
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOTSTRAP LEARNING FOR COMBINATORIAL GRAPH
ALIGNMENT WITH SEQUENTIAL GNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have struggled to outperform traditional optimiza-
tion methods on combinatorial problems, limiting their practical impact. We ad-
dress this gap by introducing a novel chaining procedure for the graph alignment
problem—a fundamental NP-hard task of finding optimal node correspondences
between unlabeled graphs using only structural information.
Our method trains a sequence of GNNs where each network learns to iteratively
refine similarity matrices produced by previous networks. During inference, this
creates a bootstrap effect: each GNN improves upon partial solutions by incor-
porating discrete ranking information about node alignment quality from prior
iterations. We combine this with a powerful architecture that operates on node
pairs rather than individual nodes, capturing global structural patterns essential
for alignment that standard message-passing networks cannot represent.
Extensive experiments on synthetic benchmarks demonstrate substantial improve-
ments: our chained GNNs achieve over 3× better accuracy than existing methods
on challenging instances, and uniquely solve regular graphs where all competing
approaches fail. When combined with traditional optimization as post-processing,
our method substantially outperforms state-of-the-art solvers on the graph align-
ment benchmark.

1 INTRODUCTION

”Combinatorial optimization searches for an optimum object in a finite collection of objects. Typ-
ically, the collection has a concise representation (like a graph), while the number of objects is
huge.”(Schrijver et al., 2003) This field bridges discrete mathematics, mathematical programming,
and computer science, with applications spanning logistics, network design, and resource allocation.
Machine learning offers a promising approach to combinatorial optimization (CO) by exploiting pat-
terns in problem instances to design faster algorithms for specific problem families (Bengio et al.,
2021). Graph neural networks (GNNs) emerge as natural tools for this integration, given the inher-
ently discrete and graph-structured nature of most CO problems (Cappart et al., 2023).
Limited success of learning approaches. Despite significant research efforts, GNN-based meth-
ods have struggled to outperform traditional specialized solvers on most CO problems. The traveling
salesperson problem exemplifies this challenge—while receiving substantial attention since (Vinyals
et al., 2015), GNN approaches remain limited to small-scale instances. Similarly, simple greedy
heuristics continue to outperform sophisticated GNNs on problems like maximum independent set
(Angelini & Ricci-Tersenghi, 2023; Böther et al., 2022).
The graph matching problem can be cast as a combinatorial graph alignment problem (GAP).
Machine learning methods have been widely applied in related areas such as pattern recognition
(Conte et al., 2004), computer vision (Sun et al., 2020), and social network analysis (Narayanan
& Shmatikov, 2008) (see Section A.6 for further discussion). Their motivation is that in noisy
real-world data the ground-truth matching may deviate from the mathematically optimal solution,
making it more effective to learn a matching directly from data. In this work, however, we focus
strictly on the combinatorial optimization setting, where only the mathematically optimal solution
is relevant. Accordingly, we use the term graph alignment rather than graph matching.
The graph alignment problem (GAP) provides an ideal testbed for exploring GNN capabilities in
CO. GAP seeks the node correspondence between two graphs that maximally aligns their edge

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Approximation quality ALG
OPT for sparse, dense and regular random graphs. Proj and FAQ

are used to produce a permutation from the convex relaxation solution Dcx or from the similarity
matrix computed by FGNN or chained FGNN (ChFGNN).

APPROXIMATION QUALITY ALG
OPT FOR RANDOM GRAPHS (IN %).

TYPE OF GRAPHS SPARSE DENSE REGULAR

BASELINES PROJ(DCX) 17.3 24.4 2.9
(NON-NEURAL) FAQ(DCX) 67.1 53 27

BASELINES FGNN PROJ 17.8 23.6 6.7
(NEURAL) FGNN FAQ 71.1 47 54

CHAINING CHFGNN PROJ 95.8 44 67.1
CHAINING CHFGNN FAQ 98.8 77.4 81.8

structures—a fundamental problem encompassing graph isomorphism as a special case. In its gen-
eral form, GAP reduces to the NP-hard quadratic assignment problem (QAP).

Iterative refinement through chaining. We introduce a novel technique—chaining of GNNs—that
for the first time demonstrates GNN methods outperforming state-of-the-art specialized solvers on
the combinatorial graph alignment problem. Our approach combines multiple GNNs in an iterative
refinement procedure, with each network learning to improve upon the previous iteration’s solution.
Our chaining procedure trains a sequence of GNNs where each network learns to enhance partial
solutions produced by previous networks. This creates a bootstrap effect during inference, where
GNNs iteratively refine alignment estimates. The approach can be combined with traditional solvers
like the Frank-Wolfe-based FAQ algorithm (Vogelstein et al., 2015), creating hybrid methods that
outperform both pure learning and pure optimization approaches.
Table 1 illustrates our key results across different graph types. To evaluate how close our algorithm
is to the best possible solution, we measure its approximation quality1 as ALG

OPT in percent, where
ALG is the number of aligned edges obtained by our algorithm and OPT is the number of aligned
edges of the optimal solution. A score of 100% corresponds to optimality, and lower values indicate
a smaller fraction of the optimal alignment achieved. Our chained GNNs, particularly when coupled
with FAQ post-processing (ChGNN FAQ), consistently achieve the best performance.
We use synthetic datasets for both training and evaluation to control problem difficulty and assess
generalization. In doing so, we follow the standard benchmarking methodology of combinatorial op-
timization, which favors randomly generated instances (Skorin-Kapov, 1990; Taillard, 1991). Unlike
real-world data, which is often either too trivial or intractably difficult, synthetic instances enable
more robust and fine-grained comparisons between algorithms. Finally, we confirm the effective-
ness and transferability of our method by achieving strong results on three real-world graph pairs
(biology, social networks, and road networks), thereby validating our findings from synthetic data.
We address the graph alignment problem, which we formulate as a machine learning task in Section
2. While traditional optimization methods have so far surpassed learning-based approaches for this
problem (Section 4), we introduce a method that reverses this trend. Our main contribution is a
novel training and inference procedure, the chaining procedure, where sequential GNNs learn to im-
prove partial solutions through iterative refinement (Section 3). This procedure leverages a modified
Folklore-type GNN architecture with enhanced expressiveness (Section A.4), making it particularly
effective on challenging regular graphs where standard methods fail. As demonstrated in Section 5,
our chained GNNs coupled with FAQ post-processing, outperform all existing solvers on synthetic
graph alignment benchmarks. These findings suggest that iterative refinement via chained learning
offers a promising general framework for advancing GNN performance on other combinatorial op-
timization (CO) problems, potentially bridging the gap between machine learning and traditional
optimization.

Mathematical notations. Let G = (V,E) be a simple graph with V = {1, . . . , n} and adjacency
matrix A ∈ {0, 1}n×n, where Aij = 1 if (i, j) ∈ E and 0 otherwise. Let Sn denote the set of
permutations of V , with each π ∈ Sn associated to a permutation matrix P ∈ {0, 1}n×n defined by

1In the algorithms literature, the approximation ratio is traditionally written as OPT
ALG ≥ 1, so that an algorithm

is called a k-approximation if OPT/ALG ≤ k. We instead adopt the ALG
OPT formulation, which is more in line

with evaluation metrics in machine learning, where higher scores denote better performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Pij = 1 iff π(i) = j. The set of doubly stochastic matrices is denoted Dn. For A,B ∈ Rn×n, the
Frobenius inner product and norm are ⟨A,B⟩ = trace(A⊤B) and ∥A∥F =

√
⟨A,A⟩, respectively.

2 FROM COMBINATORIAL OPTIMIZATION TO LEARNING

This section introduces the graph alignment problem (GAP) from a combinatorial optimization per-
spective, presents the state-of-the-art FAQ algorithm, and describes how we formulate GAP as a
learning problem using synthetic datasets with controllable difficulty.

2.1 GRAPH ALIGNMENT IN COMBINATORIAL OPTIMIZATION

Problem formulation. Given two n × n adjacency matrices A and B representing graphs GA and
GB , the graph alignment problem seeks to find the permutation that best aligns their structures.
Formally, we minimize the Frobenius norm:

GAP(A,B) = min
π∈Sn

∑
i,j

(
Aij −Bπ(i)π(j)

)2
= min

P∈Sn

∥AP − PB∥2F , (1)

where we used the identity ∥A−PBPT ∥2F = ∥AP−PB∥2F for permutation matrices P . Expanding
the right-hand term, we see that minimizing (1) is equivalent to maximizing the number of matched
edges:

max
P∈Sn

⟨AP,PB⟩ = max
π∈Sn

∑
i,j

AijBπ(i)π(j). (2)

This formulation connects GAP to the broader class of Quadratic Assignment Problems (QAP)
(Burkard et al., 1998).
Computational complexity. The GAP is computationally challenging, as it reduces to several well-
known NP-hard problems. For instance, when GA has n vertices and GB is a single path or cycle,
GAP becomes the Hamiltonian path/cycle problem. When GB consists of two cliques of size n/2,
we recover the minimum bisection problem. More generally, solving (1) is equivalent to finding a
maximum common subgraph, which is APX-hard (Crescenzi et al., 1995).
Performance metrics. We denote an optimal solution as πA→B . We evaluate alignment quality
using two complementary metrics (that should be maximized):

Accuracy: acc(π, πA→B) =
1

n

n∑
i=1

1(π(i) = πA→B(i)) (3)

Number of common edges: nce(π) =
1

2

∑
i,j

AijBπ(i)π(j) (4)

Accuracy measures the fraction of correctly matched nodes, while the number of common edges
quantifies structural similarity. In Table 1, the ratio ALG

OPT is computed as nce(πALG)
nce(πA→B)

. Note that even
if this ratio is one, the accuracy may still be low if the GAP has no unique solution (as illustrated on
real datasets in Section 5.5).

2.2 CONTINUOUS RELAXATIONS AND THE FAQ ALGORITHM

Relaxation approach. Since the discrete optimization in (1) is intractable, we consider continu-
ous relaxations where the discrete permutation set Sn is replaced by the continuous set of doubly
stochastic matrices Dn in (1) or (2):

• Convex relaxation:
arg min

D∈Dn

∥AD −DB∥2F = Dcx (5)

This yields a convex optimization problem with guaranteed global optimum.
• Indefinite relaxation:

max
D∈Dn

⟨AD,DB⟩ (6)

This non-convex formulation often provides better solutions but is NP-hard in general due
to its indefinite Hessian (Pardalos & Vavasis, 1991).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Solution extraction. Both relaxations produce doubly stochastic matrices D that must be projected
to permutation matrices. This projection solves the linear assignment problem maxP∈Sn

⟨P,D⟩, ef-
ficiently solved by the Hungarian algorithm in O(n3) time (Kuhn, 1955). We denote this projection
as Proj(D) ∈ Sn.
FAQ algorithm. The Fast Approximate Quadratic (FAQ) algorithm proposed by Vogelstein et al.
(2015) approximately solves the indefinite relaxation (6) using Frank-Wolfe optimization and then
projects this solution in Sn. Unlike the convex relaxation, FAQ’s performance depends critically on
initialization. We denote the FAQ solution with initial condition D as FAQ(D) ∈ Sn. As demon-
strated in Lyzinski et al. (2015), FAQ often significantly outperforms simple projection: FAQ(Dcx)
typically yields much better solutions than Proj(Dcx), especially for challenging instances. This
improvement motivates our approach of providing FAQ with better initializations through
learned similarity matrices.

2.3 SYNTHETIC DATASETS: CONTROLLED DIFFICULTY THROUGH NOISE

Connection to graph isomorphism. When graphs GA and GB are isomorphic (GAP(A,B) =
0), the alignment problem reduces to graph isomorphism (GI). While GI’s complexity remains
open—it’s neither known to be in P nor proven NP-complete—Babai (2016)’s recent breakthrough
shows it’s solvable in quasipolynomial time. We study a natural generalization: noisy graph isomor-
phism, where noise level controls problem difficulty. At zero noise, graphs are isomorphic; as noise
increases, they become increasingly different, making alignment more challenging.
Correlated random graph model. Our datasets consist of correlated random graph pairs (GA, GB)
with identical marginal distributions but controllable correlation. This design allows systematic dif-
ficulty variation while maintaining statistical properties. The generation process involves: (i) Create
correlated graphs GA and GB with known alignment; (ii) Apply random permutation π⋆ ∈ Sn to
GB , yielding G′

B : (iii) Use triplets (GA, G
′
B , π

⋆) for supervised learning.
We employ three graph families—Bernoulli, Erdős-Rényi, and Regular—with parameters: Num-
ber of nodes: n; Average degree: d; Noise level: pnoise ∈ [0, 1], see Section A.1 for precise
definitions. The noise parameter controls edge correlation: the graphs GA and GB (before applying
the random permutation) share (1− pnoise)nd/2 edges on average (with pnoise = 0 yielding isomor-
phic graphs). For low noise levels, we expect π⋆ = πA→B , providing clean supervision. However,
for high noise, the planted permutation π⋆ may not be optimal, introducing label noise that makes
learning more challenging.

3 LEARNING THROUGH CHAINING

Overview. The chaining procedure works by iteratively refining graph alignment estimates through
three key operations: (1) computing node similarities, (2) extracting and evaluating the current
best permutation, and (3) using this evaluation to generate improved node features. Each iteration
produces a better similarity matrix, leading to more accurate alignments.

3.1 CHAINING PROCEDURE

Step 1: Initial feature extraction and similarity computation. Given a mapping f that extracts
node features from a graph’s adjacency matrix A ∈ {0, 1}n×n and outputs f : {0, 1}n×n → Rn×d,
we compute node feature matrices f(A) and f(B) for graphs GA and GB . The initial similarity
matrix captures pairwise node similarities via their feature dot products:

SA→B,(0) = f(A)f(B)T ∈ Rn×n. (7)

Here, SA→B,(0)
ij measures the similarity between node i ∈ GA and node j ∈ GB based on their

learned features.

Step 2: Permutation extraction and node quality scoring. From a similarity matrix SA→B , we
extract the best permutation estimate by solving the linear assignment problem: π = Proj(SA→B)
where π = argmaxπ∈Sn

∑
i S

A→B
iπ(i) . This permutation π : GA → GB represents our current

best guess for the optimal alignment πA→B . To evaluate alignment quality, we compute a score
for each node i in graph A: score(i) =

∑
j AijBπ(i)π(j). Intuitively, score(i) counts the number

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1

2

3

4

a

b

c

d

π

Graph GA Graph GB Node scores:
score(1) = 2
score(2) = 1
score(3) = 1
score(4) = 0

Rankings:
rA: [1, 2, 3, 4]
rB : [c, a, b, d]

Figure 1: Illustration of Step 2. The permutation π maps 1→c, 2→a, 3→b, 4→d. Green edges show
matches: edge 1-2 with a-c, and edge 1-3 with b-c. Node 1 has the highest score (2 matched edges),
nodes 2 and 3 each have 1 matched edge, and node 4 has no matched edges.

of edges incident to node i that are correctly matched under the current permutation π—higher
scores indicate better-aligned nodes (see Figure 1). We then rank nodes in GA by decreasing score,
obtaining a ranking rA ∈ Sn such that:

score(rA(1)) ≥ score(rA(2)) ≥ · · · ≥ score(rA(n)). (8)

The corresponding ranking for GB is derived as rB(i) = π(rA(i)), ensuring that highly-ranked
nodes in both graphs correspond to each other under the current permutation (see Figure 1). Note
that when inequalities in (8) are strict, the rankings uniquely encode the permutation π (with top-
ranked nodes being those most reliably aligned).

Step 3: Ranking-enhanced feature learning. We now incorporate the ranking information to
compute improved node features. Using a mapping g : {0, 1}n×n × Sn → Rn×d that takes both
the graph structure and node rankings as input, we compute enhanced feature matrices g(A, rA) and
g(B, rB). The new similarity matrix is:

SA→B = g(A, rA)g(B, rB)T ∈ Rn×n. (9)

This ranking-enhanced similarity matrix SA→B,(1) = g(A, rA,(0))g(B, rB,(0))T should be more
informative than the initial SA→B,(0) since it incorporates knowledge about which nodes align well.
Consequently, we expect Proj(SA→B,(1)) to be closer to the optimal πA→B than Proj(SA→B,(0)).

Iterative refinement. The key insight is to iterate steps 2 and 3 (see Figure 2) with different learned
mappings g(1), g(2), . . . at each iteration, progressively improving the similarity matrix and resulting
permutation. This creates a bootstrap effect where each iteration leverages the improved alignment
from the previous step. The complete chaining procedure requires a sequence of mappings:

f : {0, 1}n×n → Rn×d, r : {0, 1}n×n × {0, 1}n×n × Rn×n → Sn × Sn, (10)

g(1) : {0, 1}n×n × Sn → Rn×d, g(2) : {0, 1}n×n × Sn → Rn×d, . . . (11)

The procedure flows as follows: f computes the initial similarity matrix SA→B,(0) via (7), then r
computes rankings rA,(0), rB,(0) via (8), then g(1) computes the refined similarity matrix SA→B,(1)

via (9), and so forth, see Figure 2.

3.2 TRAINING AND INFERENCE WITH CHAINED GNNS

The ranking step r is not differentiable, preventing end-to-end training. Instead, we train each
GNN in the chain sequentially, which proves both practical and effective. This approach allows our
method to explicitly learn from discrete permutation decisions at each step, which is crucial for the
iterative improvement process.

Sequential training procedure. The mappings f , g(1), g(2), . . . are implemented using graph neural
networks (GNNs). We train the GNNs f , g(1), g(2), . . . , g(k) sequentially, where each network is
optimized to improve upon the previous iteration’s output. For training data consisting of graph
pairs (GA, GB) with known ground truth permutation π⋆, we define a cross-entropy loss for any
similarity matrix SA→B : L(SA→B , π⋆) = −

∑
i log

(
softmax(SA→B)

)
iπ⋆(i)

. This loss encourages

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

GA GB

f(A) f(B)

SA→B,(0)

rA,(0) rB,(0)

g(1)(A, rA,(0)) g(1)(B, rB,(0))

SA→B,(1)

rA,(1) rB,(1)

g(2)(A, rA,(1)) g(2)(B, rB,(1))

...

Step 1

Step 2

Step 3

Step 2

Step 3

Iteration 0

Iteration 1

Initial
feature

extraction

Ranking by
alignment

quality

Ranking-enhanced
features

Chaining Procedure

Figure 2: Overview of the chaining procedure. Starting from input graphs GA and GB , we first (1)
extract features and compute similarities, then iteratively (2) rank nodes by alignment quality, and
(3) use rankings to enhance features and similarities.

the similarity matrix to assign high values to the correct node correspondences specified by π⋆. The
training proceeds as follows:

1. Train f : Minimize L(SA→B,(0), π⋆) to learn initial feature extraction.

2. Train g(1): Fix f , compute rA,(0) and rB,(0) for the training data, then minimize
L(SA→B,(1), π⋆).

3. Train g(2): Fix f , compute rA,(0), rB,(0) then fix g(1), compute rA,(1), rB,(1), then mini-
mize L(SA→B,(2), π⋆).

4. Continue: Repeat this process for g(3), g(4), . . . , g(k).

This sequential approach ensures that each GNN learns to improve upon the alignment quality
achieved by all previous networks in the chain.

Inference procedure. During inference on new graph pairs (GA, GB), we apply the trained net-
works sequentially: f produces SA→B,(0), then alternating applications of r and g(ℓ) produce re-
fined similarity matrices SA→B,(1), SA→B,(2), . . . , SA→B,(L). Each similarity matrix SA→B,(ℓ)

represents a progressively better estimate of node correspondences. To extract a discrete permu-
tation from any SA→B,(ℓ), we apply either the Hungarian algorithm Proj or the FAQ algorithm,
yielding candidate permutation π(ℓ). We can then estimate its performance by computing nce(π(ℓ))
defined in (4).In practice, we observe that nce(π(ℓ)) typically increases with ℓ, confirming that each
iteration improves alignment quality.

Looping for enhanced performance. An important observation is that the final trained network
g(L) can be applied multiple times to further refine the solution. Since g(L) is trained to improve
partial solutions, repeatedly applying g(L) (with intermediate ranking steps r) often yields addi-
tional improvements. We call this technique looping and explore its benefits in Section 5.2. This
allows us to achieve better performance without training additional networks, simply by iterating
the refinement process as long as the number of common edges increases.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.3 GNN ARCHITECTURE AND EXPRESSIVENESS

Architecture choice and motivation. We implement all GNN mappings f , g(1), g(2), . . . , g(k)
using the same architecture inspired by Folklore-type GNNs (Maron et al., 2019). Unlike standard
message passing neural networks (MPNNs), this architecture operates on node pairs rather than
individual nodes, providing greater expressiveness at the cost of scalability (Maron et al., 2019).

Core architecture: Folklore-inspired residual layers. Our GNN’s main building block is a
residual layer that processes hidden states for all node pairs (ht

i→j)i,j ∈ Rn×n×d, producing up-

dated states (ht+1
i→j)i,j ∈ Rn×n×d: ht+1

i→j = ht
i→j + m1

(
ht
i→j ,

∑
ℓ h

t
i→ℓ ⊙m0(h

t
ℓ→j)

)
, where

m0 : Rd → Rd and m1 : R2d → Rd are multilayer perceptrons (MLPs) with graph normalization
layers, and ⊙ denotes component-wise multiplication. We refer to Section A.4 for more details
about our FGNN.

4 RELATED WORK: STATE-OF-THE-ART AND LEARNING LIMITATIONS

Additional related work on machine learning approaches to graph matching is discussed in Section
A.6. In this section, we restrict our attention to the combinatorial optimization perspective.

Non-learning methods. Among traditional optimization approaches, FAQ represents the state-of-
the-art for correlated random graphs (Lyzinski et al., 2015), outperforming the convex relaxation,
GLAG algorithm (Fiori et al., 2013), PATH algorithm (Zaslavskiy et al., 2008), Umeyama’s spectral
method (Umeyama, 1988), and linear programming approaches (Almohamad & Duffuaa, 1993).

More recent papers (Xu et al., 2019) and (Bommakanti et al., 2024) proposed new algorithms
for GAP but their comparison with FAQ is not correct probably because they used a suboptimal
initialization (see more details in Section A.3)

Learning approaches and their limitations. Recent GNN-based methods for graph alignment
include approaches by Yu et al. (2023), PGM (Kazemi et al., 2015), MGCN (Chen et al., 2020), and
MGNN (Wang et al., 2021). For Erdős-Rényi graphs, none of these methods demonstrated positive
accuracy under the same noise level where our experimental results show FAQ(Dcx) maintained
positive accuracy (see Section A.1).

This analysis reveals a significant gap: before our work, FAQ(Dcx) represented the state-of-the-
art for GAP on correlated random graphs, substantially outperforming all existing learning
and GNN approaches. Our chaining procedure aims to bridge this gap by combining the expres-
siveness of GNNs with iterative refinement, ultimately providing FAQ with superior initializations
that improve upon both pure learning and pure optimization approaches.

5 EMPIRICAL RESULTS AND COMPARISON TO FAQ

We evaluate our chaining procedure against FAQ Vogelstein et al. (2015), which represents the
state-of-the-art for graph alignment on correlated random graphs. We implement all GNN mappings
f , g(1), g(2), . . . , g(k) using the same architecture inspired by Folklore-type GNNs (Maron et al.,
2019). Our experiments compare three categories of methods: (1) non-neural baselines using convex
relaxation, (2) neural baselines using single-step FGNNs, and (3) our chained FGNNs with iterative
refinement. All methods can be combined with Proj and FAQ as a post-processing step to extract a
permutation (see Section 2.2).

5.1 MAIN RESULTS ON SYNTHETIC DATASETS

Table 2 presents comprehensive results across different graph types (with 500 nodes) and noise
levels. We evaluate on three challenging scenarios: sparse Erdős-Rényi graphs (average degree 4),
dense Erdős-Rényi graphs (average degree 80), and regular graphs (degree 10). The noise parameter
pnoise controls the difficulty, with higher values indicating more corrupted alignments.

Sparse and dense Erdős-Rényi graphs. For both sparse and dense graphs, our chained FGNNs
significantly outperform all baselines, particularly at challenging noise levels. At pnoise = 0.25,
chained FGNNs with FAQ post-processing achieve 85% accuracy on sparse graphs, compared to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Accuracy (acc) defined in (3) for Erdős-Rényi and regular graphs as a function of the noise
pnoise. FGNN refers to the architecture in Section A.4 and ChFGNN to our chained FGNNs. Proj
and FAQ are used to produce a permutation (from the similarity matrix computed).

SPARSE ERDŐS-RÉNYI GRAPHS WITH AVERAGE DEGREE 4

ER 4 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 0.98 0.97 0.90 0.59 0.23 0.09 0.04 0.02
(NON-NEURAL) FAQ(DCX) 0.98 0.98 0.96 0.95 0.73 0.13 0.04 0.02

BASELINES FGNN PROJ 0.98 0.94 0.74 0.44 0.23 0.12 0.06 0.03
(NEURAL) FGNN FAQ 0.98 0.98 0.96 0.95 0.81 0.24 0.07 0.03

CHAINING CHFGNN PROJ 0.98 0.98 0.96 0.94 0.91 0.82 0.49 0.08
CHAINING CHFGNN FAQ 0.98 0.98 0.96 0.95 0.93 0.85 0.52 0.09

DENSE ERDŐS-RÉNYI GRAPHS WITH AVERAGE DEGREE 80

ER 80 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 1 1 1 0.61 0.14 0.04 0.02 0.01
(NON-NEURAL) FAQ(DCX) 1 1 1 1 1 0.21 0.01 0.01

BASELINES FGNN PROJ 1 1 0.73 0.28 0.10 0.04 0.02 0.01
(NEURAL) FGNN FAQ 1 1 1 1 0.95 0.14 0.01 0.01

CHAINING CHFGNN PROJ 1 1 0.94 0.83 0.68 0.37 0.02 0.01
CHAINING CHFGNN FAQ 1 1 1 1 0.99 0.62 0.01 0.01

REGULAR RANDOM GRAPHS WITH DEGREE 10

REGULAR (ACC) NOISE 0 0.05 0.1 0.15 0.2

BASELINE FAQ(DCX) 0.002 0.003 0.003 0.002 0.003

BASELINES FGNN PROJ 1 0.31 0.03 0.005 0.003
(NEURAL) FGNN FAQ 1 0.95 0.10 0.005 0.002

CHAINING CHFGNN PROJ 1 0.95 0.54 0.009 0.003
CHAINING CHFGNN FAQ 1 0.96 0.56 0.008 0.002

only 13% for the non-neural FAQ baseline and 24% for single-step FGNNs. Note that pnoise = 0.2
corresponds to the setting of Yu et al. (2023) where none of the GNN-based methods achieve positive
accuracy. Notably, our FGNN architecture alone (without chaining) already outperforms the neural
baselines from Yu et al. (2023), demonstrating the importance of architectural expressiveness.

Regular graphs: a particularly challenging case. Regular graphs present a unique challenge
where standard approaches fail. The uninformative barycenter matrix Dcx = 1

n11
T is one of the

solution of the convex relaxation (5), giving FAQ no useful initialization. Similarly, MPNNs cannot
distinguish between nodes in regular graphs Xu et al. (2018), making them ineffective for this task.
Table 2 shows that only our FGNN architecture achieves meaningful performance on regular graphs.
Our chained FGNNs gets 56% accuracy at pnoise = 0.1 while all other methods essentially fail. This
demonstrates the critical importance of both architectural expressiveness and iterative refinement for
challenging graph alignment scenarios.

Table 3: Accuracy (acc) for sparse Erdős-Rényi graphs as a function of the number (L+1) of trained
FGNNs and in parentheses the gain due to looping (Nloop = 60 - Nloop = L+ 1). Last line: number
of loops for chained FGNNs as a function of the noise pnoise to get optimal nce.

NOISE 0.15 0.2 0.25 0.3 0.35

L+1=2 0.28 (+0.02) 0.15 (+0.02) 0.08 (+0.01) 0.04 (+0.01) 0.02 (+0.00)
L+1=6 0.59 (+0.01) 0.43 (+0.06) 0.21 (+0.11) 0.07 (+0.05) 0.03 (+0.01)
L+1=10 0.85 (+0.01) 0.72 (+0.06) 0.43 (+0.13) 0.11 (+0.19) 0.04 (+0.03)
L+1=14 0.91 (+0.00) 0.86 (+0.01) 0.57 (+0.13) 0.16 (+0.21) 0.04 (+0.04)
L+1=16 0.92 (+0.00) 0.88 (+0.01) 0.61 (+0.12) 0.19 (+0.26) 0.04 (+0.04)

#LOOP 15 23 88 91 73

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 LOOPING: ENHANCED INFERENCE WITHOUT ADDITIONAL TRAINING

The chaining procedure trains L+1 FGNNs: f, g(1), . . . , g(L), with performance typically improv-
ing as L increases, see Table 3. Since g(L) refines partial solutions, looping where the final FGNN
g(L) is repeatedly applied with the ranking function r (Section 3) for up to Nloop iterations progres-
sively improves accuracy. This gain is shown in parentheses in Table 3 corresponding to the increase
in accuracy between no looping, i.e. Nloop = L+1 and looping with Nloop = 60. We see substantial
gain with looping particularly on harder instances (pnoise = 0.25 or 0.3), while incurring minimal
computational overhead. In order to get the better results in Table 2, we used looping as long as
nce continues to improve, capped at Nloop = 100 iterations. We see in the last line of Table 3 the
average number of loops performed before nce plateaus. The results indicate that more difficult
problems generally require more iterations, whereas extremely challenging cases (pnoise = 0.35)
yield no further improvements and thus converge with fewer loops.

5.3 TRAINING STRATEGY: OPTIMAL NOISE
SELECTION

A key finding is the importance of training noise
selection. Figure 3 shows that intermediate
noise levels (around pnoise = 0.22 for sparse
graphs) yield the best generalization. Train-
ing on too-easy instances produces models that
fail to generalize to harder cases, while training
on too-hard instances yields suboptimal perfor-
mance on easier problems. This “sweet spot”
balances challenge and learnability, enabling ro-
bust feature learning. All results in Tables 2
use models trained at these optimal noise levels,
tuned separately for each graph family.

5.4 COMPUTATIONAL EFFICIENCY
ANALYSIS

A fair comparison of running times between
FAQ(Dcx) and our chained GNN procedure is
challenging, so we focus on inference complex-
ity. While our method requires an initial GPU-
based training phase, this is assumed to be com-
pleted before solving new instances.
For FAQ(Dcx), each gradient step involves
solving a linear assignment problem (O(n3)),
and total runtime depends on the number of gra-
dient ascent iterations.

Figure 3: Each line corresponds to chained
FGNNs trained at a given level of noise and
evaluated across all different level of noises.
Performances are acc (in %) for sparse Erdős-
Rényi graphs with Proj as post-processing.

Our chaining procedure has two main costs as n grows: (i) an n × n matrix multiplication in the
graph layer, scaling as O(n3) but efficient on GPUs, with memory as the main bottleneck; and (ii)
computing ranks via a projection Proj of the similarity matrix in each iteration, an O(n3) CPU oper-
ation. Table 4 reports the average number of gradient ascent iterations in FAQ, starting from either
Dcx or the similarity matrix produced by our chained FGNN. The iteration count is substantially
lower with the chained FGNN, especially on hard instances (pnoise ∈ [0.15, 0.3]), indicating that the
similarity matrix from chaining provides a more accurate initialization than Dcx.

Table 4: Average number of gradient projections (Proj) in the Frank-Wolfe algorithm FAQ, with
initialization from either Dcx or the similarity matrix produced by the chained FGNNs.

ER 4 NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

FAQ(DCX) #ITER 3.0 3.2 6.2 15.6 31.4 25.8 24.2 25.6
CHFGNN FAQ #ITER 2.0 2.1 2.8 4.1 6.5 8.3 15.1 19.7

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Accuracy (in percent) and percent of common edges on the Yeast PPI networks. ChFGNN
ER4 is our model trained on Erdős-Rényi graphs with average degree 4, while ChFGNN is trained
on the pairs obtained with the three first networks.

YEAST PPI NETWORKS (ACC / PERCENT OF COMMON EDGES)
METHOD 5% CONF 10% CONF 15% CONF 20% CONF 25% CONF

FAQ(DCX) 84.2 / 100 82.6 / 99.9 78.0 / 99.6 77.0 / 99.6 76.1 / 99.8

CHFGNN ER4 80.3 / 99.7 75.3 / 99.6 67.2 / 99.1 63.1 / 98.7 53.1 / 97.1

CHFGNN TRAINING TRAINING TRAINING 72.2 / 99.7 69.8 / 99.6

5.5 RESULTS ON REAL GRAPHS

We evaluate on three real-world datasets from different domains: biology, social networks, and road
networks (see details in Section A.3). Yeast (Vijayan & Milenkovic, 2018) is a protein–protein
interaction (PPI) network with 1,004 proteins and 8,323 trusted interactions. Five noisy variants are
created by adding q% low-confidence edges (q ∈ {5, 10, 15, 20, 25}). The base graph is always
an induced subgraph of each variant, so the maximum number of common edges is fixed at 8,323.
Because the true node correspondence is known, we evaluate alignment quality using accuracy acc
and normalized number of common edges nce(πALG)

nce(πA→B)
.

We first tested chained FGNNs trained on sparse Erdős–Rényi graphs (Section 5.1) to assess trans-
ferability. We then trained chained FGNNs on graph pairs constructed from the base network and
noisy variants with q ∈ {5, 10, 15}, and tested on q ∈ {20, 25}. As shown in Table 5, all methods
recover nearly the maximum number of common edges (within 3%), but this does not necessarily
translate into high node-level accuracy. The base graph has a large automorphism group, so many
node permutations preserve edges, and adding edges only worsens identifiability. Thus, although this
dataset is a common benchmark, nce is the more reliable metric, and FAQ is already near-optimal.

To obtain more challenging benchmarks, we also applied the edge-addition–removal noise model
(Section 2.3) to the yeast PPI network with q = 25%, the ca-netscience coauthorship network
(Newman, 2006), and the inf-euroroad road network (Šubelj & Bajec, 2011). We evaluated both
transferred FGNNs and models specifically trained on these datasets. Table 6 shows that trained
ChFGNNs achieve the best performance, with nce improving by only about 2% under high noise.
As before, node accuracy may not correlate strongly with nce due to inherent graph symmetries.

Table 6: Accuracy (in percent) and number of common edges (nce) on noisy versions of real-world
networks. Each network is corrupted by adding noise at different levels. ChFGNN ER4 is trained
on Erdős-Rényi graphs, while ChFGNN is trained on the specific network and noise level.In bold if
gain in nce is larger than 2%.

REAL-WORLD NETWORKS WITH ADDED NOISE (ACC / NCE)
METHOD YEAST25LC CA-NETSCIENCE INF-EUROROAD

5% 10% 10% 20% 10% 20%

FAQ(DCX) 49.8 / 7660 44.7 / 7245 65.2 / 822 45.6 / 687 55.8 / 1170 10.9 / 940

CHFGNN ER4 47.6 / 7693 42.3 / 7297 63.5 / 818 44.1 / 688 40.0 / 1111 7.5 / 970

CHFGNN 54.1 / 7732 51.3 / 7404 65.4 / 824 57.0 / 724 63.5 / 1213 15.4 / 963

6 CONCLUSION

In summary, we introduced a chaining procedure with GNNs for tackling the combinatorial graph
alignment problem, achieving substantial performance gains and compatibility with existing solvers.
We further proposed a challenging benchmark of correlated regular graphs, for which no competing
algorithms are known. Our method extends naturally to the seeded variant of GAP, and we anticipate
that the chaining framework may generalize to other combinatorial problems, offering promising
directions for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

HA Almohamad and Salih O Duffuaa. A linear programming approach for the weighted graph
matching problem. IEEE Transactions on pattern analysis and machine intelligence, 15(5):522–
525, 1993.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse
than classical greedy algorithms in solving combinatorial optimization problems like maximum
independent set. Nature Machine Intelligence, 5(1):29–31, 2023.

Waiss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural net-
works. In International Conference on Learning Representations, 2021.

László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684–697, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Aditya Bommakanti, Harshith R Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin, and
Panagiotis Karras. Fugal: Feature-fortified unrestricted graph alignment. Advances in Neural
Information Processing Systems, 37:19523–19546, 2024.

Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. ICLR, 2022.

Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic assignment problem
library. Journal of Global optimization, 10:391–403, 1997.

Rainer E. Burkard, Eranda Çela, Panos M. Pardalos, and Leonidas S. Pitsoulis. The Quadratic
Assignment Problem, pp. 1713–1809. Springer US, Boston, MA, 1998. ISBN 978-1-
4613-0303-9. doi: 10.1007/978-1-4613-0303-9 27. URL https://doi.org/10.1007/
978-1-4613-0303-9_27.

Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-yan Liu, and Liwei Wang. Graphnorm: A prin-
cipled approach to accelerating graph neural network training. In International Conference on
Machine Learning, pp. 1204–1215. PMLR, 2021.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, and Katarzyna Musial.
Multi-level graph convolutional networks for cross-platform anchor link prediction. In Proceed-
ings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 1503–1511, 2020.

D Conte, P Foggia, C Sansone, and M Vento. Thirty years of graph matching in pattern recognition.
International Journal of Pattern Recognition & Artificial Intelligence, 18(3), 2004.

Pierluigi Crescenzi, Viggo Kann, and M Halldórsson. A compendium of np optimization problems,
1995.

Daniel Cullina and Negar Kiyavash. Improved achievability and converse bounds for erdos-renyi
graph matching. SIGMETRICS Perform. Eval. Rev., 44(1):63–72, jun 2016. ISSN 0163-5999. doi:
10.1145/2964791.2901460. URL https://doi.org/10.1145/2964791.2901460.

Jian Ding and Hang Du. Matching recovery threshold for correlated random graphs. The Annals of
Statistics, 51(4):1718–1743, 2023.

Jian Ding and Zhangsong Li. A polynomial-time iterative algorithm for random graph matching
with non-vanishing correlation. arXiv preprint arXiv:2306.00266, 2023.

11

https://doi.org/10.1007/978-1-4613-0303-9_27
https://doi.org/10.1007/978-1-4613-0303-9_27
https://doi.org/10.1145/2964791.2901460

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jian Ding, Zongming Ma, Yihong Wu, and Jiaming Xu. Efficient random graph matching via degree
profiles. Probability Theory and Related Fields, 179:29–115, 2021.

Zhou Fan, Cheng Mao, Yihong Wu, and Jiaming Xu. Spectral graph matching and regularized
quadratic relaxations ii: Erdős-rényi graphs and universality. Foundations of Computational
Mathematics, 23(5):1567–1617, 2023.

Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan Masci, and Nils M Kriege. Deep graph
matching consensus. ICLR, 2020.

Marcelo Fiori, Pablo Sprechmann, Joshua Vogelstein, Pablo Musé, and Guillermo Sapiro. Robust
multimodal graph matching: Sparse coding meets graph matching. Advances in Neural Informa-
tion Processing Systems, 26, 2013.

Donniell E Fishkind, Sancar Adali, Heather G Patsolic, Lingyao Meng, Digvijay Singh, Vince
Lyzinski, and Carey E Priebe. Seeded graph matching. Pattern recognition, 87:203–215, 2019.

Luca Ganassali, Laurent Massoulié, and Marc Lelarge. Impossibility of partial recovery in the graph
alignment problem. In Conference on Learning Theory, pp. 2080–2102. PMLR, 2021.

Luca Ganassali, Marc Lelarge, and Laurent Massoulié. Correlation detection in trees for planted
graph alignment. The Annals of Applied Probability, 34(3):2799–2843, 2024a.

Luca Ganassali, Laurent Massoulié, and Guilhem Semerjian. Statistical limits of correlation detec-
tion in trees. The Annals of Applied Probability, 34(4):3701–3734, 2024b.

Quankai Gao, Fudong Wang, Nan Xue, Jin-Gang Yu, and Gui-Song Xia. Deep graph matching
under quadratic constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5069–5078, 2021.

Bo Jiang, Pengfei Sun, and Bin Luo. Glmnet: Graph learning-matching convolutional networks for
feature matching. Pattern Recognition, 121:108167, 2022.

Ehsan Kazemi, S Hamed Hassani, and Matthias Grossglauser. Growing a graph matching from a
handful of seeds. Proceedings of the VLDB Endowment, 8(10):1010–1021, 2015.

H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955. doi: https://doi.org/10.1002/nav.3800020109. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In International conference on
machine learning, pp. 3835–3845. PMLR, 2019.

Vince Lyzinski, Donniell E Fishkind, Marcelo Fiori, Joshua T Vogelstein, Carey E Priebe, and
Guillermo Sapiro. Graph matching: Relax at your own risk. IEEE transactions on pattern analysis
and machine intelligence, 38(1):60–73, 2015.

Cheng Mao, Yihong Wu, Jiaming Xu, and Sophie H Yu. Random graph matching at otter’s threshold
via counting chandeliers. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, pp. 1345–1356, 2023.

Haggai Maron and Yaron Lipman. (probably) concave graph matching. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019.

Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object matching. Foun-
dations of computational mathematics, 11:417–487, 2011.

Andrea Muratori and Guilhem Semerjian. Faster algorithms for the alignment of sparse correlated
erd\” os-r\’enyi random graphs. arXiv preprint arXiv:2405.08421, 2024.

12

https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets. In 2008
IEEE Symposium on Security and Privacy (sp 2008), pp. 111–125. IEEE, 2008.

M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices.
Phys. Rev. E, 74:036104, Sep 2006. doi: 10.1103/PhysRevE.74.036104. URL https://link.
aps.org/doi/10.1103/PhysRevE.74.036104.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. Revised note on learning quadratic
assignment with graph neural networks. In 2018 IEEE Data Science Workshop (DSW), pp. 1–5.
IEEE, 2018.

Panos M Pardalos and Stephen A Vavasis. Quadratic programming with one negative eigenvalue is
np-hard. Journal of Global optimization, 1(1):15–22, 1991.

Giovanni Piccioli, Guilhem Semerjian, Gabriele Sicuro, and Lenka Zdeborová. Aligning random
graphs with a sub-tree similarity message-passing algorithm. Journal of Statistical Mechanics:
Theory and Experiment, 2022(6):063401, 2022.

Michal Rolı́nek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vı́t Musil, and Georg Martius.
Deep graph matching via blackbox differentiation of combinatorial solvers. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXVIII 16, pp. 407–424. Springer, 2020.

Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

Jadranka Skorin-Kapov. Tabu search applied to the quadratic assignment problem. ORSA Journal
on computing, 2(1):33–45, 1990.

Lovro Šubelj and Marko Bajec. Robust network community detection using balanced propagation.
The European Physical Journal B, 81(3):353–362, 2011.

Hui Sun, Wenju Zhou, and Minrui Fei. A survey on graph matching in computer vision. In 2020
13th International Congress on Image and Signal Processing, BioMedical Engineering and In-
formatics (CISP-BMEI), pp. 225–230. IEEE, 2020.

Éric Taillard. Robust taboo search for the quadratic assignment problem. Parallel computing, 17
(4-5):443–455, 1991.

G. Tinhofer. A note on compact graphs. Discrete Applied Mathematics, 30(2):253–264, 1991.
ISSN 0166-218X. doi: https://doi.org/10.1016/0166-218X(91)90049-3. URL https://www.
sciencedirect.com/science/article/pii/0166218X91900493.

Shinji Umeyama. An eigendecomposition approach to weighted graph matching problems. IEEE
transactions on pattern analysis and machine intelligence, 10(5):695–703, 1988.

Vipin Vijayan and Tijana Milenkovic. Multiple network alignment via multimagna++. IEEE/ACM
Trans. Comput. Biol. Bioinformatics, 15(5):1669–1682, September 2018. ISSN 1545-5963.
doi: 10.1109/TCBB.2017.2740381. URL https://doi.org/10.1109/TCBB.2017.
2740381.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Joshua T Vogelstein, John M Conroy, Vince Lyzinski, Louis J Podrazik, Steven G Kratzer, Eric T
Harley, Donniell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Fast approximate quadratic
programming for graph matching. PLOS one, 10(4):e0121002, 2015.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learning
lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5261–5279, 2021.

Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable gromov-wasserstein learning for graph
partitioning and matching. Advances in neural information processing systems, 32, 2019.

13

https://link.aps.org/doi/10.1103/PhysRevE.74.036104
https://link.aps.org/doi/10.1103/PhysRevE.74.036104
https://www.sciencedirect.com/science/article/pii/0166218X91900493
https://www.sciencedirect.com/science/article/pii/0166218X91900493
https://doi.org/10.1109/TCBB.2017.2740381
https://doi.org/10.1109/TCBB.2017.2740381

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Liren Yu, Jiaming Xu, and Xiaojun Lin. Seedgnn: graph neural network for supervised seeded graph
matching. In International Conference on Machine Learning, pp. 40390–40411. PMLR, 2023.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Deep latent graph matching. In Interna-
tional Conference on Machine Learning, pp. 12187–12197. PMLR, 2021.

Andrei Zanfir and Cristian Sminchisescu. Deep learning of graph matching. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 2684–2693, 2018.

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. A path following algorithm for the graph
matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):
2227–2242, 2008.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS

A.1 Correlated random graphs and previous recent results 15

A.2 Time–performance trade-off . 16

A.3 Real Graphs and previous recent results . 17

A.4 GNN architecture and expressiveness . 18

A.5 Technical details for the GNN architecture and training 19

A.6 More related work . 19

A.7 Model-based versus simulation-based algorithms 20

A.7.1 Theoretical Foundations and Limits . 20

A.7.2 Model-based Approaches: Achievements and Limitations 20

A.7.3 FAQ: An Empirical Surprise . 21

A.7.4 Our Simulation-based Approach . 22

A.8 Relating GAP to Gromov-Hausdorff, Gromov-Monge and Gromov-Wasserstein dis-
tances for finite metric spaces . 22

A.9 Notations used in tables . 23

A.10 Bernoulli graphs: Generalization properties for chained GNNs 23

A.10.1 Training chained GNNs . 23

A.10.2 Efficient inference for chained FGNNs 24

A.11 Additional results for sparse Erdős-Réyni graphs 25

A.12 Additional results for dense Erdős-Réyni graphs 27

A.13 Additional results for regular graphs . 29

A.14 LLM Usage . 31

A.15 Reproducibility Statement . 32

A.1 CORRELATED RANDOM GRAPHS AND PREVIOUS RECENT RESULTS

In this section, we present the mathematical details for the various correlated random graphs model
used in this paper.

Bernoulli graphs. We start with the model considered in (Lyzinski et al., 2015). Given n the
number of nodes, ρ ∈ [0, 1] and a symmetric hollow matrix Λ ∈ [0, 1]n×n, define E = {{i, j}, i ∈
[n], j ∈ [n], i ̸= j}. Two random graphs GA = (VA, EA) and GB = (VB , EB) are ρ-correlated
Bernoulli(Λ) distributed, if for all {i, j} ∈ E , the random variables (matrix entries) Aij and Bij

are such that Bij ∼ Bernoulli(Λij) independently drawn and then conditioning on B, we have
Aij ∼ Bernoulli(ρBij + (1 − ρ)Λij) independently drawn. Note that the marginal distribution of
A and B are Bernoulli(ρΛ + (1 − ρ)Λ) distributed, i.e. the laws of A and B are the same (but
correlated).

In our experiments in Sections A.10.1 and A.10.2, we consider the same case as in (Lyzinski et al.,
2015): n = 150 vertices, the entries of the matrix Λ are i.i.d. uniform in [α, 1 − α] with α = 0.1,
and we vary ρ.

Erdős-Rényi graphs. The Erdős-Rényi model is a special case of the Bernoulli model where
Λ is the matrix with all entries equal to λ. To be consistent with the main notation, we define
pnoise = (1 − λ)(1 − ρ) where ρ was the correlation above and λ = d/n where d is the average

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Statistics of synthetic datasets.
name average number useed for comparison sizes of

degree of nodes with train/val

Bernoulli 70 150 FAQ(Dcx) (Lyzinski et al., 2015) 2000/200

Sparse Erdős-Rényi (ER 4) 4 500 MPNN (Yu et al., 2023) 200/100

Dense Erdős-Rényi (ER 80) 80 500 MPNN (Yu et al., 2023) 200/100

Large Erdős-Rényi 3 1000 Bayesian message passing 200/100
(Muratori & Semerjian, 2024)

Regular 10 500 new 200/100

degree of the graph. Hence the random graphs GA and GB are correlated Erdős-Rényi graphs when
P(Ai,j = Bi,j = 1) = d

n (1−pnoise) and P(Ai,j = 0, Bi,j = 1) = P(Ai,j = 1, Bi,j = 0) = d
npnoise.

Regular graphs. In this case, we first generate GA as a uniform regular graph with degree d and
then we generate GB by applying edgeswap to GA: if {i, j} and {k, ℓ} are two edges of GA then
we swap them to {i, ℓ} and {k, j} with probability pnoise.

The problem of graph alignment for correlated Erdős Rényi random graphs has been studied em-
pirically with Message Passing GNN (MPNN) in (Yu et al., 2023) when a seed of matched ver-
tices is given in addition to the 2 graphs. We are reproducing their results taken from https:
//github.com/Leron33/SeedGNN corresponding to Figure 6 in (Yu et al., 2023). SeedGNN
refers to (Yu et al., 2023), PGM to (Kazemi et al., 2015), SGM to (Fishkind et al., 2019) and MGCN
to(Chen et al., 2020)

Table 8: Accuracy (%) on sparse Erdős Rényi random graphs with average degree 4 and noise 0.2
as a function of the seed

Fraction of Seeds 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

SeedGNN 0.3 15.1 47.4 82.8 96.0 96.6 97.0 97.6 97.6 97.6 97.6
PGM 0.2 2.3 6.1 16.3 31.6 54.5 73.3 79.2 86.3 88.9 92.7
SGM 0.3 3.6 8.9 13.8 22.3 36.3 54.5 67.3 84.4 89.6 91.6
MGCN 0.1 2.0 4.0 6.7 8.4 11.1 12.4 14.0 16.3 18.9 20.5

Looking at the results from Section 5, we see that:

• for sparse Erdős Rényi random graphs (Table 8) with no seed and a noise of 0.2, the accu-
racy for FAQ(Dcx) is 73% and for our chained FGNNs 93%.

• for dense Erdős Rényi random graphs (Table 9) with no seed and a noise of 0.2, the accu-
racy for FAQ(Dcx) is 100% and for our chained FGNNs 99%.

Table 9: Accuracy (%) on dense Erdős Rényi random graphs with average degree 80 and noise 0.2
as a function of the seed

Fraction of Seeds 0% 0.5% 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

SeedGNN 0.1 0.7 91.4 100 100 100 100 100 100 100 100
PGM 0.1 0.6 1.8 4.3 19.3 51.2 96.6 100 100 100 100
SGM 0.2 1.5 85.8 100 100 100 100 100 100 100 100
MGCN 0.1 0.7 1.5 1.9 3.7 5.2 6.9 8.0 10.9 12.3 13.7

A.2 TIME–PERFORMANCE TRADE-OFF

For iterative algorithms, the computation time can be controlled by adjusting the number of itera-
tions. This applies to gradient-based methods such as the Frank–Wolfe algorithm, used to compute
either the convex relaxation Dcx or the indefinite relaxation FAQ. The recently proposed FUGAL

16

https://github.com/Leron33/SeedGNN
https://github.com/Leron33/SeedGNN

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

algorithm (Bommakanti et al., 2024) is also iterative. Finally, our chained FGNNs naturally define
an iterative procedure, where we may bound the number of chaining steps. Figure 4 displays the
resulting Pareto curves, showing the trade-off between performance and runtime for each method
on sparse Erdős–Rényi graphs with noise level pnoise = 0.2.

For FUGAL, we used the authors’ implementation (available at https://github.
com/idea-iitd/Fugal), specifically the predict alignment routine with
hyperparameter mu = 1. For FAQ(J), we relied on the SciPy implementation
scipy.optimize.quadratic assignment(method=’faq’). For FAQ(Dcx), we
used our own Frank–Wolfe implementation to compute Dcx before passing it to FAQ.

We emphasize that FAQ and FUGAL run on CPU, whereas our chained FGNNs run on GPU. Run-
times correspond to computing the number of common edges (nce) over 100 graph pairs of size
n = 500. As shown in the figure, our chained FGNNs achieve better performance at lower compu-
tation time compared to both FAQ and FUGAL.

Figure 4: Number of common edges (nce) recovered in sparse Erdős–Rényi graphs as a function of
the computation time allocated to each algorithm: FUGAL, FAQ(J), FAQ(Dcx), and our chained
FGNNs (ChFGNN).

A.3 REAL GRAPHS AND PREVIOUS RECENT RESULTS

The real-world networks in Section 5.5 are standard benchmarks for graph alignment. We apply
the same noising procedure as for Erdős–Rényi graphs (described above), using the original graph’s
average degree d. Table 10 gives the sizes of the training and validation sets used for training our
chained FGNNs.

Table 10: Summary statistics of the real-world graphs.
Dataset # Nodes # Edges Avg. Degree size train/valid
Yeast PPI (Vijayan & Milenkovic, 2018) 1,004 8,323 16.58 20/20
ca-netscience(Newman, 2006) 379 914 4.82 200/20
inf-euroroad (Šubelj & Bajec, 2011) 1,174 1,417 2.41 20/5

Table 11 reports results for SGWL (Xu et al., 2019) and FUGAL (Bommakanti et al., 2024).
SGWL results come from the original paper; FUGAL results were obtained using the authors’
code (available at https://github.com/idea-iitd/Fugal). Our FUGAL performance
matches (Bommakanti et al., 2024), but our FAQ results do not. We attribute the discrepancy to

17

https://github.com/idea-iitd/Fugal
https://github.com/idea-iitd/Fugal
https://github.com/idea-iitd/Fugal

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

poor initialization: using the uninformative barycenter J = 1
n11

⊤ reproduces the degraded FAQ
performance reported in (Bommakanti et al., 2024).

Table 11: Accuracy (acc) and pnumber of common edges (nce) on the Yeast PPI networks. ChFGNN
ER4 is our model trained on Erdős-Rényi graphs with average degree 4, while ChFGNN is trained
on the pairs obtained with the three first networks.

YEAST PPI NETWORKS (ACC / NCE)
METHOD 5% CONF 10% CONF 15% CONF 20% CONF 25% CONF

FAQ(J) 37.5 / 7383 34.4 / 7245 29.1 / 6807 23.9 / 6689 36.4 / 7383
SGWL 83.6 / – – / – 66.6 / – – / – 58.8 / –
FUGAL 83.0 / 8311 77.7 / 8231 74.3 / 8172 70.9 / 8148 68.6 / 8095
FAQ(DCX) 84.2 / 8323 82.6 / 8317 78.0 / 8289 77.0 / 8294 76.1 / 8306

CHFGNN ER4 80.3 / 8300 75.3 / 8288 67.2 / 8252 63.1 / 8213 53.1 / 8080

CHFGNN TRAINING TRAINING TRAINING 72.2 / 8300 69.8 / 8291

On noisy real datasets (Table 12), FUGAL never matches FAQ, contrary to the claims in (Bom-
makanti et al., 2024). To compute the maximum number of common edges, we run FAQ initialized
with the true permutation (prior to noising).

Table 12: Accuracy (acc) and number of common edges (nce) on noisy versions of real-world
networks. Each network is corrupted by adding noise at different levels. ChFGNN ER4 is trained
on Erdős-Rényi graphs, while ChFGNN is trained on the specific network and noise level.In bold if
gain in nce is larger than 2%.

REAL-WORLD NETWORKS WITH ADDED NOISE (ACC / NCE)
METHOD YEAST25LC CA-NETSCIENCE INF-EUROROAD

5% 10% 10% 20% 10% 20%

FUGAL 53.1 / 7480 44.6 / 7035 60.3 / 794 37.7 / 629 18.3 / 818 2.9 / 714
FAQ(DCX) 49.8 / 7660 44.7 / 7245 65.2 / 822 45.6 / 687 55.8 / 1170 10.9 / 940

CHFGNN ER4 47.6 / 7693 42.3 / 7297 63.5 / 818 44.1 / 688 40.0 / 1111 7.5 / 970

CHFGNN 54.1 / 7732 51.3 / 7404 65.4 / 824 57.0 / 724 63.5 / 1213 15.4 / 963

MAX NCE 7909 7498 826 730 1272 1137

FUGAL is substantially faster than FAQ(Dcx), though we did not perform a detailed timing study.
We lack an efficient implementation of the Frank–Wolfe solver required for the convex-relaxation
initialization Dcx, and our implementation prioritizes correctness over speed. The subsequent FAQ
step uses SciPy’s efficient routine quadratic assignment. We expect that FAQ(Dcx) could
be made significantly faster with an optimized implementation.

A.4 GNN ARCHITECTURE AND EXPRESSIVENESS

The choice of a more expressive architecture is crucial for our approach. The success of the chain-
ing procedure critically depends on producing a high-quality initial similarity matrix SA→B(0) to
bootstrap the iterative refinement process. Standard MPNNs, which aggregate only local neighbor-
hood information, would produce similarity matrices based on limited local features—insufficient
for capturing the global structural patterns needed for effective graph alignment. This limitation has
been observed in prior work: Nowak et al. (2018) implemented a similar initial step using MPNNs
with limited success, while Azizian & Lelarge (2021) demonstrated the superiority of Folklore-type
GNNs for this task. As we show in Section 5, combining our expressive architecture with the chain-
ing procedure yields substantial performance improvements over single-step approaches.

Core architecture: Folklore-inspired residual layers. Our GNN’s main building block is a resid-
ual layer that processes hidden states for all node pairs (ht

i→j)i,j ∈ Rn×n×d, producing updated

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

states (ht+1
i→j)i,j ∈ Rn×n×d:

ht+1
i→j = ht

i→j +m1

(
ht
i→j ,

∑
ℓ

ht
i→ℓ ⊙m0(h

t
ℓ→j)

)
, (12)

where m0 : Rd → Rd and m1 : R2d → Rd are multilayer perceptrons (MLPs) with graph normal-
ization layers, and ⊙ denotes component-wise multiplication.

This design incorporates several improvements over the original Folklore-type GNN (Maron et al.,
2019):

• Residual connections: The skip connection ht
i→j + (·) enables deeper networks and more

stable training.
• Graph normalization: Inspired by Cai et al. (2021), this ensures well-behaved tensor

magnitudes across different graph sizes.
• Simplified architecture: We use only one MLP in the component-wise multiplication,

reducing memory requirements while maintaining expressiveness.

Input and output transformations. The complete architecture consists of three main components:

1. Input embedding: The adjacency matrix A ∈ {0, 1}n×n is embedded into the initial
hidden state h0

i→j ∈ Rn×n×d using a learned embedding layer that encodes edge pres-
ence/absence.

2. Residual processing: Multiple residual layers (12) transform the node-pair representa-
tions, capturing complex structural relationships.

3. Node feature extraction: The final tensor hk
i→j ∈ Rn×n×d is converted to node features

Rn×d via max-pooling over the first dimension: nodei = maxj h
k
i→j .

Ranking integration for chained networks. The networks g(1), g(2), . . . must incorporate ranking
information in addition to graph structure. We achieve this through learned positional encodings
that map each node’s rank to a d-dimensional vector. These rank embeddings are concatenated with
the node features from the max-pooling layer, allowing the network to leverage both structural and
ranking information when computing enhanced similarities.

This architecture provides the expressiveness needed to capture global graph properties while re-
maining trainable through the sequential training procedure described in Section 3.2. While scal-
ability remains a limitation for very large graphs, the architecture proves highly effective for the
graph sizes considered in our experiments (up to 1000 nodes).

A.5 TECHNICAL DETAILS FOR THE GNN ARCHITECTURE AND TRAINING

By default, we use MLP for the functions m0 and m1 in (12) with 2 hidden layers of dimension
256. In all our experiments, we take a GNN with 2 residual layers. We used Adm optimizer with
a learning rate of 1e − 4 and the scheduler ReduceLROnPlateau from PyTorch with a patience
parameter of 3.

For Proj, we use the function linear sum assignment from scipy.optimize and for FAQ, we use the
function quadratic assignment from the same library. SciPy is a set of open source (BSD licensed)
scientific and numerical tools for Python. In order to compute Dcx solving (5), we implemented the
Frank-Wolfe algorithm.

For the training and inference, we used Nvidia RTX8000 48GB and Nvidia A100 80GB. For graphs
of size 500, we train on 200 graphs and validate on 100 graphs for 100 epochs.We run for L = 15
steps of chaining (obtaining 16 trained FGNNs: f, g(1), . . . , g(15)). The PyTorch code is available
as a supplementary material.

A.6 MORE RELATED WORK

Supervised learning approach of the graph matching problem has been greatly studied in the com-
puter vision literature (Wang et al., 2021), (Rolı́nek et al., 2020), (Zanfir & Sminchisescu, 2018),

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(Gao et al., 2021), (Yu et al., 2021), (Jiang et al., 2022). (Fey et al., 2020) is closely related to our
work and proposes a two-stage architecture similar to our chaining procedure with MPNNs. The first
stage is the same as our first step but with a MPNN instead of our FGNN. Then the authors propose a
differentiable, iterative refinement strategy to reach a consensus of matched nodes. All these works
assume that non-topological node features are available and informative. This is a setting favorable
to GNNs as node-based GNN is effective in learning how to extract useful node representations
from high-quality non-topological node features. In contrast, we focus on the pure combinatorial
problem where no side information is available. In (Li et al., 2019), graph matching networks take
a pair of graphs as input and compute a similarity score between them. This algorithm can be used
to compute the value of the graph matching (1) but does not give the optimal permutation πA→B

between the two graphs which is the main focus of our work.

Regarding benchmarks for the GAP, we are not aware of any pubicly available dataset. The GAP
can be seen as a particular version of the QAP and some algorithms designed for the GAP can be
used for QAP instances (i.e. with weighted adjacency matrices). This is the case for the convex
and indefinite relaxations presented in Section 2.2 which can be used with real-valued matrices. In
particular, (Lyzinski et al., 2015) shows very good performances of FAQ on some QAP instances
from (Burkard et al., 1997). These instances are small (from 12 to 40 nodes) with full (integer-
valued) matrices. They are very far from the distribution of correlated random graphs used for
training in our work and we do not expect good performaces for such out-of-distribution instances
for any supervised learning algorithm.

A.7 MODEL-BASED VERSUS SIMULATION-BASED ALGORITHMS

As explained in Section 2.3, we train and evaluate our supervised learning algorithms on correlated
random graphs. This choice connects our work to a rich theoretical literature on the correlated Erdős-
Rényi random graph ensemble, which has been extensively studied from an information-theoretic
perspective.

A.7.1 THEORETICAL FOUNDATIONS AND LIMITS

The theoretical analysis begins with Cullina & Kiyavash (2016), which establishes the information-
theoretic limit for exact recovery of π⋆ as the number of nodes n tends to infinity. In the sparse
regime, where the average degree d remains constant as n → ∞, exact recovery becomes impos-
sible. Subsequent work by Ganassali et al. (2021) and Ding & Du (2023) demonstrates that partial
recovery of π⋆ is only possible when pnoise < 1− d−1.

For the correlated Erdős-Rényi ensemble, the joint probability distribution is given by:

P(GA, GB) =

(
(1− pnoise)(n

2 − d(1 + pnoise))

dp2noise

)e(GA∧GB)

,

where e(GA ∧ GB) =
∑

i<j AijBij counts the common edges between graphs GA and GB . This
distribution reveals a crucial insight: the maximum a posteriori estimator of π∗ given GA and
the permuted graph G′

B is exactly a solution of the GAP on the (GA, G
′
B) instance.

A.7.2 MODEL-BASED APPROACHES: ACHIEVEMENTS AND LIMITATIONS

Recent theoretical advances have produced efficient polynomial-time algorithms (Ding et al., 2021;
Fan et al., 2023; Ding & Li, 2023; Ganassali et al., 2024a; Piccioli et al., 2022) that approximate
the probability distribution by exploiting structural properties like the local tree-like nature of sparse
random graphs. These algorithms achieve partial recovery (positive accuracy) when pnoise is suffi-
ciently small, though well below the information-theoretic threshold of 1− d−1.

However, a fundamental algorithmic threshold appears to exist. Recent work (Mao et al., 2023;
Ganassali et al., 2024b) suggests that no efficient algorithm can succeed for pnoise > palgo = 1 −√
α ≈ 0.419, where α is Otter’s constant, even when the average degree d is large.

While these model-based algorithms provide theoretical guarantees for correlated Erdős-Rényi
graphs, they suffer from significant practical limitations:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Narrow applicability: Designed specifically for the correlated Erdős-Rényi model with
no guarantees outside this distribution

• Computational complexity: Despite polynomial-time guarantees, running times are often
impractical for real applications

• Limited scalability: Most implementations prioritize mathematical rigor over computa-
tional efficiency

Muratori & Semerjian (2024) represents a notable exception, focusing on making message-passing
algorithms (Ganassali et al., 2024a; Piccioli et al., 2022) more scalable while maintaining theoretical
guarantees.

A.7.3 FAQ: AN EMPIRICAL SURPRISE

Figure 5: Accuracy acc as a function of the noise level for correlated Erdős-Rényi random graphs
with size n = 1000 and average degree d = 3. Chained GNNs were trained at noise level 0.25 and
FAQ is used as the last step for the inference. The red curve labeled FAQ corresponds to FAQ(Dcx)
and the blue curve labeled message passing are results from (Muratori & Semerjian, 2024). The
dashed vertical line corresponds to the theoretical palgo = 1−

√
α above which no efficient algorithm

is known to succeed.

Remarkably, the FAQ algorithm—which was not designed specifically for any random graph
model—empirically encounters the same algorithmic barrier predicted by theory. As shown in
Figure 5, FAQ’s performance degrades sharply near palgo, matching the theoretical predictions de-
spite lacking formal guarantees for this setting. FAQ only underperforms compared to specialized
message-passing methods Muratori & Semerjian (2024) when pnoise approaches palgo.

This empirical observation suggests that FAQ, through its continuous relaxation approach, implicitly
captures fundamental structural properties of the graph alignment problem that transcend specific
random graph models.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.7.4 OUR SIMULATION-BASED APPROACH

To circumvent the computational challenges of maximizing the exact posterior (which, as shown
above, corresponds exactly to solving the GAP), we adopt a simulation-based approach. Rather
than deriving model-specific algorithms, we:

1. Sample training data: Generate pairs of graphs (GA, GB) with known alignment permu-
tations π⋆

2. Learn mappings: Train neural networks to map graph pairs to similarity matrices SA→B ∈
Rn×n

3. Extract solutions: Convert similarity matrices to permutations via projection or as FAQ
initialization

Key Advantages. Our simulation-based approach offers several advantages over both model-
based methods and traditional relaxations:

Supervised learning with ground truth: Unlike the convex relaxation (5), we have access to
ground truth permutations during training, enabling more informative loss functions.

Better optimization objective: Instead of the Frobenius norm used in convex relaxation, we employ
cross-entropy loss, which provides more informative gradients for discrete matching problems.

Generalization potential: While trained on specific distributions, our learned representations may
capture general structural patterns applicable beyond the training distribution.

Hybrid capability: Our similarity matrices can initialize traditional solvers like FAQ, combining
the benefits of learning and optimization approaches.

This simulation-based methodology bridges the gap between theoretical guarantees and practical
performance, achieving strong empirical results while maintaining computational tractability.

A.8 RELATING GAP TO GROMOV-HAUSDORFF, GROMOV-MONGE AND
GROMOV-WASSERSTEIN DISTANCES FOR FINITE METRIC SPACES

We consider a simple case of discrete spaces with the same number of elements n and where
A,B ∈ Rn×n are the distance matrices of two finite metric spaces (X, dX) and (Y, dY), i.e.
Aij = dX(xi, xj) and Bij = dY (yi, yj). Recall that we denote by Sn the set of permutation
matrices and by Dn the set of doubly stochastic matrices. We also denote by Rn the set of matrices
R ∈ {0, 1}n×n such that

∑
i Rij ≥ 1 and

∑
j Rij ≥ 1.

The Gromov-Hausdorff distance for finite metric spaces can be written as:

GHL(A,B) = min
R∈Rn

max
i,j,k,ℓ

L(Aik, Bjℓ)RijRkℓ (13)

where L(a, b) ≥ 0. It is often desirable to smooth the max operator in (13) to a sum. This can be
done by considering the related problem:

GML(A,B) = min
R∈Rn

∑
i,j,k,ℓ

L(Aik, Bjℓ)RijRkℓ (14)

Note that for any R ∈ R, there exists a permutation matrix P ∈ Sn such that Rij ≥ Pij so that we
have:

∑
i,j,k,ℓ L(Aik, Bjℓ)RijRkℓ ≥

∑
i,j,k,ℓ L(Aik, Bjℓ)PijPkℓ. Therefore, the minimum in (14)

is attained at some R ∈ Sn. In particular, we get:

GML(A,B) = min
P∈Sn

∑
i,j,k,ℓ

L(Aik, Bjℓ)PijPkℓ = min
π∈Sn

∑
i,j

L
(
Aij , Bπ(i)π(j)

)
,

which is called Gromov-Monge distance.

The Gromov-Wasserstein distance is a relaxation of the Gromov-Hausdorff distance and is defined
in Mémoli (2011):

GWL(A,B, p, q) = min
T∈Cp,q

∑
i,j,k,ℓ

L(Aik, Bjℓ)TijTkℓ, (15)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where p, q are probability distributions on X , Y and the minimum is taken over Cp,q = {T ∈
Rn×n

+ , T1 = p, TT1 = q}. Taking p = q = 1/n the uniform distribution, we have Cp,q = 1
nDn and

GWL(A,B,1/n,1/n) is a relaxed version of GML(A,B). We typically consider L(a, b) = |a−b|2,
and then we get:

GML2(A,B) = min
π∈Sn

∑
i,j

(Aij −Bπ(i)π(j))
2,

and with the simplified notation GWL2(A,B) = GWL2(A,B,1/n,1/n),

n2GWL2(A,B) = min
D∈Dn

∑
i,j,k,ℓ

(Aik −Bjℓ)
2DijDkℓ

= min
D∈Dn

∑
i,k

A2
ik +

∑
jℓ

B2
jℓ − 2

∑
i,j,k,ℓ

AikBjℓDijDkℓ

= ∥A∥2F + ∥B∥2F − 2 max
D∈Dn

⟨AD,DB⟩.

In the particular case where A and B are semi definite positive matrices, i.e. A = UTU and
B = V TV , we have: ⟨AD,DB⟩ = ∥UDV T ∥2F which is a convex function of D and is always
maximized at an extremal point of its constraint polytope Dn. By Birkhoff’s theorem, the extremal
points of Dn are permutation matrices. Therefore, we have: GWL2(A,B) = GML2(A,B) in this
case. Maron & Lipman (2018) shows that a similar result holds for Euclidean distances, when
Aij = ∥xi − xj∥2 and Bij = ∥yi − yj∥2. Hence, we have:
Proposition A.1. For A, B Euclidean distance matrices, the indefinite relaxation (5) is tight and
solves the GAP (1). In this case, the GAP computes the Gromov-Monge distance and the indefinite
relaxation computes the Gromov-Wasserstein distance.

A.9 NOTATIONS USED IN TABLES

• acc FAQ(Dcx) means the accuracy of FAQ algorithm initialized with Dcx.
• acc ChFGNN Proj means the accuracy of our chained FGNNs with Proj as the last step.
• acc ChFGNN FAQ means the accuracy of our chained FGNNs with FAQ as the last step.
• nce FAQ(Dcx) means the number of common edges found by FAQ algorithm initialized

with Dcx.
• nce FAQ(π⋆) means the number of common edges found by FAQ algorithm initialized

with π⋆.
• nce ChFGNN Proj means the number of common edges found by our chained FGNNs

with Proj as the last step.
• nce ChFGNN FAQ means the number of common edges found by our chained FGNNs

with FAQ as the last step.

A.10 BERNOULLI GRAPHS: GENERALIZATION PROPERTIES FOR CHAINED GNNS

A.10.1 TRAINING CHAINED GNNS

For the same dataset as in Lyzinski et al. (2015) (see Bernoulli graphs in Section A.1), we plot in
Figure 6 the training curves for the chained GNNs for the loss and the accuracy on the training
set and the validation set. We do not see any overfitting here as values are similar on both sides.
Chaining is very effective in this case: while the first training (brown) corresponding to the mapping
f in (10) saturates at an accuracy below 0.1, the second training (magenta) corresponding to the
mapping g(1) in (11) reaches a much higher accuracy because it uses the information about the
graph matching contained in the output of the first training f . The curves for the remaining trainings
are indeed ordered. This is due to the fact that for the training of g(k+1), we initialized it with the
weights obtained after the training of g(k) in order to speed up the training. Since we observe a
saturation in the learning of the g(k) for k ≥ 2, we stop the training after half the number of epochs
used for f and g(1).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 6: Left: Training chained GNNs. Each color corresponds to a different training and GNN:
the first training (brown) reaches an accuracy below 0.1. The second training (magenta) uses as
input the output of the first training and get an accuracy ≈ 0.15. The remaining trainings using the
output of the previous training as input and reach higher and higher accuracy.
Right top: acc bottom: nce. First Violin plot (faq green) for FAQ, then all other Violin plots
correspond to a different number of iterations Nmax = 0, 1, . . . , 9 of the chaining procedure
(gnn faq proj blue with Proj and gnn faq faq orange with FAQ).

A.10.2 EFFICIENT INFERENCE FOR CHAINED FGNNS

These results suggest an extreme form of looping: since g(1) allows to improve the accuracy of
an initial guess (given by f), we can keep only the GNNs f and g(1), and we loop through g(1)

for a fixed number of steps Nmax. Figure 6 gives the accuracy acc defined in (3) and the number of
common edges nce defined in (4) for the inference procedure as a function of the number of iterations
Nmax made on g(1). We give (in blue) the performances of Proj, and (in orange) the performances of
FAQ applied on the similarity matrix obtained after L loops. We see that the Frank-Wolfe algorithm
used in FAQ used as the last step of our chaining procedure is crucial to get better performances.
Indeed, we need only Nmax = 5 loops in order to get a perfect accuracy acc = 1 with FAQ.

We also give (in green) the performance of FAQ applied on the matrix Dcx (the default option
in the FAQ algorithm). Indeed, FAQ(Dcx) is able to find the correct permutation for the graph
matching in 13% of the cases and is stuck in a local maxima with a very small (less than 20%)
accuracy otherwise. This bimodal behavior is due to the fact that Dcx gives very little information
about the correct permutation. In contrast, the chaining procedure was able to learn a much
better initialization than Dcx for FAQ allowing to improve the accuracy from 50% to an exact
accuracy.

noise 0.4 0.45 0.5 0.55 0.6 0.65 0.7

acc Proj(Dcx) 0.3428 0.1956 0.1209 0.0815 0.0552 0.0411 0.0309
acc FAQ(Dcx) 1.0 0.9954 0.9531 0.6910 0.2621 0.0959 0.0225
nce Proj(Dcx) 3147.7 3000.0 2960.2 2945.8 2942.0 2942.4 2933.6
nce FAQ(Dcx) 4737.8 4622.8 4462.2 4056.1 3564.9 3408.0 3352.8

training 0.5 acc ChFGNN Proj 0.9994 0.9962 0.9639 0.7842 0.3400 0.1442 0.0737
acc ChFGNN FAQ 1.0 1.0 1.0 0.9915 0.8949 0.5105 0.1267
nce ChFGNN Proj 4736.1 4617.1 4439.4 4025.8 3319.0 3085.4 3038.0
nce ChFGNN FAQ 4737.8 4629.0 4520.0 4395.8 4188.4 3747.2 3413.5

Table 13: Accuracy acc and number of common edges nce for Bernoulli graphs as a function of the
noise pnoise.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 7: Bernoulli graphs: acc (top) and nce (bottom) as a function of the noise level. Chained
FGNNs were trained at noise level 0.5. gnn (resp. gnn faq) for chained FGNNs with Proj (resp.
FAQ) as the last step. faq for FAQ(Dcx) and faq(p) for FAQ(π⋆).

We now explore the generalization properties of the chaining procedure by applying the inference
procedure described in Section A.10.2 on datasets with different noise levels. The level of noise
used during training (described in Section A.10.1) is 0.5. 7 gives the accuracy acc and the number
of common edges nce for the inference procedure as a function of the noise level. We stop the
inference loop when the nce obtained after applying FAQ to the similarity matrix is not increasing
anymore. The red curve gives the performances of our chaining procedure with FAQ as the last step,
the orange curve gives the performances of our chaining procedure with Proj as the last step. We
compare our chaining procedure to FAQ(Dcx) in brown and to FAQ(π⋆) in grey which corresponds
to the maximum number of common edges for these noise levels. The curve for the accuracy of
FAQ(Dcx) is similar to the one obtained in Lyzinski et al. (2015). Our chaining procedure is able
to generalize to noise levels different from the one used during training and outperforms FAQ(Dcx)
in all cases. Indeed with a noise level less than 0.5, our chaining procedure recovers the correct
permutation for the graph matching problem. Note that we did not try to optimize the performances
of our chaining procedure with Proj as the last step, and they are indeed increasing if we allow for
more loops.

A.11 ADDITIONAL RESULTS FOR SPARSE ERDŐS-RÉYNI GRAPHS

Figure 8 gives the performance of our chained GNNs trained at noise level 0.25 for sparse Erdős-
Rényi graphs with average degree d = 4 and size n = 500. We observe that our chaining procedure
is able to generalize to noise levels different from the one used during training and outperforms
FAQ(Dcx) in all cases.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 8: Sparse Erdős-Rényi graphs: acc (top) and nce (bottom) as a function of the noise level.
Chained FGNNs were trained at noise level 0.25. gnn (resp. gnn faq) for chained FGNNs with
Proj (resp. FAQ) as the last step. faq for FAQ(Dcx) and faq(p) for FAQ(π⋆).

Figure 9: Sparse Erdős-Rényi graphs: acc (top) and nce (bottom) as a function of the number of
iterations L at inference.

Each line in Tables 14 and 15 corresponds to a chained FGNN trained at a given level of noise (given
on the left) and tested for all different noises.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 14: Accuracy (acc) defined in (3) for sparse Erdős-Rényi graphs as a function of the noise
pnoise. FGNN refers to the architecture in Section A.4 and ChFGNN to our chained FGNNs. Proj
and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 4 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 98.0 97.3 90.3 59.3 23.3 9.1 4.0 2.0
FAQ(DCX) 98.0 97.5 96.3 94.6 72.9 13.0 3.7 1.7

TRAINING 0.05 CHFGNN PROJ 97.9 97.3 94.3 67.1 12.5 6.72 3.70 2.13
CHFGNN FAQ 97.9 97.5 96.2 72.9 43.5 10.8 4.04 1.69

TRAINING 0.10 CHFGNN PROJ 97.9 97.5 96.1 91.6 35.4 7.24 4.03 2.36
CHFGNN FAQ 97.9 97.5 96.4 94.0 38.6 12.3 4.73 1.91

TRAINING 0.15 CHFGNN PROJ 97.9 97.5 96.3 93.7 87.4 49.1 7.51 2.28
CHFGNN FAQ 97.9 97.5 96.4 94.3 90.3 54.7 9.71 1.79

TRAINING 0.20 CHFGNN PROJ 97.9 97.4 96.3 94.5 91.4 72.0 31.2 3.30
CHFGNN FAQ 97.9 97.5 96.4 95.2 93.1 76.3 35.0 3.39

TRAINING 0.22 CHFGNN PROJ 97.9 97.5 96.2 94.4 91.1 78.9 44.5 7.11
CHFGNN FAQ 97.9 97.5 96.4 95.3 93.1 82.1 48.3 7.78

TRAINING 0.24 CHFGNN PROJ 97.9 97.4 96.1 94.1 91.0 77.0 40.3 6.52
CHFGNN FAQ 97.9 97.5 96.4 95.3 93.3 80.1 43.3 6.93

TRAINING 0.26 CHFGNN PROJ 97.9 97.3 95.2 92.3 88.0 75.8 43.1 6.43
CHFGNN FAQ 97.9 97.5 96.4 95.2 93.2 82.5 48.2 6.87

TRAINING 0.28 CHFGNN PROJ 97.9 95.2 88.4 79.3 68.4 55.1 26.7 6.69
CHFGNN FAQ 97.9 97.5 96.3 94.9 92.7 82.9 38.7 7.62

TRAINING 0.30 CHFGNN PROJ 97.9 91.5 78.0 63.6 50.6 35.4 15.1 4.76
CHFGNN FAQ 97.9 97.4 96.2 94.8 92.1 73.5 23.4 5.00

TRAINING 0.35 CHFGNN PROJ 97.6 88.2 65.1 40.8 21.5 10.9 5.46 2.54
CHFGNN FAQ 97.9 97.4 96.2 94.5 68.0 19.4 5.79 2.00

A.12 ADDITIONAL RESULTS FOR DENSE ERDŐS-RÉYNI GRAPHS

For the correlated dense Erdős-Rényi graphs, we used the same dataset as in Yu et al. (2023) with
500 nodes and an average degree of 80. Again, with a noise level of 20%, our chaining GNNs
clearly outperform the existing learning algorithms, as we obtain a perfect accuracy (as opposed to
an accuracy of zero in Yu et al. (2023) and Chen et al. (2020) without any seed). We see in Table
16 that in this dense setting, FAQ(Dcx) is very competitive but is still slightly outperformed by our
chaining FGNNs (orange curve with Proj and red curve with FAQ, top). In terms of number of
common edges, our chained FGNNs does not perform well with Proj but performs best with FAQ,
see Table 16 where the level of noise used for training was 24%.

Figure 10 gives the performance of our chained GNNs trained at noise level 0.24 for sparse Erdős-
Rényi graphs with average degree d = 80 and size n = 500.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 15: Number of common edges (nce) defined in (4) for sparse Erdős-Rényi graphs as a function
of the noise pnoise. FGNN refers to the architecture in Section A.4 and ChFGNN to our chained
FGNNs. Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 4 (NCE) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 997 950 853 499 195 130 115 112
FAQ(DCX) 997 950 898 847 723 504 487 485

TRAINING 0.05 CHFGNN PROJ 997 950 885 630 116 95 87 83
CHFGNN FAQ 997 950 898 761 607 495 485 481

TRAINING 0.10 CHFGNN PROJ 997 950 897 828 370 99 90 86
CHFGNN FAQ 997 950 899 845 606 501 487 483

TRAINING 0.15 CHFGNN PROJ 996 950 898 840 768 511 254 86
CHFGNN FAQ 997 950 899 846 791 651 520 484

TRAINING 0.20 CHFGNN PROJ 996 950 898 846 792 665 456 338
CHFGNN FAQ 997 950 899 849 800 715 596 529

TRAINING 0.22 CHFGNN PROJ 997 950 898 845 790 694 503 319
CHFGNN FAQ 997 950 899 849 800 730 626 534

TRAINING 0.24 CHFGNN PROJ 997 950 897 844 789 686 480 296
CHFGNN FAQ 997 950 899 849 800 726 613 527

TRAINING 0.26 CHFGNN PROJ 997 949 892 834 770 672 499 338
CHFGNN FAQ 997 950 899 849 800 731 626 537

TRAINING 0.28 CHFGNN PROJ 996 934 836 724 612 504 374 311
CHFGNN FAQ 997 950 899 848 799 732 599 530

TRAINING 0.30 CHFGNN PROJ 996 897 726 566 446 345 271 246
CHFGNN FAQ 997 950 898 848 797 704 552 513

TRAINING 0.35 CHFGNN PROJ 995 860 578 347 219 173 159 134
CHFGNN FAQ 997 950 898 847 702 524 494 489

Figure 10: Dense Erdős-Rényi graphs: acc (top) and nce (bottom) as a function of the noise level.
Chained FGNNs were trained at noise level 0.25. gnn (resp. gnn faq) for chained FGNNs with
Proj (resp. FAQ) as the last step. faq for FAQ(Dcx) and faq(p) for FAQ(π⋆).

Each line in Tables 16 and 17 corresponds to a chained FGNN trained at a given level of noise (given
on the left) and tested for all different noises.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 16: Accuracy (acc) defined in (3) for dense Erdős-Rényi graphs as a function of the noise
pnoise. FGNN refers to the architecture in Section A.4 and ChFGNN to our chained FGNNs. Proj
and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 80 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 100. 100. 100. 60.8 14.3 4.3 1.8 1.1
FAQ(DCX) 100. 100. 100. 100. 100. 21.2 0.9 0.5

TRAINING 0.05 CHFGNN PROJ 100. 100. 99.8 16.0 5.95 2.76 1.77 1.01
CHFGNN FAQ 100. 100. 100. 100. 54.4 1.16 0.72 0.47

TRAINING 0.10 CHFGNN PROJ 100. 100. 100. 88.9 7.49 3.47 1.99 1.16
CHFGNN FAQ 100. 100. 100. 89.0 80.0 6.58 0.85 0.52

TRAINING 0.15 CHFGNN PROJ 100. 100. 99.9 99.9 75.0 3.57 2.14 1.21
CHFGNN FAQ 100. 100. 100. 100. 75.1 3.85 0.85 0.55

TRAINING 0.20 CHFGNN PROJ 100. 100. 100. 99.9 94.0 22.9 2.06 1.22
CHFGNN FAQ 100. 100. 100. 100. 95.0 22.7 0.83 0.52

TRAINING 0.22 CHFGNN PROJ 100. 100. 100. 99.9 97.9 49.5 2.21 1.25
CHFGNN FAQ 100. 100. 100. 100. 99.0 50.5 1.00 0.52

TRAINING 0.24 CHFGNN PROJ 100. 99.9 93.5 83.4 67.4 34.0 2.16 1.33
CHFGNN FAQ 100. 100. 100. 100. 98.1 57.6 0.96 0.55

TRAINING 0.26 CHFGNN PROJ 100. 99.9 78.3 39.4 13.0 3.91 2.07 1.29
CHFGNN FAQ 100. 100. 100. 100. 94.1 5.75 0.82 0.54

TRAINING 0.28 CHFGNN PROJ 100. 99.8 70.7 31.2 9.88 3.94 2.01 1.19
CHFGNN FAQ 100. 100. 100. 100. 84.7 12.7 0.83 0.51

TRAINING 0.30 CHFGNN PROJ 100. 99.5 62.3 24.2 8.27 3.28 1.92 1.18
CHFGNN FAQ 100. 100. 100. 100. 80.7 3.24 0.81 0.49

TRAINING 0.35 CHFGNN PROJ 100. 96.1 47.8 18.3 6.86 3.47 1.92 1.14
CHFGNN FAQ 100. 100. 100. 100. 69.7 8.52 0.77 0.52

A.13 ADDITIONAL RESULTS FOR REGULAR GRAPHS

Figure 11: Regular graphs: acc (top) and nce (bottom) as a function of the noise level. Chained
FGNNs were trained at noise level 0.1. gnn (resp. gnn faq)for chained FGNNs with Proj (resp.
FAQ) as the last step. faq for FAQ(Dcx), faq(p) for FAQ(π⋆) and p for nce(π⋆).

Finally, we propose a new dataset of regular graphs with 500 nodes and an average degree of 10.
This is a particularly challenging setting. Indeed, Table 18 shows that FAQ(Dcx) always fails to
solve the graph matching problem here. Similarly, we know that MPNNs are not expressive enough
to deal with regular graphs Xu et al. (2018). In view of the following result, we conjecture that using
MPNN would not provide a better estimation of the graph matching problem than Dcx.

Theorem A.2. Tinhofer (1991) GA and GB are fractionally isomorphic, i.e. minD∈Dn ∥AD −
DB∥2F = 0, if and only if 1-WL does not distinguish GA and GB .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 17: Number of common edges (nce) defined in (4) for dense Erdős-Rényi graphs as a function
of the noise pnoise. FGNN refers to the architecture in Section A.4 and ChFGNN to our chained
FGNNs. Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 80 (NCE) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 19964 18987 17966 8700 3888 3646 3633 3624
FAQ(DCX) 19964 18987 17968 16990 15972 7922 6272 6276

TRAINING 0.05 CHFGNN PROJ 19964 18987 17941 3794 3457 3421 3429 3411
CHFGNN FAQ 19964 18987 17968 16990 11408 6244 6252 6253

TRAINING 0.10 CHFGNN PROJ 19964 18987 17968 15479 3522 3459 3453 3449
CHFGNN FAQ 19964 18987 17968 15811 13935 6681 6251 6257

TRAINING 0.15 CHFGNN PROJ 19964 18987 17967 16989 12842 3470 3469 3456
CHFGNN FAQ 19964 18987 17968 16990 13544 6421 6254 6256

TRAINING 0.20 CHFGNN PROJ 19964 18987 17968 16990 15216 6113 3483 3472
CHFGNN FAQ 19964 18987 17968 16990 15487 8172 6258 6254

TRAINING 0.22 CHFGNN PROJ 19964 18987 17968 16987 15701 9189 3644 3628
CHFGNN FAQ 19964 18987 17968 16990 15876 10614 6257 6263

TRAINING 0.24 CHFGNN PROJ 19964 18969 16241 13028 9561 6166 3615 3591
CHFGNN FAQ 19964 18987 17968 16990 15779 11227 6258 6255

TRAINING 0.26 CHFGNN PROJ 19964 18976 12528 5795 3925 3626 3591 3545
CHFGNN FAQ 19964 18987 17968 16990 15388 6515 6257 6257

TRAINING 0.28 CHFGNN PROJ 19964 18948 10846 4975 3756 3587 3542 3512
CHFGNN FAQ 19964 18987 17968 16990 14424 7207 6253 6256

TRAINING 0.30 CHFGNN PROJ 19964 18861 9289 4419 3651 3489 3478 3472
CHFGNN FAQ 19964 18987 17968 16990 14032 6354 6254 6258

TRAINING 0.35 CHFGNN PROJ 19964 17850 6943 4003 3578 3512 3492 3461
CHFGNN FAQ 19964 18987 17968 16990 12877 6853 6254 6256

In contrast, our FGNN architecture defined in Section A.4 is able to deal with regular graphs and
our chaining procedure learns the correct information about the graph matching problem when the
noise is low enough.

Note that we are in a setting where FAQ(π⋆) ̸= π∗ as soon as the noise level is above 5% so that
π⋆ ̸= πA→B . In this case, we believe that πA→B = FAQ(π⋆) (but to check it we should solve
the graph matching problem!).In Figure 11, the training was done with a noise level of 10% so that
labels were noisy. Still performances of our chained FGNNs with FAQ are very good. We do not
know of any other algorithm working in this setting.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 18: Accuracy (acc) defined in (3) for Regular graphs as a function of the noise pnoise. FGNN
refers to the architecture in Section A.4 and ChFGNN to our chained FGNNs. Proj and FAQ are
used to produce a permutation (from the similarity matrix computed).

REGULAR RANDOM GRAPHS WITH DEGREE 10

REGULAR (ACC) NOISE 0 0.05 0.1 0.15 0.2

BASELINES PROJ(DCX) 0.2 0.2 0.3 0.1 0.2
FAQ(DCX) 0.2 0.2 0.2 0.2 0.2

TRAINING 0.05 CHFGNN PROJ 100. 95.2 2.60 0.67 0.27
CHFGNN FAQ 100. 95.6 8.31 0.49 0.24

TRAINING 0.07 CHFGNN PROJ 100. 95.3 34.6 0.70 0.27
CHFGNN FAQ 100. 95.6 36.0 0.54 0.25

TRAINING 0.09 CHFGNN PROJ 100. 95.2 54.4 0.86 0.34
CHFGNN FAQ 100. 95.6 55.6 0.78 0.22

TRAINING 0.11 CHFGNN PROJ 100. 72.4 30.5 0.86 0.27
CHFGNN FAQ 100. 95.6 61.8 0.70 0.25

TRAINING 0.13 CHFGNN PROJ 79.2 16.9 2.13 0.55 0.25
CHFGNN FAQ 100. 95.6 2.14 0.37 0.24

TRAINING 0.15 CHFGNN PROJ 60.4 13.3 1.69 0.52 0.30
CHFGNN FAQ 100. 95.6 1.37 0.34 0.21

Each line in Tables 18 and 19 corresponds to a chained FGNN trained at a given level of noise (given
on the left) and tested for all different noises.

Table 19: Number of common edges (nce) defined in (4) for Regular graphs as a function of the
noise pnoise. FGNN refers to the architecture in Section A.4 and ChFGNN to our chained FGNNs.
Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

REGULAR RANDOM GRAPHS WITH DEGREE 10

REGULAR (NCE) NOISE 0 0.05 0.1 0.15 0.2

BASELINES PROJ(DCX) 51 51 50 49 50
FAQ(DCX) 385 425 456 369 496

TRAINING 0.05 CHFGNN PROJ 2500 2034 178 101 100
CHFGNN FAQ 2500 2059 901 835 835

TRAINING 0.07 CHFGNN PROJ 2500 2036 741 103 172
CHFGNN FAQ 2500 2059 1193 836 852

TRAINING 0.09 CHFGNN PROJ 2500 2034 1105 281 95
CHFGNN FAQ 2500 2059 1381 871 836

TRAINING 0.11 CHFGNN PROJ 2500 1343 563 192 114
CHFGNN FAQ 2500 2059 1438 850 837

TRAINING 0.13 CHFGNN PROJ 1608 210 108 88 71
CHFGNN FAQ 2500 2059 841 836 834

TRAINING 0.15 CHFGNN PROJ 984 163 96 86 87
CHFGNN FAQ 2500 2059 837 836 836

A.14 LLM USAGE

Large language models (LLMs) were employed in this work to assist with grammatical and syntactic
corrections, to improve the clarity and readability of sentences and paragraphs, and to support the
generation of illustrative figures.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

A.15 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the complete codebase used for training and inference, which
produces all results reported in this paper. Detailed descriptions of hyperparameters, training proce-
dures, and evaluation metrics are included in the main text and appendix.

32

	Introduction
	From combinatorial optimization to learning
	Graph alignment in combinatorial optimization
	Continuous relaxations and the FAQ algorithm
	Synthetic datasets: controlled difficulty through noise

	Learning through chaining
	Chaining procedure
	Training and inference with chained GNNs
	GNN architecture and expressiveness

	Related work: state-of-the-art and learning limitations
	Empirical results and comparison to FAQ
	Main results on synthetic datasets
	Looping: enhanced inference without additional training
	Training strategy: optimal noise selection
	Computational efficiency analysis
	Results on Real Graphs

	Conclusion
	Appendix
	Appendix
	Correlated random graphs and previous recent results
	Time–performance trade-off
	Real Graphs and previous recent results
	GNN architecture and expressiveness
	Technical details for the GNN architecture and training
	More related work
	Model-based versus simulation-based algorithms
	Theoretical Foundations and Limits
	Model-based Approaches: Achievements and Limitations
	FAQ: An Empirical Surprise
	Our Simulation-based Approach

	Relating GAP to Gromov-Hausdorff, Gromov-Monge and Gromov-Wasserstein distances for finite metric spaces
	Notations used in tables
	Bernoulli graphs: Generalization properties for chained GNNs
	Training chained GNNs
	Efficient inference for chained FGNNs

	Additional results for sparse Erdős-Réyni graphs
	Additional results for dense Erdős-Réyni graphs
	Additional results for regular graphs
	LLM Usage
	Reproducibility Statement

