I. Each motion primitive is
associated with specific properties that a robot’s trajectory
must satisfy. To verify compliance with these properties,
we develop a set of rule-based checks customized for each
motion primitive.

Simulation Environments. We evaluate ComposableNav
in a 20m x 20m 2D simulation arena, with dynamic humans
modeled as spheres and regions modeled as rectangles. For
each instruction, 20 environments are randomly initialized,
assigning initial positions and speeds to the entities based on
the specific requirements of the instruction. The simulation
operates with a control frequency of ∆t = 0.1s, and each
episode lasts a maximum of 300 timesteps, equivalent to 30.0
seconds.

ComposableNav Setup. Each diffusion model is trained
for 25 diffusion steps using a cosine noise schedule to
generate a fixed-length, time-dependent trajectory. The model
is conditioned on either the observed human trajectory or a
static region. The human trajectory consists of a sequence
of time-dependent positions estimated under the constant
velocity assumption, while the static region is represented
as a rectangle defined by the positions of its four cor-
ners. Once the composed diffusion models generate a clean
trajectory, we crop its endpoint to the nearest waypoint
within a specified radius of the goal. We then implement
Model Predictive Path Integral (MPPI) [14], a sampling-
based MPC controller, to track the planned trajectory, and
ComposableNav replans trajectories at a fixed interval to
ensure continuous adaptation.

Metrics. We evaluate the success rate of all methods using
four metrics: 1) Success Rate (SR), 2) Instruction Alignment
(IA), 3) Free of Collision (CF), and 4) Goal Reaching (GR).
Instruction Alignment (IA) checks if the executed trajectory
satisfies all instruction specifications, where we use a rule-
based method to identify whether the trajectory aligns with
the instruction. A trajectory is considered successful (SR=1)
if it meets all three criteria: following the instructions (IA=1),
avoiding collisions (CF=1), and reaching the goal (GR=1).

B. Learning Motion Primitive

We first examine whether our proposed two-stage training
procedure allows diffusion models to learn individual motion
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TABLE II: Performance of Pre-trained and Fine-tuned Dif-
fusion Primitives in the Two-Step Training Procedure

MP Pre-trained Model Fine-tuned Model

SR(%)↑ IA(%)↑ CF(%)↑ GR(%)↑ SR(%)↑ IA(%)↑ CF(%)↑ GR(%)↑

L 44.0 44.0 100.0 100.0 100.0 100.0 100.0 100.0
R 37.0 37.0 100.0 100.0 100.0 100.0 100.0 100.0
F 27.0 27.0 100.0 100.0 99.0 100.0 100.0 99.0
Y 48.0 48.0 100.0 100.0 100.0 100.0 100.0 100.0
W 34.0 34.0 100.0 100.0 100.0 100.0 100.0 100.0
A 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

primitives without being explicitly trained on demonstration
data. For each instruction specification listed in Tab. I, we
create simulation environments containing a single entity
with which the robot is instructed to interact. To evaluate
the performance of ComposableNav, we test both pre-trained
and fine-tuned diffusion models, as shown in Tab. II. Given
the stochastic nature of diffusion models, we run each
environment five times to reduce variance in the results.
The results indicate that the pre-trained models consistently
generate collision-free, goal-reaching trajectories, as they
have been trained on datasets explicitly designed for this
objective. Meanwhile, the fine-tuned models reliably follow
instruction specifications without a significant decline in their

ability to produce collision-free, goal-reaching trajectories.
Note that the pre-trained model achieves a 100% success rate
specifically for the ‘Avoid walking through a region’ motion
primitive, which is expected since avoiding designated re-
gions shares the same objective as avoiding collisions with
obstacles during the pre-training phase.

C. Composing Motion Primitives

TABLE III: Simulation Results

# MP Method SR(%)↑ IA(%)↑ CF(%)↑ GR(%)↑

2

VLM-Social-Nav [27] 6.9 6.9 95.6 100.0
CoNVOI [9] 9.4 10.0 92.5 100.0
BehAV [28] 16.9 17.5 100.0 90.6

ComposableNav (ours) 70.6 71.0 96.9 100.0

3

VLM-Social-Nav [27] 0.0 0.6 96.9 91.9
CoNVOI [9] 2.5 2.5 93.8 96.3
BehAV [28] 15.0 17.5 98.1 86.9

ComposableNav (ours) 62.0 62.1 97.6 100.0

4

VLM-Social-Nav [27] 0.6 1.3 81.9 82.5
CoNVOI [9] 0.6 0.6 87.5 88.1
BehAV [28] 6.3 10.6 91.3 70.0

ComposableNav (ours) 42.5 44.9 86.0 100.0

To investigate whether ComposableNav can compose mo-
tion primitives to generate trajectories that follow previously
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unseen combinations of instruction specifications, we de-
signed a testbed featuring 24 different specification com-
binations and quantitatively evaluated the performance of
ComposableNav on this testbed, as shown in Tab. III. These
combinations are categorized by complexity, ranging from
two to four specifications. The complexity increases with the
number of specifications, as the robot must account for more
entities, leading to increasingly complex trajectory behaviors.

We compare ComposableNav with three VLM-based base-
line methods in simulation: (1) VLM-Social-Nav [11], which
leverages a VLM to select an action from predefined behav-
iors and translate it into a social cost function for planning
with the Dynamic Window Approach (DWA) [29]; (2) CoN-
VOI [9], which uses a VLM to determine the robot’s next
waypoint from an annotated image and navigates to it using
the DWA; and (3) BehAV [28], which employs a VLM to
generate segmentation maps based on instructions and the
navigation environment, converting them into cost maps for
motion planning via a geometric planner. These baselines fall
into two categories: the first two treat the VLM as a black-
box policy that proposes a target action (e.g., next waypoint
or velocity) for a geometric planner to track, while the third
computes composable cost maps for planning.

We show the evaluation results in Tab. III and observe that
ComposableNav outperforms all baselines in overall success
rate by a significant margin. ComposableNav demonstrates
superior instruction-following capabilities and consistently
reaches the goal while maintaining comparable performance
in collision avoidance. Additionally, we find that methods
using VLMs as black-box policies generally perform poorly,
as VLMs are not trained for such tasks and struggle to gen-
erate instruction-aligned navigation behaviors, especially as
instructions become more complex. Finally, BehAV has the
lowest goal-reaching rate, suggesting that methods relying
on cost map composition often get stuck in local minima,
resulting in unsuccessful navigation.

D. Deploy on Real Robot

We deployed ComposableNav on a Clearpath Jackal robot
for real-world experiments. The robot is equipped with a
Zed 2i camera for tracking human positions, which are used

to estimate human trajectories as conditioning inputs for
the diffusion models, and an Ouster LiDAR for obstacle
detection, which the MPPI controller utilizes for collision
avoidance. All computations run entirely onboard, leveraging
an Intel i7-9700TE CPU and an NVIDIA RTX A2000 GPU.

To evaluate ComposableNav under real-world conditions,
we replicated the experimental setup used in our simulation
testbeds. For example, Fig. 4 illustrates scenarios where
the robot attempts to navigate through a doorway but be-
haves differently depending on the instruction. Since failure
cases in simulation—especially those caused by the diffusion
model’s difficulty in composing motion primitives—tend to
also fail in the real world, we focused our evaluation on
sim-to-real transferability by testing only scenarios that had
succeeded in simulation. To this end, we conducted 40 con-
trolled real-world trials, randomly selected from successful
simulation runs, and observed a success rate of 35 out of
40, indicating strong transfer performance. Additionally, we
profiled inference latency during deployment: the average
inference time was 0.4 seconds during initial planning (when
generating a plan from scratch), and just 0.06 seconds during
replanning (when refining an existing plan), enabling real-
time responsiveness.

We qualitatively analyzed failure cases of ComposableNav
and identified two issues. First, human tracking errors occur
when the person temporarily leaves the camera’s field of
view during turns, leading to misidentification despite a
nearest-neighbor heuristic. Second, significant differences
between replanned and previous paths cause the MPPI to
generate abrupt acceleration or deceleration, resulting in
jerky movements and overshooting. We hope to address these
issues in future work.

VI. RELATED WORK

A. Social Robot navigation

Social robot navigation focuses on enabling mobile robots
to move smoothly through dynamic human environments
while respecting social norms [27], [30]. These social norms
generally include maintaining a comfortable distance from
people to respect personal space, being polite by yielding to
pedestrians, and following common rules like walking on the
right side of the path [30]. Researchers have addressed this
challenge using a variety of methods, including geometric
rule-based approaches [31], [32], [33], [34], learning-based
methods [35], [36], [37], [38], [39], and hybrid strategies
that combine both [40], [41]. Recently, the use of vision-
language models (VLMs) has gained traction in this field.
One line of research leverages VLMs to directly propose
robot actions, such as determining the next waypoints [9]
or setting velocity constraints [11]. This approach takes
advantage of the commonsense reasoning capabilities of
VLMs to extract contextual information about the social
environment from images [42] — information that is often
challenging to obtain using traditional methods. However,
VLMs currently face significant latency issues, making them
unsuitable for the rapid decision-making required in dynamic
social environments. Another line of research employs VLMs



to generate composable cost maps [28], which can be used
with fast geometric planners to run in real time. While this
approach addresses the latency issue, effectively composing
cost maps to enable successful planning remains a challenge.
In particular, ensuring the planner avoids local minima and
generates a desirable trajectory can be difficult, especially
when the optimal path requires navigating through regions
that deviate significantly from typical, easily sampled routes.

B. Vision-Language Navigation/Action (VLN/VLA)

Vision-Language Navigation (VLN) [1], [2], [3] and
Vision-Language Action (VLA) [43] integrate natural lan-
guage understanding with visual perception to enable agents
to navigate and perform tasks in 3D environments. VLN
focuses on navigation guided by language instructions, while
VLA extends to a broader range of tasks like object manip-
ulation and interaction.

Early works introduced benchmarks and simulation envi-
ronments [44], [45], [46], [47], [48], [49], [50] to train agents
to navigate by grounding instructions in visual and spatial
contexts [51], [52], [53], [54], [55], [56], [57], [58]. Recent
approaches leveraging large vision-language models (VLMs)
have advanced generalization beyond existing datasets, im-
proving performance in novel and real-world settings [59],
[60], [61], [62], [63], [64], [65]. Despite these advancements,
both VLN and VLA overlook the social aspects of instruc-
tions and actions, leading to a significant limitation: the
solutions developed by these methods fail to account for time
sensitivity. In contrast, instruction-following solutions for
social navigation must be time-critical to operate effectively
in dynamic social human environments.

C. Diffusion for motion planning

Diffusion models [13], [12], [66] have gained popularity
in robotics for motion planning tasks [67], [20]. Their
ability to capture multimodal action distributions, handle
high-dimensional outputs, and ensure stable training makes
them well-suited for learning robot action policies [21].
Beyond these strengths, diffusion models offer the unique
advantage of allowing their sampling process to be guided
after training [68], [69]. In motion planning, this is achieved
by framing the problem as planning-as-inference [24], [16],
where classifier guidance [70] directs sampling from a pos-
terior distribution to generalize actions beyond the training
set. However, classifier-guidance requires a separate clas-
sifier, which can be challenging to obtain. Classifier-free
guidance [15] addresses this limitation by incorporating
conditional information directly into the diffusion model,
removing the need for an external classifier. Potential-based
Diffusion Motion Planning (PBDiff) [19] further demon-
strates that diffusion models trained with classifier-free guid-
ance can be composed together at inference time to generate
new motion plans. Although diffusion models are trained
on large dataset demonstrations, sampling specific behaviors
— like consistently overtaking from the left or right —
remains challenging. Denoising Diffusion Policy Optimiza-
tion (DDPO) [17] addresses this by framing denoising as

a multistep decision-making process, using policy gradient
methods (e.g. PPO [18]) to fine-tune diffusion models for
specific tasks. Inspired by PBDiff and DDPO, we pre-train
a base diffusion model and finetune it with reinforcement
learning objectives. Finally, we use classifier-free guidance
to sample desired social navigation behaviors through a
composition of finetuned diffusion models.

VII. CONCLUSION, LIMITAITONS, FUTURE WORKS

We presented ComposableNav, a composable, diffusion-
based motion planner for instruction-following navigation
in dynamic environments. Unlike traditional methods, it
decomposes instructions into specifications and composes
motion primitives, simplifying training and improving gen-
eralization. ComposableNav has several limitations. First,
the quality and diversity of pretraining data play a critical
role in model generalization; our current approach relies on
synthetic data generated in simulation, which may not fully
capture the complexity of real-world environments. Second,
the reward functions used during reinforcement learning fine-
tuning are handcrafted and task-specific, limiting scalabil-
ity to more abstract or ambiguous instructions. Third, our
method assumes that instruction specifications and relevant
entities can be accurately extracted by external perception
and language models, which may not always hold in practice
due to perception noise or ambiguous language. In future
work, we aim to incorporate real-world navigation datasets to
improve pretraining diversity, explore learning reward func-
tions via vision-language models for greater scalability, and
enhance robustness to perception errors through integrated
uncertainty modeling and adaptive control.
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