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Abstract

Convolutional neural networks (CNNs) have demonstrated great capability of solv-1

ing various computer vision tasks with nice prediction performance. Nevertheless,2

the higher accuracy often comes with an increasing number of model parameters3

and large computational cost. This raises challenges in deploying them in resource-4

limited devices. In this paper, we introduce block-wise separable convolutions5

(BlkSConv) to replace the standard convolutions in order to compress deep CNN6

models. First, BlkSConv expresses the standard convolutional kernel as an ordered7

set of block vectors each of which is a linear combination of fixed basis block8

vectors. Then it eliminates most basis block vectors and their corresponding coef-9

ficients to obtain an approximated convolutional kernel. Moreover, the proposed10

BlkSConv operation can be efficiently realized via a combination of pointwise and11

group-wise convolutions. Thus the constructed networks have smaller model size12

and fewer multiply-adds operations while keeping comparable prediction accu-13

racy. However, it is unknown how to search a qualified hyperparameter setting14

of the block depth and number of basis block vectors. To address this problem,15

we develop a hyperparameter search framework based on principal component16

analysis (PCA) to help determine these two hyperparameters such that the cor-17

responding network achieves nice prediction performance while simultaneously18

satisfying the constraints of model size and model efficiency. Experimental results19

demonstrate the prediction performance of constructed BlkSConv-based CNNs20

where several convolutional layers are replaced by BlkSConv layers suggested21

by the proposed PCA-based hyperparameter search algorithm. Our results show22

that BlkSConv-based CNNs achieve competitive performance compared with the23

standard convolutional models for the datasets including ImageNet, CIFAR-10/100,24

Stanford Dogs, and Oxford Flowers.25

1 Introduction26

In the past decade, Deep Learning (DL) has been the basis of many successes in artificial intelligence,27

including a variety of applications in computer vision, reinforcement learning, and natural language28

processing. One of the most popular deep neural networks is Convolutional Neural Network (CNN).29

With the help of various techniques such as residual connections and batch normalization, it is easy to30

train deep CNNs with many layers on powerful GPUs. While large-scale CNN models have achieved31

great successes, they require huge computational complexity and massive storage. For example,32

VGG16 (27) has 138 million parameters and requires 154700 million multiply-add operations33

(MAdds) to classify an image. It is a great challenge to deploy them in real-time applications,34

especially on devices with limited resources such as mobile phones and embedded systems. Thus,35

the prediction models are required be compact and fast while keeping acceptable accuracy. The main36

approach to be compact is the model compression which aims at establishing a tradeoff between37
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model efficiency and accuracy. In the area of model compression, methods to construct efficient and38

compact CNNs are mainly divided into two approaches: one approach is to compress trained CNNs39

and the other approach is to design new compact CNNs and train them from scratch. Many works40

based on the first approach suggested several techniques such as quantization (33), model pruning41

(6; 24), Huffman coding (6), and low rank factorization (12).42

Studies in the second approach mainly explored many ways for factorizing convolutions. For43

instance, Szegedy et al. (30) improved GoogLeNet (29) through factorizing convolutions with larger44

spatial filters by a two-layer convolutional architecture with smaller spatial filters. At present, most45

factorizing methods are usually performed via a combination of depthwise convolution, pointwise46

convolution, and groupwise convolution. For example, in (25), the depth-wise separable convolutions47

(DSCs) were proposed where the standard convolution is decomposed into a depth-wise convolution48

and a pointwise convolution. The ShuffleNets (36; 18) utilizes pointwise group convolution with49

channel shuffle to decompose the standard convolution. Moreover, many lightweight models based50

on DSCs or groupwise convolutions such as MobileNets (8; 23; 7) and ShuffleNets (36; 18) were51

proposed to greatly reduce computation cost while maintaining accuracy.52

In this paper, we follow the research path of the second approach and propose block-wise separable53

convolutions (BlkSConv) to replace standard convolutions. BlkSConv approximates a standard54

convolution as follows. A standard k × k ×M convolutional kernel can be represented as an ordered55

set of block vectors of size k × k × t. Since each block vector can be written as a linear combination56

of k2t basis vectors of size k × k × t, this standard convolutional kernel can be viewed as an ordered57

set of block vectors each of which is a linear combination of k2t basis block vectors. Then BlkSConv58

eliminates most basis block vectors and their corresponding coefficients to obtain an approximated59

convolutional kernel. As shown on the left of Figure 1, the extreme version of BlkSConv is called the60

basic BlkSConv where only one basis block vector is used. When carefully setting the depth of the61

block vector, that is the parameter t, an approximated convolution of fewer parameters can be obtained62

and the corresponding compact CNN has acceptable prediction performance compared to the standard63

convolutions. To increase the prediction accuracy of the basic BlkSConv, an enhanced version is64

proposed by increasing the number of basis block vectors, that is the parameter s, as shown on the65

right of Figure 1. However, adding too many basis block vectors will significantly increase the model66

size and computational cost. Thus there is a tradeoff between model efficiency/size and accuracy. To67

realize the full potential of the enhanced BlkSConv in trading-off model efficiency/size and accuracy,68

we propose a framework based on the principal component analysis to search for the hyperparameters69

t and s of each BlkSConv layer for the given standard convolutional network. The proposed search70

framework suggests a possible setting of parameters t and s such that the constructed model based on71

these selected hyperparameters may achieve high prediction accuracy while simultaneously satisfying72

the constraints of model size and model efficiency in terms of MAdds.73

To summarize, our main contributions are as follows. First, we develop a new convolutional layer74

called BlkSConv to approximate the standard convolutional layer. To approximate a standard convo-75

lutional kernel, BlkSConv divides the kernel into blocks and approximates each block by a linear76

combination of several fixed basis block vectors. The constructed networks have small model size77

and cost fewer multiply-adds operations while maintaining acceptable prediction accuracy. Then, we78

also develop a search framework to determine the block depth and the number of basis block vectors79

such that the corresponding networks with selected hyperparameters achieve comparable prediction80

performance while simultaneously satisfying the constraints of model size and model efficiency.81

We also present experimental results to demonstrate the performance of selected BlkSConv-based82

CNNs based on our proposed hyperparameter search algorithm. Our results show that selected83

BlkSConv-based CNNs achieve competitive performance compared with the standard convolutional84

models for the datasets including ImageNet, CIFAR-10/100, Stanford Dogs, and Oxford Flowers.85

2 Related Work86

Many efforts have been devoted to improve the efficiency of CNNs which could be roughly divided87

into three categories. First, model pruning is a popular method to improve efficiency of CNNs. In88

(6; 37), their methods remove redundancy in the trained CNN model by pruning connection. In89

(6; 21; 20; 35), the calculation amount of the trained model is compressed via quantization. In90

(17; 11; 16; 9; 28), model filters that have small contributions are removed and the corresponding91

trained model is fine-tuned to preserve the performance.92
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Figure 1: The proposed block-wise separable convolution and its enhanced version.

Second, many techniques are developed to factorize the standard convolutions. In (30), convolutions93

with larger spatial filters are factorized into two-layer convolutional architectures with smaller94

spatial filters. Through different combinations of depthwise convolution, pointwise convolution, and95

groupwise convolution, many well-known factorizing frameworks were developed. In (25), the depth-96

wise separable convolutions (DSCs) were proposed where the standard convolution is decomposed97

into a depth-wise convolution and a pointwise convolution. The ShuffleNets (36; 18) uses pointwise98

group convolution with channel shuffle to decompose the standard convolution. Moreover, many99

lightweight models based on DSCs or groupwise convolutions such as MobileNets (8; 23; 7) and100

ShuffleNets (36; 18) were proposed to greatly reduce computation cost while maintaining accuracy.101

Recently, neural architecture search-based methods (34; 32; 38; 39; 31) have been proposed to102

automatically construct network architectures. These methods search over a set of network hyperpa-103

rameters including different types of convolutional layers and kernel sizes, to find a network structure104

which satisfies optimization constraints such as inference speed. Major search frameworks include105

genetic-based methods (34) and reinforcement learning based methods (38). These techniques were106

used in state-of-the-art CNN architectures such as MnasNet (31) and MobileNetV3 (7).107

Convolution weights of trained CNNs are also analyzed in (1; 3; 26; 4). Following their analysis, sev-108

eral approaches toward reducing redundant weights were proposed. In (2; 12; 13), the convolutional109

kernels are approximated via low-rank factorization. In (4), the kernels are analyzed via principal110

component analysis.111

3 Block-wise Separable Convolutions (BlkSConv)112

For any natural number n, let [n] denote the set {1, 2, . . . , n}. In a standard CNN, each convolutional113

layer converts an input tensor I of size M ×X × Y into an output tensor O of size N ×X × Y114

by applying the filter kernels F1, F2, . . . , FN , each of size M × ℓ× ℓ with odd ℓ such that, for any115

x, y, j ∈ [X]× [Y ]× [N ],116

O(x, y, j) =

(ℓ−1)/2∑
s1=−(ℓ−1)/2

(ℓ−1)/2∑
s2=−(ℓ−1)/2

M∑
s3=1

I(x+ s1, y + s2, s3) · Fj(s1, s2, s3). (1)

During training, the weights of each kernel Fj are optimized via backpropagation. The total number117

of weight parameters to be optimized in each kernel Fj is ℓ2 ·M . In the subsequent work, we propose118

a framework to reduce the number of parameters of the standard convolutions while preserving its119

prediction performance. Then, in order to implement our new framework, we adopt a combination of120

pointwise and group-wise convolutions to efficiently realize the reduced convolutions. Combining121

these ideas, we introduce block-wise separable convolutions, denoted by BlkSConv. However,122

to generate a BlkSConv-based models, many hyperparameters should be determined for keeping123

prediction performance, model size, and model efficiency. Thus, we also propose an efficient124

hyperparameter search algorithm to select hyperparameters satisfying the given model constraints.125
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3.1 Expressing a standard convolution via a linear combination of block vectors126

In this section, we propose block-wise separable convolutions. First, each convolutional kernel Fj127

of size M × ℓ× ℓ can be expressed as a concatenation of M/t blocks Q(1)
j , Q

(2)
j , . . . , Q

(M/t)
j each128

of size ℓ × ℓ × t where Q
(k)
j (x, y, z) = Fj(x, y, z + (k − 1)t) for any x, y, z ∈ [X] × [Y ] × [t].129

We call t the block depth. Let {B1, B2, . . . , Btℓ2} be a set of basis block vectors. Each Q
(k)
j can130

be expressed uniquely as a linear combination of B1, B2, . . . , Btℓ2 , that is, there exist tℓ2 values131

P
(k)
j (i) ∈ R such that Q(k)

j =
∑tℓ2

i=1 P
(k)
j (i) ·Bi. In practice, tℓ2 may be large. In order to reduce132

the model size, we require the number of basis block vectors is fewer than or equal to a fixed number133

s with s < tℓ2. Now each Q
(k)
j is replaced by the following linear combination of B1, . . . , Bs, that134

is Q̂(k)
j =

∑s
i=1 P

(k)
j (i) · Bi. The corresponding convolutional kernel F̂j is the concatenation of135

M/t blocks Q̂(1)
j , . . . , Q̂

(M/t)
j . Therefore, the corresponding output tensor is136

Ô(x, y, j) =

(ℓ−1)/2∑
s1,s2=−(ℓ−1)/2

M∑
s3=1

I(x+ s1, y + s2, s3) · F̂j(s1, s2, s3). (2)

By Equation 2, the number of weight parameters in BlkSConv is s · (t · ℓ2 + M
t ). To significantly137

reduce model size, we set s = 1. Figure 1 left illustrates the operation of BlkSConv when s = 1.138

In order to achieve the minimal model size, t can be set as
√
M/ℓ and the number of parameters139

becomes 2ℓ
√
M while the parameter number of the standard and 1× 1 pointwise convolutions are140

Mℓ2 and M , respectively. Thus, the constructed BlkSConv-based CNNs have smaller model size141

than existing lightweight CNN models. Take the ResNet34 (10) as an example where, in the last142

stage of the ResNet-34, the convolutional kernel size is 3× 3 and the channel size is 512, that is ℓ = 3143

and M = 512. In this case, the ratio between the parameter size of the BlkSConv-based convolutions144

and the standard convolutions is approximately 0.0295.145

However, the prediction performance of the BlkSConv-based CNN with the smallest model size is146

usually worse than the standard CNNs. To increase accuracy, the number of basis block vectors147

should be increased, that is s > 1. Figure 1 right illustrates the operation of BlkSConv when s > 1.148

In this case, the number of parameters becomes 2sℓ
√
M . Let us take convolutions in the last stage149

of ResNet-34 as examples. Let us set t = 4 in the BlkSConv. Now the ratio between the parameter150

size of the BlkSConv-based convolutions and the standard convolutions is approximately 0.0356.151

Thus we can add at least 5 basis block vectors to increase prediction accuracy. In this case, the ratio152

between the parameter size of the BlkSConv-based convolutions with 5 basis block vectors and the153

standard convolutions is approximately 0.178. In the experimental section, we demonstrate that the154

BlkSConv-based convolutions with few basis block vectors have prediction performance as well155

as the standard convolutions on ImageNet or even outperform the standard convolutions on several156

datasets when the backbone CNNs are ResNets.157

The next problem is the computational efficiency of BlkSConv. If we compute the kernel F̂j first and158

perform a regular convolution according to the kernel F̂j , then it is obvious that the computational159

cost is larger than the cost for just performing a standard convolution. We will address this problem160

in the subsequent section.161

3.2 Implementation of BlkSConv via a combination of pointwise and group-wise convolutions162

In this section, we propose an efficient implementation method to realize BlkSConv. The flowchart163

of the proposed implementation is illustrated in Figure 2. To derive an efficient implementation for164

BlkSConv operation, we rewrite Equation 2 as follows.165
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Ô(x, y, j) =
∑
s1,s2

t∑
z=1

M/t∑
k=1

I(x+ s1, y + s2, z + (k − 1)t) · Q̂(k)
j (s1, s2, z) (3)

=
∑
s1,s2

t∑
z=1

M/t∑
k=1

I(x+ s1, y + s2, z + (k − 1)t) ·
s∑

i=1

P
(k)
j (i) ·Bi(s1, s2, z) (4)

=

s∑
i=1

∑
s1,s2

t∑
z=1

Bi(s1, s2, z)

M/t∑
k=1

P
(k)
j (i) ·

Ĩz(x+s1,y+s2,k)︷ ︸︸ ︷
I(x+ s1, y + s2, z + (k − 1)t)︸ ︷︷ ︸

J (z)(x, y, i): a point-wise convolution of Ĩz

. (5)

Let Ĩz(x, y, k) be a tensor of size X × Y ×M/t defined by Ĩz(x, y, k) ≜ I(x, y, z + (k − 1)t). We166

define J (z)(x, y, i) ≜
∑M/t

k=1 P
(k)
j (i) · Ĩz(x+ s1, y + s2, k) which is a point-wise convolution of Ĩz .167

Next, we define Ji(x, y, z) ≜ J (z)(x, y, i) and let J be the reshaped tensor which is the concatenation168

of J1, . . . , Js, that is J(x, y, z + (i− 1)t) = Ji(x, y, z). Now Equation 5 can be rewritten as169

Ô(x, y, j) =

s∑
i=1

∑
s1,s2

t∑
z=1

Bi(s1, s2, z) · J(x+ s1, y + s2, z + (i− 1)t). (6)

Finally, Equation 6 is just a group-wise convolution of the tensor J with s groups.170

Let us compute the computational cost (MAdds) of the implementation for BlkSConv. By Equation 5171

(Step a in Figure 2), the computational cost of s point-wise convolutions on the concatenation of172

Ĩ1, . . . , Ĩt is sXYM . In addition, by Equation 6 (Step b in Figure 2), the computational cost of the173

group-wise convolution on the tensor J is sXY tℓ2. Finally, the computational cost of the point-wise174

summation in the last step is sXY . The total MAdds of a BlkSConv operation is sXY (M + tℓ2 +1)175

while the MAdds of a standard convolution is XYMℓ2. Again, let us take convolutions in the last176

stage of ResNet-34 as examples. We set s = 5 and t = 4 as the hyperparameters of the BlkSConv-177

based convolution. Now the ratio between the MAdds of a BlkSConv-based convolution and a178

standard convolution is approximately 0.595. Thus the proposed BlkSConv operation is much more179

efficient than the standard convolution in practical cases. We remark that the proposed implementation180

requires much GPU memory due to using many group-wise and pointwise convolutions.181

3.3 Hyperparameter search via principal component analysis182

Designing a BlkSConv-based CNN involves hyperparameters including the block depth and the num-183

ber of basis block vectors in each convolutional layer that affect the performance of the corresponding184

CNN model. To realize an efficient BlkSConv-based CNN, we conduct a hyperparameter search algo-185

rithm based on principal component analysis of trained CNNs. Given a trained CNN, the algorithm186

generates the block depth and the number of basis block vectors for each standard convolutional layer187
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of the trained CNN in the following way. First, for each individual ℓ× ℓ×M kernel K of the trained188

CNN where we assume that M = 2α for some α ∈ N, the kernel K is partitioned into M/t block189

vectors B1, B2, . . . , BM/t each of size ℓ × ℓ × t with t ∈ {1, 2, . . . , 2β} for some integer β < α.190

Next, we perform principal component analysis (PCA) on the set {B1, B2, . . . , BM/t}. Then, for191

a fixed integer γ and, for each q ∈ {1, 2, . . . , γ}, the algorithm computes the variance Vt,q of the192

kernel K which is explained by the first q principal components PC1,PC2,..,PCq. In addition, let193

CCt,q and MSt,q denote the MAdds and the model size of the BlkSConv under the setting that the194

block depth is t and the number of basis block vectors is q, respectively. Note that the MAdds and the195

model size of the standard convolution is exactly CCM,1 and MSM,1, respectively. After computing196

all Vt,q , CCt,q , and MSt,q , the algorithm generates the feasible set197

Hαv,αc,αs = {(t, q) : Vt,q ≥ αv , CCt,q ≤ αc · CCM,1, and MSt,q ≤ αs · MSM,1} (7)

for fixed positive constants αv, αc, αs ∈ (0, 1). Finally, the algorithm chooses the hyperparameter198

(t, q) from Hαv,αc,αs
according to the computational cost or the model size.199

On one hand, note that the goal of BlkSConv is to maintain the prediction performance of the trained200

standard CNN. In general, the prediction accuracy is proportional to the model size of the constructed201

CNN. Therefore, in this sense, we choose the hyperparameters (t̂, q̂) from Hαv,αc,αs
such that the202

constructed BlkSConv has the largest parameter size, that is203

(t̂, q̂) = arg max
(t,q)∈Hαv,αc,αs

MSt,q. (8)

One can expect that the generated BlkSConv-based CNN has nice prediction performance compared204

to the original CNN with standard convolutions.205

On the other hand, one of the advantage of BlkSConv operations is that BlkSConv can greatly reduce206

the model size of the original standard CNN. Thus, in this sense, we can select the hyperparameters207

(t̃, q̃) from Hαv,αc,αs such that the constructed BlkSConv has the smallest parameter size, that is208

(t̃, q̃) = arg min
(t,q)∈Hαv,αc,αs

MSt,q. (9)

However, the prediction performance may degrade when the parameter size of the BlkSConv-based209

model decreases. We will demonstrate in the experimental section that the BlkSConv-based CNNs210

generated according to Equation 8 also have acceptable prediction accuracy compared to the standard211

CNNs.212

In summary, both Equation 8 and Equation 9 provide ways to determine hyperparameters from the213

feasible set Hαv,αc,αs
such that corresponding BlkSConv-based CNNs have smaller model size and214

fewer multiply-adds operations than the original CNN with standard convolutions.215

Finally, let us consider the extreme case that two constants β and γ are set by β = 0 and γ = 1. Let216

us further set the search parameter αv = 0. Under this restricted search condition, the cardinality of217

the feasible set H0,αc,αs
is always 1. Thus the outputs of Equation 8 and Equation 9 are the same.218

In fact, the resulting BlkSConv-based CNN is exactly the same as the CNN where the standard219

convolutions are replaced by the blueprint separable convolutions previously developed in (4).220

4 Experiments221

We evaluate BlkSConv and the proposed hyperparameter architecture search algorithm combining222

with ResNet-10, ResNet-18, and ResNet-26 (5) on ImageNet (22), Stanford Dogs, (14), and Oxford223

102 Flowers (19). The proposed methods are also evaluated combining with ResNet-20 and ResNet-56224

on CIFAR 10/100 (15).225

4.1 Hyperparameter Search Details226

We apply the PCA-based hyperparameter search algorithm (HSA) developed in Section 3.3 on several227

variants of ResNet models. In the first part, we consider the large-scale classification scenarios.228

Several standard ResNets are trained on ImageNet first and their architectures are shown in Table 1.229

The HSA for searching BlkSConv architectures is only applied to conv3_x, conv4_x, conv5_x230

layers of these standard ResNets. Next, the search hyperparameters αv, αc, αs are set as 0.5 or231
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Table 1: ResNet architectures used in the first part of the experiment on ImageNet, Stanford Dogs,
and Oxford 102 Flowers. The PCA-based HSA is applied to conv3_x, conv4_x, conv5_x layers and
the corresponding convolutional kernel is replaced by the BlkSConv module found by HSA.

ResNet-10 (L=1), ResNet-18 (L=2), ResNet-26 (L=3)

Layers Names Output Size ResNet Applying HSA e.g.(ResNet-10)

conv1 112× 112× 64 7× 7, 64, stride 2 No
max pool 56× 56× 64 3× 3, stride 2

conv2_x 56× 56× 64

[
3× 3, 64
3× 3, 64

]
× L No

conv3_x 28× 28× 128

[
3× 3, 128
3× 3, 128

]
× L Yes conv-s5t2

conv4_x 14× 14× 256

[
3× 3, 256
3× 3, 256

]
× L Yes conv-s5t2

conv5_x 7× 7× 512

[
3× 3, 512
3× 3, 512

]
× L Yes conv-s1t1

average pool 1× 1× 512 7× 7
fully connected 1000 512× 1000 fc

Table 2: Performance results for BlkSConv-based ResNet-18 and ResNet-26 on ImageNet.

ResNet-18 on ImageNet ResNet-26 on ImageNet

(αv, αc, αs, SS) Accuracy P_ratio MA_ratio Accuracy P_ratio MA_ratio

(0.50, 0.50, 0.50,max) 69.922 0.4065 0.4614 72.038 0.4241 0.4618
(0.50, 0.75, 0.75,max) 69.782 0.6014 0.6597 72.326 0.6308 0.6722
(0.50, 0.50, 0.50,min) 67.572 0.1264 0.2700 69.970 0.1250 0.2668
(0.50, 0.75, 0.75,min) 67.540 0.1246 0.2986 69.922 0.1243 0.2910
Standard (replaced layers) 70.728 10.8M 1213.8M 72.604 17.03M 1907.4M

0.75. It is possible that the feasible set Hαv,αc,αs is empty. In this case, the corresponding standard232

convolutional layer is not replaced and is denoted by conv as shown in Table 1. Moreover, the233

proposed HSA has two selection strategies: one is based on the largest parameter size, denoted by234

SS = max, and the other is based on the smallest parameter size, denoted by SS = min as shown in235

Table 2. The selected BlkSConv, sitj, which means i basis block vectors and j depth of the blocks.236

The feasible set Hαv,αc,αs is likely to be empty when the parameter αv is large. In the case that αv is237

large, it often requires many principal components to accumulate enough explained variance and thus238

this causes large numbers of parameters or MAdds. Therefore, the feasible set Hαv,αc,αs is probably239

empty when we further require small αc and αs. On the other hand, the parameter αv cannot be too240

small because the prediction performance of the network is highly proportional to the amount of the241

accumulated variance as discussed in Section 3.3 where we will demonstrate it in the ablation study242

of this section. For the above reason, we only present the results for ResNet-18 and ResNet-26 on243

ImageNet under the setting that αv = 0.5 which are shown in Table 2.244

In the second part, we consider the small-scale classification on CIFAR10/100. We use the standard245

ResNet-20 and ResNet-56 as the experimental models where the architectures are slightly modified246

to suit the small-scale images. The proposed HSA is only applied to conv4_x layers of these two247

standard ResNets. More BlkSConv-based architecture search results can be found in the appendix.248

4.2 Performance on large-scale classification: ImageNet249

To evaluate the performance of BlkSConv-based models in large-scale recognition, we conduct250

experiments on ImageNet(22). Each model takes 3 days to be trained on a single GPU (Nvidia251

Tesla V100). ImageNet contains nearly 1.3M training images and 50,000 testing images. For252

7



Table 3: Comparison among the BlkSConv-based and Standard ResNet on ImageNet and CIFAR.

Dataset Models Accuracy Parameters MAdds

ImageNet
ResNet-10 standard 63.386 4.64M 520M

BlkSConv-ResNet-18 (0.5, 0.5, 0.5,max) 69.922 4.39M 560M
BlkSConv-ResNet-26 (0.5, 0.5, 0.5,min) 69.970 2.13M 509M

CIFAR 100
ResNet-20 standard 67.994 202752 12.97M

BlkSConv-ResNet-20 (0.5, 0.5, 0.5,max) 67.078 72704 5.04M
BlkSConv-ResNet-56 (0.5, 0.5, 0.5,min) 69.994 149440 10.61M

Table 4: Performance results for BlkSConv-based ResNet-56 on CIFAR10/100.

ResNet-56 on CIFAR 10 ResNet-56 on CIFAR 100

(αv, αc, αs, SS) Accuracy P_ratio MA_ratio Accuracy P_ratio MA_ratio

(0.5, 0.5, 0.5,max) 93.372 0.3734 0.3829 70.636 0.3734 0.3829
(0.5, 0.75, 0.75,max) 93.338 0.6196 0.6292 70.668 0.6196 0.6292
(0.5, 0.5, 0.5,min) 93.324 0.2335 0.2462 69.994 0.2316 0.2570
(0.5, 0.75, 0.75,min) 93.324 0.2335 0.2462 69.994 0.2316 0.2570
Standard (replaced layers) 93.218 645120 41.28M 70.998 645120 41.28M

the experimental setup, ResNet-10, ResNet-18, and ResNet-26 are trained on ImageNet under the253

following setting. The number of epochs is 100 and the batch size is 256. SGD is used as the254

optimizer and the initial learning rate, the momentum, and the weight decay are set to 0.1, 0.9, and255

10−4, respectively. The learning rate is scheduled to decay by a factor of 0.1 at epochs 30, 60, and 90.256

We augment the data via random resized crop to 224px and random horizontal flip. The performance257

results are shown in Table 2, More experimental results can be found in the appendix.258

On one hand, let us focus the cases that αv = 0.5 and SS = max in Table 2. The prediction259

accuracies of the selected BlkSConv-based models and the standard model are close within 1%.260

It confirms our expectation that BlkSConv-based models have smaller parameter sizes and fewer261

MAdds than standard models while preserving prediction performance if the proposed HSA adopts a262

selection strategy based on the maximum parameter size.263

On the other hand, let us consider the case that αv = 0.5 and SS = min in Table 2. The parameters264

and MAdds of the BlkSConv-based models are only 12.6% and 29.8% of the standard model265

while the gap of their prediction accuracies is about 3%. We adopt an interesting way based on266

restricting the parameter size and MAdds to interpret the advantage of the generated BlkSConv-based267

models where the selection strategy SS is set as min. We also compare the standard ResNet-10, the268

BlkSConv-based ResNet-18, and the BlkSConv-based ResNet-26 in Table 3 where the parameter269

sizes or MAdds of three given models are similar. The BlkSConv-based ResNet-26 with parameter270

(0.5, 0.5, 0.5,min) and the BlkSConv-based ResNet-18 with parameter (0.5, 0.5, 0.5,max) greatly271

outperform the standard ResNet-10 where both the BlkSConv-based models lead to an accuracy gain272

of at least 6.5%. In addition, the BlkSConv-based ResNet-26 with parameter (0.5, 0.5, 0.5,min) only273

has half the parameter size of the BlkSConv-based ResNet-18 with parameter (0.5, 0.5, 0.5,max).274

4.3 Performance on small-scale classification: CIFAR 10/100275

The performance results are shown in Table 4. The BlkSConv-based ResNet-56 models have much276

smaller model sizes and fewer MAdds than the standard model while all BlkSConv-based variants277

outperform the standard model on CIFAR 10 and have comparable accuracies on CIFAR 100. In the278

bottom of Table 3, the BlkSConv-based ResNet-20 with (0.5, 0.5, 0.5,max) and the standard ResNet-279

20 both have a comparable accuracy while the BlkSConv-based ResNet-20 model is compressed280

64% of the parameter size and MAdds is decreased 61% compared to the standard ResNet-20 model.281

Furthermore, the BlkSConv-based ResNet-56 with (0.5, 0.5, 0.5,min) and the standard ResNet-20282

model both have similar parameter sizes and MAdds while the BlkSConv-based ResNet-56 model283

has an accuracy gain of 2%. More experimental results can be found in the appendix.284
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Table 5: Performance comparison among BlkSConv-based and the standard ResNet-18 models.

Stanford Dogs Oxford 102 Flowers

(αv, αc, αs, SS) Accuracy P_ratio MA_ratio Accuracy P_ratio MA_ratio

(0.5, 0.5, 0.5,max) 53.005 0.5327 0.5394 65.546 0.5327 0.5394
(0.5, 0.75, 0.75,max) 53.359 0.7277 0.7377 64.567 0.7277 0.7377
(0.5, 0.5, 0.5,min) 53.159 0.3273 0.4006 65.289 0.4835 0.5179
(0.5, 0.75, 0.75,min) 53.615 0.3171 0.4611 63.217 0.4743 0.5872
Standard (replaced layers) 52.436 10.8M 1213.8M 62.238 10.8M 1213.8M

Table 6: Results on Stanford Dogs for different αv with SS = min.

ResNet-18 on Stanford Dogs (αv, αc = 0.75, αs = 0.75, SS = min)

αv Accuracy P_ratio MA_ratio αv Accuracy P_ratio MA_ratio

0.0 50.918 0.0397 0.1781 0.3 52.839 0.1074 0.2377
0.1 50.499 0.0449 0.1777 0.4 52.035 0.2751 0.4684
0.2 51.040 0.0767 0.2458 0.5 53.615 0.3171 0.4611

Standard 52.436 10.8M 1213.8M

4.4 Performance on fine-grained classification285

We conduct experiments for fine-grained recognition on two datasets Stanford Dogs and Oxford286

102 Flowers. For the experimental setup, the standard ResNet-18 and its BlkSConv-variants are all287

trained from scratch by augmenting data through random crops, horizontal flips, and random gamma288

transform. We use SGD as the optimizer and the initial learning rate, the moment, and the weight289

decay are set to 0.1, 0.9, and 10−4, respectively. The number of epochs is 200, and the learning rate290

is scheduled to decay at epochs 100, 150, and 200 by a factor of 0.1. The proposed BlkSConv-based291

ResNet-18 models significantly outperform the standard ResNet-18 model both on Stanford Dogs292

and Oxford 102 Flowers as shown in shown Table 5..293

4.5 Ablation Study: Necessity to have large explained variance294

Here, we demonstrate how the variance hyperparameter αv affects the prediction accuracy of295

BlkSConv-based CNNs. We use ResNet-18 as the experimental model. After training the stan-296

dard ResNet-18 on Stanford Dogs, the next goal is to find several BlkSConv-variants of ResNet-297

18 all of which have different explained variances such that their accuracies can be compared.298

Note that Ha,0.75,0.75 ⊆ Hb,0.75,0.75 for any a, b with a ≥ b. Based on this observation, the299

model in Hb,0.75,0.75 which has the smallest parameter size is likely to have a small explained300

variance as well. Therefore, the selection strategy of the proposed HSA is set by SS = min301

in order to select several BlkSConv-based ResNet-18 models with different explained variances.302

Now we apply the proposed HSA to the trained ResNet-18 under six search hyperparameters303

{(αv, 0.75, 0.75,min) : αv = 0.0, 0.1, 0.2, . . . , 0.5}. The comparison result is shown in Table 6. It304

can be seen that the accuracy of the BlkSConv-based model is greater than that of the standard model305

only when the variance hyperparameter αv is large enough, that is αv ≥ 0.5.306

5 Conclusion307

In this paper, we introduce the block-wise separable convolutions (BlkSConv) to replace standard308

convolutions. An efficient implementation of the BlkSConv operation via a combination of pointwise309

and group-wise convolutions is also given. Moreover, we also propose an efficient hyperparameter310

search algorithm based on principal component analysis in order to select an optimal BlkSConv-based311

convolutional network under certain constraints on model size and model efficiency. Finally, the312

experimental results demonstrate the advantage of the BlkSConv-based CNN models selected by the313

proposed hyperparameter search algorithm.314
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