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ABSTRACT

Graph neural networks (GNNs) have struggled to outperform traditional optimiza-
tion methods on combinatorial problems, limiting their practical impact. We ad-
dress this gap by introducing a novel chaining procedure for the graph alignment
problem—a fundamental NP-hard task of finding optimal node correspondences
between unlabeled graphs using only structural information.

Our method trains a sequence of GNNs where each network learns to iteratively
refine similarity matrices produced by previous networks. During inference, this
creates a bootstrap effect: each GNN improves upon partial solutions by incor-
porating discrete ranking information about node alignment quality from prior
iterations. We combine this with a powerful architecture that operates on node
pairs rather than individual nodes, capturing global structural patterns essential
for alignment that standard message-passing networks cannot represent.

Extensive experiments on synthetic benchmarks demonstrate substantial improve-
ments: our chained GNNs achieve over 3x better accuracy than existing methods
on challenging instances, and uniquely solve regular graphs where all competing
approaches fail. When combined with traditional optimization as post-processing,
our method substantially outperforms state-of-the-art solvers on the graph align-
ment benchmark.

1 INTRODUCTION

”Combinatorial optimization searches for an optimum object in a finite collection of objects. Typ-
ically, the collection has a concise representation (like a graph), while the number of objects is
huge.”(Schrijver et al.,2003) This field bridges discrete mathematics, mathematical programming,
and computer science, with applications spanning logistics, network design, and resource allocation.
Machine learning offers a promising approach to combinatorial optimization (CO) by exploiting pat-
terns in problem instances to design faster algorithms for specific problem families (Bengio et al.,
2021). Graph neural networks (GNNs) emerge as natural tools for this integration, given the inher-
ently discrete and graph-structured nature of most CO problems (Cappart et al., 2023).

Limited success of learning approaches. Despite significant research efforts, GNN-based meth-
ods have struggled to outperform traditional specialized solvers on most CO problems. The traveling
salesperson problem exemplifies this challenge—while receiving substantial attention since (Vinyals
et al., [2015), GNN approaches remain limited to small-scale instances. Similarly, simple greedy
heuristics continue to outperform sophisticated GNNs on problems like maximum independent set
(Angelini & Ricci-Tersenghil, [2023}; |Bother et al., [2022]).

The graph matching problem can be cast as a combinatorial graph alignment problem (GAP).
Machine learning methods have been widely applied in related areas such as pattern recognition
(Conte et al.l 2004), computer vision (Sun et al., |2020), and social network analysis (Narayanan
& Shmatikov, 2008) (see Section for further discussion). Their motivation is that in noisy
real-world data the ground-truth matching may deviate from the mathematically optimal solution,
making it more effective to learn a matching directly from data. In this work, however, we focus
strictly on the combinatorial optimization setting, where only the mathematically optimal solution
is relevant. Accordingly, we use the term graph alignment rather than graph matching.

The graph alignment problem (GAP) provides an ideal testbed for exploring GNN capabilities in
CO. GAP seeks the node correspondence between two graphs that maximally aligns their edge
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Table 1: Approximation quality % for sparse, dense and regular random graphs. Proj and FAQ

are used to produce a permutation from the convex relaxation solution D4 or from the similarity
matrix computed by FGNN or chained FGNN (ChFGNN).

APPROXIMATION QUALITY % FOR RANDOM GRAPHS (IN %).
TYPE OF GRAPHS SPARSE  DENSE REGULAR
BASELINES PROJ(Dcx) 17.3 24.4 2.9
(NON-NEURAL) FAQ(Dcx) 67.1 53 27
BASELINES FGNN ProJ 17.8 23.6 6.7
(NEURAL) FGNN FAQ 71.1 47 54
CHAINING CHFGNN ProJ 95.8 44 67.1
CHAINING CHFGNN FAQ 98.8 77.4 81.8

structures—a fundamental problem encompassing graph isomorphism as a special case. In its gen-
eral form, GAP reduces to the NP-hard quadratic assignment problem (QAP).

Iterative refinement through chaining. We introduce a novel technique—chaining of GNNs—that
for the first time demonstrates GNN methods outperforming state-of-the-art specialized solvers on
the combinatorial graph alignment problem. Our approach combines multiple GNNs in an iterative
refinement procedure, with each network learning to improve upon the previous iteration’s solution.
Our chaining procedure trains a sequence of GNNs where each network learns to enhance partial
solutions produced by previous networks. This creates a bootstrap effect during inference, where
GNN:gs iteratively refine alignment estimates. The approach can be combined with traditional solvers
like the Frank-Wolfe-based FAQ algorithm (Vogelstein et al., |2015)), creating hybrid methods that
outperform both pure learning and pure optimization approaches.

Table [T]illustrates our key results across different graph types. To evaluate how close our algorithm
is to the best possible solution, we measure its approximation qualit|'| as ‘C\)LT? in percent, where
ALG is the number of aligned edges obtained by our algorithm and OPT is the number of aligned
edges of the optimal solution. A score of 100% corresponds to optimality, and lower values indicate
a smaller fraction of the optimal alignment achieved. Our chained GNNss, particularly when coupled
with FAQ post-processing (ChGNN FAQ), consistently achieve the best performance.

We use synthetic datasets for both training and evaluation to control problem difficulty and assess
generalization. In doing so, we follow the standard benchmarking methodology of combinatorial op-
timization, which favors randomly generated instances (Skorin-Kapovl, [1990; Taillard, [1991)). Unlike
real-world data, which is often either too trivial or intractably difficult, synthetic instances enable
more robust and fine-grained comparisons between algorithms. Finally, we confirm the effective-
ness and transferability of our method by achieving strong results on three real-world graph pairs
(biology, social networks, and road networks), thereby validating our findings from synthetic data.
We address the graph alignment problem, which we formulate as a machine learning task in Section
[2l While traditional optimization methods have so far surpassed learning-based approaches for this
problem (Section [), we introduce a method that reverses this trend. Our main contribution is a
novel training and inference procedure, the chaining procedure, where sequential GNNs learn to im-
prove partial solutions through iterative refinement (Section[3). This procedure leverages a modified
Folklore-type GNN architecture with enhanced expressiveness (Section[A.4), making it particularly
effective on challenging regular graphs where standard methods fail. As demonstrated in Section 5}
our chained GNNs coupled with FAQ post-processing, outperform all existing solvers on synthetic
graph alignment benchmarks. These findings suggest that iterative refinement via chained learning
offers a promising general framework for advancing GNN performance on other combinatorial op-
timization (CO) problems, potentially bridging the gap between machine learning and traditional
optimization.

Mathematical notations. Let G = (V, E)) be a simple graph with V' = {1,...,n} and adjacency
matrix A € {0,1}"*", where A;; = 1if (i,j) € E and 0 otherwise. Let S,, denote the set of
permutations of V, with each m € S,, associated to a permutation matrix P € {0, 1}"*" defined by

'In the algorithms literature, the approximation ratio is traditionally written as % > 1, so that an algorithm

is called a k-approximation if OPT/ALG < k. We instead adopt the g%? formulation, which is more in line

with evaluation metrics in machine learning, where higher scores denote better performance.
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P;; = 1iff m(i) = j. The set of doubly stochastic matrices is denoted D,,. For A, B € R™*", the
Frobenius inner product and norm are (A, B) = trace(A' B) and ||A||r = /(A, A), respectively.

2 FROM COMBINATORIAL OPTIMIZATION TO LEARNING

This section introduces the graph alignment problem (GAP) from a combinatorial optimization per-
spective, presents the state-of-the-art FAQ algorithm, and describes how we formulate GAP as a
learning problem using synthetic datasets with controllable difficulty.

2.1 GRAPH ALIGNMENT IN COMBINATORIAL OPTIMIZATION

Problem formulation. Given two n x n adjacency matrices A and B representing graphs GG 4 and
G p, the graph alignment problem seeks to find the permutation that best aligns their structures.
Formally, we minimize the Frobenius norm:

. 2 . 2
GAP(A, B) = oin Z (Aij — Br(iyn()) = sain |AP — PB||%, (D
/L)J

where we used the identity || A—PBPT||% = || AP— P B||% for permutation matrices P. Expanding
the right-hand term, we see that minimizing (I)) is equivalent to maximizing the number of matched
edges:

FI%%’:KAP’ PB) = max ) AijBr(iyr(j)- (2)

This formulation connects GAP to the broader class of Quadratic Assignment Problems (QAP)
(Burkard et al., |1998)).

Computational complexity. The GAP is computationally challenging, as it reduces to several well-
known NP-hard problems. For instance, when G 4 has n vertices and G is a single path or cycle,
GAP becomes the Hamiltonian path/cycle problem. When G5 consists of two cliques of size n/2,
we recover the minimum bisection problem. More generally, solving (I)) is equivalent to finding a
maximum common subgraph, which is APX-hard (Crescenzi et al.,{1995).

Performance metrics. We denote an optimal solution as 772, We evaluate alignment quality
using two complementary metrics (that should be maximized):

n

1
Accuracy:  ace(m, 747 B) = = Z 1(x(i) = 7478 (0)) 3)
=
_ 1
Number of common edges: nce(w) = 5 Z Aij By () (€))
,J
Accuracy measures the fraction of correctly matched nodes, while the number of common edges
ALG
quantifies structural similarity. In Table the ratio % is computed as % Note that even

if this ratio is one, the accuracy may still be low if the GAP has no unique solution (as illustrated on
real datasets in Section [5.3).

2.2 CONTINUOUS RELAXATIONS AND THE FAQ ALGORITHM

Relaxation approach. Since the discrete optimization in (1) is intractable, we consider continu-
ous relaxations where the discrete permutation set S, is replaced by the continuous set of doubly
stochastic matrices D,, in (T)) or (2)):

* Convex relaxation:

arg 15161%1 |AD — DB”% = Dcx (5

This yields a convex optimization problem with guaranteed global optimum.
¢ Indefinite relaxation:
max (AD, DB) (6)

DeD,,

This non-convex formulation often provides better solutions but is NP-hard in general due
to its indefinite Hessian (Pardalos & Vavasis, |1991).
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Solution extraction. Both relaxations produce doubly stochastic matrices D that must be projected
to permutation matrices. This projection solves the linear assignment problem maxpegs, (P, D), ef-
ficiently solved by the Hungarian algorithm in O(n?) time (Kuhnl|1955). We denote this projection
as Proj(D) € S,,.

FAQ algorithm. The Fast Approximate Quadratic (FAQ) algorithm proposed by [Vogelstein et al.
(2015)) approximately solves the indefinite relaxation (6) using Frank-Wolfe optimization and then
projects this solution in S,,. Unlike the convex relaxation, FAQ’s performance depends critically on
initialization. We denote the FAQ solution with initial condition D as FAQ(D) € S,,. As demon-
strated in Lyzinski et al.[(2015)), FAQ often significantly outperforms simple projection: FAQ(D.y)
typically yields much better solutions than Proj(D.y), especially for challenging instances. This
improvement motivates our approach of providing FAQ with better initializations through
learned similarity matrices.

2.3  SYNTHETIC DATASETS: CONTROLLED DIFFICULTY THROUGH NOISE

Connection to graph isomorphism. When graphs G4 and G are isomorphic (GAP(A, B) =
0), the alignment problem reduces to graph isomorphism (GI). While GI's complexity remains
open—it’s neither known to be in P nor proven NP-complete—Babai| (2016)’s recent breakthrough
shows it’s solvable in quasipolynomial time. We study a natural generalization: noisy graph isomor-
phism, where noise level controls problem difficulty. At zero noise, graphs are isomorphic; as noise
increases, they become increasingly different, making alignment more challenging.

Correlated random graph model. Our datasets consist of correlated random graph pairs (G 4, G )
with identical marginal distributions but controllable correlation. This design allows systematic dif-
ficulty variation while maintaining statistical properties. The generation process involves: (i) Create
correlated graphs G4 and G with known alignment; (ii) Apply random permutation 7* € S,, to
Gp, yielding G'5: (iii) Use triplets (G4, G'5, 7*) for supervised learning.

We employ three graph families—Bernoulli, Erdés-Rényi, and Regular—with parameters: Num-
ber of nodes: n; Average degree: d; Noise level: p,,. € [0, 1], see Section for precise
definitions. The noise parameter controls edge correlation: the graphs G4 and G (before applying
the random permutation) share (1 — pyoise )2d/2 edges on average (with ppeise = 0 yielding isomor-
phic graphs). For low noise levels, we expect 7* = 7475 providing clean supervision. However,
for high noise, the planted permutation 7* may not be optimal, introducing label noise that makes
learning more challenging.

3 LEARNING THROUGH CHAINING

Overview. The chaining procedure works by iteratively refining graph alignment estimates through
three key operations: (1) computing node similarities, (2) extracting and evaluating the current
best permutation, and (3) using this evaluation to generate improved node features. Each iteration
produces a better similarity matrix, leading to more accurate alignments.

3.1 CHAINING PROCEDURE

Step 1: Initial feature extraction and similarity computation. Given a mapping f that extracts
node features from a graph’s adjacency matrix A € {0,1}"*" and outputs f : {0, 1}"*" — R"*4,
we compute node feature matrices f(A) and f(B) for graphs G4 and G . The initial similarity
matrix captures pairwise node similarities via their feature dot products:

SA—)B,(O) — f(A)f(B)T c RX7, (7)

0)

Here, SZA-HB’( measures the similarity between node i € G4 and node j € Gp based on their

learned features.

Step 2: Permutation extraction and node quality scoring. From a similarity matrix 4772, we
extract the best permutation estimate by solving the linear assignment problem: 7 = Proj(S4—5)
where 7 = argmaxgcs, »; S;?FZ)B. This permutation 7 : G4 — Gp represents our current
best guess for the optimal alignment 745, To evaluate alignment quality, we compute a score
for each node i in graph A: score(i) = > A;j Br(in(j)- Intuitively, score(i) counts the number
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Rankings:
(1,2, 3, 4]
rB: [c, a, b, d]

Figure 1: Illustration of Step 2. The permutation 7= maps 1—c, 2—a, 3—b, 4—d. Green edges show
matches: edge 1-2 with a-c, and edge 1-3 with b-c. Node 1 has the highest score (2 matched edges),
nodes 2 and 3 each have 1 matched edge, and node 4 has no matched edges.

of edges incident to node ¢ that are correctly matched under the current permutation m—higher
scores indicate better- allgned nodes (see Figure[I). We then rank nodes in G 4 by decreasing score,
obtaining a ranking 4 € S,, such that:

score(r* (1)) > score(r*(2)) > - -- > score(r*(n)). (8)

The corresponding ranking for G'p is derived as rZ(i) = m(r?(i)), ensuring that highly-ranked
nodes in both graphs correspond to each other under the current permutation (see Figure [I)). Note
that when inequalities in are strict, the rankings uniquely encode the permutation 7 (with top-
ranked nodes being those most reliably aligned).

Step 3: Ranking-enhanced feature learning. We now incorporate the ranking information to

compute improved node features. Using a mapping g : {0,1}"*" x S,, — R"*< that takes both

the graph structure and node rankings as input, we compute enhanced feature matrices g(A, %) and
g(B,rB). The new similarity matrix is:

§A=B — g(A, TA) (B,rB)T e R ™, 9)

This ranking-enhanced similarity matrix S4=5(1) = g(A,r4©)g(B, B ()T should be more
informative than the initial S4—2-(°) since it incorporates knowledge about which nodes align well.
Consequently, we expect Proj(S4—5-(1)) to be closer to the optimal 747 than Proj(S4—5()),

Iterative refinement. The key insight is to iterate steps 2 and 3 (see Figure [2)) with different learned
mappings g, g(?), ... ateach iteration, progressively improving the similarity matrix and resulting
permutation. This creates a bootstrap effect where each iteration leverages the improved alignment
from the previous step. The complete chaining procedure requires a sequence of mappings:

F{0, 13 5 R {0,137 x {0, 1} x RV - 8, x S, (10)
D {0,137 x S, = R g {0,115 x S, — R4, . (11)

The procedure flows as follows: f computes the initial similarity matrix S4=5:( via (7)), then r
computes rankings () 5:) via (), then g(*) computes the refined similarity matrix S4—5(1)
via ([9), and so forth, see Figure[2]

3.2 TRAINING AND INFERENCE WITH CHAINED GNNS

The ranking step r is not differentiable, preventing end-to-end training. Instead, we train each
GNN in the chain sequentially, which proves both practical and effective. This approach allows our
method to explicitly learn from discrete permutation decisions at each step, which is crucial for the
iterative improvement process.

Sequential training procedure. The mappings f, ("), ¢(®), ... are implemented using graph neural
networks (GNNs). We train the GNNs f, g™, ¢ ... ¢*) sequentially, where each network is
optimized to improve upon the previous iteration’s output. For training data consisting of graph
pairs (G4, Gpg) with known ground truth permutation 7*, we define a cross-entropy loss for any
similarity matrix SA=B: £(SA78 1) = — 3" log (softmax(SA”B))m*(i). This loss encourages
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Figure 2: Overview of the chaining procedure. Starting from input graphs G 4 and G, we first (1)
extract features and compute similarities, then iteratively (2) rank nodes by alignment quality, and
(3) use rankings to enhance features and similarities.

the similarity matrix to assign high values to the correct node correspondences specified by 7*. The
training proceeds as follows:

1. Train f: Minimize £(S475() 7*) to learn initial feature extraction.

2. Train ¢(: Fix f, compute (9 and r5-(©) for the training data, then minimize
£(SA_>B’(1),7T*).

3. Train ¢®: Fix f, compute (%) 5. then fix g, compute 74 (1), 51 then mini-
mize £(S47B2) 7x),

4. Continue: Repeat this process for (3, g, ... g().

This sequential approach ensures that each GNN learns to improve upon the alignment quality
achieved by all previous networks in the chain.

Inference procedure. During inference on new graph pairs (G4, Gg), we apply the trained net-
works sequentially: f produces S4—~5+(0) then alternating applications of r and ¢(*) produce re-
fined similarity matrices SA—~5-(1) §A=B.(2) GA=B.(L)  Each similarity matrix S4—5(¢)
represents a progressively better estimate of node correspondences. To extract a discrete permu-
tation from any S4—~5:() we apply either the Hungarian algorithm Proj or the FAQ algorithm,
yielding candidate permutation 7(¥), We can then estimate its performance by computing nce(7(%))
defined in (@).In practice, we observe that nce(w(f)) typically increases with ¢, confirming that each
iteration improves alignment quality.

Looping for enhanced performance. An important observation is that the final trained network
g'F) can be applied multiple times to further refine the solution. Since g™ is trained to improve
partial solutions, repeatedly applying ¢~ (with intermediate ranking steps r) often yields addi-
tional improvements. We call this technique looping and explore its benefits in Section[5.2] This
allows us to achieve better performance without training additional networks, simply by iterating
the refinement process as long as the number of common edges increases.
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3.3 GNN ARCHITECTURE AND EXPRESSIVENESS

Architecture choice and motivation. We implement all GNN mappings f, ¢V, ¢, ..., ¢
using the same architecture inspired by Folklore-type GNNs (Maron et al}, [2019). Unlike standard
message passing neural networks (MPNNs), this architecture operates on node pairs rather than
individual nodes, providing greater expressiveness at the cost of scalability (Maron et al.| 2019).

Core architecture: Folklore-inspired residual layers. Our GNN’s main building block is a
residual layer that processes hidden states for all node pairs (h! _>j)z"j € R»*"*d_ producing up-

t+1 d. pt+l t , t ¢ , t
dated states (h;%,;)i; € R™"™*% 70 = hi o +mg (hiaj*rZZ hiﬂé@mo(hgﬁj)) where

mo : R? — R% and m; : R?¢ — R? are multilayer perceptrons (MLPs) with graph normalization

layers, and ® denotes component-wise multiplication. We refer to Section [A4] for more details
about our FGNN.

4 RELATED WORK: STATE-OF-THE-ART AND LEARNING LIMITATIONS

Additional related work on machine learning approaches to graph matching is discussed in Section
[A%6] In this section, we restrict our attention to the combinatorial optimization perspective.

Non-learning methods. Among traditional optimization approaches, FAQ represents the state-of-
the-art for correlated random graphs (Lyzinski et all, 2015), outperforming the convex relaxation,
GLAG algorithm (Fiori et al.l 2013)), PATH algorithm (Zaslavskiy et al.,[2008), Umeyama’s spectral
method (Umeyama, [1988), and linear programming approaches (Almohamad & Duffuaal [1993).

More recent papers (Xu et al} [2019) and (Bommakanti et all, 2024) proposed new algorithms
for GAP but their comparison with FAQ is not correct probably because they used a suboptimal
initialization (see more details in Section[AZ3)

Learning approaches and their limitations. Recent GNN-based methods for graph alignment
include approaches by Yu et al.|(2023)), PGM (Kazemi et al.l 2015), MGCN (Chen et al.| 2020), and
MGNN 2021). For Erd6s-Rényi graphs, none of these methods demonstrated positive
accuracy under the same noise level where our experimental results show FAQ(D.4) maintained
positive accuracy (see Section [A.T).

This analysis reveals a significant gap: before our work, FAQ(D.y) represented the state-of-the-
art for GAP on correlated random graphs, substantially outperforming all existing learning
and GNN approaches. Our chaining procedure aims to bridge this gap by combining the expres-
siveness of GNNs with iterative refinement, ultimately providing FAQ with superior initializations
that improve upon both pure learning and pure optimization approaches.

5 EMPIRICAL RESULTS AND COMPARISON TO FAQ

We evaluate our chaining procedure against FAQ [Vogelstein et al.| (2015)), which represents the
state-of-the-art for graph alignment on correlated random graphs. We implement all GNN mappings
f. gV, g, ... g using the same architecture inspired by Folklore-type GNNs
2019). Our experiments compare three categories of methods: (1) non-neural baselines using convex
relaxation, (2) neural baselines using single-step FGNNs, and (3) our chained FGNNs with iterative

refinement. All methods can be combined with Proj and FAQ as a post-processing step to extract a
permutation (see Section [2.2).

5.1 MAIN RESULTS ON SYNTHETIC DATASETS

Table [2] presents comprehensive results across different graph types (with 500 nodes) and noise
levels. We evaluate on three challenging scenarios: sparse Erdds-Rényi graphs (average degree 4),
dense Erd6s-Rényi graphs (average degree 80), and regular graphs (degree 10). The noise parameter
Pnoise controls the difficulty, with higher values indicating more corrupted alignments.

Sparse and dense Erdds-Rényi graphs. For both sparse and dense graphs, our chained FGNNs
significantly outperform all baselines, particularly at challenging noise levels. At ppoise = 0.25,
chained FGNNs with FAQ post-processing achieve 85% accuracy on sparse graphs, compared to
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Table 2: Accuracy (acc) defined in (3)) for ErdGs-Rényi and regular graphs as a function of the noise
Proise- FGNN refers to the architecture in Section M and ChFGNN to our chained FGNNSs. Proj
and FAQ are used to produce a permutation (from the similarity matrix computed).

SPARSE ERDOS-RENYI GRAPHS WITH AVERAGE DEGREE 4

ER 4 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
BASELINES PROJ(Dcx) 098 097 090 0.59 0.23 0.09 0.04 0.02
(NON-NEURAL)  FAQ(Dcx) 098 098 096 095 0.73 0.13 0.04 0.02
BASELINES FGNN PRrOJ 098 0.94 0.74 0.44 0.23 0.12 0.06 0.03
(NEURAL) FGNN FAQ 098 098 096 095 0.81 0.24 0.07 0.03
CHAINING CHFGNN PrOJ 098 098 096 094 091 0.82 049 0.08
CHAINING CHFGNNFAQ 098 098 096 095 093 085 052 0.09
DENSE ERDOS-RENYI GRAPHS WITH AVERAGE DEGREE 80
ER 80 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
BASELINES PROJ(Dcx) 1 1 1 0.61 0.14 0.04 0.02 0.01
(NON-NEURAL) FAQ(Dcx) 1 1 1 1 1 0.21 0.01 0.01
BASELINES FGNN PRroJ 1 1 0.73 0.28 0.10 0.04 0.02 0.01
(NEURAL) FGNN FAQ 1 1 1 1 0.95 0.14 0.01 0.01
CHAINING CHFGNNPRrROJ 1 1 0.94 0.83 0.68 0.37 0.02 0.01
CHAINING CHFGNNFAQ 1 1 1 1 099 0.62 0.01 0.01
REGULAR RANDOM GRAPHS WITH DEGREE 10
REGULAR (ACC) NOISE 0 0.05 0.1 0.15 0.2
BASELINE FAQ(Dcx) 0.002 0.003 0.003 0.002 0.003
BASELINES FGNN PRroOJ 1 0.31 0.03 0.005 0.003
(NEURAL) FGNN FAQ 1 0.95 0.10 0.005 0.002
CHAINING CHFGNN ProjJ 1 0.95 0.54 0.009 0.003
CHAINING CHFGNNFAQ 1 0.96 0.56 0.008 0.002

only 13% for the non-neural FAQ baseline and 24% for single-step FGNNs. Note that ppeise = 0.2
corresponds to the setting of |Yu et al.|(2023) where none of the GNN-based methods achieve positive
accuracy. Notably, our FGNN architecture alone (without chaining) already outperforms the neural
baselines from|Yu et al.|(2023)), demonstrating the importance of architectural expressiveness.

Regular graphs: a particularly challenging case. Regular graphs present a unique challenge
where standard approaches fail. The uninformative barycenter matrix D = %111‘ is one of the
solution of the convex relaxation (3)), giving FAQ no useful initialization. Similarly, MPNNs cannot
distinguish between nodes in regular graphs Xu et al.|(2018)), making them ineffective for this task.
Table[2]shows that only our FGNN architecture achieves meaningful performance on regular graphs.
Our chained FGNNs gets 56% accuracy at pyoise = 0.1 while all other methods essentially fail. This
demonstrates the critical importance of both architectural expressiveness and iterative refinement for
challenging graph alignment scenarios.

Table 3: Accuracy (acc) for sparse Erd6s-Rényi graphs as a function of the number (L +1) of trained
FGNNs and in parentheses the gain due to looping (Njeep = 60 - Nigop = L + 1). Last line: number
of loops for chained FGNNs as a function of the noise pyoise to get optimal nce.

NOISE 0.15 0.2 0.25 0.3 0.35

L+1=2 0.28 (+0.02) 0.15(+0.02) 0.08 (+0.01) 0.04 (+0.01) 0.02 (+0.00)
L+1=6 0.59 (+0.01) 0.43 (+0.06) 0.21 (+0.11) 0.07 (+0.05) 0.03 (+0.01)
L+1=10 0.85(+0.01) 0.72 (+0.06) 0.43 (+0.13) 0.11 (+0.19) 0.04 (+0.03)
L+1=14 0.91 (+0.00) 0.86 (+0.01) 0.57 (+0.13) 0.16 (+0.21) 0.04 (+0.04)
L+1=16 0.92 (+0.00) 0.88 (+0.01) 0.61 (+0.12) 0.19 (+0.26) 0.04 (+0.04)
#LOOP 15 23 88 91 73

8
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5.2 LOOPING: ENHANCED INFERENCE WITHOUT ADDITIONAL TRAINING

The chaining procedure trains L + 1 FGNNs: f, g, ... ¢(%) with performance typically improv-
ing as L increases, see Table[3] Since ¢(%) refines partial solutions, looping where the final FGNN
g') is repeatedly applied with the ranking function r (Section for up to Njoep iterations progres-
sively improves accuracy. This gain is shown in parentheses in Table[3|corresponding to the increase
in accuracy between no looping, i.e. Nioop = L + 1 and looping with Nj,o, = 60. We see substantial
gain with looping particularly on harder instances (pnoise = 0.25 or 0.3), while incurring minimal
computational overhead. In order to get the better results in Table 2] we used looping as long as
nce continues to improve, capped at N, = 100 iterations. We see in the last line of Table [3| the
average number of loops performed before nce plateaus. The results indicate that more difficult
problems generally require more iterations, whereas extremely challenging cases (ppoise = 0.35)
yield no further improvements and thus converge with fewer loops.

5.3 TRAINING STRATEGY: OPTIMAL NOISE
SELECTION 0

A key finding is the importance of training noise
selection.  Figure [3] shows that intermediate
noise levels (around pyoise = 0.22 for sparse 014
graphs) yield the best generalization. Train-

ing on too-easy instances produces models that 0.15 -
fail to generalize to harder cases, while training
on too-hard instances yields suboptimal perfor-
mance on easier problems. This “sweet spot”
balances challenge and learnability, enabling ro-
bust feature learning. All results in Tables [2]
use models trained at these optimal noise levels,
tuned separately for each graph family. 0.26 -

<
8]
L

0.22 4

0.24 4

Noises for training

5.4 COMPUTATIONAL EFFICIENCY 0.28 -

ANALYSIS
. . . . 0.3 . . B 35.4
A fair comparison of running times between

FAQ(D,x) and our chained GNN procedure is 0351 97.7 88, 20.8 21.5 11.0
challenging, so we focus on inference complex-
ity. While our method requires an initial GPU-
based training phase, this is assumed to be com-
pleted before solving new instances.

For FAQ(D.), each gradient step involves
solving a linear assignment problem (O(n?)),
and total runtime depends on the number of gra-
dient ascent iterations.

1]

0.05 01 015 02 0.25

Noises for inference
Figure 3: Each line corresponds to chained
FGNNGs trained at a given level of noise and
evaluated across all different level of noises.
Performances are acc (in %) for sparse Erd6s-
Rényi graphs with Proj as post-processing.

Our chaining procedure has two main costs as n grows: (¢) an n X n matrix multiplication in the
graph layer, scaling as O(n?) but efficient on GPUs, with memory as the main bottleneck; and (i)
computing ranks via a projection Proj of the similarity matrix in each iteration, an O(n?®) CPU oper-
ation. Table[dreports the average number of gradient ascent iterations in FAQ, starting from either
D¢ or the similarity matrix produced by our chained FGNN. The iteration count is substantially
lower with the chained FGNN, especially on hard instances (ppoise € [0.15, 0.3]), indicating that the
similarity matrix from chaining provides a more accurate initialization than D..

Table 4: Average number of gradient projections (Proj) in the Frank-Wolfe algorithm FAQ, with
initialization from either D or the similarity matrix produced by the chained FGNNSs.

ER 4 NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

FAQ(Dcx) #ITER 3. 3.2 6.2 156 314 258 242 256
CHFGNN FAQ #ITER 2. 2.1 2.8 4.1 6.5 8.3 15.1 19.7

0
0
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Table 5: Accuracy (in percent) and percent of common edges on the Yeast PPI networks. ChFGNN
ER4 is our model trained on Erdés-Rényi graphs with average degree 4, while ChFGNN is trained
on the pairs obtained with the three first networks.

YEAST PPI NETWORKS (ACC / PERCENT OF COMMON EDGES )

METHOD 5% CONF 10% CONF  15% CONF  20% CONF  25% CONF
FAQ(Dcx) 84.2/100 82.6/99.9 78.0/99.6 77.0/99.6 76.1/99.8
CHFGNN ER4 80.3/99.7 75.3/99.6 67.2/99.1 63.1/98.7 53.1/97.1
CHFGNN TRAINING TRAINING TRAINING 72.2/99.7 69.8/99.6

5.5 RESULTS ON REAL GRAPHS

We evaluate on three real-world datasets from different domains: biology, social networks, and road
networks (see details in Section [AJ). Yeast (Vijayan & Milenkovic] 2018) is a protein—protein
interaction (PPI) network with 1,004 proteins and 8,323 trusted interactions. Five noisy variants are
created by adding ¢% low-confidence edges (¢ € {5,10,15,20,25}). The base graph is always
an induced subgraph of each variant, so the maximum number of common edges is fixed at §,323.

Because the true node correspondence is known, we evaluate alignment quality using accuracy acc
nce(7"9)
nece(rA—5) "

and normalized number of common edges

We first tested chained FGNNS trained on sparse Erd6s—Rényi graphs (Section[5.1)) to assess trans-
ferability. We then trained chained FGNNs on graph pairs constructed from the base network and
noisy variants with ¢ € {5, 10,15}, and tested on ¢ € {20,25}. As shown in Table [5] all methods
recover nearly the maximum number of common edges (within 3%), but this does not necessarily
translate into high node-level accuracy. The base graph has a large automorphism group, so many
node permutations preserve edges, and adding edges only worsens identifiability. Thus, although this
dataset is a common benchmark, nce is the more reliable metric, and FAQ is already near-optimal.

To obtain more challenging benchmarks, we also applied the edge-addition—removal noise model
(Section [2.3)) to the yeast PPI network with ¢ = 25%, the ca-netscience coauthorship network
(Newman| [2006)), and the inf-euroroad road network (Subelj & Bajec| [2011). We evaluated both
transferred FGNNs and models specifically trained on these datasets. Table [6] shows that trained

ChFGNNSs achieve the best performance, with nce improving by only about 2% under high noise.
As before, node accuracy may not correlate strongly with nce due to inherent graph symmetries.

Table 6: Accuracy (in percent) and number of common edges (nce) on noisy versions of real-world
networks. Each network is corrupted by adding noise at different levels. ChFGNN ER4 is trained
on Erdds-Rényi graphs, while ChFGNN is trained on the specific network and noise level.In bold if
gain in nce is larger than 2%.

REAL-WORLD NETWORKS WITH ADDED NOISE (ACC / NCE)

METHOD YEAST25LC CA-NETSCIENCE INF-EUROROAD

5% 10% 10% 20% 10% 20%
FAQ(Dcx) 49.8 /7660 44.7/7245 65.2/822 45.6/687 55.8/1170 10.9/940
CHFGNN ER4 47.6/7693 42.3/7297 63.5/818 44.1/688 40.0/1111 7.571970
CHFGNN 54.1/7732 51.3/7404 65.4/824 57.0/724 63.5/1213 15.4/963

6 CONCLUSION

In summary, we introduced a chaining procedure with GNNs for tackling the combinatorial graph
alignment problem, achieving substantial performance gains and compatibility with existing solvers.
We further proposed a challenging benchmark of correlated regular graphs, for which no competing
algorithms are known. Our method extends naturally to the seeded variant of GAP, and we anticipate
that the chaining framework may generalize to other combinatorial problems, offering promising
directions for future research.
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A.1 CORRELATED RANDOM GRAPHS AND PREVIOUS RECENT RESULTS

In this section, we present the mathematical details for the various correlated random graphs model
used in this paper.

Bernoulli graphs. We start with the model considered in (Lyzinski et al., [2015). Given n the
number of nodes, p € [0, 1] and a symmetric hollow matrix A € [0, 1]"*", define & = {{i,j},i €
[n],7 € [n],i # j}. Two random graphs G4 = (V4,FE4) and Gg = (Vp, Ep) are p-correlated
Bernoulli(A) distributed, if for all {i,j} € &, the random variables (matrix entries) A;; and B;;
are such that B;; ~ Bernoulli(A;;) independently drawn and then conditioning on B, we have
A;; ~ Bernoulli(pB;; + (1 — p)A;;) independently drawn. Note that the marginal distribution of
A and B are Bernoulli(pA + (1 — p)A) distributed, i.e. the laws of A and B are the same (but
correlated).

In our experiments in Sections[A.10.1]and [A.10.2] we consider the same case as in (Lyzinski et al,
2015): n = 150 vertices, the entries of the matrix A are i.i.d. uniform in [o, 1 — o] with a = 0.1,
and we vary p.

Erdés-Rényi graphs. The ErdGs-Rényi model is a special case of the Bernoulli model where
A is the matrix with all entries equal to A. To be consistent with the main notation, we define
Pnoise = (1 — A)(1 — p) where p was the correlation above and A = d/n where d is the average
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Table 7: Statistics of synthetic datasets.

name average number  useed for comparison sizes of
degree  of nodes with train/val

Bernoulli 70 150 FAQ(D.x) (Lyzinski et al., 2015)  2000/200

Sparse Erd6s-Rényi (ER 4) 4 500 MPNN (Yu et al.l, 2023) 200/100

Dense Erd6s-Rényi (ER 80) 80 500 MPNN (Yu et al.l, 2023) 200/100

Large Erd6s-Rényi 3 1000 Bayesian message passing 200/100

(Muratori & Semerjian, 2024)
Regular 10 500 new 200/100

degree of the graph. Hence the random graphs G 4 and G are correlated ErdGs-Rényi graphs when
P(A;j = Bij=1) = 2(1—ppoise) and P(4; ; = 0, By ; = 1) = P(A;; = 1, B; j = 0) = Lppgise.

Regular graphs. In this case, we first generate G 4 as a uniform regular graph with degree d and
then we generate G by applying edgeswap to G 4: if {i,j} and {k, ¢} are two edges of G 4 then

we swap them to {4, £} and {k, j} with probability pyoise.

The problem of graph alignment for correlated Erdés Rényi random graphs has been studied em-
pirically with Message Passing GNN (MPNN) in when a seed of matched ver-
tices is given in addition to the 2 graphs. We are reproducing their results taken from https:
//github.com/Leron33/SeedGNN corresponding to Figure 6 in (Yu et al] [2023). SeedGNN
refers to [2023), PGM to (Kazemi et al}[2015)), SGM to (Fishkind et al.|2019) and MGCN

to(Chen et al.| 2020)

Table 8: Accuracy (%) on sparse Erdés Rényi random graphs with average degree 4 and noise 0.2

as a function of the seed

Fraction of Seeds 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%
SeedGNN 03 151 474 828 960 966 970 976 976 97.6 97.6
PGM 02 23 6.1 163 31.6 545 733 792 863 889 927
SGM 03 36 89 138 223 363 545 673 844 896 916
MGCN 01 20 40 67 84 11.1 124 140 163 189 205

Looking at the results from Section [} we see that:

« for sparse Erds Rényi random graphs (Table[8) with no seed and a noise of 0.2, the accu-

racy for FAQ(D.y) is 73% and for our chained FGNNs 93%.

« for dense Erd6s Rényi random graphs (Table[9) with no seed and a noise of 0.2, the accu-

racy for FAQ(D.y) is 100% and for our chained FGNNs 99%.

Table 9: Accuracy (%) on dense Erdés Rényi random graphs with average degree 80 and noise 0.2

as a function of the seed

Fractionof Seeds 0% 05% 1% 15% 2% 25% 3% 35% 4% 45% 5%
SeedGNN 01 07 914 100 100 100 100 100 100 100 100
PGM 0.1 0.6 1.8 43 193 512 966 100 100 100 100
SGM 02 L5 8.8 100 100 100 100 100 100 100 100
MGCN 0.1 0.7 1.5 1.9 3.7 52 6.9 80 109 123 137

A.2 TIME-PERFORMANCE TRADE-OFF

For iterative algorithms, the computation time can be controlled by adjusting the number of itera-
tions. This applies to gradient-based methods such as the Frank—Wolfe algorithm, used to compute
either the convex relaxation D or the indefinite relaxation FAQ. The recently proposed FUGAL
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algorithm (Bommakanti et al| [2024)) is also iterative. Finally, our chained FGNNs naturally define
an iterative procedure, where we may bound the number of chaining steps. Figure ] displays the
resulting Pareto curves, showing the trade-off between performance and runtime for each method
on sparse Erd6s—Rényi graphs with noise level poise = 0.2.

For FUGAL, we used the authors’ implementation (available at |https://github.

com/idea-iitd/Fugal), specifically the predict_alignment routine with
hyperparameter mu = 1. For FAQ(J), we relied on the SciPy implementation
scipy.optimize.quadratic_assignment (method=’faqg’). For FAQ(D.y), we

used our own Frank—Wolfe implementation to compute D, before passing it to FAQ.

We emphasize that FAQ and FUGAL run on CPU, whereas our chained FGNNs run on GPU. Run-
times correspond to computing the number of common edges (nce) over 100 graph pairs of size
n = 500. As shown in the figure, our chained FGNNs achieve better performance at lower compu-
tation time compared to both FAQ and FUGAL.

Time--performance trade-off for sparse ER (noise=0.2)
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Figure 4: Number of common edges (nce) recovered in sparse Erd6s—Rényi graphs as a function of
the computation time allocated to each algorithm: FUGAL, FAQ(.J), FAQ(D.), and our chained
FGNNs (ChFGNN).

A.3 REAL GRAPHS AND PREVIOUS RECENT RESULTS

The real-world networks in Section [5.3] are standard benchmarks for graph alignment. We apply
the same noising procedure as for Erd6s—Rényi graphs (described above), using the original graph’s
average degree d. Table [I0] gives the sizes of the training and validation sets used for training our
chained FGNNs.

Table 10: Summary statistics of the real-world graphs.

Dataset # Nodes # Edges Avg. Degree size train/valid
Yeast PPI (Vijayan & Milenkovic} [2018) 1,004 8,323 16.58 20/20
ca-netscience(Newman| [2000)) 379 914 4.82 200/20
inf-euroroad (]Subelj & Bajec], |201 1|) 1,174 1,417 2.41 20/5

Table [[] reports results for SGWL (Xu et al] 2019) and FUGAL (Bommakanti et al] [2024).

SGWL results come from the original paper; FUGAL results were obtained using the authors’
code (available at https://github.com/idea-iitd/Fugal). Our FUGAL performance
matches (Bommakanti et al.| [2024), but our FAQ results do not. We attribute the discrepancy to
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poor initialization: using the uninformative barycenter J = %11—r reproduces the degraded FAQ
performance reported in (Bommakanti et al.},[2024).

Table 11: Accuracy (acc) and pnumber of common edges (nce) on the Yeast PPI networks. ChFGNN
ER4 is our model trained on Erd6s-Rényi graphs with average degree 4, while ChFGNN is trained
on the pairs obtained with the three first networks.

YEAST PPI NETWORKS (ACC / NCE )

METHOD 5% CONF 10% CONF 15% CONF 20% CONF 25% CONF
FAQ(J) 37.5/7383 34.4/7245 29.1/6807 23.9/6689 36.4/7383
SGWL 83.6/— -/ - 66.6 / — -/ - 58.8 /-

FUGAL 83.0/8311 77.7/8231 74.3/8172 70.9/8148 68.6/8095
FAQ(Dcx) 84.2 /8323 82.6/8317 78.0/8289 77.0/8294 76.1/8306
CHFGNN ER4 80.3/8300 75.3/8288 67.2/8252 63.1/8213 53.1/8080
CHFGNN TRAINING TRAINING TRAINING 72.2 /8300 69.8/8291

On noisy real datasets (Table [I2), FUGAL never matches FAQ, contrary to the claims in
makanti et al.| 2024). To compute the maximum number of common edges, we run FAQ initialized
with the true permutation (prior to noising).

Table 12: Accuracy (acc) and number of common edges (nce) on noisy versions of real-world
networks. Each network is corrupted by adding noise at different levels. ChFGNN ER4 is trained
on Erd6s-Rényi graphs, while ChFGNN is trained on the specific network and noise level.In bold if
gain in nce is larger than 2%.

REAL-WORLD NETWORKS WITH ADDED NOISE (ACC / NCE)

METHOD YEAST25LC CA-NETSCIENCE INF-EUROROAD

5% 10% 10% 20% 10% 20%
FUGAL 53.1/7480 44.6/7035 60.3/794 37.7/629 18.3/818 29/714
FAQ(Dcx) 49.8 /7660 44.7/7245 65.2/822 45.6/687 55.8/1170 10.9/940
CHFGNN ER4 47.6/7693 42.3/7297 63.5/818 44.1/688 40.0/1111 7.57/970
CHFGNN 54.1/7732 51.3/7404 654/824 57.0/724 63.5/1213 15.4/963
MAX NCE 7909 7498 826 730 1272 1137

FUGAL is substantially faster than FAQ(D,y), though we did not perform a detailed timing study.
We lack an efficient implementation of the Frank—Wolfe solver required for the convex-relaxation
initialization Dy, and our implementation prioritizes correctness over speed. The subsequent FAQ
step uses SciPy’s efficient routine quadratic_assignment. We expect that FAQ(D.) could
be made significantly faster with an optimized implementation.

A.4 GNN ARCHITECTURE AND EXPRESSIVENESS

The choice of a more expressive architecture is crucial for our approach. The success of the chain-
ing procedure critically depends on producing a high-quality initial similarity matrix S4=%(0) to
bootstrap the iterative refinement process. Standard MPNNs, which aggregate only local neighbor-
hood information, would produce similarity matrices based on limited local features—insufficient
for capturing the global structural patterns needed for effective graph alignment. This limitation has
been observed in prior work: [Nowak et al.| (2018) implemented a similar initial step using MPNNs
with limited success, while[Azizian & Lelarge] (2021)) demonstrated the superiority of Folklore-type
GNNss for this task. As we show in Section |§Jcombining our expressive architecture with the chain-
ing procedure yields substantial performance improvements over single-step approaches.

Core architecture: Folklore-inspired residual layers. Our GNN’s main building block is a resid-

ual layer that processes hidden states for all node pairs (h!_, j)iJ € R™ x4 producing updated
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states (hiTL); ; € Rrxnxd;

hity = his; +m (hiﬁj,th @mo(hzﬂ-)) (12)
V4

where mg : R? — R? and m; : R??* — R? are multilayer perceptrons (MLPs) with graph normal-
ization layers, and ® denotes component-wise multiplication.

This design incorporates several improvements over the original Folklore-type GNN (Maron et al.,
2019):

* Residual connections: The skip connection h!_, i+ (-) enables deeper networks and more
stable training.

* Graph normalization: Inspired by (Cai et al. (2021), this ensures well-behaved tensor
magnitudes across different graph sizes.

» Simplified architecture: We use only one MLP in the component-wise multiplication,
reducing memory requirements while maintaining expressiveness.

Input and output transformations. The complete architecture consists of three main components:

1. Input embedding: The adjacency matrix A € {0,1}"*™ is embedded into the initial
hidden state hY , i € R™*"*d ysing a learned embedding layer that encodes edge pres-
ence/absence.

2. Residual processing: Multiple residual layers (12) transform the node-pair representa-
tions, capturing complex structural relationships.

3. Node feature extraction: The final tensor hY , ; € R™*7xd js converted to node features

R™*4 via max-pooling over the first dimension: node; = max; h¥ s
Ranking integration for chained networks. The networks g(*), ¢(?), ... must incorporate ranking
information in addition to graph structure. We achieve this through learned positional encodings
that map each node’s rank to a d-dimensional vector. These rank embeddings are concatenated with
the node features from the max-pooling layer, allowing the network to leverage both structural and
ranking information when computing enhanced similarities.

This architecture provides the expressiveness needed to capture global graph properties while re-
maining trainable through the sequential training procedure described in Section While scal-
ability remains a limitation for very large graphs, the architecture proves highly effective for the
graph sizes considered in our experiments (up to 1000 nodes).

A.5 TECHNICAL DETAILS FOR THE GNN ARCHITECTURE AND TRAINING

By default, we use MLP for the functions mg and my in (I2) with 2 hidden layers of dimension
256. In all our experiments, we take a GNN with 2 residual layers. We used Adm optimizer with
a learning rate of le — 4 and the scheduler ReduceLROnPlateau from PyTorch with a patience
parameter of 3.

For Proj, we use the function linear_sum_assignment from scipy.optimize and for FAQ, we use the
function quadratic_assignment from the same library. SciPy is a set of open source (BSD licensed)
scientific and numerical tools for Python. In order to compute D,y solving (3)), we implemented the
Frank-Wolfe algorithm.

For the training and inference, we used Nvidia RTX8000 48GB and Nvidia A100 80GB. For graphs
of size 500, we train on 200 graphs and validate on 100 graphs for 100 epochs.We run for L = 15
steps of chaining (obtaining 16 trained FGNNs: f, g, ..., ¢(1®). The PyTorch code is available
as a supplementary material.

A.6 MORE RELATED WORK

Supervised learning approach of the graph matching problem has been greatly studied in the com-
puter vision literature (Wang et al.| [2021)), (Rolinek et al., 2020), (Zanfir & Sminchisescu, 2018)),
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(Gao et al.| 2021)), (Yu et al.} |2021)), (Jiang et al.| 2022)). (Fey et al.,[2020) is closely related to our
work and proposes a two-stage architecture similar to our chaining procedure with MPNNSs. The first
stage is the same as our first step but with a MPNN instead of our FGNN. Then the authors propose a
differentiable, iterative refinement strategy to reach a consensus of matched nodes. All these works
assume that non-topological node features are available and informative. This is a setting favorable
to GNNs as node-based GNN is effective in learning how to extract useful node representations
from high-quality non-topological node features. In contrast, we focus on the pure combinatorial
problem where no side information is available. In (Li et al., 2019)), graph matching networks take
a pair of graphs as input and compute a similarity score between them. This algorithm can be used
to compute the value of the graph matching (T)) but does not give the optimal permutation 745
between the two graphs which is the main focus of our work.

Regarding benchmarks for the GAP, we are not aware of any pubicly available dataset. The GAP
can be seen as a particular version of the QAP and some algorithms designed for the GAP can be
used for QAP instances (i.e. with weighted adjacency matrices). This is the case for the convex
and indefinite relaxations presented in Section 2.2] which can be used with real-valued matrices. In
particular, (Lyzinski et al., |2015) shows very good performances of FAQ on some QAP instances
from (Burkard et al.l [1997). These instances are small (from 12 to 40 nodes) with full (integer-
valued) matrices. They are very far from the distribution of correlated random graphs used for
training in our work and we do not expect good performaces for such out-of-distribution instances
for any supervised learning algorithm.

A.7 MODEL-BASED VERSUS SIMULATION-BASED ALGORITHMS

As explained in Section[2.3] we train and evaluate our supervised learning algorithms on correlated
random graphs. This choice connects our work to a rich theoretical literature on the correlated Erdés-
Rényi random graph ensemble, which has been extensively studied from an information-theoretic
perspective.

A.7.1 THEORETICAL FOUNDATIONS AND LIMITS

The theoretical analysis begins with (Cullina & Kiyavash| (2016)), which establishes the information-
theoretic limit for exact recovery of 7* as the number of nodes n tends to infinity. In the sparse
regime, where the average degree d remains constant as n — co, exact recovery becomes impos-
sible. Subsequent work by (Ganassali et al.| (2021) and [Ding & Du| (2023 demonstrates that partial
recovery of 7* is only possible when pygise < 1 — d-1.

For the correlated Erdés-Rényi ensemble, the joint probability distribution is given by:

(1 = Poise) (0 — d(1 + pnoise)))e(GMGB)

2
dp noise

]P(G A, G B) - ( )

where e(Ga AGp) =, ; A;;B;; counts the common edges between graphs G 4 and G . This
distribution reveals a crucial insight: the maximum a posteriori estimator of 7 given GG 4 and
the permuted graph G’; is exactly a solution of the GAP on the (G 4, G';) instance.

A.7.2 MODEL-BASED APPROACHES: ACHIEVEMENTS AND LIMITATIONS

Recent theoretical advances have produced efficient polynomial-time algorithms (Ding et al., 2021}
Fan et al| 2023} Ding & Li}, 2023} |Ganassali et al.| [2024a; |Piccioli et al., [2022) that approximate
the probability distribution by exploiting structural properties like the local tree-like nature of sparse
random graphs. These algorithms achieve partial recovery (positive accuracy) when pyoise is suffi-
ciently small, though well below the information-theoretic threshold of 1 — d~1.

However, a fundamental algorithmic threshold appears to exist. Recent work (Mao et al., 2023;
Ganassali et al., 2024b)) suggests that no efficient algorithm can succeed for ppoise > Paigo = 1 —
Va = 0.419, where « is Otter’s constant, even when the average degree d is large.

While these model-based algorithms provide theoretical guarantees for correlated Erdds-Rényi
graphs, they suffer from significant practical limitations:

20



Under review as a conference paper at ICLR 2026

* Narrow applicability: Designed specifically for the correlated Erd6s-Rényi model with
no guarantees outside this distribution

* Computational complexity: Despite polynomial-time guarantees, running times are often
impractical for real applications

* Limited scalability: Most implementations prioritize mathematical rigor over computa-
tional efficiency

Muratori & Semerjian| (2024) represents a notable exception, focusing on making message-passing
algorithms (Ganassali et al.|[2024a; |Piccioli et al.|[2022) more scalable while maintaining theoretical
guarantees.

A.7.3 FAQ: AN EMPIRICAL SURPRISE
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Figure 5: Accuracy acc as a function of the noise level for correlated Erdds-Rényi random graphs
with size n = 1000 and average degree d = 3. Chained GNN's were trained at noise level 0.25 and
FAQ is used as the last step for the inference. The red curve labeled FAQ corresponds to FAQ(D.y)
and the blue curve labeled message passing are results from (Muratori & Semerjian, 2024). The
dashed vertical line corresponds to the theoretical pygo = 1— \/a above which no efficient algorithm
is known to succeed.

Remarkably, the FAQ algorithm—which was not designed specifically for any random graph
model—empirically encounters the same algorithmic barrier predicted by theory. As shown in
Figure E], FAQ’s performance degrades sharply near p,q0, matching the theoretical predictions de-
spite lacking formal guarantees for this setting. FAQ only underperforms compared to specialized
message-passing methods Muratori & Semerjian|(2024)) when ppeise approaches piigo.

This empirical observation suggests that FAQ, through its continuous relaxation approach, implicitly
captures fundamental structural properties of the graph alignment problem that transcend specific
random graph models.
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A.7.4 OUR SIMULATION-BASED APPROACH

To circumvent the computational challenges of maximizing the exact posterior (which, as shown
above, corresponds exactly to solving the GAP), we adopt a simulation-based approach. Rather
than deriving model-specific algorithms, we:

1. Sample training data: Generate pairs of graphs (G 4, G ) with known alignment permu-

tations 7*

2. Learn mappings: Train neural networks to map graph pairs to similarity matrices 4% ¢
RHXTL

3. Extract solutions: Convert similarity matrices to permutations via projection or as FAQ
initialization

Key Advantages. Our simulation-based approach offers several advantages over both model-
based methods and traditional relaxations:

Supervised learning with ground truth: Unlike the convex relaxation (3), we have access to
ground truth permutations during training, enabling more informative loss functions.

Better optimization objective: Instead of the Frobenius norm used in convex relaxation, we employ
cross-entropy loss, which provides more informative gradients for discrete matching problems.

Generalization potential: While trained on specific distributions, our learned representations may
capture general structural patterns applicable beyond the training distribution.

Hybrid capability: Our similarity matrices can initialize traditional solvers like FAQ, combining
the benefits of learning and optimization approaches.

This simulation-based methodology bridges the gap between theoretical guarantees and practical
performance, achieving strong empirical results while maintaining computational tractability.

A.8 RELATING GAP T0 GROMOV-HAUSDORFF, GROMOV-MONGE AND
GROMOV-WASSERSTEIN DISTANCES FOR FINITE METRIC SPACES

We consider a simple case of discrete spaces with the same number of elements n and where
A,B € R™™ are the distance matrices of two finite metric spaces (X,dx) and (Y,dy), i.e.
Aij = dx(z;,z;) and B;; = dy(y;,y;). Recall that we denote by S,, the set of permutation
matrices and by D,, the set of doubly stochastic matrices. We also denote by R,, the set of matrices
R €{0,1}"*" suchthat >, R;; > Land }_; R;; > 1.

The Gromov-Hausdorff distance for finite metric spaces can be written as:

GH (4, B) = Jnin max L(Aik, Bje)Rij Rie (13)

where L(a,b) > 0. It is often desirable to smooth the max operator in to a sum. This can be
done by considering the related problem:

GM_(A, B) = min > L(Aik, Bjo)Rij Rie (14)
" i,k L

Note that for any R € R, there exists a permutation matrix P € &, such that R;; > P;; so that we
have: Zi,j,k,é’ L(A;k, Bje)RijRie > Zi,j,kl L(A;x, Bj¢)Pi; Py Therefore, the minimum in (T4)
is attained at some R € S,,. In particular, we get:
GM[ (A, B) = Lin Z L(Aik, Bje) Pij Pro = min ZL (Aij, Briyre()) »
1,5,k € i,]
which is called Gromov-Monge distance.

The Gromov-Wasserstein distance is a relaxation of the Gromov-Hausdorff distance and is defined
inMémoli| (2011):

GWr(4, B.p,q) = min > L(As, Bjo)Ti;Te, (15)
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where p, ¢ are probability distributions on X, ¥ and the minimum is taken over C, , = {T €
R}*™, T1 = p, TT1 = ¢}. Taking p = ¢ = 1/n the uniform distribution, we have C, ; = +D,, and
GWL (A, B,1/n,1/n)is arelaxed version of GM, (A, B). We typically consider L(a,b) = |a—b|?,
and then we get:
= mi 2
GMLz (A,B) = ;Ielg}l - (Aij — B‘n’(i)ﬂ'(j)) 5

]

and with the simplified notation GW 2 (A, B) = GW2(4, B,1/n,1/n),

n*GW (A, B) = min (Aix — Bj¢)?Di; Die
DeD,, . y
1,7,K,€

: 2 2
= Dné%l Aik + E Bjé -2 E AikngDijDkg
ik je i.5,k.0

All? B2 -2 AD. DB).
|AI% +11Bll3 — 2 max (AD. DB)

In the particular case where A and B are semi definite positive matrices, i.e. A = UTU and
B = VTV, we have: (AD,DB) = |[UDVT||% which is a convex function of D and is always
maximized at an extremal point of its constraint polytope D,,. By Birkhoff’s theorem, the extremal
points of D,, are permutation matrices. Therefore, we have: GW2(A, B) = GM2(A, B) in this
case. [Maron & Lipman| (2018) shows that a similar result holds for Euclidean distances, when
A;j = ||lx; — 4|2 and B;; = ||y; — y;|2. Hence, we have:

Proposition A.1. For A, B Euclidean distance matrices, the indefinite relaxation () is tight and
solves the GAP (). In this case, the GAP computes the Gromov-Monge distance and the indefinite
relaxation computes the Gromov-Wasserstein distance.

A.9 NOTATIONS USED IN TABLES

* acc FAQ(D,4) means the accuracy of FAQ algorithm initialized with D..,.
* acc ChFGNN Proj means the accuracy of our chained FGNNs with Proj as the last step.
» acc ChFGNN FAQ means the accuracy of our chained FGNNs with FAQ as the last step.

* nce FAQ(D,.) means the number of common edges found by FAQ algorithm initialized
with Dz.

* nce FAQ(7*) means the number of common edges found by FAQ algorithm initialized
with 7*.

* nce ChFGNN Proj means the number of common edges found by our chained FGNNs
with Proj as the last step.

* nce ChFGNN FAQ means the number of common edges found by our chained FGNNs
with FAQ as the last step.

A.10 BERNOULLI GRAPHS: GENERALIZATION PROPERTIES FOR CHAINED GNNSs

A.10.1 TRAINING CHAINED GNNS

For the same dataset as in [Lyzinski et al.| (2015) (see Bernoulli graphs in Section [A.T)), we plot in
Figure [6] the training curves for the chained GNNs for the loss and the accuracy on the training
set and the validation set. We do not see any overfitting here as values are similar on both sides.
Chaining is very effective in this case: while the first training (brown) corresponding to the mapping
f in (T0) saturates at an accuracy below 0.1, the second training (magenta) corresponding to the
mapping ¢() in (TT) reaches a much higher accuracy because it uses the information about the
graph matching contained in the output of the first training f. The curves for the remaining trainings
are indeed ordered. This is due to the fact that for the training of g(*+1), we initialized it with the
weights obtained after the training of g(*) in order to speed up the training. Since we observe a
saturation in the learning of the ¢(*) for k > 2, we stop the training after half the number of epochs
used for f and g(V).
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Figure 6: Left: Training chained GNNs. Each color corresponds to a different training and GNN:
the first training (brown) reaches an accuracy below 0.1. The second training (magenta) uses as
input the output of the first training and get an accuracy ~ 0.15. The remaining trainings using the
output of the previous training as input and reach higher and higher accuracy.

Right top: acc bottom: nce. First Violin plot (_faq green) for FAQ, then all other Violin plots
correspond to a different number of iterations Ny.x = 0,1,...,9 of the chaining procedure
(_.gnn_faq_proj blue with Proj and _gnn_faq_faq orange with FAQ).

A.10.2 EFFICIENT INFERENCE FOR CHAINED FGNNS

These results suggest an extreme form of looping: since ¢g(!) allows to improve the accuracy of
an initial guess (given by f), we can keep only the GNNs f and ¢!, and we loop through ¢(!)
for a fixed number of steps Ny,ax. Figure[f] gives the accuracy acc defined in (3)) and the number of
common edges nce defined in (@) for the inference procedure as a function of the number of iterations
Ninax made on g(Y). We give (in blue) the performances of Proj, and (in orange) the performances of
FAQ applied on the similarity matrix obtained after L loops. We see that the Frank-Wolfe algorithm
used in FAQ used as the last step of our chaining procedure is crucial to get better performances.
Indeed, we need only Ny,,x = 5 loops in order to get a perfect accuracy acc = 1 with FAQ.

We also give (in green) the performance of FAQ applied on the matrix D (the default option
in the FAQ algorithm). Indeed, FAQ(D,y) is able to find the correct permutation for the graph
matching in 13% of the cases and is stuck in a local maxima with a very small (less than 20%)
accuracy otherwise. This bimodal behavior is due to the fact that D gives very little information
about the correct permutation. In contrast, the chaining procedure was able to learn a much
better initialization than D for FAQ allowing to improve the accuracy from 50% to an exact
accuracy.

noise 04 0.45 0.5 0.55 0.6 0.65 0.7
acc Proj(Dey) 0.3428 0.1956 0.1209 0.0815 0.0552 0.0411 0.0309
acc FAQ(D.y) 1.0 0.9954 09531 0.6910 0.2621 0.0959 0.0225
nce Proj( D) 31477 3000.0 2960.2 2945.8 2942.0 29424 2933.6
nce FAQ(D,,) 4737.8 4622.8 44622 4056.1 35649 3408.0 3352.8
training 0.5 acc ChFGNN Proj  0.9994 0.9962 0.9639 0.7842 0.3400 0.1442 0.0737
acc ChFGNN FAQ 1.0 1.0 1.0 09915 0.8949 0.5105 0.1267
nce ChFGNN Proj 4736.1 4617.1 44394 4025.8 3319.0 30854 3038.0
nce ChFGNN FAQ 4737.8 4629.0 4520.0 4395.8 41884 37472 34135

Table 13: Accuracy acc and number of common edges nce for Bernoulli graphs as a function of the

Noise Ppoise -
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Figure 7: Bernoulli graphs: ace (topj and ncé (bdttoni) as. a fﬁnction of the noise level. Chained
FGNNs were trained at noise level 0.5. gnn (resp. gnn_faq) for chained FGNNs with Proj (resp.
FAQ) as the last step. faq for FAQ(D.) and faq(p) for FAQ(7*).

We now explore the generalization properties of the chaining procedure by applying the inference
procedure described in Section [A.10.2] on datasets with different noise levels. The level of noise
used during training (described in Section is 0.5. [7] gives the accuracy acc and the number
of common edges nce for the inference procedure as a function of the noise level. We stop the
inference loop when the nce obtained after applying FAQ to the similarity matrix is not increasing
anymore. The red curve gives the performances of our chaining procedure with FAQ as the last step,
the orange curve gives the performances of our chaining procedure with Proj as the last step. We
compare our chaining procedure to FAQ(D.) in brown and to FAQ(7*) in grey which corresponds
to the maximum number of common edges for these noise levels. The curve for the accuracy of
FAQ(D,) is similar to the one obtained in [Lyzinski et al.|(2015). Our chaining procedure is able
to generalize to noise levels different from the one used during training and outperforms FAQ(Dy)
in all cases. Indeed with a noise level less than 0.5, our chaining procedure recovers the correct
permutation for the graph matching problem. Note that we did not try to optimize the performances
of our chaining procedure with Proj as the last step, and they are indeed increasing if we allow for
more loops.

A.11 ADDITIONAL RESULTS FOR SPARSE ERDOS-REYNI GRAPHS

Figure [8] gives the performance of our chained GNNs trained at noise level 0.25 for sparse ErdGs-
Rényi graphs with average degree d = 4 and size n = 500. We observe that our chaining procedure
is able to generalize to noise levels different from the one used during training and outperforms
FAQ(D,) in all cases.
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Chained FGNNs were trained at noise level 0.25. gnn (resp. gnn_faq) for chained FGNNs with
Proj (resp. FAQ) as the last step. faq for FAQ(D.y) and faq(p) for FAQ(7*).
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Table 14: Accuracy (acc) defined in (3) for sparse Erdds-Rényi graphs as a function of the noise
Proise- FGNN refers to the architecture in Section M and ChFGNN to our chained FGNNSs. Proj
and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 4 (Acc) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
BASELINES PROJ(Dcx) 98.0 97.3 903 593 233 9.1 4.0 2.0
FAQ(Dcx) 98.0 97.5 963 94.6 729 13.0 3.7 1.7

TRAINING 0.05 CHFGNNProJ 979 973 943 67.1 125 6.72 3.70 2.13
CHFGNN FAQ 979 975 96.2 729 435 10.8 4.04 1.69

TRAINING 0.10 CHFGNN ProJ 979 975 96.1 91.6 354 7.24 4.03 2.36
CHFGNN FAQ 979 975 964 940 38.6 123 473 191

TRAINING 0.15 CHFGNNPROJ 979 975 96.3 937 87.4 49.1 7.51 2.28
CHFGNNFAQ 979 975 964 943 903 54.7 9.71 1.79

TRAINING 0.20 CHFGNN PrROJ 979 974 963 945 914 720 31.2 3.30
CHFGNN FAQ 979 975 964 952 93.1 763 350 3.39

TRAINING 0.22 CHFGNN PrROJ 97.9 97.5 96.2 944 91.1 789 445 7.11
CHFGNN FAQ 979 975 964 953 93.1 82.1 483 17.78

TRAINING 0.24 CHFGNN PrRoOJ 979 974 96.1 94.1 91.0 77.0 403 6.52
CHFGNN FAQ 979 975 964 953 933 80.1 433 6.93

TRAINING 0.26 CHFGNNProJ 979 973 952 923 88.0 75.8 43.1 6.43
CHFGNN FAQ 979 975 964 952 932 825 482 6.87

TRAINING 0.28 CHFGNN ProJ 979 952 884 793 684 551 267 6.69
CHFGNN FAQ 979 975 963 949 927 829 387 7.62

TRAINING 0.30 CHFGNNProJ 979 915 780 63.6 50.6 354 151 4.76
CHFGNN FAQ 979 974 962 948 921 735 234 5.00

TRAINING 0.35 CHFGNN PrRoJ 97.6 88.2 65.1 408 21.5 109 5.46 2.54
CHFGNN FAQ 979 974 962 945 68.0 194 579 2.00

A.12 ADDITIONAL RESULTS FOR DENSE ERDOS-REYNI GRAPHS

For the correlated dense Erdés-Rényi graphs, we used the same dataset as in |Yu et al.| (2023)) with
500 nodes and an average degree of 80. Again, with a noise level of 20%, our chaining GNNs
clearly outperform the existing learning algorithms, as we obtain a perfect accuracy (as opposed to
an accuracy of zero in|Yu et al.,| (2023) and |Chen et al.| (2020) without any seed). We see in Table
that in this dense setting, FAQ(D.y) is very competitive but is still slightly outperformed by our
chaining FGNNs (orange curve with Proj and red curve with FAQ, top). In terms of number of
common edges, our chained FGNNs does not perform well with Proj but performs best with FAQ,
see Table where the level of noise used for training was 24%.

Figure|10| gives the performance of our chained GNNs trained at noise level 0.24 for sparse Erd6s-
Rényi graphs with average degree d = 80 and size n = 500.

27



Under review as a conference paper at ICLR 2026

Table 15: Number of common edges (nce) defined in (@) for sparse Erdds-Rényi graphs as a function
of the noise pyoise. FGNN refers to the architecture in Section E and ChFGNN to our chained
FGNNSs. Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 4 (NCE) NOISE 0 0.05 0.1 0.15 0.2 025 0.3 0.35
BASELINES PROJ(Dcx) 997 950 853 499 195 130 115 112
FAQ(Dcx) 997 950 898 847 723 504 487 485
TRAINING 0.05 CHFGNN PrROJ 997 950 885 630 116 95 87 83
CHFGNN FAQ 997 950 898 761 607 495 485 481
TRAINING 0.10 CHFGNN PrROJ 997 950 897 828 370 99 90 86
CHFGNN FAQ 997 950 899 845 606 501 487 483
TRAINING 0.15 CHFGNN PROJ 996 950 898 840 768 511 254 86
CHFGNN FAQ 997 950 899 846 791 651 520 484
TRAINING 0.20 CHFGNN PrROJ 996 950 898 846 792 665 456 338
CHFGNN FAQ 997 950 899 849 800 715 596 529
TRAINING 0.22 CHFGNN PrROJ 997 950 898 845 790 694 503 319
CHFGNN FAQ 997 950 899 849 800 730 626 534
TRAINING 0.24 CHFGNN PrRoJ 997 950 897 844 789 686 480 296
CHFGNN FAQ 997 950 899 849 800 726 613 527
TRAINING 0.26 CHFGNN PrRoJ 997 949 892 834 770 672 499 338
CHFGNN FAQ 997 950 899 849 800 731 626 537
TRAINING 0.28 CHFGNN PROJ 996 934 836 724 612 504 374 311
CHFGNN FAQ 997 950 899 848 799 732 599 530
TRAINING 0.30 CHFGNN PROJ 996 897 726 566 446 345 271 246
CHFGNN FAQ 997 950 898 848 797 704 552 513
TRAINING 0.35 CHFGNN PROJ 995 860 578 347 219 173 159 134
CHFGNN FAQ 997 950 898 847 702 524 494 489
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Figure 10: Dense Erds-Rényi graphs: acc (top) and nce (bottom) as a function of the noise level.
Chained FGNNs were trained at noise level 0.25. gnn (resp. gnn_faq) for chained FGNNs with
Proj (resp. FAQ) as the last step. faq for FAQ(D.y) and faq(p) for FAQ(7*).

Each line in Tables[I6]and[T7|corresponds to a chained FGNN trained at a given level of noise (given
on the left) and tested for all different noises.
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Table 16: Accuracy (acc) defined in (B) for dense Erd6s-Rényi graphs as a function of the noise
Proise- FGNN refers to the architecture in Section M and ChFGNN to our chained FGNNs. Proj
and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 80 (Acc) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
BASELINES PROJ(Dcx) 100. 100. 100. 60.8 14.3 43 1.8 1.1
FAQ(Dcx) 100. 100. 100. 100. 100. 21.2 0.9 0.5

TRAINING 0.05 CHFGNN ProJ 100. 100. 99.8 16.0 595 276 1.77 1.01
CHFGNN FAQ 100. 100. 100. 100. 54.4 1.16 0.72 0.47

TRAINING 0.10 CHFGNN ProJ 100. 100. 100. 889 7.49 347 199 1.16
CHFGNN FAQ 100. 100. 100. 89.0 80.0 6.58 0.85 0.52

TRAINING 0.15 CHFGNN Projy 100. 100. 999 999 75.0 357 2.14 1.21
CHFGNN FAQ 100. 100. 100. 100. 75.1 3.85 0.85 0.55

TRAINING 0.20 CHFGNN ProJ 100. 100. 100. 99.9 94.0 229 2.06 1.22
CHFGNN FAQ  100. 100. 100. 100. 95.0 227 0.83 0.52

TRAINING 0.22 CHFGNN ProJ 100. 100. 100. 999 979 495 221 1.25
CHFGNN FAQ 100. 100. 100. 100. 99.0 50.5 1.00 0.52

TRAINING 0.24 CHFGNN ProJ 100. 999 935 834 674 340 216 1.33
CHFGNN FAQ 100. 100. 100. 100. 98.1 57.6 0.96 0.55

TRAINING 0.26 CHFGNN ProJ 100. 999 783 394 13.0 391 2.07 1.29
CHFGNN FAQ 100. 100. 100. 100. 94.1 575 0.82 0.54

TRAINING 0.28 CHFGNN ProJ 100. 99.8 70.7 31.2 9.88 394 201 1.19
CHFGNN FAQ 100. 100. 100. 100. 84.7 12.7 0.83 0.51

TRAINING 0.30 CHFGNN ProJ 100. 99.5 623 242 827 328 192 1.18
CHFGNN FAQ 100. 100. 100. 100. 80.7 3.24 0.81 0.49

TRAINING 0.35 CHFGNN ProJ 100. 96.1 47.8 183 6.86 347 192 1.14
CHFGNN FAQ  100. 100. 100. 100. 69.7 8.52 0.77 0.52

A.13 ADDITIONAL RESULTS FOR REGULAR GRAPHS
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Figure 11: Regular graphs: acec (top) and nce (bottom) as a function of the noise level. Chained
FGNNs were trained at noise level 0.1. gnn (resp. gnn_faq)for chained FGNNs with Proj (resp.
FAQ) as the last step. faq for FAQ(D.), faq(p) for FAQ(7*) and p for nce(7*).

Finally, we propose a new dataset of regular graphs with 500 nodes and an average degree of 10.
This is a particularly challenging setting. Indeed, Table (18| shows that FAQ(D,) always fails to
solve the graph matching problem here. Similarly, we know that MPNN’s are not expressive enough
to deal with regular graphs|Xu et al.|(2018)). In view of the following result, we conjecture that using
MPNN would not provide a better estimation of the graph matching problem than D.

Theorem A.2. (Tinhofer (1991) G4 and Gg are fractionally isomorphic, i.e. minpep, ||[AD —
DB||% = 0, if and only if I-WL does not distinguish G 4 and G .
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Table 17: Number of common edges (nce) defined in (@) for dense ErdSs-Rényi graphs as a function
of the noise pyoise. FGNN refers to the architecture in Section E and ChFGNN to our chained

FGNNSs. Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 80 (NCE) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
BASELINES PROJ(Dcx) 19964 18987 17966 8700 3888 3646 3633 3624
FAQ(Dcx) 19964 18987 17968 16990 15972 7922 6272 6276
TRAINING 0.05 CHFGNN PRrROJ 19964 18987 17941 3794 3457 3421 3429 3411
CHFGNN FAQ 19964 18987 17968 16990 11408 6244 6252 6253
TRAINING 0.10  CHFGNN PRrOJ 19964 18987 17968 15479 3522 3459 3453 3449
CHFGNN FAQ 19964 18987 17968 15811 13935 6681 6251 6257
TRAINING 0.15 CHFGNN PRrOJ 19964 18987 17967 16989 12842 3470 3469 3456
CHFGNN FAQ 19964 18987 17968 16990 13544 6421 6254 6256
TRAINING 0.20 CHFGNN PROJ 19964 18987 17968 16990 15216 6113 3483 3472
CHFGNN FAQ 19964 18987 17968 16990 15487 8172 6258 6254
TRAINING 0.22 CHFGNNPROJ 19964 18987 17968 16987 15701 9189 3644 3628
CHFGNN FAQ 19964 18987 17968 16990 15876 10614 6257 6263
TRAINING 0.24 CHFGNN PRrROJ 19964 18969 16241 13028 9561 6166 3615 3591
CHFGNN FAQ 19964 18987 17968 16990 15779 11227 6258 6255
TRAINING 0.26 CHFGNN PRrROJ 19964 18976 12528 5795 3925 3626 3591 3545
CHFGNN FAQ 19964 18987 17968 16990 15388 6515 6257 6257
TRAINING 0.28 CHFGNN PrROJ 19964 18948 10846 4975 3756 3587 3542 3512
CHFGNN FAQ 19964 18987 17968 16990 14424 7207 6253 6256
TRAINING 0.30 CHFGNN PrOJ 19964 18861 9289 4419 3651 3489 3478 3472
CHFGNN FAQ 19964 18987 17968 16990 14032 6354 6254 6258
TRAINING 0.35 CHFGNN PRrOJ 19964 17850 6943 4003 3578 3512 3492 3461
CHFGNN FAQ 19964 18987 17968 16990 12877 6853 6254 6256

In contrast, our FGNN architecture defined in Section [A-4]is able to deal with regular graphs and
our chaining procedure learns the correct information about the graph matching problem when the
noise is low enough.

Note that we are in a setting where FAQ(7*) # 7* as soon as the noise level is above 5% so that
7% # 7478, In this case, we believe that 725 = FAQ(7*) (but to check it we should solve
the graph matching problem!).In Figure the training was done with a noise level of 10% so that
labels were noisy. Still performances of our chained FGNNs with FAQ are very good. We do not
know of any other algorithm working in this setting.
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Table 18: Accuracy (acc) defined in (3) for Regular graphs as a function of the noise ppoise. FGNN
refers to the architecture in Section [A.4] and ChFGNN to our chained FGNNs. Proj and FAQ are
used to produce a permutation (from the similarity matrix computed).

REGULAR RANDOM GRAPHS WITH DEGREE 10

REGULAR (ACC) NOISE 0 0.05 0.1 0.15 0.2
BASELINES PROJ(Dcx) 02 02 03 01 02
FAQ(Dcx) 0.2 0.2 0.2 0.2 0.2

TRAINING 0.05 CHFGNN ProJ 100. 952 2.60 0.67 0.27
CHFGNN FAQ 100. 95.6 831 049 0.24

TRAINING 0.07 CHFGNN ProJ 100. 953 34.6 0.70 0.27
CHFGNN FAQ 100. 95.6 36.0 0.54 0.25

TRAINING 0.09 CHFGNN ProJ 100. 952 544 0.86 0.34
CHFGNN FAQ 100. 956 55.6 0.78 0.22

TRAINING 0.11 CHFGNN ProJ 100. 724 30.5 0.86 0.27
CHFGNN FAQ 100. 956 61.8 0.70 0.25

TRAINING 0.13 CHFGNN PrROJ 79.2 169 2.13 0.55 0.25
CHFGNN FAQ 100. 95.6 2.14 0.37 0.24

TRAINING 0.15 CHFGNN PrROJ 604 13.3 1.69 0.52 0.30
CHFGNN FAQ 100. 95.6 1.37 034 0.21

Each line in Tables[I8]and[T9|corresponds to a chained FGNN trained at a given level of noise (given
on the left) and tested for all different noises.

Table 19: Number of common edges (nce) defined in (@) for Regular graphs as a function of the
NOise Phoise. FGNN refers to the architecture in Section @ and ChFGNN to our chained FGNNs.
Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

REGULAR RANDOM GRAPHS WITH DEGREE 10

REGULAR (NCE) NOISE 0 0.05 0.1 0.15 0.2
BASELINES PROJ(Dcx) 51 51 50 49 50
FAQ(Dcx) 385 425 456 369 496

TRAINING 0.05 CHFGNN ProjJ 2500 2034 178 101 100
CHFGNN FAQ 2500 2059 901 835 835

TRAINING 0.07 CHFGNN PrOJ 2500 2036 741 103 172
CHFGNN FAQ 2500 2059 1193 836 852

TRAINING 0.09 CHFGNN ProJ 2500 2034 1105 281 95
CHFGNN FAQ 2500 2059 1381 871 836

TRAINING 0.11 CHFGNN PRrROJ 2500 1343 563 192 114
CHFGNN FAQ 2500 2059 1438 850 837

TRAINING 0.13 CHFGNN PrROJ 1608 210 108 88 71
CHFGNN FAQ 2500 2059 841 836 834

TRAINING 0.15 CHFGNN PrOJ 984 163 96 86 87
CHFGNN FAQ 2500 2059 837 836 836

A.14 LLM USAGE

Large language models (LLMs) were employed in this work to assist with grammatical and syntactic
corrections, to improve the clarity and readability of sentences and paragraphs, and to support the
generation of illustrative figures.
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A.15 REPRODUCIBILITY STATEMENT
To ensure reproducibility, we provide the complete codebase used for training and inference, which

produces all results reported in this paper. Detailed descriptions of hyperparameters, training proce-
dures, and evaluation metrics are included in the main text and appendix.
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