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Abstract

Deploying large language models (LLMs) on001
edge devices presents significant challenges002
due to the substantial computational overhead003
and memory requirements. Activation sparsi-004
fication can mitigate these challenges by re-005
ducing the number of activated neurons during006
inference. Existing methods typically employ007
thresholding-based sparsification based on the008
statistics of activation tensors. However, these009
methods do not model the impact of activation010
sparsification on performance, resulting in sig-011
nificant performance degradation. To address012
this issue, this paper reformulates the activation013
sparsification problem and proposes CHESS014
, a general activation sparsification approach015
via CHannel-wise thrEsholding and Selective016
Sparsification. First, channel-wise thresholding017
assigns a unique threshold to each activation018
channel in FFN layers. Then, selective sparsifi-019
cation involves choosing specific layers in the020
attention modules to apply thresholding-based021
activation sparsification. Finally, this paper022
shows the detailed implementation of sparse023
kernels to accelerate the LLM inference. Exper-024
imental results demonstrate that the proposed025
CHESS achieves lower performance degrada-026
tion over 8 downstream tasks while activating027
fewer parameters, thus speeding up the LLM028
inference by up to 1.27x.029

1 Introduction030

Large Language Models (LLMs) have prevailed in031

a wide range of applications across various fields,032

such as code generation tools, office assistants, in-033

put method editors, voice assistants, and assistive034

applications designed for individuals with disabili-035

ties. However, due to the substantial computation036

and memory requirements of LLM inferences, de-037

ploying LLMs on edge devices is still challenging.038

To mitigate these overheads, utilizing the inher-039

ent activation sparsity of LLM has emerged as a040

promising strategy (Liu et al., 2023; Song et al.,041

2023; Alizadeh et al., 2023). This approach has 042

proven effective for models with the ReLU activa- 043

tion function (Li et al., 2023b; Liu et al., 2023). 044

Contemporary LLMs demonstrate that SwiGLU 045

or GeGLU activation functions can further boost 046

the model performance, but they induce less ac- 047

tivation sparsity. Consequently, several meth- 048

ods (Mirzadeh et al., 2023; Song et al., 2024) are 049

proposed to explore more sparsity by regularizing 050

the SwiGLU or GeGLU activation. However, those 051

works require fine-tuning the LLMs, which entails 052

significant training overhead. To avoid training 053

overheads and improve activation sparsification in 054

modern LLMs, Lee et al. (Lee et al., 2024) propose 055

a thresholding-based pruning method to actively 056

sparsify the activation tensors during the inference 057

stage. However, this thresholding technique focuses 058

solely on the statistics of the activation tensors 059

themselves, failing to model the impact of sparsifi- 060

cation on overall model performance. This lack of 061

modeling results in significant performance degra- 062

dation. 063

To address the above limitations, this paper pro- 064

poses CHESS , a new activation sparsification 065

optimization via CHannel-wise thrEsholding and 066

Selective Sparsification. To capture the relation be- 067

tween the activation sparsity and the model perfor- 068

mance, this paper first reformulates the activation 069

sparsification problem in each module of existing 070

LLMs and simplifies the problem as the threshold- 071

ing problem. Then, this paper proposes channel- 072

wise thresholding for FFN layers in LLMs, which 073

determines the unique threshold for each activation 074

channel. Furthermore, this paper proposes selective 075

sparsification, which applies thresholding-based ac- 076

tivation sparsification to the target submodules in 077

the attention module. Finally, this paper presents 078

the implementations of sparse kernels to accelerate 079

the inference based on the sparse activations. 080

To validate the effectiveness of the proposed 081

CHESS , this paper conducts comprehensive ex- 082
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periments on various downstream tasks and state-083

of-the-art LLMs. Experimental results demonstrate084

that the proposed CHESS can achieve a lower per-085

formance degradation while a better end-to-end086

inference speedup. Codes are available in 1.087

The main contributions of this paper are,088

• This paper systematically formulates the ac-089

tivation sparsification problem and connects090

the activation sparsification with the model091

performance.092

• This paper proposes two activation sparsifica-093

tions, the channel-wise thresholding for FFN094

modules and the selective sparsification for095

Attention modules, which can be widely ap-096

plied in existing LLMs.097

• To make full use of the activation sparsity,098

this paper presents the detailed algorithms for099

implementing the sparse kernels.100

• Experimental results demonstrate the efficacy101

and scalability of the proposed CHESS .102

2 Background and Motivations103

2.1 Activation Sparsification104

Activation functions introduce non-linearity into105

neural networks, allowing networks to capture com-106

plex patterns in the data. ReLU (Glorot et al.,107

2011), as a popular activation function, has been108

widely applied in most neural networks for address-109

ing gradient vanish issues (Zhang et al., 2022). An-110

other benefit of ReLU is introducing the sparsity111

into the activation tensors. Recent studies (Li et al.,112

2023b; Liu et al., 2023) have demonstrated this ef-113

fect, showing that up to 95% of the intermediate114

FFN activations in OPT models are zero. Such115

sparsity can be used to accelerate the model infer-116

ence while maintaining comparable model perfor-117

mance (Liu et al., 2023; Alizadeh et al., 2023; Song118

et al., 2023).119

Recent state-of-the-art LLMs replace the ReLU120

activation function with more advanced activation121

functions, such as GeLU (Hendrycks and Gim-122

pel, 2023), SiLU (Ramachandran et al., 2017), or123

GLU-series functions (Shazeer, 2020). Although124

these activation functions can significantly boost125

the LLMs’ performance (Touvron et al., 2023), they126

induce less activation sparsity. Previous optimiza-127

tions based on activation sparsity may not be suit-128

able for the LLMs with those activation functions.129

To improve the activation sparsification in mod-130

ern LLMs, existing work (Lee et al., 2024) pro-131

1https://anonymous.4open.science/r/CHESS-BA40

poses a thresholding-based pruning method called 132

CATS on some activation tensors in FFN layers. 133

CATS first computes the cutoff threshold over a 134

subset of training data according to the given spar- 135

sity level, then sparsifies the activations during in- 136

ference and achieves end-to-end speedup via ef- 137

ficient sparse kernel design. Although CATS can 138

improve activation sparsification, it only focuses on 139

the statistics of the activation tensors themselves 140

without modeling the impact of activation spar- 141

sification on the model performance, leading to 142

significant performance drop. 143

2.2 Motivation 144

Following the observations in CATS (Lee et al., 145

2024), this paper also aims to apply activation spar- 146

sification in the Gated-MLP blocks of FFN layers, 147

which are the most common components in modern 148

LLMs. The formal expression of the gated-MLP 149

block is defined as, 150

FFN(x) =
(
σ(xW gate)⊙ (xW up)

)
W down (1) 151

where W up, W gate, W down are parameters in MLP 152

blocks, σ(·) is the activation function. Therefore, 153

the activation values in FFN layers are, 154

Aup = xW up, Agate = σ(xW gate) (2) 155

Inspired by layer-wise weight pruning (Sun et al., 156

2023; Frantar and Alistarh, 2023), this paper refor- 157

mulates the activation sparsification problem. Fol- 158

lowing CATS (Lee et al., 2024), we focus on spar- 159

sifying Agate. Therefore, the objective is to find the 160

optimal pruned activation tensor Âgate, guarantee- 161

ing the sparsity level and minimizing the difference 162

of output of the succeeding layer between before 163

and after pruning. More formally, the problem is 164

defined as, 165

argmin
Âgate

∥∥∥Aup ⊙Agate −Aup ⊙ Âgate
∥∥∥2
2

(3) 166

where Aup, Agate are different activation tensors in 167

FFN layers, Âgate is the pruned activation tensor. 168

We decompose all activations in the pruned ten- 169

sor into two subsets, i.e., the pruned Âgate
P which are 170

all zeros and the non-pruned Â
gate
U−P which are the 171

same as the corresponding values in Agate. Thus, 172

this paper can simplify the objective as: finding 173

a subset of indices P that indicates the index 174

of the pruned elements, and satisfies sparsity 175

level |P| ≥ k · |U|, while minimizing the sparsi- 176

fication error illustrated in Equation 4, where 177
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U = {1, . . . , d}, d is the feature dimension of178

Agate.179

argmin
P

∑
i∈P

(
A

up
i · (Agate

i − 0)
)2

+

∑
i∈U−P

(
A

up
i · (Agate

i −A
gate
i )

)2 (4)180

Equation 4 could be further simplified into181

Equation 5. An optimal solution is to sort all182 (
A

up
i A

gate
i

)2
and select the top smallest elements183

according to the given sparsity level. However, the184

sorting operation requires the prior computation of185 (
A

up
i A

gate
i

)2
, which involves large matrix compu-186

tations to obtain Aup and Agate. Besides, sorting187

across channels in each FFN layer is also a costly188

process.189

argmin
P

∑
i∈P

(
A

up
i A

gate
i

)2
(5)190

3 CHESS : Activation Sparsification via191

Channel-Wise Thresholding and192

Selective Sparsification193

In this section, this paper first introduces channel-194

wise thresholding for FFN layers. Then, this paper195

presents the selective sparsification for attention196

layers. Finally, this paper shows the efficient imple-197

mentation of the proposed custom sparse kernels.198

3.1 Channel-Wise Thresholding199

As described in Equation 5, whether to prune an200

activation element is determined by both Aup and201

Agate. This implies that Agate demonstrates the ac-202

tivation sparsity while Aup measures the impact of203

pruning the activation on performance degradation.204

Therefore, we introduce the importance score of205

each activation element,206

scorei =
∣∣Aup

i A
gate
i

∣∣ (6)207

Since the activation sparsity is introduced by ac-208

tivation functions, it can determine the elements209

to be pruned after obtaining the activation values210

Agate, which can save a large amount of compu-211

tation in the matrix multiplication with W up and212

W down. However, the importance score is com-213

puted by Aup and Agate, where Aup is still unknown214

after computing Agate.215

To address this limitation, this paper estimates216

the |Aup
i | using the expectation of Aup

i over sampled217

training data, 218

|Aup
i | ≈ E

[∣∣Aup
i

∣∣] = 1

n

∑
j

|Aup
ij | (7) 219

where n is the number of sampled data. Therefore, 220

the importance score is further estimated as, 221

ˆscorei = E
[∣∣Aup

i

∣∣] ∣∣Agate
i

∣∣ (8) 222

For the sorting overhead, this paper also adopts 223

the distribution sampling method. Specifically, we 224

first outline the cumulative distribution function F 225

of the proposed importance score across all chan- 226

nels, 227

F (t) = P ( ˆscore ≤ t) (9) 228

Then, given a sparsity level k, we can obtain the 229

threshold ti for sparsifying the activation elements 230

on channel i, 231

ti =
argmint F (t) ≥ k

E
[∣∣Aup

i

∣∣] (10) 232

This threshold indicates the maximal activation 233

value that should be pruned as zero. Different 234

from CATS, this is a Channel-Wise Thresholding 235

(CWT) technique that relates the model perfor- 236

mance degradation with the activation sparsity 237

via introducing the importance score in Equa- 238

tion 6. 239

Finally, based on the channel-wise thresholds, 240

the activation values can be sparsified as, 241

CWT(Ai) =

{
0, if |Ai| ≤ ti

Ai, if |Ai| > ti
(11) 242

And the final output of the FFN layer is com- 243

puted as, 244

FFNCWT(x) =
(
CWT(Agate)⊙Aup)W out (12) 245

3.2 Selective Sparsification 246

Although the activation sparsity in attention mod- 247

ules is much less than that in FFN modules, it is 248

also worth applying activation sparsification to the 249

features to reduce the memory footprint of the at- 250

tention weights. The common attention mechanism 251

has four linear projects: query, key, value, and out- 252

put projection. Similarly, we can also reformulate 253

the activation sparsification in the attention mecha- 254

nism for each projection, 255

argmin
x̂

∥xW − x̂W∥22 (13) 256
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The objective of activation sparsification in the at-257

tention mechanism is to find the optimal pruned258

features for each attention layer, ensuring the given259

sparsity level and low model performance degrada-260

tion.261

The error E= ∥xW − x̂W∥22 can be approxi-262

mated using the Taylor series as follows (LeCun263

et al., 1989; Hassibi and Stork, 1992; Frantar et al.,264

2023b):265

E = g(x̂−x)T+
1

2
(x−x̂)H(x̂−x)T+O(∥x̂−x∥3)

(14)266

where g and H denote the first-order and second-267

order derivatives of the error E with respect to x̂,268

respectively.269

g =
∂E
∂x̂

∣∣∣∣
x̂=x

= 0 (15)270

271

H =
∂2E
(∂x̂)2

∣∣∣∣
x̂=x

= WW T (16)272

Then, we replace g and H with true values, dis-273

card the higher-order terms, and apply diagonal274

approximation to H. The Equation 14 can be sim-275

plified as:276

E ≈
d∑

i=1

∥Wi∥2(x̂i − xi)
2 (17)277

where ∥Wi∥2 denotes the ℓ2 norm of row i in278

weight matrix W . As described in Section 2.2, we279

can also decompose the input features into pruned280

features (zeros) and non-pruned features (original281

values) and then transform the objective as follows,282

argmin
P

∑
i∈P

∥Wi∥2(xi)2 (18)283

To further simplify Equation 18, this paper ana-284

lyzes the statistics of the weight matrix in the atten-285

tion mechanism. Figure 1 shows the distribution286

of ∥Wi∥2 of different rows in projection weights.287

From the results, all rows from the same weight288

exhibit similar ∥Wi∥2, therefore we can eliminate289

this coefficient from Equation 18 and derive the290

simplified final objective:291

argmin
P

∑
i∈P

|xi| (19)292

Based on Equation 19, this paper also adopts293

a similar distribution sampling strategy as that in294

CATS (Lee et al., 2024) to determine the thresholds295

Algorithm 3.1 spvmm

Input: The sparse input vector x ∈ R1×K , the
weight matrix W ∈ WK×N , the number of
output elements N , the number of input ele-
ments K, the block size B.

Output: The output vector y ∈ R1×N

1: for n0 from 0 to N with step size B in
PARALLEL do

2: for k from 0 to K do
3: if x[k] ̸= 0.0 then
4: n1upp = min(B,N − n0)
5: for n1 from 0 to n1upp VECTORIZED

do
6: y[n0 + n1] += x[k] × W [k][n0 +

n1]
7: end for
8: end if
9: end for

10: end for
11: return y

given a sparsity level. Different from CWT, CATS 296

is a tensor-wise thresholding, 297

CATS(x) =

{
xi, if |xi| > t

0, if |xi| ≤ t
(20) 298

However, which modules the CATS should be 299

applied to becomes a challenge in terms of the 300

trade-off between model performance and model 301

efficiency. The search space is quite large. Tak- 302

ing Llama-7B as an example, which has 32 layers 303

and four attention projections per layer, the search 304

space is over the septillion level. 305

In this paper, we compare two stratagies, namely 306

full sparsification and selective sparsification. Full 307

sparsification refers to applying CATS to all four 308

projections of the attention mechanism, 309

Cto(Attn(Cti(x)W
q,Cti(x)W

k,Cti(x)W
v))W o

(21) 310

where C(·)t is the CATS function with the thresh- 311

old t. 312

Conversely, selective sparsification refers to ap- 313

plying the CATS function to only query and output 314

projections, while not altering key and query pro- 315

jections. The formal expression is, 316

Cto(Attn(Ctq(x)W
q, xW k, xW v))W o (22) 317

Experimental results (ref. Section 4.3) demonstrate 318

that selective sparsification results in significantly 319
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Figure 1: Distribution of ∥Wi∥2 of different rows i in attention projections of layer 15 of Llama-3-8B

Algorithm 3.2 vmmsp

Input: The input vector x ∈ R1×K , the weight
matrix W ∈ RN×K , the mask array mask ∈
R1×N , the number of output elements N , the
number of input elements K, the block size B.

Output: The output vector y ∈ R1×N .
1: for n0 from 0 to N with step size B in PAR-

ALLEL do
2: n1upp = min(B,N − n0)
3: for n1 from 0 to n1upp do
4: if mask[n0 + n1] ̸= 0.0 then
5: accum = 0.0
6: for k from 0 to K VECTORIZED do
7: accum += W [n0 + n1][k]× x[k]
8: end for
9: y[n0+n1] = accum×mask[n0+n1]

10: end if
11: end for
12: end for
13: return y

lower performance degradation, while achieving320

comparable overhead reduction when applied to321

GQA modules. Since the GQA modules are widely322

applied in modern LLMs, we utilize selective spar-323

sification as our main method for attention mod-324

ules.325

3.3 Efficient Sparse Kernels326

To achieve wall-clock speedup and reduce in-327

ference latency based on sparse activations, this328

paper developed two custom CPU kernels: spvmm329

(sparse vector-matrix multiplication) and vmmsp330

(vector-matrix multiplication with output sparsity).331

The spvmm kernel is optimized for cases where the332

input activation tensor is sparse, and it is employed333

in attention modules and FFN down projections.334

Conversely, the vmmsp kernel is designed for cases335

where the output activation tensor is multiplied336

with a sparse mask, and it is used in FFN up pro-337

jections. 338

Algorithm 3.1 and Algorithm 3.2 show the de- 339

tailed steps of spvmm and vmmsp, respectively. 340

Algorithm 3.1 splits the input vector into blocks 341

of size B and accumulates the vector-matrix mul- 342

tiplication results of each block when x[k] is not 343

0 (Lines 5-7). Algorithm 3.2 also performs block- 344

level vector-matrix multiplications but computes 345

the outputs at the specific position based on the 346

sparsity mask (Lines 5-9). Both algorithms reduce 347

the latency by bypassing unnecessary weight reads 348

and computations. 349

The implementation of the vmmsp kernel is rel- 350

atively straightforward; it computes Y = XW T , 351

consistent with the definition of linear projection 352

in PyTorch (Paszke et al., 2019). However, the 353

spvmm operator requires a more complex approach 354

to ensure efficient computation on multi-core CPUs 355

while avoiding atomic operations. To this end, we 356

employ two advanced optimizations. First, we em- 357

ploy loop tiling and loop reordering strategies to 358

make sure that each threads compute independently 359

without the need for synchronization or atomic op- 360

erations. Furthermore, we transpose the linear pro- 361

jection weights in advance during the model pre- 362

processing stage, to maximize memory locality and 363

enhance cache hit rates. 364

4 Experiments 365

In this section, this paper first introduces the 366

dataset, comparisons, and implementation details. 367

Then, this paper presents the main results over 8 368

downstream tasks in terms of the model perfor- 369

mance and model efficiency. Besides, this paper 370

also conducts an ablation study across different 371

sparsification module and analysis on efficiency 372

over different sparsity level. 373

4.1 Datasets and Experimental Setup 374

Datasets We utilize OpenBookQA, ARC Easy, 375

Winogrande, HellaSwag, ARC Challenge, PIQA, 376
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Models AP↓ WG↑ SciQ↑ PIQA↑ QA↑ HS↑ BoolQ↑ Arc-E↑ Arc-C↑ Avg↑

Llama-2-7B 100% 69.14 93.90 78.07 31.40 57.15 77.68 76.26 43.43 65.87
CATS 78.16% 66.69 92.80 77.48 31.60 57.03 72.17 74.07 41.13 64.12
CHESS w/o 78.17% 66.61 93.20 77.20 32.40 57.15 74.22 74.62 41.47 64.60
CHESS w/ 70.05% 66.22 93.30 77.86 33.60 56.60 74.22 74.37 40.36 64.56

Llama-2-13B 100% 72.22 94.60 79.05 35.00 60.06 80.61 79.38 48.38 68.66
CATS 77.97% 70.64 94.10 78.78 33.80 60.42 75.60 77.44 46.93 67.21
CHESS w/o 77.98% 70.09 94.30 78.89 34.00 60.64 79.11 77.95 46.67 67.71
CHESS w/ 69.82% 70.88 94.20 79.00 34.40 60.47 78.50 77.95 46.84 67.78

Llama-3-8B 100% 73.32 96.30 79.60 34.60 60.15 81.07 80.22 50.17 69.42
CATS 74.96% 70.88 94.90 78.40 32.40 57.34 78.65 75.76 45.22 66.69
CHESS w/o 74.96% 71.90 94.60 78.67 32.80 59.06 79.97 77.02 47.44 67.68
CHESS w/ 67.80% 70.17 94.20 79.22 32.80 58.62 78.04 76.85 46.67 67.07

Table 1: Main results on downstream tasks of different models. ‘AP’ refers to the ratio of activated parameters.
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Figure 2: End-to-end inference speedup

BoolQ, and SCI-Q as benchmarks for downstream377

tasks, employing the Evaluation Harness library378

from Eleuther AI to ensure consistency with and379

Lee et al. (2024). These tasks are designed to as-380

sess various aspects of the language model’s perfor-381

mance, including comprehension, common sense,382

and reasoning abilities, which effectively illustrate383

the model’s capability loss with activation sparsifi-384

cation.385

Comparisons To validate the effectiveness of the386

proposed CHESS , we implement the CHESS and387

comparisons on state-of-the-art LLMs, including388

Llama-2 7B, Llama-2 13B, and Llama-3 8B. These389

LLMs incorporate different attention mechanisms,390

i.e., MHA and GQA, and adopt SwiGLU as the391

FFN activation function. For the main results, we392

evaluate four models based on all three LLMs,393

• Base Model: the LLM model without any394

activation sparsification.395

• CATS (Lee et al., 2024): the state-of-the-396

art activation sparsification method, which ap- 397

plies magnitude pruning to FFN activations. 398

• CHESS w/o: the proposed method including 399

channel-wise thresholding but without atten- 400

tion sparsification. 401

• CHESS w/: the proposed method including 402

channel-wise thresholding and selective spar- 403

sification. 404

For the ablation study, we evaluate three models, 405

• Llama-3: the Llama-3 8B model. 406

• FS: the proposed method with full sparsifica- 407

tion in attention modules. 408

• SS: the proposed method with selective spar- 409

sification in attention modules. 410

Implementation Details For all models involving 411

activation sparsification, thresholds are sampled 412

from a subset of the C4 dataset (Raffel et al.). Fol- 413

lowing the settings in (Lee et al., 2024), the sparsity 414

level k is set to 0.5, where the accuracy drop is 415

minimal while the inference latency significantly 416

decreases. The proposed method was implemented 417

using the PyTorch v2.2.2 and HuggingFace Trans- 418

formers v4.39.3. End-to-end decoding speedups 419

are measured on a randomly collected subset of C4 420

dataset. All experiments are conducted with FP32 421

precision on a personal computer equipped with 422

an Intel Core I9-12900K CPU and 64GB of DDR4 423

memory. Since our work can be applied to quan- 424

tized models as well, changing weight precision to 425

FP16 or even lower bit-width quantizations does 426

not materially affect our results (Lee et al., 2024). 427
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Model AP↓ WG↑ SciQ↑ PIQA↑ QA↑ HS↑ BoolQ↑ Arc-E↑ Arc-C↑ Avg↑

Llama-3 100% 73.32 96.30 79.60 34.60 60.15 81.07 80.22 50.17 69.42
FS 90.94% 71.59 96.10 78.02 34.80 57.14 78.56 79.00 46.16 67.67
SS 92.84% 72.85 96.30 79.71 35.00 59.31 79.57 79.67 50.17 69.07

Table 2: Ablation study among full sparsification and selective sparsification in attention modules. ‘AP’ refers to the
ratio of activated parameters.
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Figure 3: Comparison between custom sparse kernels and PyTorch dense kernel on latency of linear projections

4.2 Main Results on Downstream Tasks428

Table 1 compares the accuracy of different models429

across 8 downstream tasks and Figure 2 evaluates430

the end-to-end inference speedups. Experimental431

results draw the following conclusions.432

Channel-wise thresholding can reduce accuracy433

degradation while achieving comparable spar-434

sity. Compared to CATS, the proposed CHESS435

w/o achieves lower performance degradation of436

1.32 on average over 8 tasks and 3 base models.437

Specifically, CHESS w/o achieves the lower aver-438

age performance degradation with the base model439

Llama 3. CHESS w/o performs better on 5 tasks440

than CATS. Besides, CHESS w/o achieves a com-441

parable sparsity to CATS.442

Selective sparsification of attention modules fur-443

ther improves sparsity while maintaining model444

accuracy. Compared CHESS w/o on Llama-2-445

7B and Llama-3-8B, the average performance of446

CHESS w/ degrade by 0.04% and 0.61%, respec-447

tively. Interestingly, on the Llama-2-13B, CHESS448

w/ achieves an improvement of 0.07% over CHESS449

w/o. Specifically, CHESS w/ performs better on450

PIQA and OpenbookQA, but worse on HellaSwag,451

BoolQ, Arc Easy and Arc Challenge, and compa-452

rably on WinoGrande and SCI-Q. These results453

demonstrate the minimal impact of additional se-454

lective sparsification on performance. Compared455

to CATS, CHESS w/ consistently achieves better456

average performance with fewer activated parame-457

ters.458

CHESS achieves end-to-end speedups of up to 459

1.27x compared to Transformers baselines. The 460

proposed CHESS w/ achieves the highest speedup 461

of 1.25x on Llama-2-7B and Llama-2-13B, and 462

1.27x on Llama-3-8B, respectively. When not 463

employing attention sparsification, CHESS w/o 464

achieves comparable speedups to CATS, which is 465

1.17x on Llama-2-7B and Llama-2-13B, and 1.20x 466

on Llama-3-8B, respectively. This is because of 467

the comparable parameters activated per decoding 468

pass of these two methods. 469

4.3 Ablation Study 470

Table 2 presents the ablation study with different 471

sparsification in attention modules. While selec- 472

tive sparsification achieves a comparable reduc- 473

tion in overhead relative to full sparsification, it 474

significantly outperforms full sparsification across 475

all eight benchmarks. Specifically, selective spar- 476

sification exhibits substantial improvements on 477

the HellaSwag and Arc Challenge benchmarks, 478

while demonstrating modest gains on the remaining 479

benchmarks. These results underscore the advan- 480

tages of selective sparsification. 481

4.4 Kernel Efficiency 482

As illustrated in Figure 3, this paper conducts a 483

comparative analysis of the latency against sparsity 484

level between the proposed custom sparse kernel 485

and the dense kernel in PyTorch (Paszke et al., 486

2019). At a sparsity level of 0, the vmmsp ker- 487
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Figure 4: Average downstream performance and end-to-
end speedups of each method under different sparsity
levels.

nel used for up projections demonstrates slightly488

lower latency compared to the PyTorch dense ker-489

nel. Conversely, the spvmm kernel, utilized by at-490

tention projections and down projections, exhibits491

slightly higher latencies than the dense kernel. This492

increased latency is primarily due to the advanced493

loop tiling and reordering strategies, which cause494

slight performance degradation at low sparsity lev-495

els.496

As the sparsity level increases, the latency of the497

dense kernel remains relatively constant, whereas498

the latency of our custom sparse kernels decreases499

proportionally. Notably, at a sparsity level of 0.5,500

our custom sparse kernels achieve latency reduc-501

tions of 30%, 28%, and 51% for attention projec-502

tion, FFN up projection, and FFN down projection,503

respectively. These findings highlight the efficiency504

of our custom kernels.505

4.5 Impact on Different Sparsity Levels506

Figure 4 shows the model performance on down-507

stream tasks and end-to-end decoding speedups at508

different sparsity levels. We selected Llama-3 8B509

as the base model since it incorporates the contem-510

porary GQA module.511

Experimental results indicate that at lower spar-512

sity levels (0.3 and 0.5), both CATS and CHESS513

maintain performance comparable to the base514

model, with CHESS exhibiting superior perfor-515

mance. At higher sparsity levels (0.7 and 0.9), these516

models experience noticeable performance degra-517

dation, and CHESS models, particularly CHESS518

w/o models, consistently outperform CATS. Specif-519

ically, at a sparsity level of 0.7, the CATS, CHESS520

w/o, and CHESS w/ models achieve average per- 521

formances of 56.49, 61.18, and 60.21, respectively. 522

At a sparsity level of 0.9, the corresponding perfor- 523

mances are 34.83, 43.15, and 38.86, respectively. 524

Regarding end-to-end speedup, CHESS w/ mod- 525

els exhibit the highest speedup at all sparsity lev- 526

els above 0.3, attributed to the selective sparsifi- 527

cation of attention modules. Specifically, CHESS 528

w/ achieves speedups of 1.46x and 1.72x at spar- 529

sity levels of 0.7 and 0.9, respectively, compared to 530

1.33x and 1.52x for CATS. However, at a sparsity 531

level of 0.3, the CHESS w/ model exhibits speedup 532

slightly below 1, primarily due to the inefficiency 533

of our custom sparse kernels at low sparsity levels. 534

5 Related Work 535

Various methods have been proposed to address the 536

challenges associated with deploying LLMs locally. 537

Weight quantization (Frantar et al., 2023a; Lin et al., 538

2023; Xiao et al., 2022) aims to represent LLM 539

weights using lower bit-widths, thereby reducing 540

memory usage and access overhead. Activation 541

quantization focuses on minimizing the memory 542

footprint of activation tensors and KV cache (Li 543

et al., 2023a). These methods can be applied along 544

with our proposed CHESS method. 545

Weight pruning (Frantar and Alistarh, 2023; Sun 546

et al., 2023) involves setting a portion of the LLM 547

weights to zero to reduce computational overhead 548

and memory requirement. However, this approach 549

faces several challenges including noticeable degra- 550

dation in performance and limited hardware sup- 551

port when applied on personal devices. 552

Non-autoregressive decoding approaches, such 553

as speculative decoding (Chen et al., 2023, 2024) 554

or Medusa (Cai et al., 2024), seek to convert au- 555

toregressive decoding process of LLMs into paral- 556

lel decoding to mitigate memory access overhead. 557

However, these methods simultaneously impose 558

increased computational demands, which presents 559

significant challenges for deployment on personal 560

devices with limited processing capabilities. 561

6 Conclusion 562

This paper reformulates the activation sparsifica- 563

tion problem and introduces the CHESS , a general 564

activation sparsification via channel-wise thresh- 565

olding and selective sparsification. Experiments 566

show that the proposed CHESS can achieve a lower 567

performance degradation and accelerate the LLM 568

inference with sparse activations. 569

8



7 Limitations570

The limitations of this paper lie in two aspects.571

First, although CHESS achieves lower accuracy572

degradation while activating fewer parameters com-573

pared to existing methods, it still incurs a notice-574

able accuracy loss, especially at high sparsity levels.575

Future research may investigate fine-tuning tech-576

niques to mitigate this performance drop. Secondly,577

our method performs optimally with a batch size578

of 1. This constraint is acceptable for edge deploy-579

ment scenarios, where typically only a single user580

is involved. However, in data center deployments,581

this method does not yield significant end-to-end582

speedup. This is because the structural sparsity of583

the activation tensor deteriorates into unstructured584

sparsity under larger batch sizes.585

References 586

Keivan Alizadeh, Iman Mirzadeh, Dmitry Be- 587
lenko, Karen Khatamifard, Minsik Cho, Carlo C. 588
Del Mundo, Mohammad Rastegari, and Mehrdad 589
Farajtabar. 2023. LLM in a flash: Efficient Large 590
Language Model Inference with Limited Memory. 591
arXiv preprint. ArXiv:2312.11514 [cs]. 592

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, 593
Jason D. Lee, Deming Chen, and Tri Dao. 2024. 594
Medusa: Simple LLM Inference Acceleration Frame- 595
work with Multiple Decoding Heads. arXiv preprint. 596
ArXiv:2401.10774 [cs]. 597

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 598
Jean-Baptiste Lespiau, Laurent Sifre, and John 599
Jumper. 2023. Accelerating Large Language Model 600
Decoding with Speculative Sampling. arXiv preprint. 601
ArXiv:2302.01318 [cs]. 602

Zhuoming Chen, Avner May, Ruslan Svirschevski, 603
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and 604
Beidi Chen. 2024. Sequoia: Scalable, Robust, 605
and Hardware-aware Speculative Decoding. arXiv 606
preprint. ArXiv:2402.12374 [cs]. 607

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas- 608
sive Language Models Can be Accurately Pruned 609
in One-Shot. In Proceedings of the 40th Inter- 610
national Conference on Machine Learning, pages 611
10323–10337. PMLR. ISSN: 2640-3498. 612

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 613
Dan Alistarh. 2023a. GPTQ: Accurate Post-Training 614
Quantization for Generative Pre-trained Transform- 615
ers. arXiv preprint. ArXiv:2210.17323 [cs]. 616

Elias Frantar, Sidak Pal Singh, and Dan Alistarh. 2023b. 617
Optimal Brain Compression: A Framework for Accu- 618
rate Post-Training Quantization and Pruning. arXiv 619
preprint. ArXiv:2208.11580 [cs] version: 2. 620

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 621
2011. Deep sparse rectifier neural networks. In 622
Proceedings of the Fourteenth International Confer- 623
ence on Artificial Intelligence and Statistics, AIS- 624
TATS 2011, Fort Lauderdale, USA, April 11-13, 2011, 625
pages 315–323. 626

Babak Hassibi and David Stork. 1992. Second order 627
derivatives for network pruning: Optimal Brain Sur- 628
geon. In Advances in Neural Information Processing 629
Systems, volume 5. Morgan-Kaufmann. 630

Dan Hendrycks and Kevin Gimpel. 2023. Gaus- 631
sian Error Linear Units (GELUs). arXiv preprint. 632
ArXiv:1606.08415 [cs]. 633

Yann LeCun, John Denker, and Sara Solla. 1989. Op- 634
timal Brain Damage. In Advances in Neural In- 635
formation Processing Systems, volume 2. Morgan- 636
Kaufmann. 637

Je-Yong Lee, Donghyun Lee, Genghan Zhang, Mo Ti- 638
wari, and Azalia Mirhoseini. 2024. CATS: 639
contextually-aware thresholding for sparsity in large 640
language models. CoRR, abs/2404.08763. 641

9

http://arxiv.org/abs/2312.11514
http://arxiv.org/abs/2312.11514
http://arxiv.org/abs/2312.11514
http://arxiv.org/abs/2401.10774
http://arxiv.org/abs/2401.10774
http://arxiv.org/abs/2401.10774
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318
http://arxiv.org/abs/2402.12374
http://arxiv.org/abs/2402.12374
http://arxiv.org/abs/2402.12374
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2210.17323
http://arxiv.org/abs/2208.11580
http://arxiv.org/abs/2208.11580
http://arxiv.org/abs/2208.11580
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
https://proceedings.neurips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html


Qingyuan Li, Yifan Zhang, Liang Li, Peng Yao,642
Bo Zhang, Xiangxiang Chu, Yerui Sun, Li Du, and643
Yuchen Xie. 2023a. FPTQ: fine-grained post-training644
quantization for large language models. CoRR,645
abs/2308.15987.646

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang647
Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Fe-648
lix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar.649
2023b. The Lazy Neuron Phenomenon: On Emer-650
gence of Activation Sparsity in Transformers. arXiv651
preprint. ArXiv:2210.06313 [cs, stat].652

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang,653
Xingyu Dang, Chuang Gan, and Song Han. 2023.654
AWQ: Activation-aware Weight Quantization for655
LLM Compression and Acceleration. arXiv preprint.656
ArXiv:2306.00978 [cs].657

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang658
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,659
Yuandong Tian, Christopher Re, and Beidi Chen.660
2023. Deja Vu: Contextual Sparsity for Efficient661
LLMs at Inference Time. In Proceedings of the662
40th International Conference on Machine Learn-663
ing, pages 22137–22176. PMLR. ISSN: 2640-3498.664

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta,665
Carlo C. Del Mundo, Oncel Tuzel, Golnoosh Samei,666
Mohammad Rastegari, and Mehrdad Farajtabar. 2023.667
ReLU Strikes Back: Exploiting Activation Sparsity668
in Large Language Models.669

Adam Paszke, Sam Gross, Francisco Massa, Adam670
Lerer, James Bradbury, Gregory Chanan, Trevor671
Killeen, Zeming Lin, Natalia Gimelshein, Luca672
Antiga, Alban Desmaison, Andreas Kopf, Edward673
Yang, Zachary DeVito, Martin Raison, Alykhan Te-674
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,675
Junjie Bai, and Soumith Chintala. 2019. PyTorch:676
An Imperative Style, High-Performance Deep Learn-677
ing Library. In Advances in Neural Information Pro-678
cessing Systems, volume 32. Curran Associates, Inc.679

Prajit Ramachandran, Barret Zoph, and Quoc V. Le.680
2017. Searching for Activation Functions. arXiv681
preprint. ArXiv:1710.05941 [cs].682

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine683
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,684
Wei Li, and Peter J Liu. Exploring the Limits of685
Transfer Learning with a Unified Text-to-Text Trans-686
former.687

Noam Shazeer. 2020. GLU Variants Improve Trans-688
former. arXiv preprint. ArXiv:2002.05202 [cs, stat].689

Chenyang Song, Xu Han, Zhengyan Zhang, Shengding690
Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu,691
Guangli Li, Tao Yang, and Maosong Sun. 2024.692
ProSparse: Introducing and Enhancing Intrinsic Ac-693
tivation Sparsity within Large Language Models.694
arXiv preprint. ArXiv:2402.13516 [cs].695

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo696
Chen. 2023. Powerinfer: Fast large language697

model serving with a consumer-grade GPU. CoRR, 698
abs/2312.12456. 699

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico 700
Kolter. 2023. A Simple and Effective Pruning Ap- 701
proach for Large Language Models. arXiv preprint. 702
ArXiv:2306.11695 [cs]. 703

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 704
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 705
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 706
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard 707
Grave, and Guillaume Lample. 2023. Llama: Open 708
and efficient foundation language models. CoRR, 709
abs/2302.13971. 710

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, 711
Julien Demouth, and Song Han. 2022. SmoothQuant: 712
Accurate and Efficient Post-Training Quantization 713
for Large Language Models. Publication Title: arXiv 714
e-prints ADS Bibcode: 2022arXiv221110438X. 715

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 716
Artetxe, Moya Chen, Shuohui Chen, Christopher 717
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, 718
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus- 719
ter, Daniel Simig, Punit Singh Koura, Anjali Srid- 720
har, Tianlu Wang, and Luke Zettlemoyer. 2022. 721
OPT: open pre-trained transformer language mod- 722
els. CoRR, abs/2205.01068. 723

10

http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2210.06313
http://arxiv.org/abs/2306.00978
http://arxiv.org/abs/2306.00978
http://arxiv.org/abs/2306.00978
https://proceedings.mlr.press/v202/liu23am.html
https://proceedings.mlr.press/v202/liu23am.html
https://proceedings.mlr.press/v202/liu23am.html
https://arxiv.org/abs/2310.04564v1
https://arxiv.org/abs/2310.04564v1
https://arxiv.org/abs/2310.04564v1
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2002.05202
http://arxiv.org/abs/2402.13516
http://arxiv.org/abs/2402.13516
http://arxiv.org/abs/2402.13516
http://arxiv.org/abs/2306.11695
http://arxiv.org/abs/2306.11695
http://arxiv.org/abs/2306.11695
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438
https://doi.org/10.48550/arXiv.2211.10438

	Introduction
	Background and Motivations
	Activation Sparsification
	Motivation

	CHESS : Activation Sparsification via Channel-Wise Thresholding and Selective Sparsification
	Channel-Wise Thresholding
	Selective Sparsification
	Efficient Sparse Kernels

	Experiments
	Datasets and Experimental Setup
	Main Results on Downstream Tasks
	Ablation Study
	Kernel Efficiency
	Impact on Different Sparsity Levels

	Related Work
	Conclusion
	Limitations

