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ABSTRACT

Latent diffusion models (LDMs) achieve unprecedented success in image edit-
ing, which can accurately edit the target image with text guidance. However, the
multi-modal adversarial robustness of latent diffusion models has not been stud-
ied. Previous works only focus on single modality perturbation, such as image or
text, making them less effective while more noticeable to humans. Therefore, in
this paper, we aim to analyze the multi-modal robustness of latent diffusion mod-
els through adversarial attacks. We propose the first Multi-Modality adversarial
Attack algorithm (MMA), which modifies the image and text simultaneously in a
unified framework to determine updating text or image in each step. In each iter-
ation, MMA constructs the perturbed candidates for both text and image based on
the input attribution. Then, MMA selects the perturbed candidate with the largest
L2 distortion on the cross attention module in one step. The unified query rank-
ing framework properly combines the updating from both modalities. Extensive
experiments on both white-box and black-box settings validate two advantages of
MMA: (1) MMA can easily trigger the failure of LDMs (high effectiveness). (2)
MMA requires less perturbation budget compared with single modality attacks
(high invisibility).

1 INTRODUCTION

Latent diffusion models (LDMs) (Rombach et al., 2022) are widely deployed in a variety of image
synthesis and editing applications, such as DALL·E2(Ramesh et al., 2022) and Stable Diffusion
(Rombach et al., 2022) due to their efficiency and exceptional generation quality. Latent diffusion
models generate real images from the latent noise sampled from a uniform Gaussian distribution
through an iterative denoising process in the latent space. During the denoising process, additional
information, such as text or image, can be fused on the sampled latent noise to guide the image
generation through the conditioning mechanism. Specially, to fulfill the function of image editing,
latent diffusion models combine the embedding of the text prompt and a given image through cross
attention.

However, recent research (Liu et al., 2023; Salman et al., 2023) reveals latent diffusion models are
vulnerable to adversarial attacks, which modify the input in a human-imperceptible way so that
latent diffusion models will generate low-quality images or incorrectly generate the input image.
With the aim of analyzing the robustness issues and training better diffusion models, it is of great
significance to design effective adversarial attack algorithms.

We categorize recent adversarial attacks on diffusion models into two branches based on their modal-
ity: textual adversarial attacks (Zhuang et al., 2023) and image adversarial attacks (Salman et al.,
2023). Recent textual adversarial attacks add meaningless suffixes to the input text by attacking the
text encoder (Zhuang et al., 2023) or utilizing the gradient guidance from an image classifier (Liu
et al., 2023). Image adversarial attacks perturb the image encoder (Salman et al., 2023) or the inter-
mediate modules (Zhang et al., 2023b) for generating the imperceptible noise on the input image.
All of the previous approaches only modify one modality of the inputs (text or image), which cannot
fully explore the input space for generating effective perturbation. Additionally, the perturbation
magnitude of single-modality attacks is high, making them noticeable to humans. For example, the
added meaningless tokens of textual adversarial attacks are not daily words, and the number of added
tokens is large (Zhuang et al., 2023). Therefore, for the sake of devising effective and imperceptible
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adversarial attacks, we propose to explore multi-modality adversarial attacks where we modify the
input text and image jointly. Perturbing the text and image at the same time distributes the needed
perturbation to both modalities, making them imperceptible to humans on the whole. Besides, com-
pared with single-modality attacks, multi-modality adversarial attacks have the potential to discover
more robustness issues and thus contribute to a better understand of the working principles of LDMs.

In this paper, we propose the Multi-Modality Attack (MMA) to update the text and image in a
unified framework for generating adversarial samples of latent diffusion models. MMA includes
a unified query ranking framework to select to perturb text or image in each update step. First,
MMA attributes the output of the LDM to both input text and image. Then, MMA constructs
the perturbed candidates for both text and image based on the attribution results. Finally, MMA
selects the perturbed candidate with the largest L2 distortion on the cross attention module in one
step. The unified query ranking framework properly combines the updating from both modalities.
Unlike previous works, we constrain the perturbation space to enhance adversarial imperceptibility.
Specifically, we only consider token replacement with its synonym for text perturbation and small
L2 norm image noise for image perturbation. Comprehensive experiments validate the effectiveness
and imperceptibility of the proposed multi-modality adversarial attacks.

The contributions of our work are threefold:

• Current adversarial attacks on diffusion models are based on single-modality perturbation,
which makes them less effective and more noticeable to humans. Therefore, we formally
define the multi-modality adversarial attacks on the latent diffusion model and propose the
first multi-modality adversarial attack on LDMs called MMA.

• MMA contains a query ranking framework to update input text or image iteratively. In
each update iteration, MMA attributes the output to both input text and images to con-
struct replacement candidates. MMA ranks the candidates by querying the distortion of
the cross attention module in LDM for updating. Such a framework properly combines the
perturbation of text and image.

• We conduct extensive experiments on both white-box and black-box settings to validate the
effectiveness and imperceptibility of our multi-modality attack. Based on the experimental
results and analysis, we conclude that combining text and image perturbations can more
effectively mislead LDMs.

2 RELATED WORK

2.1 LATENT DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Rombach et al., 2022) have achieved state-of-the-art generation
performance recently, which can generate vivid images with the conditions of text and images. Dif-
fusion models generate the image through a stochastic differential denoising process. The denoising
process starts from an image sampled from a uniform Gaussian distribution and adds a small Gaus-
sian noise on the image repeatedly to produce a real image. Latent diffusion models conduct the
denoising process on the latent features instead of images to improve efficiency and reduce compu-
tation complexity. Furthermore, it is convenient to inject the conditions (text or image) into latent
features to guide the generation process, making latent diffusion models come to the fore.

Image editing tasks require the diffusion models to edit the given image with the guidance of a text
prompt. Based on the conditioning phenomenon, latent diffusion models initialize the latent feature
by a combination of the given image feature and a random sampled Gaussian noise to implement
image editing. During the denoising process, the latent features then interact with the text features
via the cross attention module to edit the latent features. Finally, the latent features are decoded back
to the image domain as the edited image. Especially, the encoder and decoder for the image domain
is a variational autoencoder (Kingma & Welling, 2013), and the encoder for the text domain is the
CLIP encoder (Radford et al., 2021). For simplicity, we call the pipeline of latent diffusion models
for image editing tasks as img2img. Figure 1 illustrates the generation process of the img2img
pipeline.
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Figure 1: The workflow of img2img latent diffusion models for image editing, which combines the
features of image and text through the cross attention module.

2.2 ADVERSARIAL ATTACKS

Deep neural networks, including vision models and language models, are known to be vulnerable
to adversarial attacks (Dong et al., 2018; Li et al., 2020). Given the input x and a DNN model
f(x), adversarial attacks discover the adversarial example xadv to mislead the DNN model, while
the perturbation between the input and the adversarial example is human-imperceptible.

Image adversarial attacks perturb the pixel values under the constraint
∥∥x− xadv

∥∥
p
< ϵ to satisfy

invisibility, where ∥·∥p represents the Lp norm. In this paper, we utilize the L∞ norm here as a hard
constraint to align with previous adversarial attack papers (Dong et al., 2018; Lin et al., 2019). Since
the image space is continuous, multiple effective attack algorithms on image classification model
(Goodfellow et al., 2014) have been proposed based on the gradient of the network for solving the
following problem:

max
xadv

J(xadv, y) s.t.
∥∥x− xadv

∥∥
∞ < ϵ, (1)

where y is the ground truth label for the image x, and J(x, y) is the cross-entropy loss.

There are three levels of modification granularity of textual adversarial attacks: character-level,
word-level, and sentence-level (Qiu et al., 2022). Character-level attacks generally insert, delete,
flip, replace, or swap individual characters in the text. Word-level attacks generally add new words,
remove words, or change words in the sentences. Sentence-level attacks usually insert new sentences
or paraphrase the original sentences. Compared with sentence-level attacks, character-level and
word-level attacks have higher attack success rates (Zeng et al., 2021). Besides, word-level attacks
are more stealthy than character-level attacks, which often introduce typos (Ebrahimi et al., 2018).
Therefore, in this work, we only consider the word-level perturbation.

Nevertheless, the model structure and parameters are hidden from users in the real world. Black-box
attacks (Dong et al., 2018) attract the attention of researchers, where attackers cannot get access to
the model information. Transfer-based attacks (Dong et al., 2018) are a kind of black-box attacks,
which are famous for their efficiency. In transfer-based attacks, attackers craft adversarial samples on
a surrogate model with a white-box attack algorithm and directly transfer the adversarial examples to
the target models without the information of the target model. In addition, transfer-based attacks can
be utilized to analyze the common defects among different models (Zhang et al., 2023a). Therefore,
in this work, we also discuss the transferability of multi-modality attacks. Additionally, (Chen
et al., 2023) utilizes diffusion models for adversarial attacks, and (Zhang et al., 2022) analyzes the
robustness of VLM.

2.3 ADVERSARIAL ATTACKS ON DIFFUSION MODELS

Current adversarial attacks on diffusion models mainly focus on a single modality. (Zhuang et al.,
2023) adds meaningless characters to the text to mislead the text encoder, and the distorted text
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features influence the generation performance. (Liu et al., 2023) also combines meaningless suf-
fixes to the text by the gradient guidance of a consecutive image classifier to the output of the
diffusion model. (Salman et al., 2023) and (Zhang et al., 2023b) focus on perturbing the image
by distorting the intermediate features of the latent diffusion models. However, previous works
only focus on modifying single-modality, leaving the combinatorial searching space of images and
text unexplored. More importantly, single-modality attacks always generate human perceptible ad-
versarial samples. Textual adversarial examples have long and meaningless characters or suffixes,
and image adversarial samples have noticeable artifacts. Therefore, in this paper, we propose the
multi-modality adversarial attack to explore the combinatorial searching space and generate human
invisible adversarial samples.

3 PROBLEM STATEMENT

In this section, we first clarify the problem statement of the multi-modality adversarial attacks on
latent diffusion models. We formally define the multi-modality attacking problem by specifying the
attacking objective, the perturbation space, and the perturbation budget.

We denote the latent diffusion models as LDM(x, t) with the input image x and text t. Then, the
output of the latent diffusion model, y = LDM(x, t), is the generated image to satisfy the require-
ment of image editing or generation. Previous image or textual adversarial attacks on classification
tasks have explicit measurements, like attack success rates, to assess whether the adversarial attack
is successful or not. For multi-modality adversarial attacks on diffusion models, we aim to find the
adversarial input image xadv and text tadv to mislead the function of the latent diffusion model.
Oracle(yadv, t) = False, where yadv = LDM(xadv, tadv) is the output image with adversarial
input, and Oracle(·) is the human judgment oracle on the similarity between the generated image
and input text.

After the determination of the adversarial objective, we formally discuss the perturbation space of
the multi-modality adversarial attack. Following the previous works in the field of image adversarial
attacks, we set a hard constraint on image perturbation by the L∞ norm. The L∞ norm constrains
the maximum perturbation on the pixel values of the image. As a result, the image perturbation
should satisfy

∥∥x− xadv
∥∥
∞ < ϵ, where ϵ is the perturbation budget of the image.

For the textual perturbation, we also settle a hard constraint to guarantee imperceptibility. Following
the previous work (Huang et al., 2022), we consider the token-wise Levenshtein distance between
the original text and the adversarial text. The Levenshtein distance (Levenshtein et al., 1966) mea-
sures the number of edits to achieve the adversarial text starting from the original one, including
the replacement, addition, and deletion of the token. Thus, the textual perturbation should satisfy
lev(TN(t), TN(tadv)) < γ, where TN(·) represents a text tokenizer, and γ is the perturbation
budget of text.

All in all, the goal of multi-modality attack is to mislead the diffusion models from a human per-
spective Oracle(LDM(xadv, tadv), t) = False, while we keep the adversarial image satisfying
the L∞ constraint

∥∥x− xadv
∥∥
∞ < ϵ, and the adversarial text satisfying the token-wise Levenshtein

distance constraint lev(TN(t), TN(tadv)) < γ.

4 MULTI-MODALITY ATTACK

Since LDM(x, t) is a generative model, it is intractable to optimize the objective directly. Alter-
natively, we aim to deform the latent features inside latent diffusion models by adversarial input.
Since the latent diffusion model decodes the latent for generating image, the generated image will
be largely influenced, if we distort the latent features by the adversarial input. As we mentioned
before, the cross attention module combines the features from the image and text together in the
denoising process, which is the most vital part of Img2img diffusion models. Therefore, we assume
that the function of the latent diffusion model will be misled, if we distort the latent features of the
cross attention module.

Therefore, the goal of our multi-modality attack is to distort the latent features of the cross attention
module for each step of the denoising process, while we keep the adversarial image satisfying the
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Figure 2: The framework overview of the proposed MMA. MMA employs a query ranking frame-
work, consisting of two stages: candidate generation and candidate selection.

L∞ constraint and the adversarial text satisfying the token-wise Levenshtein distance constraint.
The adversarial objective is formally defined as follows:

max
xadv,tadv

S∑
i=1

∥∥LDM i
CA(x

adv, tadv)− LDM i
CA(x, t)

∥∥
2
,

s.t.
∥∥x− xadv

∥∥
∞ < ϵ,

lev(TN(t), TN(tadv)) < γ,

(2)

where S is the number of denoising steps, and LDM i
CA(·) denotes the latent features of the cross

attention module at the denoising step i.

We propose the Multi-Modality Attack (MMA) to achieve the above adversarial objective. MMA
iteratively perturbs the input text and image to achieve the adversarial objective. The key part of
MMA is to properly combine the text and image perturbations. For this purpose, MMA deploys a
query ranking framework to update adversarial input. The overview of MMA is shown in Figure
2, containing two main components: candidate generation and candidate selection. MMA first
generates perturbation candidates for both text and image in each iteration. Then, MMA selects the
best perturbation candidate with feedback from the latent features to update the adversarial input. In
MMA, the text perturbation and the image perturbation collaborate well for achieving the adversarial
objective.

To be more specific, we suppose the input pair is (x, t), and we update the input pair for T iterations
in total. In each iteration, we utilize the query ranking framework for generating the adversarial
sample in one step, and feed in the generated example as the input for the next round. After running
T iterations, we finally obtain the adversarial example pair (xadv, tadv) by MMA.

4.1 CANDIDATE GENERATION

We first compute the contribution of the input image and text to the generated image via the attri-
bution method (Sundararajan et al., 2017). Specifically, we employ the gradient of the L2 norm of
the generated image to the input as the attribution. We regard the input image as one token, so the
attribution of the image token is:

Ax =
∂ ∥LDM(x, t)∥2

∂x
, (3)

We should be aware that the attribution has the same size as the input image, and the value measures
the importance of the corresponding pixel on the generated image. Similarly, we also compute the
attribution of the i-th text token by the following equation:

Ati =

∥∥∥∥∂ ∥LDM(x, t)∥2
∂e(ti)

∥∥∥∥
2

, (4)
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where e(·) is the token embedding. Since the attribution on the text token is a vector, we use the
magnitude of the vector as the numerical attribution of this token. Then, we can utilize the computed
attribution as the guidance for generating replacement candidates.

4.1.1 TEXT PERTURBATION

We first explain the text perturbation in MMA. In order to keep the imperceptibility of the text per-
turbation, we only consider the token-level perturbation. Previous textual attacks add meaningless
characters or suffixes to the input text for misleading diffusion models, which is human perceptive,
and the semantic meaning of the text may be changed. Instead, we consider replacing the tokens in
the text with their synonym to preserve semantic consistency and invisibility.

We get inspired by (Li et al., 2020), and we substitute the token with its synonym with the help
of masked language models. The masked language models are trained with masked language loss,
which has the ability to predict a masked token in a sequence, and the predicted token can fit the
context well. Therefore, we utilize the masked language model, BERT (Kenton & Toutanova, 2019),
to substitute the original tokens in the text.

Specifically, in each iteration, we mask out the tokens in the input text one by one with a masked
token. Then, the masked language model BERT is utilized to predict the masked token. To guarantee
the predicted token fits well in the text, we filter out low-confidence predictions. We also notice that
some of the tokens are significant, and improper modification will change the total semantics of the
text. Therefore, we utilize the previously computed token attribution to set an adaptive threshold
for keeping the semantic consistency. We regard the token with high attribution as being important
to the semantics, so we set a higher threshold of substitution for the tokens with higher attribution
compared with the mean value. Similarly, we set a lower threshold of substitution for the remaining
tokens. Therefore, the text candidate generation can be summarized in Algorithm 1 in the Appendix.

4.1.2 IMAGE PERTURBATION

As we treat the whole image as a special token, we aim to find the substitution of the image without
sacrificing imperceptibility. We make use of the computed attribution on the image, which represents
the contribution of the pixels to the output image. If we update the image along the direction of the
attribution, the output image will be largely influenced. To guarantee invisibility, we utilize the L2

attack for updating the image. Additionally, we introduce a random mask for image perturbation to
balance the effectiveness of the attack and the imperceptibility of added noise. The random mask is
sampled from a Bernoulli distribution with a probability of p. Therefore, the image candidates are
represented in the following equation:

candsimg = x+ α
Ax

∥Ax∥2
∗Masks, (5)

where α is the step size for updating, and s is the sampling time. The image candidate generation is
shown in Algorithm 2 in Appendix.

4.2 CANDIDATE SELECTION

The next stage of MMA is to query the LDM and rank the generated candidates to pick the top
one for updating. We concatenate the text candidates with the input image and image candidates
with the input prompt as the candidate pool without crossly combining the candidates to reduce the
perturbation. It means we only modify the text with one token or change the pixel value in one
iteration. Thus, the candidate selection stage is to determine whether we update text or image in
each iteration to combine the multi-modality perturbation properly.

As our adversarial objective is to distort the latent features of cross attention modules, we utilize the
L2 distortion of the latent features as the feedback score for each candidate. The score is computed
by the following equation:

score(c) =

S∑
i=1

∥∥LDM i
CA(x

′, t′)− LDM i
CA(x, t)

∥∥
2
, (6)

where c = (x′, t′) is the candidate for the updating. We then rank the score and pick the best one as
the final update in each iteration.
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Table 1: The white-box performance of different attacking methods under various settings, including
imperceptibility and effectiveness. The best results are in bold. ↓ indicates the lower the better, while
↑ represents the opposite.

Model Method L2 ↓ Simimg ↑ Lev ↓ Simtext ↑ PSNR↓ SSIM↓ MS-SSIM↓ CLIP↓ FID↑ IS↓
SD

1-
5

Image 11.20 0.65 - - 12.89 0.281 0.466 33.98 177.78 15.34
Text - - 3.83 0.81 12.01 0.247 0.404 30.86 183.72 16.56
LDMR 29.59 0.37 - - 13.29 0.281 0.489 34.09 176.99 16.50
QF - - 9.63 0.88 12.08 0.228 0.406 32.63 182.42 15.48
MMA 8.43 0.71 3.46 0.84 11.17 0.185 0.337 31.16 185.96 16.47
MMA w/o Text 8.43 0.71 - - 13.44 0.321 0.508 34.29 178.13 16.30
MMA w/o Image - - 3.46 0.84 12.22 0.256 0.416 31.30 182.03 16.57

SD
1-

4

Image 11.24 0.65 - - 12.90 0.289 0.481 33.93 177.87 15.92
Text - - 3.84 0.81 12.00 0.245 0.405 30.59 187.63 16.55
LDMR 29.51 0.38 - - 13.22 0.279 0.489 34.11 176.80 15.72
QF - - 9.63 0.88 12.20 0.234 0.411 33.35 184.79 16.06
MMA 8.39 0.71 3.57 0.83 11.09 0.179 0.331 30.88 188.04 16.37
MMA w/o Text 8.39 0.71 - - 13.44 0.317 0.508 34.07 176.80 15.67
MMA w/o Image - - 3.57 0.83 12.21 0.261 0.423 31.03 187.37 16.70

SD
2-

1

Image 24.50 0.45 - - 11.52 0.191 0.377 32.55 190.72 13.90
Text - - 4.33 0.78 10.92 0.170 0.318 28.71 202.29 13.09
LDMR 26.82 0.40 - - 11.21 0.182 0.354 32.38 190.67 14.00
QF - - 9.93 0.84 12.24 0.233 0.427 31.99 187.43 16.43
MMA 16.51 0.56 3.78 0.80 10.14 0.123 0.263 28.65 205.06 13.38
MMA w/o Text 16.51 0.56 - - 11.80 0.213 0.400 32.49 189.85 13.63
MMA w/o Image - - 3.78 0.80 10.99 0.184 0.333 28.97 201.41 13.46

Pi
x2

pi
x

Image 12.00 0.64 - - 12.34 0.170 0.392 33.83 166.50 15.39
Text - - 3.70 0.83 9.25 0.008 0.030 33.21 123.97 16.21
LDMR 28.07 0.385 - - 13.16 0.166 0.416 33.57 126.74 15.26
QF - - 9.63 0.88 15.28 0.490 0.657 34.12 121.61 15.40
MMA 9.62 0.69 2.78 0.88 8.73 0.008 0.027 32.90 160.55 15.11
MMA w/o Text 9.62 0.69 - - 12.67 0.189 0.413 33.89 161.22 15.23
MMA w/o Image - - 2.78 0.88 15.15 0.523 0.666 33.70 121.95 16.04

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Dataset: We conduct experiments on the dataset proposed by (Zhang et al., 2023b), which includes
500 high-quality image and prompt pairs generated from COCO (Lin et al., 2014).

Threat Model: We consider four representative and widely used img2img latent diffusion models,
including Stable Diffusion V1-4 (SD-v1-4) (Rombach et al., 2022), Stable Diffusion V1-5 (SD-
v1-5), Stable Diffusion V2-1 (SD-v2-1), and Instruct-pix2pix (pix2pix) (Brooks et al., 2022) by
following the experimental setting of (Zhang et al., 2023b). Stable diffusion models have a model
structure different from the Instruct-pix2pix model. Different versions of diffusion models have the
same structure, and the higher version is further trained on more training data.

Baselines: Since there are no works on the multi-modality adversarial attack on latent diffusion
models, we first compare MMA with the single-modality adversarial attacks in our MMA frame-
work. Specifically, we run MMA only on image or text modality that we drop off the text candidate
generation module or image candidate generation module. We denote the baselines to be Image
and Text, respectively. We also consider the ablations of MMA without one modality perturbation
as the baselines. We suppose the input is (x, t) and the adversarial sample generated by MMA is
(xadv, tadv). We set MMA without image perturbation (x, tadv) as MMA w/o Image, and MMA
without text perturbation (xadv, t) as MMA w/o Text. Furthermore, we also compare MMA with
two state-of-the-art single-modality adversarial attacks on diffusion models. LDMR (Zhang et al.,
2023b) perturbs the image, while QF (Zhuang et al., 2023) adds meaningless suffixes to the prompts.

Metric: We evaluate the performance of adversarial attacks from two perspectives: imperceptibility
and effectiveness. The imperceptibility measures the difference between the adversarial example
and the benign input. The imperceptibility of image perturbation is represented by two metrics: (1)
L2 norm of the perturbation and (2) Structural Similarity Index Measure (SSIM) (Wang et al., 2004)
score between the benign input and adversarial image. We also deploy two criteria to compute the
imperceptibility of text perturbation: (1) token-wise Levenshtein distance (Levenshtein et al., 1966)
and (2) semantic similarity between the embedding of the original and adversarial text encoded by
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SentenceBERT (Reimers & Gurevych, 2020). We evaluate the effectiveness of the attack through six
metrics: (1) Peak-Signal-to-Noise Ratio (PSNR) measures the ratio between the original generated
image and the difference between the original generated image and the adversarial generated image.
(2) Structural Similarity Index Measure (SSIM) (Wang et al., 2004) quantifies the perceptive sim-
ilarity between the original generated image and the adversarial generated image. (3) Multi-Scale
Structural Similarity Index Measure (MS-SSIM) (Wang et al., 2003) is a multi-scaled version of
SSIM. (4) CLIP (Radford et al., 2021) represents the similarity between the generated image and
the text through the CLIP model. (5) Fréchet Inception Distance (FID) (Heusel et al., 2017) quanti-
fies the realism of generated images. (6) Inception Score (IS) (Salimans et al., 2016) also measures
the image quality.

Table 2: The transfer attack performance on different target models. The adversarial examples are
crafted on SD2-1. The best results are in bold. ↓ indicates the lower the better.

Model Method PSNR↓ SSIM↓ MS-SSIM↓ CLIP↓ FID↑ IS↓

SD
1-

5 Image 13.38 0.300 0.499 34.32 176.42 16.41
Text 11.88 0.232 0.388 30.06 188.65 15.83
MMA 11.26 0.181 0.343 30.13 189.27 16.31

SD
1-

4 Image 13.36 0.295 0.497 34.35 177.99 15.98
Text 11.90 0.231 0.387 29.97 190.31 15.85
MMA 11.33 0.183 0.346 30.12 189.91 15.89

Pi
x2

pi
x Image 14.29 0.221 0.492 34.02 154.43 16.26

Text 13.99 0.436 0.594 32.64 123.82 16.15
MMA 13.16 0.216 0.460 32.45 146.57 16.06

Parameter: We conduct the experiments on an A100 GPU server. With the aim of a high imper-
ceptibility, we set the hard constraint of the image perturbation budget ϵ = 0.1 and the maximum
token-wise Levenshtein distance of the text to 5. The iteration number of MMA is T = 15. The
thresholds for textual perturbation candidates are τl = 0.3 and τh = 0.5. The step size of the image
perturbation is set to be 0.015. The query time of the image perturbation is set to 5, and the random
mask is sampled from a Bernoulli distribution with a probability of 0.7. The number of the diffu-
sion step is set to be 15 for attack and 100 for inference. We take the strength and guidance of the
diffusion models to be 1.0 and 7.5 by default.

5.2 ATTACKING PERFORMANCE

We first analyze the white-box attacking performance as shown in Table 1. The adversarial sample
of MMA is imperceptible because the text and image perturbations are small. MMA only changes
less than 3.4 words on average, and the average L2 image distortion is about 10.7. Additionally,
around 67% of the image and 84% of the text semantics are preserved. Compared with the single
modality version of MMA, MMA can reduce about 27 % of the image perturbation and 13 % of
the text perturbation, and better keep the semantics of image and text by around 7% and 4%, re-
spectively. Compared with SOTA single modality attacks, MMA outperforms LDMR on the image
perturbation and QF on lev. Although the semantic similarity of QF is similar to MMA, the number
of modified tokens is 2.86 times more than MMA, which is noticeable. Additionally, the qualita-
tive results of the generated adversarial examples are shown in the first two rows of Figure 3. We
can hardly differentiate the difference between images, and the semantics of texts remain the same,
demonstrating the low imperceptibility of MMA.

We then analyze the effectiveness of MMA in Table 1. We first compare the MMA with single-
modality attacks (Text, Image, and SOTA baselines). MMA outperforms single-modality attacks on
PSNR, SSIM, and MS-SSIM under all the experimental settings and is comparable with Text or im-
age modality attacks on other metrics, demonstrating the effectiveness of MMA. Then, we consider
the ablation situation (MMA w/o Text and MMA w/o Image). MMA performs better than the abla-
tions of MMA, with a large margin of 0.18 on SSIM and 0.35 on CLIP on average, illustrating the
effectiveness of both image and text perturbation. We further compare the single modality attacks
with ablations of MMA. Image improves PSNR by 10.5 % more than MMA w/o Text, but it requires
27 % more image perturbations. The finding is similar when it comes to the text modality. There-
fore, although the single-modality attack achieves relatively higher performance, the increment in
the perturbation outweighs the performance gain. The qualitative results are shown in Figure 3.

8
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Ori Image Ori Prompt Adv Image Adv Prompt

Ori Result Image Result Text Result MMA Result

Figure 3: Qualitative results. Row 1 and row 2 show the original and adversarial input pairs. The
adversarial inputs are generated by MMA on attacking SD2-1. Row 3 and row 4 illustrate the
generated images by different attack methods with the input pairs from row 1 and row 2. All the
images are generated by SD2-1.

Perturbing image or text fail to mislead the generation, while MMA can destroy the generation
functionality. In conclusion, MMA distributes the perturbation to image and text modality for better
attacking performance with better imperceptibility.

After that, we consider the transfer-based black-box setting, where we directly test other LDMs with
the adversarial examples generated from a surrogate model. As shown in Table 2, we can draw a
similar conclusion that MMA outperforms single-modality attacks on PSNR, SSIM, and MS-SSIM
metrics and is comparable with single-modality attacks on other metrics. The experimental results
confirm the high transferability of MMA. More quantitative results are shown in the Appendix.

Additionally, we do analysis studies on the MMA to analyze the selection of the attacking modules
inside LDM and the distribution of the perturbation from different modalities in the Appendix.

6 CONCLUSION

In this paper, we define the multi-modality attacks on LDMs and propose the first multi-modality
adversarial attack on LDMs called MMA, which modifies the image and text simultaneously in
a unified query ranking framework. The framework includes candidate generation and candidate
ranking to combine the text and image perturbation properly. Extensive experiments validate the
effectiveness and imperceptibility of MMA.
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APPENDIX

We supplement the algorithm of candidate generation, more transfer-based black-box experi-
ments, analysis experiments and discuss the efficiency issues of multi-modality attacks on la-
tent diffusion models. Our code is available at https://anonymous.4open.science/r/
Multi-LDM-4087.

A ALGORITHM

The text candidate generation can be summarized in Algorithm 1.

Algorithm 1 Text Candidate Generation (TCG)
1: Input: input text t and its attribution At

2: Input: the language model LM , and two thresholds τh and τl
3: Output: text candidates candtext
4: candtext = []
5: for i = 1 to len(t) do
6: tmask = t.copy()
7: tmask[i] = [MASK] ▷ Mask each token
8: pred, conf = LM(tmask) ▷ Token prediction
9: if At[i] > mean(At) then

10: threshold = τh
11: else
12: threshold = τl
13: end if
14: for j = 1 to len(conf) do
15: if conf [j] > threshold then
16: tcand = t.copy()
17: tcand[i] = pred[j]
18: candtext = candtext.append(tcand)
19: end if
20: end for
21: end for

The image candidate generation is shown in Algorithm 2.

Algorithm 2 Image Candidate Generation (ICG)
1: Input: input image x and its attribution Ax

2: Input: step size α
3: Input: sampling time s, and probability p
4: Output: image candidates candimg

5: candimg = []
6: for i = 1 to s do
7: Mask = Bernoulli(p)
8: imgcand = x+ α Ax

∥Ax∥2
∗Mask

9: candimg = candimg.append(imgcand)
10: end for

B TRANSFER PERFORMANCE

As shown in Table 3 and Table 4, we can draw a similar conclusion in the paper that MMA out-
performs single-modality attacks on PSNR, SSIM, and MS-SSIM metrics and are comparable with
single-modality attacks on other metrics. The experimental result confirms the high transferability
of MMA.
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Table 3: The transfer attack performance on different target models. The adversarial examples are
crafted on SD1-4. The best results are in bold. ↓ indicates the lower the better.

Model Method PSNR↓ SSIM↓ MS-SSIM↓ CLIP↓ FID↑ IS↓

SD
1-

5 Image 13.07 0.296 0.483 34.20 176.74 16.23
Text 12.00 0.247 0.404 30.70 185.46 16.58
MMA 11.17 0.189 0.340 30.98 187.31 15.11

SD
2-

1 Image 11.78 0.215 0.393 32.71 189.42 13.87
Text 11.39 0.202 0.359 29.76 194.53 14.25
MMA 10.68 0.154 0.301 29.83 198.70 13.93

Pi
x2

pi
x Image 14.40 0.226 0.489 34.07 156.66 15.81

Text 14.27 0.464 0.618 32.97 124.09 17.11
MMA 13.51 0.220 0.465 32.65 148.40 16.16

Table 4: The transfer attack performance on different target models. The adversarial examples are
crafted on SD1-5. The best results are in bold. ↓ indicates the lower the better.

Model Method PSNR↓ SSIM↓ MS-SSIM↓ CLIP↓ FID↑ IS↓

SD
2-

1 Image 11.84 0.218 0.396 32.55 190.57 13.68
Text 11.41 0.204 0.361 29.74 197.84 14.13
MMA 10.72 0.152 0.300 29.99 200.53 14.52

SD
1-

4 Image 13.02 0.285 0.473 33.93 176.98 15.63
Text 12.07 0.250 0.510 30.75 186.26 15.84
MMA 11.29 0.190 0.348 31.15 186.75 17.02

Pi
x2

pi
x Image 14.34 0.223 0.484 34.03 159.13 16.22

Text 12.75 0.264 0.532 33.10 141.35 16.62
MMA 13.42 0.215 0.455 32.76 149.24 15.96

C ANALYSIS EXPERIMENT

We first do an ablation study on the attacking module of MMA. In MMA, we consider maximizing
the l2 distance of the cross attention module outputs between adversarial input and original input. We
consider other modules inside LDMs in the ablation study, including encoder, self-attention, resnet,
and decoder. The result is shown in Table 5, and we conclude that attacking the cross attention
module is effective under the multi-modality adversarial attack scenario.

Table 5: The ablation study performance on different target modules inside LDM. The adversarial
examples are crafted on SD1-5. The best results are in bold. ↓ indicates the lower the better.

Method PSNR↓ SSIM↓ MS-SSIM↓ CLIP↓ FID↑ IS↓
encoder 12.87 0.289 0.471 34.18 177.67 16.29
resnet 11.91 0.268 0.419 31.67 183.98 16.67
self-attn 12.00 0.273 0.427 31.88 182.00 16.47
decoder 11.97 0.260 0.400 32.04 181.95 16.37

cross-attn 11.17 0.185 0.337 31.16 185.96 16.47

Finally, we analyze the details inside MMA to better understand the multi-modality adversarial
attacks. We plot the distribution of the perturbation selection during updating in Figure 4. In the
beginning, text perturbation is the dominant choice with more than 60%. Then, the ratio of the
image selection increases. The phenomenon also validates that considering both the image and text
perturbations is useful.

D EFFICIENCY ISSUES

We also consider the efficiency issues of MMA. We have to admit that the time complexity of
adversarial attacks on diffusion models is intensive because the complexity is related to the denoising
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Figure 4: The ratio of the perturbation in each iteration on the whole test set.

step. The general updating should back-propagate through all the denoising steps. In order to cope
with the high time complexity, our MMA only updates ten iterations and constrains the search space
with proper thresholds. Besides, we only consider 15 denoising steps under the attacking scenario,
which can dramatically reduce the time complexity and memory cost. As a result, our MMA is
practical, and the time consumption is similar to previous works (Zhang et al., 2023b).
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