CHESS : Optimizing LLM Inference via Channel-Wise Thresholding and
Selective Sparsification

Anonymous ACL submission

Abstract

Deploying large language models (LLMs) on
edge devices presents significant challenges
due to the substantial computational overhead
and memory requirements. Activation sparsi-
fication can mitigate these challenges by re-
ducing the number of activated neurons during
inference. Existing methods typically employ
thresholding-based sparsification based on the
statistics of activation tensors. However, these
methods do not model the impact of activation
sparsification on performance, resulting in sig-
nificant performance degradation. To address
this issue, this paper reformulates the activation
sparsification problem and proposes CHESS
, a general activation sparsification approach
via CHannel-wise thrEsholding and Selective
Sparsification. First, channel-wise thresholding
assigns a unique threshold to each activation
channel in FEN layers. Then, selective sparsifi-
cation involves choosing specific layers in the
attention modules to apply thresholding-based
activation sparsification. Finally, this paper
shows the detailed implementation of sparse
kernels to accelerate the LLM inference. Exper-
imental results demonstrate that the proposed
CHESS achieves lower performance degrada-
tion over 8 downstream tasks while activating
fewer parameters, thus speeding up the LLM
inference by up to 1.27x.

1 Introduction

Large Language Models (LLMs) have prevailed in
a wide range of applications across various fields,
such as code generation tools, office assistants, in-
put method editors, voice assistants, and assistive
applications designed for individuals with disabili-
ties. However, due to the substantial computation
and memory requirements of LLM inferences, de-
ploying LLMs on edge devices is still challenging.
To mitigate these overheads, utilizing the inher-
ent activation sparsity of LLM has emerged as a
promising strategy (Liu et al., 2023; Song et al.,

2023; Alizadeh et al., 2023). This approach has
proven effective for models with the ReL.U activa-
tion function (Li et al., 2023b; Liu et al., 2023).

Contemporary LLMs demonstrate that SwiGLU
or GeGLU activation functions can further boost
the model performance, but they induce less ac-
tivation sparsity. Consequently, several meth-
ods (Mirzadeh et al., 2023; Song et al., 2024) are
proposed to explore more sparsity by regularizing
the SwiGLU or GeGLU activation. However, those
works require fine-tuning the LLMs, which entails
significant training overhead. To avoid training
overheads and improve activation sparsification in
modern LLMs, Lee et al. (Lee et al., 2024) propose
a thresholding-based pruning method to actively
sparsify the activation tensors during the inference
stage. However, this thresholding technique focuses
solely on the statistics of the activation tensors
themselves, failing to model the impact of sparsifi-
cation on overall model performance. This lack of
modeling results in significant performance degra-
dation.

To address the above limitations, this paper pro-
poses CHESS , a new activation sparsification
optimization via CHannel-wise thrEsholding and
Selective Sparsification. To capture the relation be-
tween the activation sparsity and the model perfor-
mance, this paper first reformulates the activation
sparsification problem in each module of existing
LLMs and simplifies the problem as the threshold-
ing problem. Then, this paper proposes channel-
wise thresholding for FFN layers in LLMs, which
determines the unique threshold for each activation
channel. Furthermore, this paper proposes selective
sparsification, which applies thresholding-based ac-
tivation sparsification to the target submodules in
the attention module. Finally, this paper presents
the implementations of sparse kernels to accelerate
the inference based on the sparse activations.

To validate the effectiveness of the proposed
CHESS , this paper conducts comprehensive ex-

periments on various downstream tasks and state-
of-the-art LLMs. Experimental results demonstrate
that the proposed CHESS can achieve a lower per-
formance degradation while a better end-to-end
inference speedup. Codes are available in !

The main contributions of this paper are,

* This paper systematically formulates the ac-
tivation sparsification problem and connects
the activation sparsification with the model
performance.

* This paper proposes two activation sparsifica-
tions, the channel-wise thresholding for FFN
modules and the selective sparsification for
Attention modules, which can be widely ap-
plied in existing LLMs.

* To make full use of the activation sparsity,
this paper presents the detailed algorithms for
implementing the sparse kernels.

* Experimental results demonstrate the efficacy
and scalability of the proposed CHESS .

2 Background and Motivations

2.1 Activation Sparsification

Activation functions introduce non-linearity into
neural networks, allowing networks to capture com-
plex patterns in the data. ReLU (Glorot et al.,
2011), as a popular activation function, has been
widely applied in most neural networks for address-
ing gradient vanish issues (Zhang et al., 2022). An-
other benefit of ReLLU is introducing the sparsity
into the activation tensors. Recent studies (Li et al.,
2023b; Liu et al., 2023) have demonstrated this ef-
fect, showing that up to 95% of the intermediate
FFN activations in OPT models are zero. Such
sparsity can be used to accelerate the model infer-
ence while maintaining comparable model perfor-
mance (Liu et al., 2023; Alizadeh et al., 2023; Song
et al., 2023).

Recent state-of-the-art LLMs replace the ReLU
activation function with more advanced activation
functions, such as GeLU (Hendrycks and Gim-
pel, 2023), SiLU (Ramachandran et al., 2017), or
GLU-series functions (Shazeer, 2020). Although
these activation functions can significantly boost
the LLMs’ performance (Touvron et al., 2023), they
induce less activation sparsity. Previous optimiza-
tions based on activation sparsity may not be suit-
able for the LLMs with those activation functions.

To improve the activation sparsification in mod-
ern LLMs, existing work (Lee et al., 2024) pro-

"https://anonymous.4open.science/r/CHESS-BA40

poses a thresholding-based pruning method called
CATS on some activation tensors in FFN layers.
CATS first computes the cutoff threshold over a
subset of training data according to the given spar-
sity level, then sparsifies the activations during in-
ference and achieves end-to-end speedup via ef-
ficient sparse kernel design. Although CATS can
improve activation sparsification, it only focuses on
the statistics of the activation tensors themselves
without modeling the impact of activation spar-
sification on the model performance, leading to
significant performance drop.

2.2 Motivation

Following the observations in CATS (Lee et al.,
2024), this paper also aims to apply activation spar-
sification in the Gated-MLP blocks of FEN layers,
which are the most common components in modern
LLMs. The formal expression of the gated-MLP
block is defined as,

FEN(z) = (o(zW&") @ (zW"P)) W™ (1)

where WU T8 1j/down qre parameters in MLP
blocks, o (-) is the activation function. Therefore,
the activation values in FFN layers are,

AP = pWUP A — G (zWEC) (2)

Inspired by layer-wise weight pruning (Sun et al.,
2023; Frantar and Alistarh, 2023), this paper refor-
mulates the activation sparsification problem. Fol-
lowing CATS (Lee et al., 2024), we focus on spar-
sifying A8"¢, Therefore, the objective is to find the
optimal pruned activation tensor Agate guarantee-
ing the sparsity level and minimizing the difference
of output of the succeeding layer between before
and after pruning. More formally, the problem is
defined as,

2

AupQAgate _AquAgate , 3)

arg min
Agale

where A", A8 are different activation tensors in
FFN layers, Age s the pruned activation tensor.
We decompose all activations in the pruned ten-
sor into two subsets, i.e., the pruned fl7g§ ' which are
all zeros and the non-pruned flugjaiep which are the
same as the corresponding values in A8*¢. Thus,
this paper can simplify the objective as: finding
a subset of indices P that indicates the index
of the pruned elements, and satisfies sparsity
level |P| > k - |U|, while minimizing the sparsi-
fication error illustrated in Equation 4, where

U = {1,...,d}, d is the feature dimension of
Agate‘

argmin) (AP - (45 —0))"+
icP
Z (Alzlp . (A%vate _ Algate))2
1€U-P

“4)

Equation 4 could be further simplified into
Equation 5. An optimal solution is to sort all
(Al;pflzgm)2 and select the top smallest elements
according to the given sparsity level. However, the
sorting operation requires the prior computation of
(A;lpAnge)z, which involves large matrix compu-
tations to obtain A"P and A&"¢. Besides, sorting
across channels in each FFN layer is also a costly
process.

arg H%jin Z (A?pAlgate) 2 5)
iEP

3 CHESS : Activation Sparsification via
Channel-Wise Thresholding and
Selective Sparsification

In this section, this paper first introduces channel-
wise thresholding for FFN layers. Then, this paper
presents the selective sparsification for attention
layers. Finally, this paper shows the efficient imple-
mentation of the proposed custom sparse kernels.

3.1 Channel-Wise Thresholding

As described in Equation 5, whether to prune an
activation element is determined by both A"? and
A#*_ This implies that A%*® demonstrates the ac-
tivation sparsity while A"P measures the impact of
pruning the activation on performance degradation.
Therefore, we introduce the importance score of
each activation element,

score; = }A;lpAzgme ‘ (6)

Since the activation sparsity is introduced by ac-
tivation functions, it can determine the elements
to be pruned after obtaining the activation values
A#* which can save a large amount of compu-
tation in the matrix multiplication with W*"P and
Wdown However, the importance score is com-
puted by A" and A&, where A"P is still unknown
after computing A&®,

To address this limitation, this paper estimates
the | A;®| using the expectation of A;® over sampled

training data,

1
up| up|y up
API=E[|AF] ==> 145 @
J
where n is the number of sampled data. Therefore,
the importance score is further estimated as,

score; = I [|A}7|] ‘A;‘-;me‘ 8

For the sorting overhead, this paper also adopts
the distribution sampling method. Specifically, we
first outline the cumulative distribution function F'
of the proposed importance score across all chan-
nels,

F(t) = P(score < t))

Then, given a sparsity level &k, we can obtain the
threshold ¢; for sparsifying the activation elements
on channel ¢,

argming F'(t) > k

L= ; (10)
E [|47"]]

This threshold indicates the maximal activation
value that should be pruned as zero. Different
from CATS, this is a Channel-Wise Thresholding
(CWT) technique that relates the model perfor-
mance degradation with the activation sparsity
via introducing the importance score in Equa-
tion 6.

Finally, based on the channel-wise thresholds,
the activation values can be sparsified as,

0, if|4] <t

11
Ai, if‘Ai‘>ti (b

CWT(4;) = {
And the final output of the FFN layer is com-
puted as,

FFNCWT($) = (CWT(Agﬂte) ® Aup) Wout (12)

3.2 Selective Sparsification

Although the activation sparsity in attention mod-
ules is much less than that in FFN modules, it is
also worth applying activation sparsification to the
features to reduce the memory footprint of the at-
tention weights. The common attention mechanism
has four linear projects: query, key, value, and out-
put projection. Similarly, we can also reformulate
the activation sparsification in the attention mecha-
nism for each projection,

argmin ||zW — 2W||3 (13)
x

The objective of activation sparsification in the at-
tention mechanism is to find the optimal pruned
features for each attention layer, ensuring the given
sparsity level and low model performance degrada-
tion.

The error E= ||zW — #W||3 can be approxi-
mated using the Taylor series as follows (LeCun
et al., 1989; Hassibi and Stork, 1992; Frantar et al.,
2023b):

E= g(ﬁc—x)T—i-i(x—fc)H(:%—x)T+O(||JE—:UH3)

(14)
where g and H denote the first-order and second-
order derivatives of the error E with respect to ,
respectively.

OB
g=5| =0 (15)
2
= (‘ZF)Q =wwT (16)
L T=x

Then, we replace g and H with true values, dis-
card the higher-order terms, and apply diagonal
approximation to H. The Equation 14 can be sim-
plified as:

d
E~ > [[Will*(& — x:)? (17)
=1

where ||W;||? denotes the ¢ norm of row i in
weight matrix W. As described in Section 2.2, we
can also decompose the input features into pruned
features (zeros) and non-pruned features (original
values) and then transform the objective as follows,

. 127002
argmin 3 | Wi (a)
ieP

(18)

To further simplify Equation 18, this paper ana-
lyzes the statistics of the weight matrix in the atten-
tion mechanism. Figure 1 shows the distribution
of ||W;]||? of different rows in projection weights.
From the results, all rows from the same weight
exhibit similar ||W;]|?, therefore we can eliminate
this coefficient from Equation 18 and derive the
simplified final objective:

argmin 3o

iceP

19)

Based on Equation 19, this paper also adopts
a similar distribution sampling strategy as that in
CATS (Lee et al., 2024) to determine the thresholds

Algorithm 3.1 spvmm

Input: The sparse input vector 2 € R'X the
weight matrix W € WX*N the number of
output elements N, the number of input ele-
ments K, the block size B.

Output: The output vector y € RM*N

1: for n0 from 0 to N with step size B in
PARALLEL do

2: for k from 0 to K do

3 if z[k] # 0.0 then

4: nlypp = min(B, N — n0)

5: for n1 from 0 to nl,,, VECTORIZED

do
6: y[n0 + nl] += z[k] x W[k|[n0 +
nl]

7 end for

8: end if

9: end for
10: end for

11: return y

given a sparsity level. Different from CWT, CATS
is a tensor-wise thresholding,

x;, if ‘$z| >t

20
O, if\xi\ St ()

CATS(z) = {
However, which modules the CATS should be
applied to becomes a challenge in terms of the
trade-off between model performance and model
efficiency. The search space is quite large. Tak-
ing Llama-7B as an example, which has 32 layers
and four attention projections per layer, the search
space is over the septillion level.

In this paper, we compare two stratagies, namely
full sparsification and selective sparsification. Full
sparsification refers to applying CATS to all four
projections of the attention mechanism,

Cy, (Attn(Cy, ()W, Cy ()W, Cy. ()W) WO
(21)

where C(-); is the CATS function with the thresh-
old ¢.

Conversely, selective sparsification refers to ap-
plying the CATS function to only query and output
projections, while not altering key and query pro-

jections. The formal expression is,
Cy, (Attn(Cy, () W9, aW* 2 W))W (22)

Experimental results (ref. Section 4.3) demonstrate
that selective sparsification results in significantly

©
o
o

1500

o)
=
o

Frequency
ey
o
o
Frequency
=
o
o
o

N

o

o
u
=3
S

o
o

500

o
=3
o

-.400
3

N
o
o

c
2300

Frequency

£ 200

N
=3
=)

100

o

0

2 4 6 1
Value x1074 Value

(a) query projection (b) key projection

3
x1073 Value

0.0 0.5 1.0 15 1
x1074 Value

(c) value projection

Figure 1: Distribution of ||W;||? of different rows i in attention projections of layer 15 of Llama-3-8B

Algorithm 3.2 vmmsp

Input: The input vector 2 € R X the weight
matrix W € RY*K | the mask array mask €
RN | the number of output elements N, the
number of input elements K, the block size B.

Output: The output vector y € RV,

1: for n0 from 0 to N with step size B in PAR-
ALLEL do

20 nlypy =min(B, N — n0)

3: for nl from 0 to nl,,, do

4: if mask[n0 + n1] # 0.0 then

5: accum = 0.0

6: for £ from 0 to K VECTORIZED do
7: accum += W[n0 + nl][k] x z[k]
8: end for

9: y[n0+nl] = accum x mask[n0+ n1]
10: end if
11: end for

12: end for

13: return y

lower performance degradation, while achieving
comparable overhead reduction when applied to
GQA modules. Since the GQA modules are widely
applied in modern LLMs, we utilize selective spar-
sification as our main method for attention mod-
ules.

3.3 Efficient Sparse Kernels

To achieve wall-clock speedup and reduce in-
ference latency based on sparse activations, this
paper developed two custom CPU kernels: spvmm
(sparse vector-matrix multiplication) and vmmsp
(vector-matrix multiplication with output sparsity).
The spvmm kernel is optimized for cases where the
input activation tensor is sparse, and it is employed
in attention modules and FFN down projections.
Conversely, the vmmsp kernel is designed for cases
where the output activation tensor is multiplied
with a sparse mask, and it is used in FFN up pro-

jections.

Algorithm 3.1 and Algorithm 3.2 show the de-
tailed steps of spvmm and vmmsp, respectively.
Algorithm 3.1 splits the input vector into blocks
of size B and accumulates the vector-matrix mul-
tiplication results of each block when z[k] is not
0 (Lines 5-7). Algorithm 3.2 also performs block-
level vector-matrix multiplications but computes
the outputs at the specific position based on the
sparsity mask (Lines 5-9). Both algorithms reduce
the latency by bypassing unnecessary weight reads
and computations.

The implementation of the vmmsp kernel is rel-
atively straightforward; it computes Y = XW7,
consistent with the definition of linear projection
in PyTorch (Paszke et al., 2019). However, the
spvmm operator requires a more complex approach
to ensure efficient computation on multi-core CPUs
while avoiding atomic operations. To this end, we
employ two advanced optimizations. First, we em-
ploy loop tiling and loop reordering strategies to
make sure that each threads compute independently
without the need for synchronization or atomic op-
erations. Furthermore, we transpose the linear pro-
jection weights in advance during the model pre-
processing stage, to maximize memory locality and
enhance cache hit rates.

4 Experiments

In this section, this paper first introduces the
dataset, comparisons, and implementation details.
Then, this paper presents the main results over 8
downstream tasks in terms of the model perfor-
mance and model efficiency. Besides, this paper
also conducts an ablation study across different
sparsification module and analysis on efficiency
over different sparsity level.

4.1 Datasets and Experimental Setup

Datasets We utilize OpenBookQA, ARC Easy,
Winogrande, HellaSwag, ARC Challenge, PIQA,

(d) output projection

3
x107%

Models AP WG! SciQt PIQAT QAT HST BoolQt Arc-Et Arc-Ct Avgt
Llama-2-7B 100% 69.14 9390 78.07 3140 57.15 77.68 7626 4343 65.87
CATS 78.16% 66.69 92.80 77.48 31.60 57.03 72.17 7407 41.13 64.12
CHESS wio 78.17% 66.61 9320 77.20 3240 57.15 7422 74.62 4147 64.60
CHESSw/ 70.05% 6622 9330 77.86 33.60 5660 7422 7437 4036 64.56
Llama-2-13B 100% 7222 94.60 79.05 3500 60.06 80.61 7938 4838 68.66
CATS 77.97% 70.64 94.10 7878 33.80 6042 75.60 7744 4693 6721
CHESS wio 77.98% 70.09 9430 78.89 34.00 60.64 79.11 7795 4667 67.71
CHESSw/ 69.82% 70.88 9420 79.00 34.40 6047 7850 7795 4684 67.78
Llama-3-8B 100% 7332 9630 79.60 34.60 60.15 81.07 8022 50.17 69.42
CATS 7496% 70.88 9490 7840 3240 5734 78.65 7576 4522 66.69
CHESS wio 74.96% 7190 94.60 78.67 32.80 59.06 79.97 77.02 4744 67.68
CHESSw/ 67.80% 70.17 9420 79.22 32.80 58.62 78.04 7685 4667 67.07

Table 1: Main results on downstream tasks of different models. ‘AP’ refers to the ratio of activated parameters.

1.2 - — —____
... [RN
i /IE Bl R
7}

2

m0.8<

3

N 0.6

.., 1 HE BH B
EO.4‘ — — 1 — —

S . BB Base Model Emm CHESS w/o .

0.2 [CATS I CHESS w/

00l i BN N []

Llama-2-7B Llama-2-13B Llama-3-8B
Model

Figure 2: End-to-end inference speedup

BoolQ, and SCI-Q as benchmarks for downstream
tasks, employing the Evaluation Harness library
from Eleuther Al to ensure consistency with and
Lee et al. (2024). These tasks are designed to as-
sess various aspects of the language model’s perfor-
mance, including comprehension, common sense,
and reasoning abilities, which effectively illustrate
the model’s capability loss with activation sparsifi-
cation.
Comparisons To validate the effectiveness of the
proposed CHESS , we implement the CHESS and
comparisons on state-of-the-art LLMs, including
Llama-2 7B, Llama-2 13B, and Llama-3 8B. These
LLMs incorporate different attention mechanisms,
i.e., MHA and GQA, and adopt SwiGLU as the
FFN activation function. For the main results, we
evaluate four models based on all three LLMs,

* Base Model: the LLM model without any

activation sparsification.
e CATS (Lee et al., 2024): the state-of-the-

art activation sparsification method, which ap-
plies magnitude pruning to FFN activations.

* CHESS w/o: the proposed method including
channel-wise thresholding but without atten-
tion sparsification.

* CHESS w/: the proposed method including
channel-wise thresholding and selective spar-
sification.

For the ablation study, we evaluate three models,

* Llama-3: the Llama-3 8B model.

* FS: the proposed method with full sparsifica-
tion in attention modules.

* SS: the proposed method with selective spar-
sification in attention modules.

Implementation Details For all models involving
activation sparsification, thresholds are sampled
from a subset of the C4 dataset (Raffel et al.). Fol-
lowing the settings in (Lee et al., 2024), the sparsity
level k is set to 0.5, where the accuracy drop is
minimal while the inference latency significantly
decreases. The proposed method was implemented
using the PyTorch v2.2.2 and HuggingFace Trans-
formers v4.39.3. End-to-end decoding speedups
are measured on a randomly collected subset of C4
dataset. All experiments are conducted with FP32
precision on a personal computer equipped with
an Intel Core 19-12900K CPU and 64GB of DDR4
memory. Since our work can be applied to quan-
tized models as well, changing weight precision to
FP16 or even lower bit-width quantizations does
not materially affect our results (Lee et al., 2024).

Model AP, WG! SciQt PIQAT QAT HST BoolQt Arc-Et Arc-Ct Avgt
Llama-3 100% 7332 9630 79.60 34.60 60.15 81.07 8022 50.17 69.42
FS 90.94% 7159 96.10 78.02 34.80 57.14 7856 79.00 46.16 67.67
SS 92.84% 72.85 9630 79.71 3500 5931 7957 79.67 50.17 69.07

Table 2: Ablation study among full sparsification and selective sparsification in attention modules. ‘AP’ refers to the

ratio of activated parameters.

(

|
|
f

Normalized Latency
o
(o))
Normalized Latency
o
(o)}

o

©
o
©

°
IS
o
IS

—e— Dense Kernel
Custom Sparse Kernel

o
N
©
N

o
<)

—e— Dense Kernel
Custom Sparse Kernel

©c o ©
> o o

Normalized Latency

o
[N}

—e— Dense Kernel
Custom Sparse Kernel

o
<)

0.0 0.2 0.4 0.6 08 0.0 0.2
Sparsity Level
(a) Attention projection

o
<)

0.4 0.6 08 0.0 0.2 0.4 0.6 08
Sparsity Level
(b) Down projection

Sparsity Level
(c) Up projection

Figure 3: Comparison between custom sparse kernels and PyTorch dense kernel on latency of linear projections

4.2 Main Results on Downstream Tasks

Table 1 compares the accuracy of different models
across 8 downstream tasks and Figure 2 evaluates
the end-to-end inference speedups. Experimental
results draw the following conclusions.
Channel-wise thresholding can reduce accuracy
degradation while achieving comparable spar-
sity. Compared to CATS, the proposed CHESS
w/o achieves lower performance degradation of
1.32 on average over 8 tasks and 3 base models.
Specifically, CHESS w/o achieves the lower aver-
age performance degradation with the base model
Llama 3. CHESS w/o performs better on 5 tasks
than CATS. Besides, CHESS w/o achieves a com-
parable sparsity to CATS.

Selective sparsification of attention modules fur-
ther improves sparsity while maintaining model
accuracy. Compared CHESS w/o on Llama-2-
7B and Llama-3-8B, the average performance of
CHESS w/ degrade by 0.04% and 0.61%, respec-
tively. Interestingly, on the Llama-2-13B, CHESS
w/ achieves an improvement of 0.07% over CHESS
w/o. Specifically, CHESS w/ performs better on
PIQA and OpenbookQA, but worse on HellaSwag,
BoolQ, Arc Easy and Arc Challenge, and compa-
rably on WinoGrande and SCI-Q. These results
demonstrate the minimal impact of additional se-
lective sparsification on performance. Compared
to CATS, CHESS w/ consistently achieves better
average performance with fewer activated parame-
ters.

CHESS achieves end-to-end speedups of up to
1.27x compared to Transformers baselines. The
proposed CHESS w/ achieves the highest speedup
of 1.25x on Llama-2-7B and Llama-2-13B, and
1.27x on Llama-3-8B, respectively. When not
employing attention sparsification, CHESS w/o
achieves comparable speedups to CATS, which is
1.17x on Llama-2-7B and Llama-2-13B, and 1.20x
on Llama-3-8B, respectively. This is because of
the comparable parameters activated per decoding
pass of these two methods.

4.3 Ablation Study

Table 2 presents the ablation study with different
sparsification in attention modules. While selec-
tive sparsification achieves a comparable reduc-
tion in overhead relative to full sparsification, it
significantly outperforms full sparsification across
all eight benchmarks. Specifically, selective spar-
sification exhibits substantial improvements on
the HellaSwag and Arc Challenge benchmarks,
while demonstrating modest gains on the remaining
benchmarks. These results underscore the advan-
tages of selective sparsification.

4.4 Kernel Efficiency

As illustrated in Figure 3, this paper conducts a
comparative analysis of the latency against sparsity
level between the proposed custom sparse kernel
and the dense kernel in PyTorch (Paszke et al.,
2019). At a sparsity level of 0, the vmmsp ker-

—e— CATS Avg

—-X—

CHESS w/o Avg

—— CHESS w/ Avg

— 3=

CATS Speedup
CHESS w/o Speedup
CHESS w/ Speedup

70
————

\\ /,X F1.7

65 1 " L16
(4] A Q
g 60 - ’ X =]
© G 5 +15Z
: RV
£ | e L o
£ 55 N\ 1.4 o
at o
& - x \\ 9]
v 501 P F13 8
g 7 N\ 2
g 45 - /{'/)f F1.2 g
< 40 ra \\ 11"

] 7 .
1// \\
354 FTEEE X vrlo

0.4

06 08

Sparsity Level

Figure 4: Average downstream performance and end-to-
end speedups of each method under different sparsity
levels.

nel used for up projections demonstrates slightly
lower latency compared to the PyTorch dense ker-
nel. Conversely, the spymm kernel, utilized by at-
tention projections and down projections, exhibits
slightly higher latencies than the dense kernel. This
increased latency is primarily due to the advanced
loop tiling and reordering strategies, which cause
slight performance degradation at low sparsity lev-
els.

As the sparsity level increases, the latency of the
dense kernel remains relatively constant, whereas
the latency of our custom sparse kernels decreases
proportionally. Notably, at a sparsity level of 0.5,
our custom sparse kernels achieve latency reduc-
tions of 30%, 28%, and 51% for attention projec-
tion, FFN up projection, and FFN down projection,
respectively. These findings highlight the efficiency
of our custom kernels.

4.5 Impact on Different Sparsity Levels

Figure 4 shows the model performance on down-
stream tasks and end-to-end decoding speedups at
different sparsity levels. We selected Llama-3 8B
as the base model since it incorporates the contem-
porary GQA module.

Experimental results indicate that at lower spar-
sity levels (0.3 and 0.5), both CATS and CHESS
maintain performance comparable to the base
model, with CHESS exhibiting superior perfor-
mance. At higher sparsity levels (0.7 and 0.9), these
models experience noticeable performance degra-
dation, and CHESS models, particularly CHESS
w/o models, consistently outperform CATS. Specif-
ically, at a sparsity level of 0.7, the CATS, CHESS

w/o, and CHESS w/ models achieve average per-
formances of 56.49, 61.18, and 60.21, respectively.
At a sparsity level of 0.9, the corresponding perfor-
mances are 34.83, 43.15, and 38.86, respectively.
Regarding end-to-end speedup, CHESS w/ mod-
els exhibit the highest speedup at all sparsity lev-
els above 0.3, attributed to the selective sparsifi-
cation of attention modules. Specifically, CHESS
w/ achieves speedups of 1.46x and 1.72x at spar-
sity levels of 0.7 and 0.9, respectively, compared to
1.33x and 1.52x for CATS. However, at a sparsity
level of 0.3, the CHESS w/ model exhibits speedup
slightly below 1, primarily due to the inefficiency
of our custom sparse kernels at low sparsity levels.

5 Related Work

Various methods have been proposed to address the
challenges associated with deploying LLMs locally.
Weight quantization (Frantar et al., 2023a; Lin et al.,
2023; Xiao et al., 2022) aims to represent LLM
weights using lower bit-widths, thereby reducing
memory usage and access overhead. Activation
quantization focuses on minimizing the memory
footprint of activation tensors and KV cache (Li
et al., 2023a). These methods can be applied along
with our proposed CHESS method.

Weight pruning (Frantar and Alistarh, 2023; Sun
et al., 2023) involves setting a portion of the LLM
weights to zero to reduce computational overhead
and memory requirement. However, this approach
faces several challenges including noticeable degra-
dation in performance and limited hardware sup-
port when applied on personal devices.

Non-autoregressive decoding approaches, such
as speculative decoding (Chen et al., 2023, 2024)
or Medusa (Cai et al., 2024), seek to convert au-
toregressive decoding process of LLLMs into paral-
lel decoding to mitigate memory access overhead.
However, these methods simultaneously impose
increased computational demands, which presents
significant challenges for deployment on personal
devices with limited processing capabilities.

6 Conclusion

This paper reformulates the activation sparsifica-
tion problem and introduces the CHESS , a general
activation sparsification via channel-wise thresh-
olding and selective sparsification. Experiments
show that the proposed CHESS can achieve a lower
performance degradation and accelerate the LLM
inference with sparse activations.

7 Limitations

The limitations of this paper lie in two aspects.
First, although CHESS achieves lower accuracy
degradation while activating fewer parameters com-
pared to existing methods, it still incurs a notice-
able accuracy loss, especially at high sparsity levels.
Future research may investigate fine-tuning tech-
niques to mitigate this performance drop. Secondly,
our method performs optimally with a batch size
of 1. This constraint is acceptable for edge deploy-
ment scenarios, where typically only a single user
is involved. However, in data center deployments,
this method does not yield significant end-to-end
speedup. This is because the structural sparsity of
the activation tensor deteriorates into unstructured
sparsity under larger batch sizes.

References

Keivan Alizadeh, Iman Mirzadeh, Dmitry Be-
lenko, Karen Khatamifard, Minsik Cho, Carlo C.
Del Mundo, Mohammad Rastegari, and Mehrdad
Farajtabar. 2023. LLM in a flash: Efficient Large
Language Model Inference with Limited Memory.
arXiv preprint. ArXiv:2312.11514 [cs].

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM Inference Acceleration Frame-
work with Multiple Decoding Heads. arXiv preprint.
ArXiv:2401.10774 [cs].

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating Large Language Model
Decoding with Speculative Sampling. arXiv preprint.
ArXiv:2302.01318 [cs].

Zhuoming Chen, Avner May, Ruslan Svirschevski,
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. 2024. Sequoia: Scalable, Robust,
and Hardware-aware Speculative Decoding. arXiv
preprint. ArXiv:2402.12374 [cs].

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-
sive Language Models Can be Accurately Pruned
in One-Shot. In Proceedings of the 40th Inter-
national Conference on Machine Learning, pages
10323-10337. PMLR. ISSN: 2640-3498.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2023a. GPTQ: Accurate Post-Training
Quantization for Generative Pre-trained Transform-
ers. arXiv preprint. ArXiv:2210.17323 [cs].

Elias Frantar, Sidak Pal Singh, and Dan Alistarh. 2023b.
Optimal Brain Compression: A Framework for Accu-
rate Post-Training Quantization and Pruning. arXiv
preprint. ArXiv:2208.11580 [cs] version: 2.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In
Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, AlS-
TATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
pages 315-323.

Babak Hassibi and David Stork. 1992. Second order
derivatives for network pruning: Optimal Brain Sur-
geon. In Advances in Neural Information Processing
Systems, volume 5. Morgan-Kaufmann.

Dan Hendrycks and Kevin Gimpel. 2023. Gaus-
sian Error Linear Units (GELUs). arXiv preprint.
ArXiv:1606.08415 [cs].

Yann LeCun, John Denker, and Sara Solla. 1989. Op-
timal Brain Damage. In Advances in Neural In-
formation Processing Systems, volume 2. Morgan-
Kaufmann.

Je-Yong Lee, Donghyun Lee, Genghan Zhang, Mo Ti-
wari, and Azalia Mirhoseini. 2024. CATS:
contextually-aware thresholding for sparsity in large
language models. CoRR, abs/2404.08763.

http://arxiv.org/abs/2312.11514
http://arxiv.org/abs/2312.11514
http://arxiv.org/abs/2312.11514
http://arxiv.org/abs/2401.10774
http://arxiv.org/abs/2401.10774
http://arxiv.org/abs/2401.10774
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318
http://arxiv.org/abs/2402.12374
http://arxiv.org/abs/2402.12374
http://arxiv.org/abs/2402.12374
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2208.11580
http://arxiv.org/abs/2208.11580
http://arxiv.org/abs/2208.11580
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html

Qingyuan Li, Yifan Zhang, Liang Li, Peng Yao,
Bo Zhang, Xiangxiang Chu, Yerui Sun, Li Du, and
Yuchen Xie. 2023a. FPTQ: fine-grained post-training
quantization for large language models. CoRR,
abs/2308.15987.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang
Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Fe-
lix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar.
2023b. The Lazy Neuron Phenomenon: On Emer-
gence of Activation Sparsity in Transformers. arXiv
preprint. ArXiv:2210.06313 [cs, stat].

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,
Xingyu Dang, Chuang Gan, and Song Han. 2023.
AWQ: Activation-aware Weight Quantization for
LLM Compression and Acceleration. arXiv preprint.
ArXiv:2306.00978 [cs].

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, and Beidi Chen.
2023. Deja Vu: Contextual Sparsity for Efficient
LLMs at Inference Time. In Proceedings of the
40th International Conference on Machine Learn-
ing, pages 22137-22176. PMLR. ISSN: 2640-3498.

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta,
Carlo C. Del Mundo, Oncel Tuzel, Golnoosh Samei,
Mohammad Rastegari, and Mehrdad Farajtabar. 2023.
ReL.U Strikes Back: Exploiting Activation Sparsity
in Large Language Models.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.
2017. Searching for Activation Functions. arXiv
preprint. ArXiv:1710.05941 [cs].

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Trans-
former.

Noam Shazeer. 2020. GLU Variants Improve Trans-
former. arXiv preprint. ArXiv:2002.05202 [cs, stat].

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding
Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu,
Guangli Li, Tao Yang, and Maosong Sun. 2024.
ProSparse: Introducing and Enhancing Intrinsic Ac-
tivation Sparsity within Large Language Models.
arXiv preprint. ArXiv:2402.13516 [cs].

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo
Chen. 2023. Powerinfer: Fast large language

10

model serving with a consumer-grade GPU. CoRR,
abs/2312.12456.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico
Kolter. 2023. A Simple and Effective Pruning Ap-
proach for Large Language Models. arXiv preprint.
ArXiv:2306.11695 [cs].

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2022. SmoothQuant:
Accurate and Efficient Post-Training Quantization
for Large Language Models. Publication Title: arXiv
e-prints ADS Bibcode: 2022arXiv221110438X.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2306.00978
http://arxiv.org/abs/2306.00978
http://arxiv.org/abs/2306.00978
https://proceedings.mlr.press/v202/liu23am.html
https://proceedings.mlr.press/v202/liu23am.html
https://proceedings.mlr.press/v202/liu23am.html
https://arxiv.org/abs/2310.04564v1
https://arxiv.org/abs/2310.04564v1
https://arxiv.org/abs/2310.04564v1
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2402.13516
http://arxiv.org/abs/2402.13516
http://arxiv.org/abs/2402.13516
http://arxiv.org/abs/2306.11695
http://arxiv.org/abs/2306.11695
http://arxiv.org/abs/2306.11695
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438

	Introduction
	Background and Motivations
	Activation Sparsification
	Motivation

	CHESS : Activation Sparsification via Channel-Wise Thresholding and Selective Sparsification
	Channel-Wise Thresholding
	Selective Sparsification
	Efficient Sparse Kernels

	Experiments
	Datasets and Experimental Setup
	Main Results on Downstream Tasks
	Ablation Study
	Kernel Efficiency
	Impact on Different Sparsity Levels

	Related Work
	Conclusion
	Limitations

