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ABSTRACT

This study introduces dataset distillation (DD) tailored for 3D data, particularly
point clouds. DD aims to substitute large-scale real datasets with a small set of
synthetic samples while preserving model performance. Existing methods mainly
focus on structured data such as images. However, adapting DD for unstructured
point clouds poses challenges due to their diverse orientations and resolutions in 3D
space. To address these challenges, we theoretically demonstrate the importance
of matching rotation-invariant features between real and synthetic data for 3D
distillation. We further propose a plug-and-play point cloud rotator to align the
point cloud to a canonical orientation, facilitating the learning of rotation-invariant
features by all point cloud models. Furthermore, instead of optimizing fixed-
size synthetic data directly, we devise a point-wise generator to produce point
clouds at various resolutions based on the sampled noise amount. Compared to
conventional DD methods, the proposed approach, termed DD3D, enables efficient
training on low-resolution point clouds while generating high-resolution data for
evaluation, thereby significantly reducing memory requirements and enhancing
model scalability. Extensive experiments validate the effectiveness of DD3D in
shape classification and part segmentation tasks across diverse scenarios, such as
cross-architecture and cross-resolution settings.

1 INTRODUCTION

Dataset distillation (DD) (Wang et al., 2018) aims to distill the knowledge of a large-scale dataset
into a few synthetic samples, where the models trained on the real and synthetic data will have
comparable performance. By doing so, DD significantly reduces the computational cost of training
neural networks from scratch. Due to its remarkable efficiency and effectiveness, DD has been used
in a variety of domains, such as image (Zhao et al., 2021; Zhao & Bilen, 2023; Cazenavette et al.,
2022), video (Wang et al., 2024), text (Maekawa et al., 2023) etc. Despite great progress, existing
DD methods only succeed on structured 1D and 2D data, while the distillation of unstructured 3D
data, e.g., point cloud, is still under-explored.

Point cloud data exists in large quantities in various fields. For example, MVPNet (Yu et al., 2023)
scans more than 87K point clouds from real-world videos for machine vision, Objaverse-XL (Deitke
et al., 2023) provides more than 10M high-quality 3D assets, and Qu et al. (2022) constructs a 100M
dataset for high-energy physics, where particles are modeled as point clouds. Training on these
datasets from scratch is time-consuming and resource-intensive, requiring more efficient approaches.
However, several reasons prevent existing DD frameworks from generalizing to 3D point clouds.

First, point clouds with different orientations represent the same semantic information, e.g., shapes.
However, existing DD methods do not take the symmetry of data into account, which cannot handle
the randomly rotated data and result in sub-optimal performance. As shown in Figure 1a, directly
applying DD to the point clouds with different orientations cannot obtain meaningful synthetic data.
Second, point clouds have flexible resolutions, i.e., the number of points, depending on specific
models and applications. Generally, a larger resolution encodes more fine-grain information but
also increases the computational costs (Huang et al., 2024; Qiu et al., 2021). However, existing DD
methods initialize the synthetic data as a fixed-size tensor, which cannot be customized for different
point cloud models. Moreover, the memory budget for fixed-size tensors will increase rapidly when
dealing with dense-resolution scenes, e.g., segmentation (Chang et al., 2015; Ren et al., 2022).
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Figure 1: Differences between vanilla DD and DD3D when distilling 3D point clouds.

Once the weaknesses of existing methods are identified, it is natural to ask: How can we build a
distillation framework that overcomes the orientation and resolution issues of 3D point clouds?
To answer this question, we first theoretically prove that random rotations weaken the principle
components of real data, thereby degenerating the distillation performance. Based on this discovery,
we propose DD3D, the first DD framework for 3D point clouds, illustrated in Figure 1b. Specifically,
DD3D first uses a rotator to convert the point cloud into a canonical orientation by learning a rotation-
equivariant projection matrix to offset random rotation. Then, the knowledge of rotation-invariant
data is distilled into a point-wise generator to predict the point coordinates from noise, where the
resolution is based on the number of sampled noises. Finally, the rotator and generator are jointly
optimized by minimizing the gradient differences between the real and synthetic data.

The contributions are summarized as follows. (1) We propose the first 3D distillation framework,
DD3D, which can eliminate the influence of random rotations and synthesize point clouds at arbitrary
resolutions. (2) We theoretically prove that matching the rotation-invariant features can preserve
the principal components of real data and prevent data degeneration. (3) DD3D can be trained with
low-resolution point clouds and generates high-resolution data for evaluation, significantly reducing
memory usage and enhancing model scalability. (4) Extensive experiments on shape classification
and part segmentation tasks validate the effectiveness of DD3D over baselines.

2 RELATED WORK

Dataset Distillation. Research on DD can be roughly divided into two directions. The first is
to explore advanced matching objectives to improve the distillation performance. For example,
performance matching (Wang et al., 2018), gradient matching (Zhao et al., 2021; Zhao & Bilen, 2021),
distribution matching (Zhao & Bilen, 2023; Wang et al., 2022), trajectory matching (Cazenavette et al.,
2022; Guo et al., 2024; Du et al., 2023) and feature regression (Zhou et al., 2022; Loo et al., 2022;
Nguyen et al., 2021). On the other hand, some methods innovate efficient data parameterizations
to avoid directly optimizing the synthetic data. For example, neural networks (Liu et al., 2022),
spectral representation (Shin et al., 2023), linear transformation (Deng & Russakovsky, 2022), and
up-sampling (Kim et al., 2022). Among them, a special parameterization technique is to distill the
knowledge into a generative model (Zhao & Bilen, 2022; Wang et al., 2023; Zhang et al., 2023;
Cazenavette et al., 2023; Zhang et al., 2024), which can generate diverse synthetic data with unlimited
samples. Although valid, these methods rely on the prior knowledge of generative models pre-trained
on large-scale datasets, which is not feasible for point clouds. A recent work' also applies GM to
point cloud data. However, neither of them considers the orientation and resolution issues. For a
more comprehensive introduction to DD, please refer to the recent surveys (Yu et al., 2024; Lei &
Tao, 2024; Geng et al., 2023; Sachdeva & McAuley, 2023).

Point Cloud Analysis. Deep learning on point clouds plays a vital role in 3D data analysis (Guo
et al., 2021b). Traditional methods can be classified into three categories: Point-based methods,
e.g., PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b), convolution-based methods,
e.g., PointCNN (Li et al., 2018) and PointConv (Wu et al., 2019), and relation-based methods, e.g.,
DGCNN (Wang et al., 2019) and Point Transformer (Guo et al., 2021a). However, these methods
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are rotation-sensitive and cannot handle point clouds with different orientations. Some advanced
methods are designed to learn rotation-equivariant or invariant features, such as vector neuron (Deng
et al., 2021), spherical harmonic (Poulenard et al., 2019), tensor field (Thomas et al., 2018), and
graph features (Kim et al., 2020; Zhao et al., 2019). However, these methods introduce additional
operators and cannot preserve the original geometric information, i.e., coordinates. Another way is to
project point clouds into the same orientation. For example, principal component analysis (PCA)
leverages the eigenvectors of the covariance matrix to transform point clouds into the direction with
maximum variance. But this approach suffers from the sign-ambiguity issue (Xiao et al., 2020; Yu
et al., 2020; Li et al., 2021).

3 BACKGROUND

3.1 PRELIMINARY

Task Formulation. Suppose that 7 = {(C;, yl)}g‘1 is a large-scale training dataset, where C; is a
point cloud with label y; for the shape classification task. Each point cloud has n points, represented
as C = {P,V}, where P € R™*3 represents the 3D coordinates of points and V' € R"*" indicates
the part to which the point belongs in segmentation task and v is the number of parts. The goal of

DD3D is to synthesize a much smaller point cloud dataset S = {(C;, yj)}IjS:\P where |S| < | T, such
that a classification or segmentation model fy trained on 7 and S will have comparable performance.

Other tasks, such as detection, are left for future studies.
Dataset Distillation. In order to effectively optimize the synthetic data, existing DD methods adopt a
bi-level optimization paradigm, which can be formulated as:

mSin Lpp (f9* (S), Jox (T)) s.t. Ox = argenlin £Cls(f9<8), YS)& e))

where the inner loop updates the model fy on the synthetic data, and the outer loop optimizes the
synthetic data. In particular, £pp is a metric that measures the distance between real and synthetic
data. For example, gradient matching (Zhao et al., 2021) minimizes the gradient differences.

3.2 DATASET DISTILLATION WITH ROTATIONS

Before detailing the proposed method, we first give a general analysis of how rotations affect the
performance of DD. Let X5 € RISI*? X+ € RIT1X4 denote the representations learned by fj on
the synthetic data and real training data, respectively, and d is the hidden dimension.
Theorem 1. Assume the classifier is a linear layer W and L., can be simplified to the mean-squared
error || XW — Y||§, The objective of gradient matching is equal to variance preserving:

min Loy = minD (Vi L3, Vwll,) = min [ X§Xs - XFX7|5, )

clsy cls
where D is a distance metric and Vyy is the gradient with respect to W.

Theorem 1 reveals that synthetic data preserves the variance information of real data. We then analyze
how random rotations affect the variance of real data. Without loss of generality, we assume that fy
is rotation-equivariant, i.e., fg (PR) = fp (P) R, where R € SO(d) is a random rotation matrix.

Theorem 2. Assume X follows a d-dimensional multivariate Gaussian distribution N'(p, Y). Let
X7 be the rotated representations of X1 such that:

)\mam (E |:X'ITTX'/T1|) S )\maw (E |:X'TTX'T:|) = Omazx (E [X%’]) S Omaz (E [XTD 5 (3)
where Ao and 0,4, are the maximum eigenvalues and singular values, respectively.

Theorem 2 states that random rotations reduce the maximum singular value of the data representations,
implying that the principle component of X7 is weakened. In this case, the synthetic data cannot
effectively capture the distribution of the real data, degenerating model performance. All proofs can
be seen in Appendix A.
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4 THE PROPOSED METHOD

4.1 PLUG-AND-PLAY POINT CLOUD ROTATOR

The above analysis demonstrates that learning rotation-invariant representations is crucial for point
cloud distillation. However, a considerable part of point cloud models do not have this property. To
solve this problem, we propose a plug-and-play point cloud rotator to transform the point clouds into
their canonical view, enabling all methods to learn rotation-invariant representations.

Rotation-equivariant. We can leverage the orthogonality of the rotation matrix to eliminate its
influence, i.e., RRT = I, where PCA is a typical method:

% Y (PR-PR) (PR-PR)=R'UAU'R = (PR)(R'U)=PU, )

where P is the center of P and U represents the eigenvectors of the covariance matrix. Notably,
the projection R U is equivariant to the rotation of coordinates, and therefore (PR)(R'U) = PU
is rotation-invariant. However, the eigenvectors have the sign ambiguity issue, i.e., —u; is also
a valid eigenvector. As a result, the canonical view PU is not unique and has 8 ambigui-
ties in 3D space (Xiao et al., 2020; Yu et al., 2020), i.e., PUQ = P [tu;,tus, *us], where
{Q e R¥3|Q;; = {1,-1},Q;; = 0,Vi # j} is a random reflection matrix.

Sign-invariant. Our rotator 7 : R"*3 — R™*3 is mainly designed to improve the performance of
PCA by solving the sign ambiguity problem. Specifically, the rotator aims to learn a sign-equivariant
reflection matrix () for each point cloud such that PUQ - Q = PU is sign-invariant. Specifically, the
rotator first lifts the scalar coordinates to the vector representations:

H = [sin(£PU),sin(+2PU) - - - sin(+tPU)] " = [sin(PU),sin(2PU) - - -sin(tPU)]" Q, (5)

where HQ € R™***3 is the sign-equivariant representations, sin(-) is the sine function and ¢ is the
period of Fourier features. An average pooling is then applied on H to learn the representations of
the whole point cloud. Finally, a learnable vector w € R’ is used to decode the reflection matrix. The
overall architecture of the rotation is formulated as follows:

r(P)=PUQ-Q = PUQ - Sign(w - Pool(HQ)), (6)

where “Sign” means the signs of a matrix. The reflection matrix () has the same signs as ) because
the sinusoidal features, pooling function, and linear decoder preserve the sign information of H(Q),
which can solve the sign ambiguity and learn sign-invariant representations.

Other methods. There are different approaches to learning rotation-invariant representations, such
as vector neruon (Deng et al., 2021) and graph features (Kim et al., 2020). However, these methods
break the original point coordinates, which are not easy to incorporate with other models. On the
other hand, some methods try to solve the sign ambiguity by using pooling (Yu et al., 2020) and
attention (Xiao et al., 2020; Li et al., 2021) mechanisms, which is inefficient as they need to calculate
the representations for all ambiguous views.

4.2 POINT-WISE GENERATOR

In addition to the orientation, point clouds often have different resolutions, which also need to be
considered in the distillation process. Traditional DD methods update the synthetic data in an explicit
way, i.e., directly optimizing the fixed-size tensors, which is unsuitable for point cloud synthesizing.
On the other hand, the implicit neural representation (INR) methods (Sitzmann et al., 2020; Park
et al., 2019) show great potential in generating data with arbitrary resolutions (Chen et al., 2021;
Singh et al., 2023). Generally, INR predicts the signals of given coordinates, but the coordinates of
the synthetic point clouds are unknown.

Point Denoising. Our solution is to use INR as a generator ¢ : R — R?, whose input is random noise
and output is the coordinates of a point. This means that we treat the noise as a special continuous
coordinate, and the generator is used to obtain “3D signals” by denoising the noise. It is also worth
noting that the generator adopts a point-wise paradigm rather than an instance-wise generation.
Therefore, the amount of points is the same as the sampled noise, which allows us to generate point
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Figure 2: Illustration of DD3D for part segmentation task. Each noise is first pre-partitioned into
different parts according to its value, e.g., the noise within (0, 0.45) is marked as fuselage. Then the
generator maps the noise into coordinates to match the global (shape) and local (part) information.

clouds with infinite resolution. We choose SIREN (Sitzmann et al., 2020) as the generator, which can
be formulated as:
g=[ProPr0-- 0@ |Wp, P;=sin(zw;+ b;), @)

where L is the number of layers, o denotes the cascade of neural networks, ®; is a multi-layer
perceptron (MLP) with sine activation function in the i-th layer, z; ~ U(0, 1) is the input noise,
and Wp € R%*3 is the decoder to generate 3D coordinates of points. Notably, we use uniform
distribution instead of Gaussian distribution, as INR needs the input to be normalized within [0, 1].

Conditional Modulating. The implicit generator can synthesize point clouds with arbitrary resolution
but lacks label information, which is crucial for DD because it concentrates on classification task (Yu
etal., 2024; Lei & Tao, 2024). Therefore, we use a modulator ¢ : R? — R?, which is implemented
as another cascaded MLP U, to encode the label information and generate conditions for the point
cloud generation:

c=W;0Wy0---0W,, U, =ReLU (m;w, + b)), (8
where ReLU(+) = max(0, -), m; € R? denotes the conditional representations and m; is a one-hot
matrix, representing the label information. Assume that there are K classes in total, and each class
has IV synthetic point clouds, then m; € REY and w] € REN*4, The conditional representations
are then used to modulate each layer of the generator. The overall architecture is formulated as:

gOc=[(V1 0 Q1) o (Va®@ D)oo (VO QL) W, )

where © is the element-wise multiplication to modulate the frequency and phase of the features. For
clarity, in the following sections, we use g(z,¢) to denote g ® ¢ with the i-th condition.

4.3 DISTILLATION TASKS

Traditional DD methods mainly focus on the fundamental image classification task. To better evaluate
the performance of 3D distillation, we not only conduct experiments on the basic shape classification
task but also explore the challenging part segmentation task. Shape classification aims to assign each
point cloud a label, emphasizing global information, while part segmentation predicts the label of
each point, which is more fine-grained.

Shape Classification. The distillation objective of the shape classification task is defined as:

K

Eshape = ZD (VECIS (f@ o ’/‘(B;f), Yks) av£cls (f@ o T(BZ—), YkT)) s (10)
k=1

where K is the total classes of shapes, B,Z— and YkT are a batch of real training data and labels,
Bk‘S = ¢(z, k) denotes a batch of synthetic point clouds belonging to the k-th class, and Yks represents
the predefined synthetic labels.

Part Segmentation. In the segmentation task, each shape is divided into several parts, e.g., an
airplane can be divided into fuselage, wings, engine, and rear. Such fine-grained labels need to be
predefined before distillation. Therefore, DD3D first partitions the noise into different parts based on
its value and then feeds the noise into the generator and rotator sequentially to obtain the synthetic
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data. Intuitively, the synthetic data should encode both the global shapes and local geometry of the
real data. Therefore, we propose global and local matching to match the gradients of the entire shape
and individual parts, respectively. A toy example is shown in Figure 2.

The distillation objective of global matching in the part segmentation task is defined as:

K

Lpart = ZD (V'CSEg (fé’ © T(B;f), Vks) y VLeq (fa © T(Blz—)v VkT)) ) (1D
k=1

where V7 and V° represents the real and synthetic part labels, respectively. To match the gradient of
a specific part p, we apply an element-wise mask M, on the segmentation labels, i.e., VT = VTQMp
and VS =V 0o M,,, to avoid interference from the gradients of other parts. In practice, we calculate
local and global gradient matching alternately to preserve information of shapes and parts. See
Algorithms 1, 2, 3, and Appendix B for the algorithm diagrams and detailed descriptions.

Algorithm 1 DD3D for classification Algorithm 3 DD3D for part segmentation

Input: Training dataset 7 Input: Training dataset 7
Output: Model f, Rotator r, Generator ¢ Output: Model f, Rotator , Generator g
1: fork=1,--- K do 1: fork=1,--- K do > Shape Classes
2 Initialize f,7, g ~ 0f,0,,0, 2: Initialize f,7, g ~ 0f,0,,0,
3 repeat 3: repeat
4: Sample a batch B}, Y, ~T 4 Sample a batch B/, V, ~ T
5: Sample noise z; ~ U(0,1) 5: Sample noise z; ~ U(0,1)
6: Generate Bf = g(z1, k)W 6: Generate V;° by partitioning noise
7 Compute VLS, and VLT, 7: Generate B = g(z1, k)W
8: Update 6, with Lpqpe 8: Compute VLS., and VLI, > Shape Info.
9: repeat 9: forpe kdo = > Partbelongs to a shape
10: Update 0, 8, with ‘Cfls 10: Apply mask M,, on Vk‘S
11 until inner-loop end 11: Compute VLS, and VL, > Part Info.
12: until outer-loop end 12: end for
13: end for 13: Update 0, with Ly,q,4
Algorithm 2 DD3D for evaluation 14: repeat
15: Update 0, 0, with LS,
1: Generate B®,Y® or V° via g 16: until inner-loop end !
2: Optimize 0 and 0, until convergence 7. until outer-loop end
3: Evaluate f o r on the test dataset 18: end for

4.4 DISCUSSION

Complexity. The complexity of DD contains three parts: data parameterization, model forward, and
data alignment. For a point cloud with n points, DD3D has an additional time complexity O(Lnd) to
generate synthetic data, which makes the time overhead higher than that of vanilla DD methods. But
if we consider down-sampling the points, the time complexity of all three parts can be reduced. See
Section 5.5 for a comprehensive comparison of the time and space overhead between DD and DD3D.

Limitations. Unlike parameterizing data as an explicit matrix, DD3D leverages a generator to
synthesize data, significantly reducing the computational costs and memory budget. However, a
major drawback is that the generator cannot take original data as initialization, which may affect the
convergence of the model. A comparison can be found in Section 5.4. Moreover, there are still some
issues that remain unsolved. For example, existing methods cannot applied to tasks with continuous
labels, such as detection, which limits their applications. Besides, how to make the synthetic datasets
learn fine-grained details beyond shapes remains a challenge.

5 EXPERIMENTS

We benchmark our method on two fundamental tasks of point cloud analysis: shape classification
(Section 5.1) and part segmentation (Section 5.2), followed by a series of analyses, including
generalization (Section 5.3), ablation (Section 5.4), and visualization (Section 5.6).
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Datasets. We employ three datasets of different scales for the shape classification task: (i) ScanOb-
jectNN (OBJ_BG) (Uy et al., 2019) is the smallest dataset but consists of real-world data, which is
challenging to distillate. (i:) ModelNet40 (Wu et al., 2015) is a larger synthetic dataset generated
from CAD models. (i7i) MVPNet (Yu et al., 2023) is the largest dataset, containing 87K point clouds
scanned from real-world videos. We use its subset MVPNet100, which includes data from the 100
most populous categories, to alleviate the influence of long-tail distribution, similar to the CAFIR-100
dataset®. For the part segmentation task, we follow Qi et al. (2017a) and choose ShapeNet-part (Yi
et al., 2016) dataset for evaluation. All the datasets use the standard data splits, and their detailed
statistic information can be found in Appendix C.

Data Preparation and Metrics. Each cloud contains 1,024 points and is normalized into a unit
sphere. We consider two settings: Aligned and Rotated. In the Aligned setting, both training and test
point clouds have the same orientation, while in the Rotated setting, both training and test data are
rotated randomly. For the rotated data, we project them along the direction of maximum variance
during pre-processing. Note that the point clouds in MVPNet only have 180° views, so we do not
randomly rotate them. The details of pre-processing can be found in Appendix C. We report the
Overall Accuracy (OA, %) of each method in the shape classification task and the average class
intersection of union (IoU, %) in the part segmentation task.

Baselines. To demonstrate the effectiveness of our method, we choose two types of baselines: (1)
Coreset-based methods, including Random, Herding (Welling, 2009) and K-Center (Sener & Savarese,
2018). (2) Distillation-based methods, including Gradient Matching (GM) (Zhao et al., 2021),
Distribution Matching (DM) (Zhao & Bilen, 2023), and Trajectory Matching (TM) (Cazenavette
et al., 2022). We choose GM as the distillation objection for DD3D as it makes a trade-off between
time and memory consumption. See Appendix D for the detailed hyperparameters.

Backbones. We provide a lightweight PointNet as the distillation backbone, which abandons the
transformation network because previous literature (Yu et al., 2024) pointed out that complex network
architecture may lead to degraded distillation performance. See Appendix E for more details. In
the evaluation stage, we adopt various advanced backbones to evaluate the generalization ability
of distilled datasets, including PointNet++ (Qi et al., 2017b), DGCNN (Wang et al., 2019), Point
Transformer (Guo et al., 2021a), PointMLP (Ma et al., 2022), and PointNext (Qian et al., 2022).
Results can be found in Table 3.

Experimental Setup. For each method, we perform the distillation process twice, evaluate each
synthetic point cloud dataset five times (10 results in total), and report the mean and standard deviation.
Baselines are all initialized with original data, while DD3D is trained from scratch. For the shape
classification task, we consider three different distillation ratios with 1, 10, and 50 synthetic point
clouds per class (CPC). For the part segmentation task, we only choose CPC=1 due to the limitation
of GPU memory.

5.1 SHAPE CLASSIFICATION

The results of different methods on the shape classification task are shown in Table 1, from which
we have the following observations. Firstly, the results of distillation-based methods consistently
outperform coreset-based methods, demonstrating the effectiveness of DD. However, as the amount of
synthetic data increases, the performance of the coreset increases rapidly. Secondly, DD3D achieves
state-of-the-art performance on all five datasets, demonstrating its superiority over traditional DD
methods. Notably, DD3D obtains more improvements over baselines as the number of CPCs increases,
possibly because the generator provides more diverse data. Thirdly, the results on the rotated data
are weaker than those on the aligned data. Although we project the rotated data to the canonical
orientation, i.e., direction with maximum variance, these point clouds still have slightly different
orientations, while the aligned data is manually registered, which is strictly towards the direction of
gravity and therefore has better performance.

5.2 PART SEGMENTATION

We illustrate the results of the part segmentation task in Table 2. As the segmentation task is different
from the basic classification task, some coreset and distillation methods cannot adapt to it. Therefore,

https://www.cs.toronto.edu/~kriz/cifar.html
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Table 1: Shape classification results of different methods, mean accuracy (%) =+ standard deviation.
Bold indicates the best performance, and ”-”” means out-of-memory during distillation. CPC: Number
of Clouds Per Class.

Coreset-based Distillation-based Full
Random Herding K-Center GM DM ™ DD3D Dataset

, 1 2200256 16.29+1.37 18.18£1.04 26.34+2.07 2590134 26.42+2.08 30.621.75
ScanObjectNN 10 32.63£1.51 31.94%3.31 33.46x1.46 39.87+3.00 37.61£2.78 36.44+2.74 43.77£2.63 ¢6.96
(Aligned) 50 54.15£1.77 51.70£1.87 54224130 57.5242.03 56.91%1.17 - 61.96:1.44

i 1 1490£2.10 18.10£1.55 19.91£2.16 14.64£3.04 18.74+2.44 19.29£3.90 23.59+2.17
ScanObjectNN 10 20.50£1.26 20.20£2.19 22.05£1.76 20.55£3.99 20.26x4.31 19.20£4.52 25.84+3.11 5484
(Rotated) 50 42.98+1.84 43.39x134 44.29+2.07 47.74x1.82 48.11x2.30 - 50.26+1.42

1 40.53:0.36 4341081 43.90+1.51 53.38+0.86 53.21x0.58 52.37+0.99 53.82+0.28
ModelNetd0 10 71.89+029 74.63x0.48 73.1320.78 7545+0.82 74.45:047 7539132 76.3120.49  gg (5
(Aligned) 50 8237x0.45 82.75:0.49 82.73:0.28 81.74%0.55 83.02+1.16 - 83.91+0.23

1 34652071 30.03x1.42 30.05:0.50 41.32£1.96 41.71£1.65 37.36x2.98 42.36+0.83
ModelNetd0 10 58.87+0.65 56.03+0.62 57.69+0.97 55.69+1.63 55.45:1.80 56.21x1.14 58.14x1.36 g 45

Dataset CPC

(Rotated) 50 70.13:0.64 70.0240.71 69.68+0.59 68.92+0.73 69.3120.79 - 71.27£0.32
1 5212027 8142022 8412035 1052+0.83 11.73:049 10.7420.57 13.68+0.48

MVPNet100 10 15993030 2211021 20.54£0.21 25.68+0.77 25.71%0.69 - 31142131 5543
50 30.14:027 35.87+0.24 35.48:0.44 37.41x0.57 36.8320.20 - 40.61x0.38

Note: All methods with rotated data are trained with the point cloud rotator. Ablations can be seen in Table 5.

Table 2: Part Segmentation results on the ShapeNet dataset, mean IoU (%).

mloU pcll:;e bag cap car chair p:,:):e guitar  knife lamp laptop motor mug pistol rocket Z]::fd_ table
Full 7443 | 7706 74.88 69.26 7527 76.16 69.89 7822 76.66 7472 77.03 7349 73.84 78.03 7403 6654 7573

Coreset  48.83 | 47.03 24.68 5889 39.57 70.13 30.78 74.15 5846 4224 8934 2678 3793 5601 20.18 41.59 6341
GM 47.94 | 4893 2034 4212 2998 73.06 2422 7341 6924 3238 8380 2096 61.58 44.17 3862 4332 60.84
DD3D  50.99 | 4239 3437 5400 2920 7052 2787 77.16 7483 3409 86.52 2846 6493 53.04 3489 43.62 59.94

we only compare DD3D with the random coreset selection and gradient matching methods. It can
be observed that the performance of GM is not as good as the random coreset method, although it
is initialized by the real data. On the other hand, DD3D outperforms both methods, validating its
advantages in learning the coordinates and labels of point clouds. However, the performance of DD3D
is not as good as the full dataset because part segmentation needs to learn both global information,
i.e., shapes, and local information, i.e., parts, which is a challenging task in 3D distillation. The
visualizations of DD3D with different matching objectives can be seen in Appendix F.

5.3 GENERALIZATION STUDIES
We conduct two generalization experiments to verify the effectiveness of DD3D further.

Cross-architecture Generalization. We first evaluate whether DD3D can benefit different point
cloud models. Specifically, we use PointNet as the distillation method and utilize five advanced point
cloud models as evaluation methods, trained on the synthetic data from scratch. Notably, we use
synthetic data with CPC=50 to alleviate the randomness. The results are shown in Table 3, from
which we can see that DD3D consistently outperforms DM and GM across different datasets and
evaluation methods, proving that the synthetic data distilled by DD3D has better generalizability.
This may be attributed to the generator that provides various point clouds in each epoch by sampling
different noises, which plays a role like data augmentation. However, we can also observe that the
results of evaluation methods are not as good as PointNet, emphasizing that the synthetic data is still
biased by the distillation model.

Cross-resolution Generalization. We next explore the performance of DD3D under different
resolutions. Typically, the shape classification task needs 1,024 points for training and evaluation. In
this experiment, we randomly sample 256 and 512 points from real data to supervise the distillation
of DD3D. Once trained, we leverage DD3D to generate 1,024 points for evaluation. It is visible
from Figure 3 that training on high-resolution point clouds can accelerate the convergence of DD3D
but the final matching losses are similar. Moreover, Table 4 shows that different resolutions have
similar performance. In some cases, low-resolution data also outperforms high-resolution point
clouds, e.g., ScanObjectNN. This discovery shows that DD3D can not only achieve stable results but
also significantly reduce computational costs and GPU occupancy.
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Table 3: Cross-architecture results (%) on different datasets with CPC=50.

Dataset Ratio Method PointNet++ DGCNN PCT  PointMLP PointNeXt Average
DM 56.02 51.47 52.72 51.33 51.82 52.67
ScanObjectNN  32.3% GM 55.38 52.98 53.28 51.33 52.81 53.16
DD3D 57.14 53.36 54.04 52.50 53.36 54.08
DM 74.35 74.84 76.92 72.49 71.48 74.02
ModelNet40 20.3% GM 76.54 73.38 77.31 74.11 72.00 74.67
DD3D 77.71 75.36 79.21 75.36 73.99 76.33
DM 33.20 31.26 33.92 32.58 31.17 3243
MVPNet100 8.0% GM 31.35 29.88 31.43 31.79 30.82 31.09
DD3D 34.19 32.94 35.82 33.08 32.75 33.76

Table 4: DD3D under different resolutions.

140 27 256
o —o— 512 ngu
':;130 e ':,'so Resolution
g g CPC=50 256 512 1024 Ave.
zlll) =
“ ScanObjectNN  61.27 6059 61.96 61.27
o % o we w0 w0 ModelNetd)  83.03 83.59 8391 83.51

Iteration Iteration

Figure 3: Matching loss of different resolutions. MVPNet100 3988 40.13 40.61 40.21

5.4 ABLATION STUDIES

Point Cloud Rotator. We first verify the effectiveness of the proposed point cloud rotator on the
rotated ModelNet40 dataset. Specifically, we consider three different models: (1) PointNet, which is
rotation-sensitive; (2) PointNet + PCA, which is rotation-invariant but sign-variant; (3) PointNet +
Rotator, which is rotation- and sign-invariant. It can be observed from Table 5 that the performance
of all methods drops rapidly when the data is randomly rotated. On the other hand, leveraging PCA
to transform the point clouds into a canonical orientation can significantly improve the distillation
performance. However, the results are still far from the model with the point cloud rotator, which
reflects that sign ambiguity will seriously prevent the distillation model from learning meaningful
synthetic data. Finally, it can be observed that the proposed rotator can help point cloud models to
rotation-invariant representations, thus benefiting the learning of synthetic data.

Point-wise Generator. In Section 4.4, we have discussed the pros and cons of DD and DD3D. Here,
we make a further attempt to show the advantages of the proposed point-wise generator. Firstly, in
Table 6, we report the results of DD with and without initialization. It is noticeable that initializing
DD with real data is important for the distillation performance. However, its performance is still
not as good as DD3D, which does not rely on any initialization. Moreover, the performance of
DD3D can still be improved if we use sampling during the evaluation, i.e., generating different point
clouds at each epoch, because the generated data serves as data augmentation to improve the model
performance. This strategy is more useful when the value of CPC is small. Additionally, in Figure 4,
we visualize the matching loss of DD and DD3D. It is observable that DD without initialization has a
higher loss value and converges more slowly than DD3D, reflecting the advantages of the proposed
point-wise generator in synthetic point clouds.

5.5 TIME AND SPACE OVERHEAD

We compare the overhead between DD and DD3D from multiple views. Firstly, Figure 8a shows
that the time overhead of DD3D is slightly higher than DD due to the generation of synthetic data.
Then, we can observe from Figure 8b that the memory budget of DD grows faster than DD3D as
the value of CPC increases. DD3D can save the budget of synthetic data by sharing the generator
between different classes, and its memory is nearly 4x smaller than DD when CPC=10. Figure 4c
illustrates the changes in time and space overhead of DD3D at different resolutions. We can see
that training with low-resolution point clouds significantly reduces overhead, which is important for
resource-constrained scenarios, such as edge computing.
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Table 5: Ablation studies of the point cloud rotator Table 6: Comparison between DD and DD3D

on the ModelNet40 dataset with CPC=50. with different training strategies.
ModelNet40 Random GM DM DD3D ModelNet40 1 10 50
PointNet 1475 947 1016 1791 DD w/o Initialization ~ 53.08 72.57 81.77

PointNet + PCA 60.77 5355 5557  62.72 DD w/ Initialization ~ 53.38 75.45 83.02
PointNet + Rotator 70.13 68.92 69.31 71.27 DD3D w/o Samphng 53.82 76.01 83.72

Full Dataset 80.45 DD3D w/ Sampling 54.27 76.15 83.91
1.2 12
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Figure 4: Matching loss of
methods with different settings.  Figure 5: Time and space overhead between DD and DD3D.

5.6 VISUALIZATION

Raw Images

Figure 6: Visualization of the real and synthetic datasets. Top row: ModelNet40 (Airplane). Middle
row: ModelNet40 (Lamp). Bottom row: ShapeNet (Guitar, Laptop, and Pistol).

We visualize the real and synthetic point clouds in Figure 6 for a more intuitive comparison. The
results of DD3D and GM are placed in the last two columns. It can be observed that the point
clouds generated by GM tend to condense to some clusters, while some isolated points are left as
noise. On the contrary, the point clouds generated by DD3D are coherent and encode the global
geometric shapes. Moreover, in ShapeNet, the point clouds of GM are squeezed, making its shape
inconsistent with the real dataset, while the results of DD3D are more realistic and encode the spatial
relationship between parts, validating the effectiveness of DD3D for 3d data. See Appendix F for
more visualizations.

6 CONCLUSION

This paper introduces DD3D for 3D point cloud distillation, which matches the rotation-invariant data
distribution between real and synthetic data by transforming point clouds into a canonical orientation.
Once trained, DD3D can synthesize point clouds at arbitrary resolutions, reducing memory budget
and improving scalability. Extensive experiments on both classification and segmentation tasks
validate the superiority of DD3D over traditional DD methods. A promising direction is to initialize
DD3D with real data to improve its performance.

10
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A PROOF OF THEOREMS

Theorem 1. Assume the classifier is a linear layer W and L5 can be simplified to the mean-squared
error || XW — Y||§; The objective of gradient matching is equal to variance preserving:

min Laar = minD (Vw L, VwLl) = min | X§Xs - X7 X7, (2)

where D is a distance metric and Vyy is the gradient with respect to W.

Proof. The gradient of || XW — YH% is denoted as V = X T (XW — Y'). We can then match the
gradients between the real and synthetic data:

Vs = Vrl[} = |Xd (XsW — Ys) — XF(X7W — Y7)|3 (13)
<||W|% 1 X4 Xs — X[ XT3 +||Xd Vs — X7 V7|3 (14)
Variance Mean

We can see that the first term is to preserve the variance of real data, and the second term aligns the
average representations of samples belonging to the same class. These two terms can be combined if
we set X5 = Xg — Xs Ys and XT X7 — XTYT for each class. Then we only need to match the
variance between Xg and X 7. O

Theorem 2. Assume X follows a d-dimensional multivariate Gaussian distribution N'(u, ). Let
X7 be the rotated representations of X7 such that:

)\maa: (]E |:X’ITTX’IT1|) S A1710,9: (E |:XTTX7{|) = Omax (]E [X’/T]) S Omax (E [X'T]) 5 (]5)
where Ao and 0,42 are the maximum eigenvalues and singular values, respectively.

Proof. Firstly, the largest eigenvalue of the covariance matrix X7 ' X is equal to the largest singular
value of X'7. Therefore, we only prove the first inequality.

Secondly, as X ' X = Y"1 | & x;, for X7 ~ N(u, ¥), we have:

Zx x‘| =Y Elx/a]=n(p ' p+3), (16)
i=1

Z RTJ:sz

i=1

E[X;X7] =

n n

=> E[R[a/zR] => R/E[z/z]R. A7)

i=1 i=1

E X7 x| =E

Thirdly, we have:
Anaw (B [XFX7]) = ndpas (1" +3), (18)

Ama (IE [ X" X'T]) = Amas (i RE [2] z] RZ) < i Amaz (R{E [2] 2] Ri)  (19)
=1 =1

Amaz (R{ p" pRi + R SR;) < Aoz (B [X7X7]). (20)

Il

i=1

The above inequality shows that the largest eigenvalue of E [X]X7| is the upper bound of
E {X’TTX’T} . The equality holds if and only if the random rotation matrices are commutative,
which is infeasible in practice. O

B IMPLEMENTATION DETAILS OF DD3D

Here, we explain some details of DD3D, consisting of two important components: a point cloud
rotator and a point-wise generator. Both components are built based on the SIREN (Sitzmann et al.,
2020) model, which stacks multiple fully connected layers with sin(-) activation to capture the
high-frequency information. The PyTorch code is shown in Algorithm 4, where some details are
highlighted.

14
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Algorithm 4 PyTorch code of DD3D

import torch
import torch.nn as nn
import SIREN

class Rotator (nn.Module) :
def __init__ (self, hidden_dim, wO0) :
super () .__init__ ()

# wO is to adjust the frequency of sine function
self.sign_encoder = SIREN(1l, hidden_dim, wO0=wO0)
self.sign_decoder = SIREN (hidden_dim, 1, wO0=1.)

def forward(self, x):
x = x.unsqueeze (-1) # x: [B, N, 3, 1]

feat = self.sign_encoder (x) .mean(dim=1, keepdim=True) # [B, N, 3, 1] -> [B, 1, 3, d]
feat = self.sign_decoder (feat) # [B, 1, 3, d] -> [B, 1, 3, 1]

sign = torch.sign(feat) # sign-equivariant

x = x % sign # [B, N, 3, 1] = [B, 1, 3, 1] -> [B, N, 3, 1]

return x.squeeze(-1)

C DETAILS OF DATASETS

Table 7: Details of datasets

ScanObjectNN  ModelNet4d0 MVPNet ShapeNet
# Shape Classes 15 40 100 16
# Part Classes - - - 50
# Training Samples 2,322 9,843 62,494 14,007
# Validation Samples 580 2,468 15,670 2,874
Resolution 1,024 1,024 1,024 2,048

The detailed statistical information of the datasets used in this paper is shown in Table 7. We list the

sources of the datasets and their licenses in the following.

* ScanObjectNN: https://github.com/feiran-1/rotation-invariant-pointcloud-analysis

(MIT license)

(MIT license)

D HYPERPARAMETERS

ModelNet40: http://modelnet.cs.princeton.edu/ModelNet40.zip
MVPNet: https://github.com/GAP-LAB-CUHK-SZ/MVImgNet
e ShapeNet: https://github.com/feiran—-1/rotation-invariant-pointcloud-analysis

The hyperparameters of baselines and DD3D are listed in Tables 8 and 9, respectively.

Table 8: Hyperparameters used for Data Synthesis.

ScanObjectNN ModelNet40 MVPNet100 ShapeNet
Optimizer Adam Adam Adam Adam
Initial LR 0.001 0.001 0.001 0.001
Batch Size 32 32 64 32
Iterations 200 400 600 200
Weight Decay 0.0005 0.0005 0.0005 0.0005
Augmentation  Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate  Scale, Jitter, Rotate

StepLR StepLR StepLR

Scheduler (Decay 0.1/100 iter) (Decay 0.1/ 100 iter)

(Decay 0.5 /200 iter)
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Table 9: Hyperparameters used for Validation.

ScanObjectNN ModelNet40 MVPNet100 ShapeNet
Optimizer Adam Adam Adam Adam
Initial LR 0.001 0.001 0.001 0.001
Batch Size 8 8 32 8
Epochs 200 200 200 200
Weight Decay 0.0005 0.0005 0.0005 0.0005
Augmentation Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate  Scale, Jitter, Rotate

StepLR StepLR

Scheduler (Decay 0.1 /100 epoch)  (Decay 0.1/ 100 epoch) CosineAnnealingLR )

E DETAILS OF BACKBONES

Previous work (Yu et al., 2024) pointed out that complexity architecture may degenerate the distillation
performance. Therefore, we re-implement some traditional point cloud models, described as follows.

* PointNet: 3 layers with dimension [64, 128, 1024]. Each layer consists of a Convld layer, an
InstanceNorm1d or BatchNorm1d layer (for classification and segmentation, respectively), and a
ReLU activation. We use max-pooling to learn the global representation of point clouds.

For other methods, we use the codes provided by openpoints® library. The YAML configuration files
are listed below.

PoineNet++ | DGCNN | PCT | PointMLP | PointNext
model:
NAME: BaseCls
encoder_args: model :
NAME: PointNet2Encoder NAME: BaseCls
in_channels: 3 encoder_args:
width: null NAME: PointNextEncoder
layers: 3 blocks: (1, 1, 1, 1, 1, 1]
use_res: False strides: [1, 2, 2, 2, 2, 1]
strides: [2, 4, 1] model: width: 32
mlps: [[[64, 128]], NAME: BaseCls in_channels: 3
., model :
[r12s, 25611, encoder_args: NAME: PointMLp radius: 0.15
[[256, 1024]]] NAME: DGCNN N . radius_scaling: 1.5
in_channels: 3
radius: [0.2, 0.4, null] in_channels: 3 s oo sa_layers: 2
num_samples: [32, 64, null] channels: 64 p s: 10 N sa_use_res: True
: = num_classes: 40

sampler: f

nsample: 32

s num_point: 1024 embed_dim: 64 o e 4

RS num_class: 40 groups: 1 P

NAME: aggr_args:

. . input_dim: 3 res_expansion: 1.0 .
feature_type: 'dp_fj i . feature_t 3

model: activation: relu
anisotropic: False . redu
e nneighbor: 16 bias: False

reduction: 'max dropout: 0. ° group_a
P S nblocks: 1 use_xyz: False i

jroup_arg —Arg transformer_dim: 256 normalize: "anct

NAME: 'ballquery’
use_xyz: True

dim_expansion:
blocks:
pre_blocks: [ order: conv-norm-act
pos_blocks: [ I
k_neighbors: [ -t_args:

act: 'relu’
reducers: [ 2]
norm_args: norm_args:

norm: 'bnld’ norm: 'bn’
cls_args:

conv_args:

NAME: ClsHead
cls_args: num_classes: 40
NAME: ClsHead mlps: [256]
num_classes: 40 norm_args:
norm: 'bnld'

F ADDITIONAL EXPERIMENTS AND DISCUSSIONS

Performance of Synthetic Datasets. The performance of DD is positively correlated with the
memory overhead, i.e., CPC, of the synthetic datasets. When applied to applications requiring
high accuracy, we can increase the value of CPC to improve the performance of synthetic datasets.
To validate this, we conduct experiments on ScanObjectNN and ModelNet40 with CPC=100 and
evaluate the performance of DD3D and GM. The results are shown below.

Table 10: Results on ScanObjectNN Table 11: Results on ModelNet40
CPC 1 10 50 100 CPC 1 10 50 100
GM 26.34 3987 5752 62.82 GM 5338 6545 81.74 84.71
DD3D 30.62 43.77 6196 6551 DD3D 53.82 7631 8391 86.68
Full 66.96 Full 88.05

*https://github.com/guochenggian/openpoints
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Local-matching and Global-matching. The segmentation task is more challenging than the
classification task as it needs both global information (shape) and local information (part). Therefore,
we propose local and global matching in the segmentation task. To verify the role of each objective,
we visualize the point clouds generated by DD3D with local and global matching, respectively. The
results are shown below. We can see that global matching cannot learn the shapes of parts, such as
the chassis of a laptop (Row 3, Column 2). Local matching cannot capture the spatial relationship
between parts, such as the handle and body of a bag (Row 4, Column 4). Therefore, the combination
of local and global matching is essential for the distillation of the segmentation task.

Guitar Laptop Bag Mug
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T s
Local F : 7

Figure 7: Synthetic images of DD3D with different matching objectives.

Delving into Aligned and Misaligned Orientations. To further analyze the influence of rotated
and aligned point clouds, we use Grad-CAM to visualize the importance distribution of PointNet
trained on these two datasets. We denote the two models as PointNet-aligned and PointNet-rotated. It
can be observed that the importance of PointNet-aligned is more concentrated than PointNet-rotated,
validating our analysis that rotation-invariant features can preserve the principle components.
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(a) PointNet-rotated (b) PointNet-aligned

Figure 8: Grad-CAM importance of PointNet trained on aligned and rotated datasets.
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How to Learn Geometric Details? DD typically focuses on capturing coarse-grained (low-
frequency) features that encode the principle information of real datasets. When applied to tasks
requiring fine-grained information, we may be concerned about its ability to learn high-frequency
details. We visualize DD3D with different periods, i.e., t=10/50/100, in the following. A larger value
of ¢ indicates a higher frequency components. We can find that increasing high-frequency input
can significantly help DD3D learn geometric details. This inspires us to enhance high-frequency
information for fine-grained tasks.

Guitar Laptop Pistol Bag Mug
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Figure 9: Synthetic images of DD3D with different periods.
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