
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POINT CLOUD DATASET DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This study introduces dataset distillation (DD) tailored for 3D data, particularly
point clouds. DD aims to substitute large-scale real datasets with a small set of
synthetic samples while preserving model performance. Existing methods mainly
focus on structured data such as images. However, adapting DD for unstructured
point clouds poses challenges due to their diverse orientations and resolutions in 3D
space. To address these challenges, we theoretically demonstrate the importance
of matching rotation-invariant features between real and synthetic data for 3D
distillation. We further propose a plug-and-play point cloud rotator to align the
point cloud to a canonical orientation, facilitating the learning of rotation-invariant
features by all point cloud models. Furthermore, instead of optimizing fixed-
size synthetic data directly, we devise a point-wise generator to produce point
clouds at various resolutions based on the sampled noise amount. Compared to
conventional DD methods, the proposed approach, termed DD3D, enables efficient
training on low-resolution point clouds while generating high-resolution data for
evaluation, thereby significantly reducing memory requirements and enhancing
model scalability. Extensive experiments validate the effectiveness of DD3D in
shape classification and part segmentation tasks across diverse scenarios, such as
cross-architecture and cross-resolution settings.

1 INTRODUCTION

Dataset distillation (DD) (Wang et al., 2018) aims to distill the knowledge of a large-scale dataset
into a few synthetic samples, where the models trained on the real and synthetic data will have
comparable performance. By doing so, DD significantly reduces the computational cost of training
neural networks from scratch. Due to its remarkable efficiency and effectiveness, DD has been used
in a variety of domains, such as image (Zhao et al., 2021; Zhao & Bilen, 2023; Cazenavette et al.,
2022), video (Wang et al., 2024), text (Maekawa et al., 2023) etc. Despite great progress, existing
DD methods only succeed on structured 1D and 2D data, while the distillation of unstructured 3D
data, e.g., point cloud, is still under-explored.

Point cloud data exists in large quantities in various fields. For example, MVPNet (Yu et al., 2023)
scans more than 87K point clouds from real-world videos for machine vision, Objaverse-XL (Deitke
et al., 2023) provides more than 10M high-quality 3D assets, and Qu et al. (2022) constructs a 100M
dataset for high-energy physics, where particles are modeled as point clouds. Training on these
datasets from scratch is time-consuming and resource-intensive, requiring more efficient approaches.
However, several reasons prevent existing DD frameworks from generalizing to 3D point clouds.

First, point clouds with different orientations represent the same semantic information, e.g., shapes.
However, existing DD methods do not take the symmetry of data into account, which cannot handle
the randomly rotated data and result in sub-optimal performance. As shown in Figure 1a, directly
applying DD to the point clouds with different orientations cannot obtain meaningful synthetic data.
Second, point clouds have flexible resolutions, i.e., the number of points, depending on specific
models and applications. Generally, a larger resolution encodes more fine-grain information but
also increases the computational costs (Huang et al., 2024; Qiu et al., 2021). However, existing DD
methods initialize the synthetic data as a fixed-size tensor, which cannot be customized for different
point cloud models. Moreover, the memory budget for fixed-size tensors will increase rapidly when
dealing with dense-resolution scenes, e.g., segmentation (Chang et al., 2015; Ren et al., 2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Distill

Match

(a) DD for point clouds

Rotate Distill Generate

Match

(256 Points)

(512 Points)

(1024 Points)
(Generator)

(b) DD3D for point clouds

Figure 1: Differences between vanilla DD and DD3D when distilling 3D point clouds.

Once the weaknesses of existing methods are identified, it is natural to ask: How can we build a
distillation framework that overcomes the orientation and resolution issues of 3D point clouds?
To answer this question, we first theoretically prove that random rotations weaken the principle
components of real data, thereby degenerating the distillation performance. Based on this discovery,
we propose DD3D, the first DD framework for 3D point clouds, illustrated in Figure 1b. Specifically,
DD3D first uses a rotator to convert the point cloud into a canonical orientation by learning a rotation-
equivariant projection matrix to offset random rotation. Then, the knowledge of rotation-invariant
data is distilled into a point-wise generator to predict the point coordinates from noise, where the
resolution is based on the number of sampled noises. Finally, the rotator and generator are jointly
optimized by minimizing the gradient differences between the real and synthetic data.

The contributions are summarized as follows. (1) We propose the first 3D distillation framework,
DD3D, which can eliminate the influence of random rotations and synthesize point clouds at arbitrary
resolutions. (2) We theoretically prove that matching the rotation-invariant features can preserve
the principal components of real data and prevent data degeneration. (3) DD3D can be trained with
low-resolution point clouds and generates high-resolution data for evaluation, significantly reducing
memory usage and enhancing model scalability. (4) Extensive experiments on shape classification
and part segmentation tasks validate the effectiveness of DD3D over baselines.

2 RELATED WORK

Dataset Distillation. Research on DD can be roughly divided into two directions. The first is
to explore advanced matching objectives to improve the distillation performance. For example,
performance matching (Wang et al., 2018), gradient matching (Zhao et al., 2021; Zhao & Bilen, 2021),
distribution matching (Zhao & Bilen, 2023; Wang et al., 2022), trajectory matching (Cazenavette et al.,
2022; Guo et al., 2024; Du et al., 2023) and feature regression (Zhou et al., 2022; Loo et al., 2022;
Nguyen et al., 2021). On the other hand, some methods innovate efficient data parameterizations
to avoid directly optimizing the synthetic data. For example, neural networks (Liu et al., 2022),
spectral representation (Shin et al., 2023), linear transformation (Deng & Russakovsky, 2022), and
up-sampling (Kim et al., 2022). Among them, a special parameterization technique is to distill the
knowledge into a generative model (Zhao & Bilen, 2022; Wang et al., 2023; Zhang et al., 2023;
Cazenavette et al., 2023; Zhang et al., 2024), which can generate diverse synthetic data with unlimited
samples. Although valid, these methods rely on the prior knowledge of generative models pre-trained
on large-scale datasets, which is not feasible for point clouds. A recent work1 also applies GM to
point cloud data. However, neither of them considers the orientation and resolution issues. For a
more comprehensive introduction to DD, please refer to the recent surveys (Yu et al., 2024; Lei &
Tao, 2024; Geng et al., 2023; Sachdeva & McAuley, 2023).

Point Cloud Analysis. Deep learning on point clouds plays a vital role in 3D data analysis (Guo
et al., 2021b). Traditional methods can be classified into three categories: Point-based methods,
e.g., PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b), convolution-based methods,
e.g., PointCNN (Li et al., 2018) and PointConv (Wu et al., 2019), and relation-based methods, e.g.,
DGCNN (Wang et al., 2019) and Point Transformer (Guo et al., 2021a). However, these methods

1https://github.com/kghandour/dd3d

2

https://github.com/kghandour/dd3d

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

are rotation-sensitive and cannot handle point clouds with different orientations. Some advanced
methods are designed to learn rotation-equivariant or invariant features, such as vector neuron (Deng
et al., 2021), spherical harmonic (Poulenard et al., 2019), tensor field (Thomas et al., 2018), and
graph features (Kim et al., 2020; Zhao et al., 2019). However, these methods introduce additional
operators and cannot preserve the original geometric information, i.e., coordinates. Another way is to
project point clouds into the same orientation. For example, principal component analysis (PCA)
leverages the eigenvectors of the covariance matrix to transform point clouds into the direction with
maximum variance. But this approach suffers from the sign-ambiguity issue (Xiao et al., 2020; Yu
et al., 2020; Li et al., 2021).

3 BACKGROUND

3.1 PRELIMINARY

Task Formulation. Suppose that T = {(Ci, yi)}|T |
i=1 is a large-scale training dataset, where Ci is a

point cloud with label yi for the shape classification task. Each point cloud has n points, represented
as C = {P, V }, where P ∈ Rn×3 represents the 3D coordinates of points and V ∈ Rn×v indicates
the part to which the point belongs in segmentation task and v is the number of parts. The goal of
DD3D is to synthesize a much smaller point cloud dataset S = {(Cj , yj)}|S|

j=1, where |S| ≪ |T |, such
that a classification or segmentation model fθ trained on T and S will have comparable performance.
Other tasks, such as detection, are left for future studies.

Dataset Distillation. In order to effectively optimize the synthetic data, existing DD methods adopt a
bi-level optimization paradigm, which can be formulated as:

min
S

LDD (fθ∗(S), fθ∗(T)) s.t. θ∗ = argmin
θ

Lcls(fθ(S), Y S), (1)

where the inner loop updates the model fθ on the synthetic data, and the outer loop optimizes the
synthetic data. In particular, LDD is a metric that measures the distance between real and synthetic
data. For example, gradient matching (Zhao et al., 2021) minimizes the gradient differences.

3.2 DATASET DISTILLATION WITH ROTATIONS

Before detailing the proposed method, we first give a general analysis of how rotations affect the
performance of DD. Let XS ∈ R|S|×d, XT ∈ R|T |×d denote the representations learned by fθ on
the synthetic data and real training data, respectively, and d is the hidden dimension.

Theorem 1. Assume the classifier is a linear layer W and Lcls can be simplified to the mean-squared
error ∥XW − Y ∥2F . The objective of gradient matching is equal to variance preserving:

min
S

LGM = min
S

D
(
∇WLS

cls,∇WLT
cls

)
⇒ min

S

∥∥X⊤
S XS −X⊤

T XT
∥∥2
F
, (2)

where D is a distance metric and ∇W is the gradient with respect to W .

Theorem 1 reveals that synthetic data preserves the variance information of real data. We then analyze
how random rotations affect the variance of real data. Without loss of generality, we assume that fθ
is rotation-equivariant, i.e., fθ (PR) = fθ (P)R, where R ∈ SO(d) is a random rotation matrix.

Theorem 2. Assume XT follows a d-dimensional multivariate Gaussian distribution N (µ,Σ). Let
X ′

T be the rotated representations of XT such that:

λmax

(
E
[
X ′

T
⊤
X ′

T

])
≤ λmax

(
E
[
XT

⊤XT

])
⇒ σmax (E [X ′

T]) ≤ σmax (E [XT]) , (3)

where λmax and σmax are the maximum eigenvalues and singular values, respectively.

Theorem 2 states that random rotations reduce the maximum singular value of the data representations,
implying that the principle component of XT is weakened. In this case, the synthetic data cannot
effectively capture the distribution of the real data, degenerating model performance. All proofs can
be seen in Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 THE PROPOSED METHOD

4.1 PLUG-AND-PLAY POINT CLOUD ROTATOR

The above analysis demonstrates that learning rotation-invariant representations is crucial for point
cloud distillation. However, a considerable part of point cloud models do not have this property. To
solve this problem, we propose a plug-and-play point cloud rotator to transform the point clouds into
their canonical view, enabling all methods to learn rotation-invariant representations.

Rotation-equivariant. We can leverage the orthogonality of the rotation matrix to eliminate its
influence, i.e., RR⊤ = I , where PCA is a typical method:

1

n

∑(
PR− PR

)⊤ (
PR− PR

)
= R⊤UΛU⊤R ⇒ (PR)(R⊤U) = PU, (4)

where P is the center of P and U represents the eigenvectors of the covariance matrix. Notably,
the projection R⊤U is equivariant to the rotation of coordinates, and therefore (PR)(R⊤U) = PU
is rotation-invariant. However, the eigenvectors have the sign ambiguity issue, i.e., −ui is also
a valid eigenvector. As a result, the canonical view PU is not unique and has 8 ambigui-
ties in 3D space (Xiao et al., 2020; Yu et al., 2020), i.e., PUQ = P [±u1,±u2,±u3], where{
Q ∈ R3×3|Qii = {1,−1} , Qij = 0,∀i ̸= j

}
is a random reflection matrix.

Sign-invariant. Our rotator r : Rn×3 → Rn×3 is mainly designed to improve the performance of
PCA by solving the sign ambiguity problem. Specifically, the rotator aims to learn a sign-equivariant
reflection matrix Q for each point cloud such that PUQ ·Q = PU is sign-invariant. Specifically, the
rotator first lifts the scalar coordinates to the vector representations:

H = [sin(±PU), sin(±2PU) · · · sin(±tPU)]
⊤
= [sin(PU), sin(2PU) · · · sin(tPU)]

⊤
Q, (5)

where HQ ∈ Rn×t×3 is the sign-equivariant representations, sin(·) is the sine function and t is the
period of Fourier features. An average pooling is then applied on H to learn the representations of
the whole point cloud. Finally, a learnable vector w ∈ Rt is used to decode the reflection matrix. The
overall architecture of the rotation is formulated as follows:

r(P) = PUQ ·Q = PUQ · Sign(w · Pool(HQ)), (6)

where “Sign” means the signs of a matrix. The reflection matrix Q has the same signs as Q because
the sinusoidal features, pooling function, and linear decoder preserve the sign information of HQ,
which can solve the sign ambiguity and learn sign-invariant representations.

Other methods. There are different approaches to learning rotation-invariant representations, such
as vector neruon (Deng et al., 2021) and graph features (Kim et al., 2020). However, these methods
break the original point coordinates, which are not easy to incorporate with other models. On the
other hand, some methods try to solve the sign ambiguity by using pooling (Yu et al., 2020) and
attention (Xiao et al., 2020; Li et al., 2021) mechanisms, which is inefficient as they need to calculate
the representations for all ambiguous views.

4.2 POINT-WISE GENERATOR

In addition to the orientation, point clouds often have different resolutions, which also need to be
considered in the distillation process. Traditional DD methods update the synthetic data in an explicit
way, i.e., directly optimizing the fixed-size tensors, which is unsuitable for point cloud synthesizing.
On the other hand, the implicit neural representation (INR) methods (Sitzmann et al., 2020; Park
et al., 2019) show great potential in generating data with arbitrary resolutions (Chen et al., 2021;
Singh et al., 2023). Generally, INR predicts the signals of given coordinates, but the coordinates of
the synthetic point clouds are unknown.

Point Denoising. Our solution is to use INR as a generator g : R → R3, whose input is random noise
and output is the coordinates of a point. This means that we treat the noise as a special continuous
coordinate, and the generator is used to obtain “3D signals” by denoising the noise. It is also worth
noting that the generator adopts a point-wise paradigm rather than an instance-wise generation.
Therefore, the amount of points is the same as the sampled noise, which allows us to generate point

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Global
Match

Local
Match

(Generator)

Partition

Noise Labels

Figure 2: Illustration of DD3D for part segmentation task. Each noise is first pre-partitioned into
different parts according to its value, e.g., the noise within (0, 0.45) is marked as fuselage. Then the
generator maps the noise into coordinates to match the global (shape) and local (part) information.

clouds with infinite resolution. We choose SIREN (Sitzmann et al., 2020) as the generator, which can
be formulated as:

g = [Φ1 ◦ Φ2 ◦ · · · ◦ ΦL]WP , Φi = sin(ziwi + bi), (7)
where L is the number of layers, ◦ denotes the cascade of neural networks, Φi is a multi-layer
perceptron (MLP) with sine activation function in the i-th layer, z1 ∼ U(0, 1) is the input noise,
and WP ∈ Rd×3 is the decoder to generate 3D coordinates of points. Notably, we use uniform
distribution instead of Gaussian distribution, as INR needs the input to be normalized within [0, 1].

Conditional Modulating. The implicit generator can synthesize point clouds with arbitrary resolution
but lacks label information, which is crucial for DD because it concentrates on classification task (Yu
et al., 2024; Lei & Tao, 2024). Therefore, we use a modulator c : Rd → Rd, which is implemented
as another cascaded MLP Ψ, to encode the label information and generate conditions for the point
cloud generation:

c = Ψ1 ◦Ψ2 ◦ · · · ◦ΨL, Ψi = ReLU (miw
′
i + b′i) , (8)

where ReLU(·) = max(0, ·), mi ∈ Rd denotes the conditional representations and m1 is a one-hot
matrix, representing the label information. Assume that there are K classes in total, and each class
has N synthetic point clouds, then m1 ∈ RKN and w′

1 ∈ RKN×d. The conditional representations
are then used to modulate each layer of the generator. The overall architecture is formulated as:

g ⊙ c = [(Ψ1 ⊙ Φ1) ◦ (Ψ2 ⊙ Φ2) ◦ · · · ◦ (ΨL ⊙ ΦL)]W, (9)

where ⊙ is the element-wise multiplication to modulate the frequency and phase of the features. For
clarity, in the following sections, we use g(z, i) to denote g ⊙ c with the i-th condition.

4.3 DISTILLATION TASKS

Traditional DD methods mainly focus on the fundamental image classification task. To better evaluate
the performance of 3D distillation, we not only conduct experiments on the basic shape classification
task but also explore the challenging part segmentation task. Shape classification aims to assign each
point cloud a label, emphasizing global information, while part segmentation predicts the label of
each point, which is more fine-grained.

Shape Classification. The distillation objective of the shape classification task is defined as:

Lshape =

K∑
k=1

D
(
∇Lcls

(
fθ ◦ r(BS

k), Y
S
k

)
,∇Lcls

(
fθ ◦ r(BT

k), Y T
k

))
, (10)

where K is the total classes of shapes, BT
k and Y T

k are a batch of real training data and labels,
BS

k = g(z, k) denotes a batch of synthetic point clouds belonging to the k-th class, and Y S
k represents

the predefined synthetic labels.

Part Segmentation. In the segmentation task, each shape is divided into several parts, e.g., an
airplane can be divided into fuselage, wings, engine, and rear. Such fine-grained labels need to be
predefined before distillation. Therefore, DD3D first partitions the noise into different parts based on
its value and then feeds the noise into the generator and rotator sequentially to obtain the synthetic

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

data. Intuitively, the synthetic data should encode both the global shapes and local geometry of the
real data. Therefore, we propose global and local matching to match the gradients of the entire shape
and individual parts, respectively. A toy example is shown in Figure 2.

The distillation objective of global matching in the part segmentation task is defined as:

Lpart =

K∑
k=1

D
(
∇Lseg

(
fθ ◦ r(BS

k), V
S
k

)
,∇Lseg

(
fθ ◦ r(BT

k), V T
k

))
, (11)

where V T and V S represents the real and synthetic part labels, respectively. To match the gradient of
a specific part p, we apply an element-wise mask Mp on the segmentation labels, i.e., V T = V T ⊙Mp

and V S = V S ⊙Mp, to avoid interference from the gradients of other parts. In practice, we calculate
local and global gradient matching alternately to preserve information of shapes and parts. See
Algorithms 1, 2, 3, and Appendix B for the algorithm diagrams and detailed descriptions.

Algorithm 1 DD3D for classification

Input: Training dataset T
Output: Model f , Rotator r, Generator g

1: for k = 1, · · · ,K do
2: Initialize f, r, g ∼ θf , θr, θg
3: repeat
4: Sample a batch BT

k , Y T
k ∼ T

5: Sample noise z1 ∼ U(0, 1)
6: Generate BS

k = g(z1, k)W
7: Compute ∇LS

cls and ∇LT
cls

8: Update θg with Lshape

9: repeat
10: Update θf , θr with LS

cls
11: until inner-loop end
12: until outer-loop end
13: end for
Algorithm 2 DD3D for evaluation

1: Generate BS , Y S or V S via g
2: Optimize θf and θr until convergence
3: Evaluate f ◦ r on the test dataset

Algorithm 3 DD3D for part segmentation

Input: Training dataset T
Output: Model f , Rotator r, Generator g

1: for k = 1, · · · ,K do ▷ Shape Classes
2: Initialize f, r, g ∼ θf , θr, θg
3: repeat
4: Sample a batch BT

k , V T
k ∼ T

5: Sample noise z1 ∼ U(0, 1)
6: Generate V S

k by partitioning noise
7: Generate BS

k = g(z1, k)W
8: Compute ∇LS

seg and ∇LT
seg ▷ Shape Info.

9: for p ∈ k do ▷ Part belongs to a shape
10: Apply mask Mp on V S

k

11: Compute ∇LS
seg and ∇LT

seg ▷ Part Info.
12: end for
13: Update θg with Lpart

14: repeat
15: Update θf , θr with LS

seg
16: until inner-loop end
17: until outer-loop end
18: end for

4.4 DISCUSSION

Complexity. The complexity of DD contains three parts: data parameterization, model forward, and
data alignment. For a point cloud with n points, DD3D has an additional time complexity O(Lnd) to
generate synthetic data, which makes the time overhead higher than that of vanilla DD methods. But
if we consider down-sampling the points, the time complexity of all three parts can be reduced. See
Section 5.5 for a comprehensive comparison of the time and space overhead between DD and DD3D.

Limitations. Unlike parameterizing data as an explicit matrix, DD3D leverages a generator to
synthesize data, significantly reducing the computational costs and memory budget. However, a
major drawback is that the generator cannot take original data as initialization, which may affect the
convergence of the model. A comparison can be found in Section 5.4. Moreover, there are still some
issues that remain unsolved. For example, existing methods cannot applied to tasks with continuous
labels, such as detection, which limits their applications. Besides, how to make the synthetic datasets
learn fine-grained details beyond shapes remains a challenge.

5 EXPERIMENTS

We benchmark our method on two fundamental tasks of point cloud analysis: shape classification
(Section 5.1) and part segmentation (Section 5.2), followed by a series of analyses, including
generalization (Section 5.3), ablation (Section 5.4), and visualization (Section 5.6).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Datasets. We employ three datasets of different scales for the shape classification task: (i) ScanOb-
jectNN (OBJ BG) (Uy et al., 2019) is the smallest dataset but consists of real-world data, which is
challenging to distillate. (ii) ModelNet40 (Wu et al., 2015) is a larger synthetic dataset generated
from CAD models. (iii) MVPNet (Yu et al., 2023) is the largest dataset, containing 87K point clouds
scanned from real-world videos. We use its subset MVPNet100, which includes data from the 100
most populous categories, to alleviate the influence of long-tail distribution, similar to the CAFIR-100
dataset2. For the part segmentation task, we follow Qi et al. (2017a) and choose ShapeNet-part (Yi
et al., 2016) dataset for evaluation. All the datasets use the standard data splits, and their detailed
statistic information can be found in Appendix C.

Data Preparation and Metrics. Each cloud contains 1,024 points and is normalized into a unit
sphere. We consider two settings: Aligned and Rotated. In the Aligned setting, both training and test
point clouds have the same orientation, while in the Rotated setting, both training and test data are
rotated randomly. For the rotated data, we project them along the direction of maximum variance
during pre-processing. Note that the point clouds in MVPNet only have 180◦ views, so we do not
randomly rotate them. The details of pre-processing can be found in Appendix C. We report the
Overall Accuracy (OA, %) of each method in the shape classification task and the average class
intersection of union (IoU, %) in the part segmentation task.

Baselines. To demonstrate the effectiveness of our method, we choose two types of baselines: (1)
Coreset-based methods, including Random, Herding (Welling, 2009) and K-Center (Sener & Savarese,
2018). (2) Distillation-based methods, including Gradient Matching (GM) (Zhao et al., 2021),
Distribution Matching (DM) (Zhao & Bilen, 2023), and Trajectory Matching (TM) (Cazenavette
et al., 2022). We choose GM as the distillation objection for DD3D as it makes a trade-off between
time and memory consumption. See Appendix D for the detailed hyperparameters.

Backbones. We provide a lightweight PointNet as the distillation backbone, which abandons the
transformation network because previous literature (Yu et al., 2024) pointed out that complex network
architecture may lead to degraded distillation performance. See Appendix E for more details. In
the evaluation stage, we adopt various advanced backbones to evaluate the generalization ability
of distilled datasets, including PointNet++ (Qi et al., 2017b), DGCNN (Wang et al., 2019), Point
Transformer (Guo et al., 2021a), PointMLP (Ma et al., 2022), and PointNext (Qian et al., 2022).
Results can be found in Table 3.

Experimental Setup. For each method, we perform the distillation process twice, evaluate each
synthetic point cloud dataset five times (10 results in total), and report the mean and standard deviation.
Baselines are all initialized with original data, while DD3D is trained from scratch. For the shape
classification task, we consider three different distillation ratios with 1, 10, and 50 synthetic point
clouds per class (CPC). For the part segmentation task, we only choose CPC=1 due to the limitation
of GPU memory.

5.1 SHAPE CLASSIFICATION

The results of different methods on the shape classification task are shown in Table 1, from which
we have the following observations. Firstly, the results of distillation-based methods consistently
outperform coreset-based methods, demonstrating the effectiveness of DD. However, as the amount of
synthetic data increases, the performance of the coreset increases rapidly. Secondly, DD3D achieves
state-of-the-art performance on all five datasets, demonstrating its superiority over traditional DD
methods. Notably, DD3D obtains more improvements over baselines as the number of CPCs increases,
possibly because the generator provides more diverse data. Thirdly, the results on the rotated data
are weaker than those on the aligned data. Although we project the rotated data to the canonical
orientation, i.e., direction with maximum variance, these point clouds still have slightly different
orientations, while the aligned data is manually registered, which is strictly towards the direction of
gravity and therefore has better performance.

5.2 PART SEGMENTATION

We illustrate the results of the part segmentation task in Table 2. As the segmentation task is different
from the basic classification task, some coreset and distillation methods cannot adapt to it. Therefore,

2https://www.cs.toronto.edu/˜kriz/cifar.html

7

https://www.cs.toronto.edu/~kriz/cifar.html

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Shape classification results of different methods, mean accuracy (%) ± standard deviation.
Bold indicates the best performance, and ”-” means out-of-memory during distillation. CPC: Number
of Clouds Per Class.

Dataset CPC
Coreset-based Distillation-based Full

DatasetRandom Herding K-Center GM DM TM DD3D

ScanObjectNN
(Aligned)

1 22.00±2.56 16.29±1.37 18.18±1.04 26.34±2.07 25.90±1.34 26.42±2.08 30.62±1.75
66.9610 32.63±1.51 31.94±3.31 33.46±1.46 39.87±3.00 37.61±2.78 36.44±2.74 43.77±2.63

50 54.15±1.77 51.70±1.87 54.22±1.30 57.52±2.03 56.91±1.17 - 61.96±1.44

ScanObjectNN
(Rotated)

1 14.90±2.10 18.10±1.55 19.91±2.16 14.64±3.04 18.74±2.44 19.29±3.90 23.59±2.17
54.8410 20.50±1.26 20.20±2.19 22.05±1.76 20.55±3.99 20.26±4.31 19.20±4.52 25.84±3.11

50 42.98±1.84 43.39±1.34 44.29±2.07 47.74±1.82 48.11±2.30 - 50.26±1.42

ModelNet40
(Aligned)

1 40.53±0.36 43.41±0.81 43.90±1.51 53.38±0.86 53.21±0.58 52.37±0.99 53.82±0.28
88.0510 71.89±0.29 74.63±0.48 73.13±0.78 75.45±0.82 74.45±0.47 75.39±1.32 76.31±0.49

50 82.37±0.45 82.75±0.49 82.73±0.28 81.74±0.55 83.02±1.16 - 83.91±0.23

ModelNet40
(Rotated)

1 34.65±0.71 30.03±1.42 30.05±0.50 41.32±1.96 41.71±1.65 37.36±2.98 42.36±0.83
80.4510 58.87±0.65 56.03±0.62 57.69±0.97 55.69±1.63 55.45±1.80 56.21±1.14 58.14±1.36

50 70.13±0.64 70.02±0.71 69.68±0.59 68.92±0.73 69.31±0.79 - 71.27±0.32

MVPNet100
1 5.21±0.27 8.14±0.22 8.41±0.35 10.52±0.83 11.73±0.49 10.74±0.57 13.68±0.48

55.6310 15.99±0.30 22.11±0.21 20.54±0.21 25.68±0.77 25.71±0.69 - 31.14±1.31
50 30.14±0.27 35.87±0.24 35.48±0.44 37.41±0.57 36.83±0.20 - 40.61±0.38

Note: All methods with rotated data are trained with the point cloud rotator. Ablations can be seen in Table 5.

Table 2: Part Segmentation results on the ShapeNet dataset, mean IoU (%).

mIoU air-
plane bag cap car chair ear-

phone guitar knife lamp laptop motor mug pistol rocket skate-
board table

Full 74.43 77.06 74.88 69.26 75.27 76.16 69.89 78.22 76.66 74.72 77.03 73.49 73.84 78.03 74.03 66.54 75.73
Coreset 48.83 47.03 24.68 58.89 39.57 70.13 30.78 74.15 58.46 42.24 89.34 26.78 37.93 56.01 20.18 41.59 63.41
GM 47.94 48.93 20.34 42.12 29.98 73.06 24.22 73.41 69.24 32.38 83.80 20.96 61.58 44.17 38.62 43.32 60.84
DD3D 50.99 42.39 34.37 54.00 29.20 70.52 27.87 77.16 74.83 34.09 86.52 28.46 64.93 53.04 34.89 43.62 59.94

we only compare DD3D with the random coreset selection and gradient matching methods. It can
be observed that the performance of GM is not as good as the random coreset method, although it
is initialized by the real data. On the other hand, DD3D outperforms both methods, validating its
advantages in learning the coordinates and labels of point clouds. However, the performance of DD3D
is not as good as the full dataset because part segmentation needs to learn both global information,
i.e., shapes, and local information, i.e., parts, which is a challenging task in 3D distillation. The
visualizations of DD3D with different matching objectives can be seen in Appendix F.

5.3 GENERALIZATION STUDIES

We conduct two generalization experiments to verify the effectiveness of DD3D further.

Cross-architecture Generalization. We first evaluate whether DD3D can benefit different point
cloud models. Specifically, we use PointNet as the distillation method and utilize five advanced point
cloud models as evaluation methods, trained on the synthetic data from scratch. Notably, we use
synthetic data with CPC=50 to alleviate the randomness. The results are shown in Table 3, from
which we can see that DD3D consistently outperforms DM and GM across different datasets and
evaluation methods, proving that the synthetic data distilled by DD3D has better generalizability.
This may be attributed to the generator that provides various point clouds in each epoch by sampling
different noises, which plays a role like data augmentation. However, we can also observe that the
results of evaluation methods are not as good as PointNet, emphasizing that the synthetic data is still
biased by the distillation model.

Cross-resolution Generalization. We next explore the performance of DD3D under different
resolutions. Typically, the shape classification task needs 1,024 points for training and evaluation. In
this experiment, we randomly sample 256 and 512 points from real data to supervise the distillation
of DD3D. Once trained, we leverage DD3D to generate 1,024 points for evaluation. It is visible
from Figure 3 that training on high-resolution point clouds can accelerate the convergence of DD3D
but the final matching losses are similar. Moreover, Table 4 shows that different resolutions have
similar performance. In some cases, low-resolution data also outperforms high-resolution point
clouds, e.g., ScanObjectNN. This discovery shows that DD3D can not only achieve stable results but
also significantly reduce computational costs and GPU occupancy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Cross-architecture results (%) on different datasets with CPC=50.

Dataset Ratio Method PointNet++ DGCNN PCT PointMLP PointNeXt Average

ScanObjectNN 32.3%
DM 56.02 51.47 52.72 51.33 51.82 52.67
GM 55.38 52.98 53.28 51.33 52.81 53.16

DD3D 57.14 53.36 54.04 52.50 53.36 54.08

ModelNet40 20.3%
DM 74.35 74.84 76.92 72.49 71.48 74.02
GM 76.54 73.38 77.31 74.11 72.00 74.67

DD3D 77.71 75.36 79.21 75.36 73.99 76.33

MVPNet100 8.0%
DM 33.20 31.26 33.92 32.58 31.17 32.43
GM 31.35 29.88 31.43 31.79 30.82 31.09

DD3D 34.19 32.94 35.82 33.08 32.75 33.76

0 50 100 150 200
Iteration

110

120

130

140

M
at

ch
in

g
Lo

ss

ModelNet40

256
512
1024

0 100 200 300 400
Iteration

60

70

80

90

M
at

ch
in

g
Lo

ss

ModelNet40

256
512
1024

Figure 3: Matching loss of different resolutions.

Table 4: DD3D under different resolutions.

CPC=50
Resolution

256 512 1024 Avg.

ScanObjectNN 61.27 60.59 61.96 61.27
ModelNet40 83.03 83.59 83.91 83.51
MVPNet100 39.88 40.13 40.61 40.21

5.4 ABLATION STUDIES

Point Cloud Rotator. We first verify the effectiveness of the proposed point cloud rotator on the
rotated ModelNet40 dataset. Specifically, we consider three different models: (1) PointNet, which is
rotation-sensitive; (2) PointNet + PCA, which is rotation-invariant but sign-variant; (3) PointNet +
Rotator, which is rotation- and sign-invariant. It can be observed from Table 5 that the performance
of all methods drops rapidly when the data is randomly rotated. On the other hand, leveraging PCA
to transform the point clouds into a canonical orientation can significantly improve the distillation
performance. However, the results are still far from the model with the point cloud rotator, which
reflects that sign ambiguity will seriously prevent the distillation model from learning meaningful
synthetic data. Finally, it can be observed that the proposed rotator can help point cloud models to
rotation-invariant representations, thus benefiting the learning of synthetic data.

Point-wise Generator. In Section 4.4, we have discussed the pros and cons of DD and DD3D. Here,
we make a further attempt to show the advantages of the proposed point-wise generator. Firstly, in
Table 6, we report the results of DD with and without initialization. It is noticeable that initializing
DD with real data is important for the distillation performance. However, its performance is still
not as good as DD3D, which does not rely on any initialization. Moreover, the performance of
DD3D can still be improved if we use sampling during the evaluation, i.e., generating different point
clouds at each epoch, because the generated data serves as data augmentation to improve the model
performance. This strategy is more useful when the value of CPC is small. Additionally, in Figure 4,
we visualize the matching loss of DD and DD3D. It is observable that DD without initialization has a
higher loss value and converges more slowly than DD3D, reflecting the advantages of the proposed
point-wise generator in synthetic point clouds.

5.5 TIME AND SPACE OVERHEAD

We compare the overhead between DD and DD3D from multiple views. Firstly, Figure 8a shows
that the time overhead of DD3D is slightly higher than DD due to the generation of synthetic data.
Then, we can observe from Figure 8b that the memory budget of DD grows faster than DD3D as
the value of CPC increases. DD3D can save the budget of synthetic data by sharing the generator
between different classes, and its memory is nearly 4x smaller than DD when CPC=10. Figure 4c
illustrates the changes in time and space overhead of DD3D at different resolutions. We can see
that training with low-resolution point clouds significantly reduces overhead, which is important for
resource-constrained scenarios, such as edge computing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Ablation studies of the point cloud rotator
on the ModelNet40 dataset with CPC=50.

ModelNet40 Random GM DM DD3D

PointNet 14.75 9.47 10.16 17.91
PointNet + PCA 60.77 53.55 55.57 62.72
PointNet + Rotator 70.13 68.92 69.31 71.27

Full Dataset 80.45

Table 6: Comparison between DD and DD3D
with different training strategies.

ModelNet40 1 10 50

DD w/o Initialization 53.08 72.57 81.77
DD w/ Initialization 53.38 75.45 83.02
DD3D w/o Sampling 53.82 76.01 83.72
DD3D w/ Sampling 54.27 76.15 83.91

0 200 400 600 800 1000
Interation

100

200

300

M
at

ch
in

g
Lo

ss

DD3D
DD (Random)
DD (Initialized)

Figure 4: Matching loss of
methods with different settings.

1 5 10
Clouds Per Classes

0

10

20

30

Ti
m

es
 (

s)
 P

er
 It

er
at

io
n DD3D

DD

(a) Time

1 5 10
Clouds Per Class

0.0

0.3

0.6

0.9

1.2

Bu
dg

et
 (

G
B)

DD3D
DD

(b) Budget

256 512 1024
Number of Points

0

3

6

9

12
Time (s)
Space (GB)

(c) Resolution

Figure 5: Time and space overhead between DD and DD3D.

5.6 VISUALIZATION

Raw Images DD3D GM

Figure 6: Visualization of the real and synthetic datasets. Top row: ModelNet40 (Airplane). Middle
row: ModelNet40 (Lamp). Bottom row: ShapeNet (Guitar, Laptop, and Pistol).

We visualize the real and synthetic point clouds in Figure 6 for a more intuitive comparison. The
results of DD3D and GM are placed in the last two columns. It can be observed that the point
clouds generated by GM tend to condense to some clusters, while some isolated points are left as
noise. On the contrary, the point clouds generated by DD3D are coherent and encode the global
geometric shapes. Moreover, in ShapeNet, the point clouds of GM are squeezed, making its shape
inconsistent with the real dataset, while the results of DD3D are more realistic and encode the spatial
relationship between parts, validating the effectiveness of DD3D for 3d data. See Appendix F for
more visualizations.

6 CONCLUSION

This paper introduces DD3D for 3D point cloud distillation, which matches the rotation-invariant data
distribution between real and synthetic data by transforming point clouds into a canonical orientation.
Once trained, DD3D can synthesize point clouds at arbitrary resolutions, reducing memory budget
and improving scalability. Extensive experiments on both classification and segmentation tasks
validate the superiority of DD3D over traditional DD methods. A promising direction is to initialize
DD3D with real data to improve its performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In CVPR, pp. 10708–10717. IEEE, 2022.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. General-
izing dataset distillation via deep generative prior. In CVPR, pp. 3739–3748. IEEE, 2023.

Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo
Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
Shapenet: An information-rich 3d model repository. CoRR, abs/1512.03012, 2015.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local
implicit image function. In CVPR, pp. 8628–8638. Computer Vision Foundation / IEEE, 2021.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha Kembhavi,
Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi. Objaverse-xl:
A universe of 10m+ 3d objects. In NeurIPS, 2023.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J.
Guibas. Vector neurons: A general framework for so(3)-equivariant networks. In ICCV, pp.
12180–12189. IEEE, 2021.

Zhiwei Deng and Olga Russakovsky. Remember the past: Distilling datasets into addressable
memories for neural networks. In NeurIPS, 2022.

Jiawei Du, Yidi Jiang, Vincent Y. F. Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the
accumulated trajectory error to improve dataset distillation. In CVPR, pp. 3749–3758. IEEE, 2023.

Jiahui Geng, Zongxiong Chen, Yuandou Wang, Herbert Woisetschlaeger, Sonja Schimmler, Ruben
Mayer, Zhiming Zhao, and Chunming Rong. A survey on dataset distillation: Approaches,
applications and future directions. In IJCAI, pp. 6610–6618. ijcai.org, 2023.

Meng-Hao Guo, Junxiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R. Martin, and Shi-Min Hu.
PCT: point cloud transformer. Comput. Vis. Media, 7(2):187–199, 2021a.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. Deep
learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell., 43(12):4338–4364,
2021b.

Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless
dataset distillation via difficulty-aligned trajectory matching. In ICLR. OpenReview.net, 2024.

Zixuan Huang, Justin Johnson, Shoubhik Debnath, James M. Rehg, and Chao-Yuan Wu. Pointinfinity:
Resolution-invariant point diffusion models. In CVPR, 2024.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In ICML, volume 162 of Proceedings of Machine Learning Research, pp. 11102–11118. PMLR,
2022.

Seohyun Kim, Jaeyoo Park, and Bohyung Han. Rotation-invariant local-to-global representation
learning for 3d point cloud. In NeurIPS, 2020.

Shiye Lei and Dacheng Tao. A comprehensive survey of dataset distillation. IEEE Trans. Pattern
Anal. Mach. Intell., 46(1):17–32, 2024.

Feiran Li, Kent Fujiwara, Fumio Okura, and Yasuyuki Matsushita. A closer look at rotation-invariant
deep point cloud analysis. In ICCV, pp. 16198–16207. IEEE, 2021.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution
on x-transformed points. In NeurIPS, pp. 828–838, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye, and Xinchao Wang. Dataset distillation via
factorization. In NeurIPS, 2022.

Noel Loo, Ramin M. Hasani, Alexander Amini, and Daniela Rus. Efficient dataset distillation using
random feature approximation. In NeurIPS, 2022.

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design and local
geometry in point cloud: A simple residual MLP framework. In ICLR. OpenReview.net, 2022.

Aru Maekawa, Naoki Kobayashi, Kotaro Funakoshi, and Manabu Okumura. Dataset distillation with
attention labels for fine-tuning BERT. In ACL (2), pp. 119–127. Association for Computational
Linguistics, 2023.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. In ICLR. OpenReview.net, 2021.

Jeong Joon Park, Peter R. Florence, Julian Straub, Richard A. Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In CVPR, pp.
165–174. Computer Vision Foundation / IEEE, 2019.

Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty, and Maks Ovsjanikov. Effective rotation-
invariant point CNN with spherical harmonics kernels. In 3DV, pp. 47–56. IEEE, 2019.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In CVPR, pp. 77–85. IEEE Computer Society,
2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In NIPS, pp. 5099–5108, 2017b.

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Hammoud, Mohamed Elhoseiny, and
Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies.
In NeurIPS, 2022.

Shi Qiu, Saeed Anwar, and Nick Barnes. Dense-resolution network for point cloud classification and
segmentation. In WACV, pp. 3812–3821. IEEE, 2021.

Huilin Qu, Congqiao Li, and Sitian Qian. Particle transformer for jet tagging. In ICML, volume 162
of Proceedings of Machine Learning Research, pp. 18281–18292. PMLR, 2022.

Jiawei Ren, Liang Pan, and Ziwei Liu. Benchmarking and analyzing point cloud classification
under corruptions. In ICML, volume 162 of Proceedings of Machine Learning Research, pp.
18559–18575. PMLR, 2022.

Noveen Sachdeva and Julian J. McAuley. Data distillation: A survey. CoRR, abs/2301.04272, 2023.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In ICLR, 2018.

DongHyeok Shin, Seungjae Shin, and Il-Chul Moon. Frequency domain-based dataset distillation. In
NeurIPS, 2023.

Rajhans Singh, Ankita Shukla, and Pavan K. Turaga. Polynomial implicit neural representations for
large diverse datasets. In CVPR, pp. 2041–2051. IEEE, 2023.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In NeurIPS, 2020.

Nathaniel Thomas, Tess E. Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
clouds. CoRR, abs/1802.08219, 2018.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit Yeung.
Revisiting point cloud classification: A new benchmark dataset and classification model on
real-world data. In ICCV, pp. 1588–1597. IEEE, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
Xinchao Wang, and Yang You. CAFE: learning to condense dataset by aligning features. In CVPR,
pp. 12186–12195. IEEE, 2022.

Kai Wang, Jianyang Gu, Daquan Zhou, Zheng Zhu, Wei Jiang, and Yang You. Dim: Distilling dataset
into generative model. CoRR, abs/2303.04707, 2023.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. CoRR,
abs/1811.10959, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.
Dynamic graph CNN for learning on point clouds. ACM Trans. Graph., 38(5):146:1–146:12, 2019.

Ziyu Wang, Yue Xu, Cewu Lu, and Yong-Lu Li. Dancing with images: Video distillation via
static-dynamic disentanglement. In CVPR, 2024.

Max Welling. Herding dynamical weights to learn. In ICML, volume 382, pp. 1121–1128, 2009.

Wenxuan Wu, Zhongang Qi, and Fuxin Li. Pointconv: Deep convolutional networks on 3d point
clouds. In CVPR, pp. 9621–9630. Computer Vision Foundation / IEEE, 2019.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In CVPR, pp. 1912–1920, 2015.

Zelin Xiao, Hongxin Lin, Renjie Li, Lishuai Geng, Hongyang Chao, and Shengyong Ding. Endowing
deep 3d models with rotation invariance based on principal component analysis. In ICME, pp. 1–6.
IEEE, 2020.

Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas J. Guibas. A scalable active framework for region annotation in
3d shape collections. ACM Trans. Graph., 35(6):210:1–210:12, 2016.

Ruixuan Yu, Xin Wei, Federico Tombari, and Jian Sun. Deep positional and relational feature learning
for rotation-invariant point cloud analysis. In ECCV, volume 12355, pp. 217–233. Springer, 2020.

Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review. IEEE
Trans. Pattern Anal. Mach. Intell., 46(1):150–170, 2024.

Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu, Chongjie Ye, Yushuang Wu, Zizheng Yan,
Chenming Zhu, Zhangyang Xiong, Tianyou Liang, Guanying Chen, Shuguang Cui, and Xiaoguang
Han. Mvimgnet: A large-scale dataset of multi-view images. In CVPR, pp. 9150–9161. IEEE,
2023.

David Junhao Zhang, Heng Wang, Chuhui Xue, Rui Yan, Wenqing Zhang, Song Bai, and Mike Zheng
Shou. Dataset condensation via generative model. CoRR, abs/2309.07698, 2023.

Haiyu Zhang, Shaolin Su, Yu Zhu, Jinqiu Sun, and Yanning Zhang. GSDD: generative space dataset
distillation for image super-resolution. In AAAI, pp. 7069–7077. AAAI Press, 2024.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In ICML,
volume 139 of Proceedings of Machine Learning Research, pp. 12674–12685. PMLR, 2021.

Bo Zhao and Hakan Bilen. Synthesizing informative training samples with GAN. CoRR,
abs/2204.07513, 2022.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In WACV, pp. 6503–6512.
IEEE, 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
ICLR. OpenReview.net, 2021.

Chen Zhao, Jiaqi Yang, Xin Xiong, Angfan Zhu, Zhiguo Cao, and Xin Li. Rotation invariant point
cloud classification: Where local geometry meets global topology. CoRR, abs/1911.00195, 2019.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
sion. In NeurIPS, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREMS

Theorem 1. Assume the classifier is a linear layer W and Lcls can be simplified to the mean-squared
error ∥XW − Y ∥2F . The objective of gradient matching is equal to variance preserving:

min
S

LGM = min
S

D
(
∇WLS

cls,∇WLT
cls

)
⇒ min

S

∥∥X⊤
S XS −X⊤

T XT
∥∥2
F
, (12)

where D is a distance metric and ∇W is the gradient with respect to W .

Proof. The gradient of ∥XW − Y ∥2F is denoted as ∇ = X⊤(XW − Y). We can then match the
gradients between the real and synthetic data:

||∇S −∇T ||2F = ||X⊤
S (XSW − YS)−X⊤

T (XT W − YT)||2F (13)

≤ ||W ||2F ||X⊤
S XS −X⊤

T XT ||2F︸ ︷︷ ︸
Variance

+ ||X⊤
S YS −X⊤

T YT ||2F︸ ︷︷ ︸
Mean

. (14)

We can see that the first term is to preserve the variance of real data, and the second term aligns the
average representations of samples belonging to the same class. These two terms can be combined if
we set X̃S = XS −X⊤

S YS and X̃T = XT −X⊤
T YT for each class. Then we only need to match the

variance between X̃S and X̃T .

Theorem 2. Assume XT follows a d-dimensional multivariate Gaussian distribution N (µ,Σ). Let
X ′

T be the rotated representations of XT such that:

λmax

(
E
[
X ′

T
⊤
X ′

T

])
≤ λmax

(
E
[
XT

⊤XT

])
⇒ σmax (E [X ′

T]) ≤ σmax (E [XT]) , (15)

where λmax and σmax are the maximum eigenvalues and singular values, respectively.

Proof. Firstly, the largest eigenvalue of the covariance matrix XT
⊤XT is equal to the largest singular

value of XT . Therefore, we only prove the first inequality.

Secondly, as X⊤X =
∑n

i=1 x
⊤
i xi, for XT ∼ N (µ,Σ), we have:

E
[
X⊤

T XT
]
= E

[
n∑

i=1

x⊤
i xi

]
=

n∑
i=1

E
[
x⊤
i xi

]
= n

(
µ⊤µ+Σ

)
, (16)

E
[
X ′

T
⊤
X ′

T

]
= E

[
n∑

i=1

R⊤
i x

⊤
i xiRi

]
=

n∑
i=1

E
[
R⊤

i x
⊤
i xiRi

]
=

n∑
i=1

R⊤
i E
[
x⊤
i xi

]
Ri. (17)

Thirdly, we have:

λmax

(
E
[
X⊤

T XT
])

= nλmax

(
µ⊤µ+Σ

)
, (18)

λmax

(
E
[
X ′

T
⊤
X ′

T

])
= λmax

(
n∑

i=1

R⊤
i E
[
x⊤
i xi

]
Ri

)
≤

n∑
i=1

λmax

(
R⊤

i E
[
x⊤
i xi

]
Ri

)
(19)

=

n∑
i=1

λmax

(
R⊤

i µ
⊤µRi +R⊤

i ΣRi

)
≤ λmax

(
E
[
X⊤

T XT
])

. (20)

The above inequality shows that the largest eigenvalue of E
[
X⊤

T XT
]

is the upper bound of

E
[
X ′

T
⊤
X ′

T

]
. The equality holds if and only if the random rotation matrices are commutative,

which is infeasible in practice.

B IMPLEMENTATION DETAILS OF DD3D

Here, we explain some details of DD3D, consisting of two important components: a point cloud
rotator and a point-wise generator. Both components are built based on the SIREN (Sitzmann et al.,
2020) model, which stacks multiple fully connected layers with sin(·) activation to capture the
high-frequency information. The PyTorch code is shown in Algorithm 4, where some details are
highlighted.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 4 PyTorch code of DD3D

1 import torch
2 import torch.nn as nn
3 import SIREN
4
5 class Rotator(nn.Module):
6 def __init__(self, hidden_dim, w0):
7 super().__init__()
8
9 # w0 is to adjust the frequency of sine function

10 self.sign_encoder = SIREN(1, hidden_dim, w0=w0)
11 self.sign_decoder = SIREN(hidden_dim, 1, w0=1.)
12
13 def forward(self, x):
14 x = x.unsqueeze(-1) # x: [B, N, 3, 1]
15
16 feat = self.sign_encoder(x).mean(dim=1, keepdim=True) # [B, N, 3, 1] -> [B, 1, 3, d]
17 feat = self.sign_decoder(feat) # [B, 1, 3, d] -> [B, 1, 3, 1]
18 sign = torch.sign(feat) # sign-equivariant
19
20 x = x * sign # [B, N, 3, 1] * [B, 1, 3, 1] -> [B, N, 3, 1]
21 return x.squeeze(-1)

C DETAILS OF DATASETS

Table 7: Details of datasets

ScanObjectNN ModelNet40 MVPNet ShapeNet

Shape Classes 15 40 100 16
Part Classes - - - 50
Training Samples 2,322 9,843 62,494 14,007
Validation Samples 580 2,468 15,670 2,874
Resolution 1,024 1,024 1,024 2,048

The detailed statistical information of the datasets used in this paper is shown in Table 7. We list the
sources of the datasets and their licenses in the following.

• ScanObjectNN: https://github.com/feiran-l/rotation-invariant-pointcloud-analysis
(MIT license)

• ModelNet40: http://modelnet.cs.princeton.edu/ModelNet40.zip

• MVPNet: https://github.com/GAP-LAB-CUHK-SZ/MVImgNet
• ShapeNet: https://github.com/feiran-l/rotation-invariant-pointcloud-analysis

(MIT license)

D HYPERPARAMETERS

The hyperparameters of baselines and DD3D are listed in Tables 8 and 9, respectively.

Table 8: Hyperparameters used for Data Synthesis.

ScanObjectNN ModelNet40 MVPNet100 ShapeNet

Optimizer Adam Adam Adam Adam
Initial LR 0.001 0.001 0.001 0.001
Batch Size 32 32 64 32
Iterations 200 400 600 200
Weight Decay 0.0005 0.0005 0.0005 0.0005
Augmentation Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate

Scheduler StepLR
(Decay 0.1 / 100 iter)

StepLR
(Decay 0.1 / 100 iter)

StepLR
(Decay 0.5 / 200 iter) -

15

https://github.com/feiran-l/rotation-invariant-pointcloud-analysis
http://modelnet.cs.princeton.edu/ModelNet40.zip
https://github.com/GAP-LAB-CUHK-SZ/MVImgNet
https://github.com/feiran-l/rotation-invariant-pointcloud-analysis

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 9: Hyperparameters used for Validation.

ScanObjectNN ModelNet40 MVPNet100 ShapeNet

Optimizer Adam Adam Adam Adam
Initial LR 0.001 0.001 0.001 0.001
Batch Size 8 8 32 8
Epochs 200 200 200 200
Weight Decay 0.0005 0.0005 0.0005 0.0005
Augmentation Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate Scale, Jitter, Rotate

Scheduler StepLR
(Decay 0.1 / 100 epoch)

StepLR
(Decay 0.1 / 100 epoch) CosineAnnealingLR -

E DETAILS OF BACKBONES

Previous work (Yu et al., 2024) pointed out that complexity architecture may degenerate the distillation
performance. Therefore, we re-implement some traditional point cloud models, described as follows.

• PointNet: 3 layers with dimension [64, 128, 1024]. Each layer consists of a Conv1d layer, an
InstanceNorm1d or BatchNorm1d layer (for classification and segmentation, respectively), and a
ReLU activation. We use max-pooling to learn the global representation of point clouds.

For other methods, we use the codes provided by openpoints3 library. The YAML configuration files
are listed below.

PoineNet++ DGCNN PCT PointMLP PointNext

model:
NAME: BaseCls
encoder_args:
NAME: PointNet2Encoder
in_channels: 3
width: null
layers: 3
use_res: False
strides: [2, 4, 1]
mlps: [[[64, 128]],

[[128, 256]],
[[256, 1024]]]

radius: [0.2, 0.4, null]
num_samples: [32, 64, null]
sampler: fps
aggr_args:
NAME: 'convpool'
feature_type: 'dp_fj'
anisotropic: False
reduction: 'max'

group_args:
NAME: 'ballquery'
use_xyz: True
normalize_dp: False

conv_args:
order: conv-norm-act

act_args:
act: 'relu'

norm_args:
norm: 'bn'

cls_args:
NAME: ClsHead
num_classes: 40
mlps: [256]
norm_args:
norm: 'bn1d'

model:
NAME: BaseCls
encoder_args:
NAME: DGCNN
in_channels: 3
channels: 64
n_classes: 40
emb_dims: 512
n_blocks: 5
conv: 'edge'
k: 20
dropout: 0.5
norm_args: {'norm': 'bn'}
act_args: {'act': 'leakyrelu'}

cls_args:
NAME: ClsHead
num_classes: 15
mlps: [256]
norm_args:
norm: 'bn1d'

num_point: 1024
num_class: 40
input_dim: 3
model:
nneighbor: 16
nblocks: 1
transformer_dim: 256

model:
NAME: PointMLP
in_channels: 3
points: 1024
num_classes: 40
embed_dim: 64
groups: 1
res_expansion: 1.0
activation: "relu"
bias: False
use_xyz: False
normalize: "anchor"
dim_expansion: [2]
pre_blocks: [2]
pos_blocks: [2]
k_neighbors: [24]
reducers: [2]

model:
NAME: BaseCls
encoder_args:
NAME: PointNextEncoder
blocks: [1, 1, 1, 1, 1, 1]
strides: [1, 2, 2, 2, 2, 1]
width: 32
in_channels: 3
radius: 0.15
radius_scaling: 1.5
sa_layers: 2
sa_use_res: True
nsample: 32
expansion: 4
aggr_args:
feature_type: 'dp_fj'
reduction: 'max'

group_args:
NAME: 'ballquery'
normalize_dp: True

conv_args:
order: conv-norm-act

act_args:
act: 'relu'

norm_args:
norm: 'bn'

cls_args:
NAME: ClsHead
num_classes: 40
mlps: [256]
norm_args:
norm: 'bn1d'

F ADDITIONAL EXPERIMENTS AND DISCUSSIONS

Performance of Synthetic Datasets. The performance of DD is positively correlated with the
memory overhead, i.e., CPC, of the synthetic datasets. When applied to applications requiring
high accuracy, we can increase the value of CPC to improve the performance of synthetic datasets.
To validate this, we conduct experiments on ScanObjectNN and ModelNet40 with CPC=100 and
evaluate the performance of DD3D and GM. The results are shown below.

Table 10: Results on ScanObjectNN

CPC 1 10 50 100

GM 26.34 39.87 57.52 62.82
DD3D 30.62 43.77 61.96 65.51

Full 66.96

Table 11: Results on ModelNet40

CPC 1 10 50 100

GM 53.38 65.45 81.74 84.71
DD3D 53.82 76.31 83.91 86.68

Full 88.05

3https://github.com/guochengqian/openpoints

16

https://github.com/guochengqian/openpoints

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Local-matching and Global-matching. The segmentation task is more challenging than the
classification task as it needs both global information (shape) and local information (part). Therefore,
we propose local and global matching in the segmentation task. To verify the role of each objective,
we visualize the point clouds generated by DD3D with local and global matching, respectively. The
results are shown below. We can see that global matching cannot learn the shapes of parts, such as
the chassis of a laptop (Row 3, Column 2). Local matching cannot capture the spatial relationship
between parts, such as the handle and body of a bag (Row 4, Column 4). Therefore, the combination
of local and global matching is essential for the distillation of the segmentation task.

Guitar Laptop Pistol Bag Mug

Raw Images

Local &
Global

Global

Local

Figure 7: Synthetic images of DD3D with different matching objectives.

Delving into Aligned and Misaligned Orientations. To further analyze the influence of rotated
and aligned point clouds, we use Grad-CAM to visualize the importance distribution of PointNet
trained on these two datasets. We denote the two models as PointNet-aligned and PointNet-rotated. It
can be observed that the importance of PointNet-aligned is more concentrated than PointNet-rotated,
validating our analysis that rotation-invariant features can preserve the principle components.

(a) PointNet-rotated (b) PointNet-aligned

Figure 8: Grad-CAM importance of PointNet trained on aligned and rotated datasets.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

How to Learn Geometric Details? DD typically focuses on capturing coarse-grained (low-
frequency) features that encode the principle information of real datasets. When applied to tasks
requiring fine-grained information, we may be concerned about its ability to learn high-frequency
details. We visualize DD3D with different periods, i.e., t=10/50/100, in the following. A larger value
of t indicates a higher frequency components. We can find that increasing high-frequency input
can significantly help DD3D learn geometric details. This inspires us to enhance high-frequency
information for fine-grained tasks.

Guitar Laptop Pistol Bag Mug

Raw Images

t=10

t=50

t=100

Figure 9: Synthetic images of DD3D with different periods.

18

	Introduction
	Related Work
	Background
	Preliminary
	Dataset Distillation with Rotations

	The Proposed Method
	Plug-and-Play Point Cloud Rotator
	Point-wise Generator
	Distillation Tasks
	Discussion

	Experiments
	Shape Classification
	Part Segmentation
	Generalization Studies
	Ablation Studies
	Time and Space Overhead
	Visualization

	Conclusion
	Proof of Theorems
	Implementation Details of DD3D
	Details of Datasets
	Hyperparameters
	Details of Backbones
	Additional Experiments and Discussions

