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ABSTRACT

Graph neural networks (GNNs) have struggled to outperform traditional optimiza-
tion methods on combinatorial problems, limiting their practical impact. We ad-
dress this gap by introducing a novel chaining procedure for the graph alignment
problem—a fundamental NP-hard task of finding optimal node correspondences
between unlabeled graphs using only structural information.
Our method trains a sequence of GNNs where each network learns to iteratively
refine similarity matrices produced by previous networks. During inference, this
creates a bootstrap effect: each GNN improves upon partial solutions by incor-
porating discrete ranking information about node alignment quality from prior
iterations. We combine this with a powerful architecture that operates on node
pairs rather than individual nodes, capturing global structural patterns essential
for alignment that standard message-passing networks cannot represent.
Extensive experiments on synthetic benchmarks demonstrate substantial improve-
ments: our chained GNNs achieve over 3× better accuracy than existing methods
on challenging instances, and uniquely solve regular graphs where all competing
approaches fail. When combined with traditional optimization as post-processing,
our method substantially outperforms state-of-the-art solvers on the graph align-
ment benchmark.

1 INTRODUCTION

”Combinatorial optimization searches for an optimum object in a finite collection of objects. Typ-
ically, the collection has a concise representation (like a graph), while the number of objects is
huge.”(Schrijver et al., 2003) This field bridges discrete mathematics, mathematical programming,
and computer science, with applications spanning logistics, network design, and resource allocation.
Machine learning offers a promising approach to combinatorial optimization (CO) by exploiting pat-
terns in problem instances to design faster algorithms for specific problem families (Bengio et al.,
2021). Graph neural networks (GNNs) emerge as natural tools for this integration, given the inher-
ently discrete and graph-structured nature of most CO problems (Cappart et al., 2023).

Limited success of learning approaches. Despite significant research efforts, GNN-based methods
have struggled to outperform traditional specialized solvers on most CO problems. The traveling
salesperson problem exemplifies this challenge—while receiving substantial attention since (Vinyals
et al., 2015), GNN approaches remain limited to small-scale instances. Similarly, simple greedy
heuristics continue to outperform sophisticated GNNs on problems like maximum independent set
(Angelini & Ricci-Tersenghi, 2023; Böther et al., 2022).

The graph matching problem can be cast as a combinatorial graph alignment problem (GAP).
Machine learning methods have been widely applied in related areas such as pattern recognition
(Conte et al., 2004), computer vision (Sun et al., 2020), and social network analysis (Narayanan
& Shmatikov, 2008) (see Section A.4 for further discussion). Their motivation is that in noisy
real-world data the ground-truth matching may deviate from the mathematically optimal solution,
making it more effective to learn a matching directly from data. In this work, however, we focus
strictly on the combinatorial optimization setting, where only the mathematically optimal solution
is relevant. Accordingly, we use the term graph alignment rather than graph matching.
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Table 1: Approximation quality ALG
OPT for sparse, dense and regular random graphs. Proj and FAQ

are used to produce a permutation from the convex relaxation solution Dcx or from the similarity
matrix computed by FGNN or chained FGNN (ChFGNN).

APPROXIMATION QUALITY ALG
OPT FOR RANDOM GRAPHS (IN %).

TYPE OF GRAPHS SPARSE DENSE REGULAR

BASELINES PROJ(DCX) 17.3 24.4 2.9
(NON-NEURAL) FAQ(DCX) 67.1 53 27

BASELINES FGNN PROJ 17.8 23.6 6.7
(NEURAL) FGNN FAQ 71.1 47 54

CHAINING CHFGNN PROJ 95.8 44 67.1
CHAINING CHFGNN FAQ 98.8 77.4 81.8

The graph alignment problem (GAP) provides an ideal testbed for exploring GNN capabilities in
CO. GAP seeks the node correspondence between two graphs that maximally aligns their edge
structures—a fundamental problem encompassing graph isomorphism as a special case. In its gen-
eral form, GAP reduces to the NP-hard quadratic assignment problem (QAP).

Iterative refinement through chaining. We introduce a novel technique—chaining of GNNs—that
for the first time demonstrates GNN methods outperforming state-of-the-art specialized solvers on
the combinatorial graph alignment problem. Our approach combines multiple GNNs in an iterative
refinement procedure, with each network learning to improve upon the previous iteration’s solution.
Our chaining procedure trains a sequence of GNNs where each network learns to enhance partial
solutions produced by previous networks. This creates a bootstrap effect during inference, where
GNNs iteratively refine alignment estimates. The approach can be combined with traditional solvers
like the Frank-Wolfe-based FAQ algorithm (Vogelstein et al., 2015), creating hybrid methods that
outperform both pure learning and pure optimization approaches.

Table 1 illustrates our key results across different graph types. To evaluate how close our algorithm
is to the best possible solution, we measure its approximation quality1 as ALG

OPT in percent, where
ALG is the number of aligned edges obtained by our algorithm and OPT is the number of aligned
edges of the optimal solution. A score of 100% corresponds to optimality, and lower values indicate
a smaller fraction of the optimal alignment achieved. Our chained GNNs, particularly when coupled
with FAQ post-processing (ChGNN FAQ), consistently achieve the best performance.

We use synthetic datasets for both training and evaluation to control problem difficulty and assess
generalization. In doing so, we follow the standard benchmarking methodology of combinatorial op-
timization, which favors randomly generated instances (Skorin-Kapov, 1990; Taillard, 1991). Unlike
real-world data, which is often either too trivial or intractably difficult, synthetic instances enable
more robust and fine-grained comparisons between algorithms.

We address the graph alignment problem, which we formulate as a machine learning task in Section
2. While traditional optimization methods have so far surpassed learning-based approaches for this
problem (Section 4), we introduce a method that reverses this trend. Our main contribution is a
novel training and inference procedure, the chaining procedure, where sequential GNNs learn to im-
prove partial solutions through iterative refinement (Section 3). This procedure leverages a modified
Folklore-type GNN architecture with enhanced expressiveness (Section A.2), making it particularly
effective on challenging regular graphs where standard methods fail. As demonstrated in Section 5,
our chained GNNs coupled with FAQ post-processing, outperform all existing solvers on synthetic
graph alignment benchmarks. These findings suggest that iterative refinement via chained learning
offers a promising general framework for advancing GNN performance on other combinatorial op-
timization (CO) problems, potentially bridging the gap between machine learning and traditional
optimization.

Mathematical notations. Let G = (V,E) be a simple graph with V = {1, . . . , n} and adjacency
matrix A ∈ {0, 1}n×n, where Aij = 1 if (i, j) ∈ E and 0 otherwise. Let Sn denote the set of

1In the algorithms literature, the approximation ratio is traditionally written as OPT
ALG ≥ 1, so that an algorithm

is called a k-approximation if OPT/ALG ≤ k. We instead adopt the ALG
OPT formulation, which is more in line

with evaluation metrics in machine learning, where higher scores denote better performance.
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permutations of V , with each π ∈ Sn associated to a permutation matrix P ∈ {0, 1}n×n defined by
Pij = 1 iff π(i) = j. The set of doubly stochastic matrices is denoted Dn. For A,B ∈ Rn×n, the
Frobenius inner product and norm are ⟨A,B⟩ = trace(A⊤B) and ∥A∥F =

√
⟨A,A⟩, respectively.

2 FROM COMBINATORIAL OPTIMIZATION TO LEARNING

This section introduces the graph alignment problem (GAP) from a combinatorial optimization per-
spective, presents the state-of-the-art FAQ algorithm, and describes how we formulate GAP as a
learning problem using synthetic datasets with controllable difficulty.

2.1 GRAPH ALIGNMENT IN COMBINATORIAL OPTIMIZATION

Problem formulation. Given two n × n adjacency matrices A and B representing graphs GA and
GB , the graph alignment problem seeks to find the permutation that best aligns their structures.
Formally, we minimize the Frobenius norm:

GAP(A,B) = min
π∈Sn

∑
i,j

(
Aij −Bπ(i)π(j)

)2
= min

P∈Sn

∥AP − PB∥2F , (1)

where we used the identity ∥A−PBPT ∥2F = ∥AP−PB∥2F for permutation matrices P . Expanding
the right-hand term, we see that minimizing (1) is equivalent to maximizing the number of matched
edges:

max
P∈Sn

⟨AP,PB⟩ = max
π∈Sn

∑
i,j

AijBπ(i)π(j). (2)

This formulation connects GAP to the broader class of Quadratic Assignment Problems (QAP)
(Burkard et al., 1998).

Computational complexity. The GAP is computationally challenging, as it reduces to several well-
known NP-hard problems. For instance, when GA has n vertices and GB is a single path or cycle,
GAP becomes the Hamiltonian path/cycle problem. When GB consists of two cliques of size n/2,
we recover the minimum bisection problem. More generally, solving (1) is equivalent to finding a
maximum common subgraph, which is APX-hard (Crescenzi et al., 1995).

Performance metrics. We denote an optimal solution as πA→B . We evaluate alignment quality
using two complementary metrics (that should be maximized):

Accuracy: acc(π, πA→B) =
1

n

n∑
i=1

1(π(i) = πA→B(i)) (3)

Common edges: nce(π) =
1

2

∑
i,j

AijBπ(i)π(j) (4)

Accuracy measures the fraction of correctly matched nodes, while the number of common edges
quantifies structural similarity. In Table 1, the ratio ALG

OPT is computed as nce(πALG)
nce(πA→B)

.

2.2 CONTINUOUS RELAXATIONS AND THE FAQ ALGORITHM

Relaxation approach. Since the discrete optimization in (1) is intractable, we consider continu-
ous relaxations where the discrete permutation set Sn is replaced by the continuous set of doubly
stochastic matrices Dn in (1) or (2):

• Convex relaxation:
arg min

D∈Dn

∥AD −DB∥2F = Dcx (5)

This yields a convex optimization problem with guaranteed global optimum.
• Indefinite relaxation:

max
D∈Dn

⟨AD,DB⟩ (6)

This non-convex formulation often provides better solutions but is NP-hard in general due
to its indefinite Hessian (Pardalos & Vavasis, 1991).

3
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Solution extraction. Both relaxations produce doubly stochastic matrices D that must be projected
to permutation matrices. This projection solves the linear assignment problem maxP∈Sn

⟨P,D⟩,
efficiently solved by the Hungarian algorithm in O(n3) time (Kuhn, 1955). We denote this projection
as Proj(D) ∈ Sn.

FAQ algorithm. The Fast Approximate Quadratic (FAQ) algorithm proposed by Vogelstein et al.
(2015) approximately solves the indefinite relaxation (6) using Frank-Wolfe optimization. Unlike
the convex relaxation, FAQ’s performance depends critically on initialization. We denote the FAQ
solution with initial condition D as FAQ(D) ∈ Sn. As demonstrated in Lyzinski et al. (2015), FAQ
often significantly outperforms simple projection: FAQ(Dcx) typically yields much better solutions
than Proj(Dcx), especially for challenging instances. This improvement motivates our approach
of providing FAQ with better initializations through learned similarity matrices.

2.3 SYNTHETIC DATASETS: CONTROLLED DIFFICULTY THROUGH NOISE

Connection to graph isomorphism. When graphs GA and GB are isomorphic (GAP(A,B) =
0), the alignment problem reduces to graph isomorphism (GI). While GI’s complexity remains
open—it’s neither known to be in P nor proven NP-complete—Babai (2016)’s recent breakthrough
shows it’s solvable in quasipolynomial time. We study a natural generalization: noisy graph isomor-
phism, where noise level controls problem difficulty. At zero noise, graphs are isomorphic; as noise
increases, they become increasingly different, making alignment more challenging.

Correlated random graph model. Our datasets consist of correlated random graph pairs (GA, GB)
with identical marginal distributions but controllable correlation. This design allows systematic
difficulty variation while maintaining statistical properties. The generation process involves: (i)
Create correlated graphs GA and GB with known alignment; (ii) Apply random permutation π⋆ ∈
Sn to GB , yielding G′

B : (iii) Use triplets (GA, G
′
B , π

⋆) for supervised learning.

We employ three graph families—Bernoulli, Erdős-Rényi, and Regular—with parameters: Num-
ber of nodes: n; Average degree: d; Noise level: pnoise ∈ [0, 1], see Section A.1 for precise
definitions. The noise parameter controls edge correlation: the graphs GA and GB (before applying
the random permutation) share (1− pnoise)nd/2 edges on average (with pnoise = 0 yielding isomor-
phic graphs). For low noise levels, we expect π⋆ = πA→B , providing clean supervision. However,
for high noise, the planted permutation π⋆ may not be optimal, introducing label noise that makes
learning more challenging.

3 LEARNING THROUGH CHAINING

Overview. The chaining procedure works by iteratively refining graph alignment estimates through
three key operations: (1) computing node similarities, (2) extracting and evaluating the current
best permutation, and (3) using this evaluation to generate improved node features. Each iteration
produces a better similarity matrix, leading to more accurate alignments.

3.1 CHAINING PROCEDURE

Step 1: Initial feature extraction and similarity computation. Given a mapping f that extracts
node features from a graph’s adjacency matrix A ∈ {0, 1}n×n and outputs f : {0, 1}n×n → Rn×d,
we compute node feature matrices f(A) and f(B) for graphs GA and GB . The initial similarity
matrix captures pairwise node similarities via their feature dot products:

SA→B,(0) = f(A)f(B)T ∈ Rn×n. (7)

Here, SA→B,(0)
ij measures the similarity between node i ∈ GA and node j ∈ GB based on their

learned features.

Step 2: Permutation extraction and node quality scoring. From a similarity matrix SA→B , we
extract the best permutation estimate by solving the linear assignment problem: π = Proj(SA→B)
where π = argmaxπ∈Sn

∑
i S

A→B
iπ(i) . This permutation π : GA → GB represents our current best

guess for the optimal alignment πA→B .

4
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1

2

3
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a

b

c

d

π

Graph GA Graph GB Node scores:
score(1) = 2
score(2) = 1
score(3) = 1
score(4) = 0

Rankings:
rA: [1, 2, 3, 4]
rB : [c, a, b, d]

Figure 1: Illustration of Step 2. The permutation π maps 1→c, 2→a, 3→b, 4→d. Green edges show
matches: edge 1-2 with a-c, and edge 1-3 with b-c. Node 1 has the highest score (2 matched edges),
nodes 2 and 3 each have 1 matched edge, and node 4 has no matched edges.

To evaluate alignment quality, we compute a score for each node i in graph A: score(i) =∑
j AijBπ(i)π(j). Intuitively, score(i) counts the number of edges incident to node i that are cor-

rectly matched under the current permutation π—higher scores indicate better-aligned nodes (see
Figure 1).

We then rank nodes in GA by decreasing score, obtaining a ranking rA ∈ Sn such that:

score(rA(1)) ≥ score(rA(2)) ≥ · · · ≥ score(rA(n)). (8)

The corresponding ranking for GB is derived as rB(i) = π(rA(i)), ensuring that highly-ranked
nodes in both graphs correspond to each other under the current permutation (see Figure 1). Note
that when inequalities in (8) are strict, the rankings uniquely encode the permutation π (with top-
ranked nodes being those most reliably aligned).

Step 3: Ranking-enhanced feature learning. We now incorporate the ranking information to
compute improved node features. Using a mapping g : {0, 1}n×n × Sn → Rn×d that takes both
the graph structure and node rankings as input, we compute enhanced feature matrices g(A, rA) and
g(B, rB). The new similarity matrix is:

SA→B = g(A, rA)g(B, rB)T ∈ Rn×n. (9)

This ranking-enhanced similarity matrix SA→B,(1) = g(A, rA,(0))g(B, rB,(0))T should be more
informative than the initial SA→B,(0) since it incorporates knowledge about which nodes align well.
Consequently, we expect Proj(SA→B,(1)) to be closer to the optimal πA→B than Proj(SA→B,(0)).

Iterative refinement. The key insight is to iterate steps 2 and 3 (see Figure 2) with different learned
mappings g(1), g(2), . . . at each iteration, progressively improving the similarity matrix and resulting
permutation. This creates a bootstrap effect where each iteration leverages the improved alignment
from the previous step. The complete chaining procedure requires a sequence of mappings:

f : {0, 1}n×n → Rn×d, r : {0, 1}n×n × {0, 1}n×n × Rn×n → Sn × Sn, (10)

g(1) : {0, 1}n×n × Sn → Rn×d, g(2) : {0, 1}n×n × Sn → Rn×d, . . . (11)

The procedure flows as follows: f computes the initial similarity matrix SA→B,(0) via (7), then r
computes rankings rA,(0), rB,(0) via (8), then g(1) computes the refined similarity matrix SA→B,(1)

via (9), and so forth, see Figure 2.

3.2 TRAINING AND INFERENCE WITH CHAINED GNNS

The ranking step r is not differentiable, preventing end-to-end training. Instead, we train each
GNN in the chain sequentially, which proves both practical and effective. This approach allows our
method to explicitly learn from discrete permutation decisions at each step, which is crucial for the
iterative improvement process.

Sequential training procedure. The mappings f , g(1), g(2), . . . are implemented using graph neural
networks (GNNs). We train the GNNs f , g(1), g(2), . . . , g(k) sequentially, where each network is

5
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GA GB

f(A) f(B)

SA→B,(0)

rA,(0) rB,(0)

g(1)(A, rA,(0)) g(1)(B, rB,(0))

SA→B,(1)

rA,(1) rB,(1)

g(2)(A, rA,(1)) g(2)(B, rB,(1))

...

Step 1

Step 2

Step 3

Step 2

Step 3

Iteration 0

Iteration 1

Initial
feature

extraction

Ranking by
alignment

quality

Ranking-enhanced
features

Chaining Procedure

Figure 2: Overview of the chaining procedure. Starting from input graphs GA and GB , we first (1)
extract features and compute similarities, then iteratively (2) rank nodes by alignment quality, and
(3) use rankings to enhance features and similarities.

optimized to improve upon the previous iteration’s output. For training data consisting of graph
pairs (GA, GB) with known ground truth permutation π⋆, we define a cross-entropy loss for any
similarity matrix SA→B :

L(SA→B , π⋆) = −
∑
i

log
(
softmax(SA→B)

)
iπ⋆(i)

. (12)

This loss encourages the similarity matrix to assign high values to the correct node correspondences
specified by π⋆. The training proceeds as follows:

1. Train f : Minimize L(SA→B,(0), π⋆) to learn initial feature extraction.

2. Train g(1): Fix f , compute rA,(0) and rB,(0) for the training data, then minimize
L(SA→B,(1), π⋆).

3. Train g(2): Fix f , compute rA,(0), rB,(0) then fix g(1), compute rA,(1), rB,(1), then mini-
mize L(SA→B,(2), π⋆).

4. Continue: Repeat this process for g(3), g(4), . . . , g(k).

This sequential approach ensures that each GNN learns to improve upon the alignment quality
achieved by all previous networks in the chain.

Inference procedure. During inference on new graph pairs (GA, GB), we apply the trained net-
works sequentially: f produces SA→B,(0), then alternating applications of r and g(ℓ) produce re-
fined similarity matrices SA→B,(1), SA→B,(2), . . . , SA→B,(L). Each similarity matrix SA→B,(ℓ)

represents a progressively better estimate of node correspondences. To extract a discrete permu-
tation from any SA→B,(ℓ), we apply either the Hungarian algorithm Proj or the FAQ algorithm,
yielding candidate permutation π(ℓ). We can then estimate its performance by computing nce(π(ℓ))
defined in (4)—a metric that can be computed without knowing the optimal solution. In practice, we
observe that nce(π(ℓ)) typically increases with ℓ, confirming that each iteration improves alignment
quality.

6
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Looping for enhanced performance. An important observation is that the final trained network
g(L) can be applied multiple times to further refine the solution. Since g(L) is trained to improve
partial solutions, repeatedly applying g(L) (with intermediate ranking steps r) often yields addi-
tional improvements. We call this technique looping and explore its benefits in Section 5.2. This
allows us to achieve better performance without training additional networks, simply by iterating
the refinement process as long as the number of common edges increases.

4 RELATED WORK: STATE-OF-THE-ART AND LEARNING LIMITATIONS

Additional related work on machine learning approaches to graph matching is discussed in Section
A.4. In this section, we restrict our attention to the combinatorial optimization perspective.

Non-learning methods. Among traditional optimization approaches, FAQ represents the state-of-
the-art for correlated random graphs (Lyzinski et al., 2015), outperforming the convex relaxation,
GLAG algorithm (Fiori et al., 2013), PATH algorithm (Zaslavskiy et al., 2008), Umeyama’s spectral
method (Umeyama, 1988), and linear programming approaches (Almohamad & Duffuaa, 1993).
Notably, FAQ’s theoretical properties on random graphs remain an open mathematical problem,
with empirical benchmarks serving as the primary validation method—an approach we adopt for
our GNN-based methods.

Learning approaches and their limitations. Recent GNN-based methods for graph alignment
include approaches by Yu et al. (2023), PGM (Kazemi et al., 2015), MGCN (Chen et al., 2020),
and MGNN (Wang et al., 2021). Critically, (Yu et al., 2023) used suboptimal initializations in their
comparisons with FAQ. Our experiments with proper initialization reveal that FAQ(Dcx) achieves
positive (even perfect) accuracy where learning methods fail entirely (see Section 5.1).

This analysis reveals a significant gap: before our work, FAQ(Dcx) represented the state-of-the-
art for GAP on correlated random graphs, substantially outperforming all existing learning
and GNN approaches. Our chaining procedure aims to bridge this gap by combining the expres-
siveness of GNNs with iterative refinement, ultimately providing FAQ with superior initializations
that improve upon both pure learning and pure optimization approaches.

5 EMPIRICAL RESULTS AND COMPARISON TO FAQ

We evaluate our chaining procedure against FAQ Vogelstein et al. (2015), which represents the
state-of-the-art for graph alignment on correlated random graphs. We implement all GNN mappings
f , g(1), g(2), . . . , g(k) using the same architecture inspired by Folklore-type GNNs (Maron et al.,
2019), see Section A.2 for details about our FGNN. Our experiments compare three categories of
methods: (1) non-neural baselines using convex relaxation, (2) neural baselines using single-step
FGNNs, and (3) our chained FGNNs with iterative refinement. All methods can be combined with
Proj and FAQ as a post-processing step to extract a permutation (see Section 2.2).

5.1 MAIN RESULTS ON SYNTHETIC DATASETS

Table 2 presents comprehensive results across different graph types (with 500 nodes) and noise
levels. We evaluate on three challenging scenarios: sparse Erdős-Rényi graphs (average degree 4),
dense Erdős-Rényi graphs (average degree 80), and regular graphs (degree 10). The noise parameter
pnoise controls the difficulty, with higher values indicating more corrupted alignments.

Sparse and dense Erdős-Rényi graphs. For both sparse and dense graphs, our chained FGNNs
significantly outperform all baselines, particularly at challenging noise levels. At pnoise = 0.25,
chained FGNNs with FAQ post-processing achieve 85% accuracy on sparse graphs, compared to
only 13% for the non-neural FAQ baseline and 24% for single-step FGNNs. Note that pnoise = 0.2
corresponds to the setting of Yu et al. (2023) where none of the GNN-based methods achieve positive
accuracy. Notably, our FGNN architecture alone (without chaining) already outperforms the neural
baselines from Yu et al. (2023), demonstrating the importance of architectural expressiveness.

Regular graphs: a particularly challenging case. Regular graphs present a unique challenge
where standard approaches fail. The convex relaxation produces the uninformative barycenter ma-

7
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Table 2: Accuracy (acc) defined in (3) for Erdős-Rényi and regular graphs as a function of the noise
pnoise. FGNN refers to the architecture in Section A.2 and ChFGNN to our chained FGNNs. Proj
and FAQ are used to produce a permutation (from the similarity matrix computed).

SPARSE ERDŐS-RÉNYI GRAPHS WITH AVERAGE DEGREE 4

ER 4 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 0.98 0.97 0.90 0.59 0.23 0.09 0.04 0.02
(NON-NEURAL) FAQ(DCX) 0.98 0.98 0.96 0.95 0.73 0.13 0.04 0.02

BASELINES FGNN PROJ 0.98 0.94 0.74 0.44 0.23 0.12 0.06 0.03
(NEURAL) FGNN FAQ 0.98 0.98 0.96 0.95 0.81 0.24 0.07 0.03

CHAINING CHFGNN PROJ 0.98 0.98 0.96 0.94 0.91 0.82 0.49 0.08
CHAINING CHFGNN FAQ 0.98 0.98 0.96 0.95 0.93 0.85 0.52 0.09

DENSE ERDŐS-RÉNYI GRAPHS WITH AVERAGE DEGREE 80

ER 80 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 1 1 1 0.61 0.14 0.04 0.02 0.01
(NON-NEURAL) FAQ(DCX) 1 1 1 1 1 0.21 0.01 0.01

BASELINES FGNN PROJ 1 1 0.73 0.28 0.10 0.04 0.02 0.01
(NEURAL) FGNN FAQ 1 1 1 1 0.95 0.14 0.01 0.01

CHAINING CHFGNN PROJ 1 1 0.94 0.83 0.68 0.37 0.02 0.01
CHAINING CHFGNN FAQ 1 1 1 1 0.99 0.62 0.01 0.01

REGULAR RANDOM GRAPHS WITH DEGREE 10

REGULAR (ACC) NOISE 0 0.05 0.1 0.15 0.2

BASELINE FAQ(DCX) 0.002 0.003 0.003 0.002 0.003

BASELINES FGNN PROJ 1 0.31 0.03 0.005 0.003
(NEURAL) FGNN FAQ 1 0.95 0.10 0.005 0.002

CHAINING CHFGNN PROJ 1 0.95 0.54 0.009 0.003
CHAINING CHFGNN FAQ 1 0.96 0.56 0.008 0.002

trix Dcx = 1
n11

T , giving FAQ no useful initialization. Similarly, MPNNs cannot distinguish be-
tween nodes in regular graphs Xu et al. (2018), making them ineffective for this task. Table 2 shows
that only our FGNN architecture achieves meaningful performance on regular graphs. Our chained
FGNNs gets 56% accuracy at pnoise = 0.1 while all other methods essentially fail. This demonstrates
the critical importance of both architectural expressiveness and iterative refinement for challenging
graph alignment scenarios.

5.2 LOOPING: ENHANCED INFERENCE WITHOUT ADDITIONAL TRAINING

The chaining procedure trains L+1 FGNNs: f, g(1), . . . , g(L), with performance typically improv-
ing as L increases, see Table 3. Since g(L) refines partial solutions, looping where the final FGNN
g(L) is repeatedly applied with the ranking function r (Section 3) for up to Nloop iterations progres-
sively improves accuracy. This gain is shown in parentheses in Table 3 corresponding to the increase
in accuracy between no looping, i.e. Nloop = L+1 and looping with Nloop = 60. We see substantial

Table 3: Accuracy (acc) for sparse Erdős-Rényi graphs as a function of the number (L+1) of trained
FGNNs and in parentheses the gain due to looping (Nloop = 60 - Nloop = L+ 1). Last line: number
of loops for chained FGNNs as a function of the noise pnoise to get optimal nce.

NOISE 0.15 0.2 0.25 0.3 0.35

L+1=2 0.28 (+0.02) 0.15 (+0.02) 0.08 (+0.01) 0.04 (+0.01) 0.02 (+0.00)
L+1=6 0.59 (+0.01) 0.43 (+0.06) 0.21 (+0.11) 0.07 (+0.05) 0.03 (+0.01)
L+1=10 0.85 (+0.01) 0.72 (+0.06) 0.43 (+0.13) 0.11 (+0.19) 0.04 (+0.03)
L+1=14 0.91 (+0.00) 0.86 (+0.01) 0.57 (+0.13) 0.16 (+0.21) 0.04 (+0.04)
L+1=16 0.92 (+0.00) 0.88 (+0.01) 0.61 (+0.12) 0.19 (+0.26) 0.04 (+0.04)

#LOOP 15 23 88 91 73
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gain with looping particularly on harder instances (pnoise = 0.25 or 0.3), while incurring minimal
computational overhead. In order to get the better results in Table 2, we used looping as long as
nce continues to improve, capped at Nloop = 100 iterations. We see in the last line of Table 3 the
average number of loops performed before nce plateaus. The results indicate that more difficult
problems generally require more iterations, whereas extremely challenging cases (pnoise = 0.35)
yield no further improvements and thus converge with fewer loops.

5.3 TRAINING STRATEGY: OPTIMAL NOISE
SELECTION

A key finding is the importance of training noise
selection. Figure 3 shows that intermediate
noise levels (around pnoise = 0.22 for sparse
graphs) yield the best generalization. Train-
ing on too-easy instances produces models that
fail to generalize to harder cases, while training
on too-hard instances yields suboptimal perfor-
mance on easier problems. This “sweet spot”
balances challenge and learnability, enabling ro-
bust feature learning. All results in Tables 2
use models trained at these optimal noise levels,
tuned separately for each graph family.

5.4 COMPUTATIONAL EFFICIENCY
ANALYSIS

A fair comparison of running times between
FAQ(Dcx) and our chained GNN procedure is
challenging, so we focus on inference complex-
ity. While our method requires an initial GPU-
based training phase, this is assumed to be com-
pleted before solving new instances.
For FAQ(Dcx), each gradient step involves
solving a linear assignment problem (O(n3)),
and total runtime depends on the number of gra-
dient ascent iterations.

Figure 3: Each line corresponds to chained
FGNNs trained at a given level of noise and
evaluated across all different level of noises.
Performances are acc (in %) for sparse Erdős-
Rényi graphs with Proj as post-processing.

Our chaining procedure has two main costs as n grows: (i) an n × n matrix multiplication in the
graph layer, scaling as O(n3) but efficient on GPUs, with memory as the main bottleneck; and (ii)
computing ranks via a projection Proj of the similarity matrix in each iteration, an O(n3) CPU oper-
ation. Table 4 reports the average number of gradient ascent iterations in FAQ, starting from either
Dcx or the similarity matrix produced by our chained FGNN. The iteration count is substantially
lower with the chained FGNN, especially on hard instances (pnoise ∈ [0.15, 0.3]), indicating that the
similarity matrix from chaining provides a more accurate initialization than Dcx.

Table 4: Average number of gradient projections (Proj) in the Frank-Wolfe algorithm FAQ, with
initialization from either Dcx or the similarity matrix produced by the chained FGNNs.

ER 4 NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

FAQ(DCX) #ITER 3.0 3.2 6.2 15.6 31.4 25.8 24.2 25.6
CHFGNN FAQ #ITER 2.0 2.1 2.8 4.1 6.5 8.3 15.1 19.7

6 CONCLUSION

In summary, we introduced a chaining procedure with GNNs for tackling the combinatorial graph
alignment problem, achieving substantial performance gains and compatibility with existing solvers.
We further proposed a challenging benchmark of correlated regular graphs, for which no competing
algorithms are known. Our method extends naturally to the seeded variant of GAP, and we anticipate
that the chaining framework may generalize to other combinatorial problems, offering promising
directions for future research.

9
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Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich.
What’s wrong with deep learning in tree search for combinatorial optimization. ICLR, 2022.

Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic assignment problem
library. Journal of Global optimization, 10:391–403, 1997.
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A.1 CORRELATED RANDOM GRAPHS

In this section, we present the mathematical details for the various correlated random graphs model
used in this paper.

Bernoulli graphs. We start with the model considered in (Lyzinski et al., 2015). Given n the
number of nodes, ρ ∈ [0, 1] and a symmetric hollow matrix Λ ∈ [0, 1]n×n, define E = {{i, j}, i ∈
[n], j ∈ [n], i ̸= j}. Two random graphs GA = (VA, EA) and GB = (VB , EB) are ρ-correlated
Bernoulli(Λ) distributed, if for all {i, j} ∈ E , the random variables (matrix entries) Aij and Bij

are such that Bij ∼ Bernoulli(Λij) independently drawn and then conditioning on B, we have
Aij ∼ Bernoulli(ρBij + (1 − ρ)Λij) independently drawn. Note that the marginal distribution of
A and B are Bernoulli(ρΛ + (1 − ρ)Λ) distributed, i.e. the laws of A and B are the same (but
correlated).

In our experiments in Sections A.8.1 and A.8.2, we consider the same case as in (Lyzinski et al.,
2015): n = 150 vertices, the entries of the matrix Λ are i.i.d. uniform in [α, 1 − α] with α = 0.1,
and we vary ρ.

Erdős-Rényi graphs. The Erdős-Rényi model is a special case of the Bernoulli model where
Λ is the matrix with all entries equal to λ. To be consistent with the main notation, we define
pnoise = (1 − λ)(1 − ρ) where ρ was the correlation above and λ = d/n where d is the average
degree of the graph. Hence the random graphs GA and GB are correlated Erdős-Rényi graphs when
P(Ai,j = Bi,j = 1) = d

n (1−pnoise) and P(Ai,j = 0, Bi,j = 1) = P(Ai,j = 1, Bi,j = 0) = d
npnoise.
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Table 5: Statistics of synthetic datasets.
name average number comparison train/val

degree of nodes sets

Bernoulli 70 150 FAQ(Dcx) (Lyzinski et al., 2015) 2000/200

Sparse Erdős-Rényi (ER 4) 4 500 MPNN (Yu et al., 2023) 200/100

Dense Erdős-Rényi (ER 80) 80 500 MPNN (Yu et al., 2023) 200/100

Large Erdős-Rényi 3 1000 Bayesian message passing 200/100
(Muratori & Semerjian, 2024)

Regular 10 500 new 200/100

Regular graphs. In this case, we first generate GA as a uniform regular graph with degree d and
then we generate GB by applying edgeswap to GA: if {i, j} and {k, ℓ} are two edges of GA then
we swap them to {i, ℓ} and {k, j} with probability pnoise.

A.2 GNN ARCHITECTURE AND EXPRESSIVENESS

Architecture choice and motivation. We implement all GNN mappings f , g(1), g(2), . . . , g(k)
using the same architecture inspired by Folklore-type GNNs (Maron et al., 2019). Unlike standard
message passing neural networks (MPNNs), this architecture operates on node pairs rather than
individual nodes, providing greater expressiveness at the cost of scalability (Maron et al., 2019).

The choice of a more expressive architecture is crucial for our approach. The success of the chain-
ing procedure critically depends on producing a high-quality initial similarity matrix SA→B(0) to
bootstrap the iterative refinement process. Standard MPNNs, which aggregate only local neighbor-
hood information, would produce similarity matrices based on limited local features—insufficient
for capturing the global structural patterns needed for effective graph alignment. This limitation has
been observed in prior work: Nowak et al. (2018) implemented a similar initial step using MPNNs
with limited success, while Azizian & Lelarge (2021) demonstrated the superiority of Folklore-type
GNNs for this task. As we show in Section 5, combining our expressive architecture with the chain-
ing procedure yields substantial performance improvements over single-step approaches.

Core architecture: Folklore-inspired residual layers. Our GNN’s main building block is a resid-
ual layer that processes hidden states for all node pairs (ht

i→j)i,j ∈ Rn×n×d, producing updated
states (ht+1

i→j)i,j ∈ Rn×n×d:

ht+1
i→j = ht

i→j +m1

(
ht
i→j ,

∑
ℓ

ht
i→ℓ ⊙m0(h

t
ℓ→j)

)
, (13)

where m0 : Rd → Rd and m1 : R2d → Rd are multilayer perceptrons (MLPs) with graph normal-
ization layers, and ⊙ denotes component-wise multiplication.

This design incorporates several improvements over the original Folklore-type GNN (Maron et al.,
2019):

• Residual connections: The skip connection ht
i→j + (·) enables deeper networks and more

stable training.
• Graph normalization: Inspired by Cai et al. (2021), this ensures well-behaved tensor

magnitudes across different graph sizes.
• Simplified architecture: We use only one MLP in the component-wise multiplication,

reducing memory requirements while maintaining expressiveness.

Input and output transformations. The complete architecture consists of three main components:

1. Input embedding: The adjacency matrix A ∈ {0, 1}n×n is embedded into the initial
hidden state h0

i→j ∈ Rn×n×d using a learned embedding layer that encodes edge pres-
ence/absence.
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2. Residual processing: Multiple residual layers (13) transform the node-pair representa-
tions, capturing complex structural relationships.

3. Node feature extraction: The final tensor hk
i→j ∈ Rn×n×d is converted to node features

Rn×d via max-pooling over the first dimension: nodei = maxj h
k
i→j .

Ranking integration for chained networks. The networks g(1), g(2), . . . must incorporate ranking
information in addition to graph structure. We achieve this through learned positional encodings
that map each node’s rank to a d-dimensional vector. These rank embeddings are concatenated with
the node features from the max-pooling layer, allowing the network to leverage both structural and
ranking information when computing enhanced similarities.

This architecture provides the expressiveness needed to capture global graph properties while re-
maining trainable through the sequential training procedure described in Section 3.2. While scal-
ability remains a limitation for very large graphs, the architecture proves highly effective for the
graph sizes considered in our experiments (up to 1000 nodes).

A.3 TECHNICAL DETAILS FOR THE GNN ARCHITECTURE AND TRAINING

By default, we use MLP for the functions m0 and m1 in (13) with 2 hidden layers of dimension
256. In all our experiments, we take a GNN with 2 residual layers. We used Adm optimizer with
a learning rate of 1e − 4 and the scheduler ReduceLROnPlateau from PyTorch with a patience
parameter of 3.

For Proj, we use the function linear sum assignment from scipy.optimize and for FAQ, we use the
function quadratic assignment from the same library. SciPy is a set of open source (BSD licensed)
scientific and numerical tools for Python. In order to compute Dcx solving (5), we implemented the
Frank-Wolfe algorithm.

For the training and inference, we used Nvidia RTX8000 48GB and Nvidia A100 80GB. For graphs
of size 500, we train on 200 graphs and validate on 100 graphs for 100 epochs.We run for L = 15
steps of chaining (obtaining 16 trained FGNNs: f, g(1), . . . , g(15)). The PyTorch code is available
as a supplementary material.

A.4 MORE RELATED WORK

Supervised learning approach of the graph matching problem has been greatly studied in the com-
puter vision literature (Wang et al., 2021), (Rolı́nek et al., 2020), (Zanfir & Sminchisescu, 2018),
(Gao et al., 2021), (Yu et al., 2021), (Jiang et al., 2022). (Fey et al., 2020) is closely related to our
work and proposes a two-stage architecture similar to our chaining procedure with MPNNs. The first
stage is the same as our first step but with a MPNN instead of our FGNN. Then the authors propose a
differentiable, iterative refinement strategy to reach a consensus of matched nodes. All these works
assume that non-topological node features are available and informative. This is a setting favorable
to GNNs as node-based GNN is effective in learning how to extract useful node representations
from high-quality non-topological node features. In contrast, we focus on the pure combinatorial
problem where no side information is available. In (Li et al., 2019), graph matching networks take
a pair of graphs as input and compute a similarity score between them. This algorithm can be used
to compute the value of the graph matching (1) but does not give the optimal permutation πA→B

between the two graphs which is the main focus of our work.

Regarding benchmarks for the GAP, we are not aware of any pubicly available dataset. The GAP
can be seen as a particular version of the QAP and some algorithms designed for the GAP can be
used for QAP instances (i.e. with weighted adjacency matrices). This is the case for the convex
and indefinite relaxations presented in Section 2.2 which can be used with real-valued matrices. In
particular, (Lyzinski et al., 2015) shows very good performances of FAQ on some QAP instances
from (Burkard et al., 1997). These instances are small (from 12 to 40 nodes) with full (integer-
valued) matrices. They are very far from the distribution of correlated random graphs used for
training in our work and we do not expect good performaces for such out-of-distribution instances
for any supervised learning algorithm.
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A.5 MODEL-BASED VERSUS SIMULATION-BASED ALGORITHMS

As explained in Section 2.3, we train and evaluate our supervised learning algorithms on correlated
random graphs. This choice connects our work to a rich theoretical literature on the correlated Erdős-
Rényi random graph ensemble, which has been extensively studied from an information-theoretic
perspective.

A.5.1 THEORETICAL FOUNDATIONS AND LIMITS

The theoretical analysis begins with Cullina & Kiyavash (2016), which establishes the information-
theoretic limit for exact recovery of π⋆ as the number of nodes n tends to infinity. In the sparse
regime, where the average degree d remains constant as n → ∞, exact recovery becomes impos-
sible. Subsequent work by Ganassali et al. (2021) and Ding & Du (2023) demonstrates that partial
recovery of π⋆ is only possible when pnoise < 1− d−1.

For the correlated Erdős-Rényi ensemble, the joint probability distribution is given by:

P(GA, GB) =

(
(1− pnoise)(n

2 − d(1 + pnoise))

dp2noise

)e(GA∧GB)

,

where e(GA ∧ GB) =
∑

i<j AijBij counts the common edges between graphs GA and GB . This
distribution reveals a crucial insight: the maximum a posteriori estimator of π∗ given GA and
the permuted graph G′

B is exactly a solution of the GAP on the (GA, G
′
B) instance.

A.5.2 MODEL-BASED APPROACHES: ACHIEVEMENTS AND LIMITATIONS

Recent theoretical advances have produced efficient polynomial-time algorithms (Ding et al., 2021;
Fan et al., 2023; Ding & Li, 2023; Ganassali et al., 2024a; Piccioli et al., 2022) that approximate
the probability distribution by exploiting structural properties like the local tree-like nature of sparse
random graphs. These algorithms achieve partial recovery (positive accuracy) when pnoise is suffi-
ciently small, though well below the information-theoretic threshold of 1− d−1.

However, a fundamental algorithmic threshold appears to exist. Recent work (Mao et al., 2023;
Ganassali et al., 2024b) suggests that no efficient algorithm can succeed for pnoise > palgo = 1 −√
α ≈ 0.419, where α is Otter’s constant, even when the average degree d is large.

While these model-based algorithms provide theoretical guarantees for correlated Erdős-Rényi
graphs, they suffer from significant practical limitations:

• Narrow applicability: Designed specifically for the correlated Erdős-Rényi model with
no guarantees outside this distribution

• Computational complexity: Despite polynomial-time guarantees, running times are often
impractical for real applications

• Limited scalability: Most implementations prioritize mathematical rigor over computa-
tional efficiency

Muratori & Semerjian (2024) represents a notable exception, focusing on making message-passing
algorithms (Ganassali et al., 2024a; Piccioli et al., 2022) more scalable while maintaining theoretical
guarantees.

A.5.3 FAQ: AN EMPIRICAL SURPRISE

Remarkably, the FAQ algorithm—which was not designed specifically for any random graph
model—empirically encounters the same algorithmic barrier predicted by theory. As shown in
Figure 4, FAQ’s performance degrades sharply near palgo, matching the theoretical predictions de-
spite lacking formal guarantees for this setting. FAQ only underperforms compared to specialized
message-passing methods Muratori & Semerjian (2024) when pnoise approaches palgo.

This empirical observation suggests that FAQ, through its continuous relaxation approach, implicitly
captures fundamental structural properties of the graph alignment problem that transcend specific
random graph models.
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Figure 4: Accuracy acc as a function of the noise level for correlated Erdős-Rényi random graphs
with size n = 1000 and average degree d = 3. Chained GNNs were trained at noise level 0.25 and
FAQ is used as the last step for the inference. The red curve labeled FAQ corresponds to FAQ(Dcx)
and the blue curve labeled message passing are results from (Muratori & Semerjian, 2024). The
dashed vertical line corresponds to the theoretical palgo = 1−

√
α above which no efficient algorithm

is known to succeed.

A.5.4 OUR SIMULATION-BASED APPROACH

To circumvent the computational challenges of maximizing the exact posterior (which, as shown
above, corresponds exactly to solving the GAP), we adopt a simulation-based approach. Rather
than deriving model-specific algorithms, we:

1. Sample training data: Generate pairs of graphs (GA, GB) with known alignment permu-
tations π⋆

2. Learn mappings: Train neural networks to map graph pairs to similarity matrices SA→B ∈
Rn×n

3. Extract solutions: Convert similarity matrices to permutations via projection or as FAQ
initialization

Key Advantages. Our simulation-based approach offers several advantages over both model-
based methods and traditional relaxations:

Supervised learning with ground truth: Unlike the convex relaxation (5), we have access to
ground truth permutations during training, enabling more informative loss functions.

Better optimization objective: Instead of the Frobenius norm used in convex relaxation, we employ
cross-entropy loss (12), which provides more informative gradients for discrete matching problems.

Generalization potential: While trained on specific distributions, our learned representations may
capture general structural patterns applicable beyond the training distribution.

Hybrid capability: Our similarity matrices can initialize traditional solvers like FAQ, combining
the benefits of learning and optimization approaches.
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This simulation-based methodology bridges the gap between theoretical guarantees and practical
performance, achieving strong empirical results while maintaining computational tractability.

A.6 RELATING GAP TO GROMOV-HAUSDORFF, GROMOV-MONGE AND
GROMOV-WASSERSTEIN DISTANCES FOR FINITE METRIC SPACES

We consider a simple case of discrete spaces with the same number of elements n and where
A,B ∈ Rn×n are the distance matrices of two finite metric spaces (X, dX) and (Y, dY ), i.e.
Aij = dX(xi, xj) and Bij = dY (yi, yj). Recall that we denote by Sn the set of permutation
matrices and by Dn the set of doubly stochastic matrices. We also denote by Rn the set of matrices
R ∈ {0, 1}n×n such that

∑
i Rij ≥ 1 and

∑
j Rij ≥ 1.

The Gromov-Hausdorff distance for finite metric spaces can be written as:

GHL(A,B) = min
R∈Rn

max
i,j,k,ℓ

L(Aik, Bjℓ)RijRkℓ (14)

where L(a, b) ≥ 0. It is often desirable to smooth the max operator in (14) to a sum. This can be
done by considering the related problem:

GML(A,B) = min
R∈Rn

∑
i,j,k,ℓ

L(Aik, Bjℓ)RijRkℓ (15)

Note that for any R ∈ R, there exists a permutation matrix P ∈ Sn such that Rij ≥ Pij so that we
have:

∑
i,j,k,ℓ L(Aik, Bjℓ)RijRkℓ ≥

∑
i,j,k,ℓ L(Aik, Bjℓ)PijPkℓ. Therefore, the minimum in (15)

is attained at some R ∈ Sn. In particular, we get:

GML(A,B) = min
P∈Sn

∑
i,j,k,ℓ

L(Aik, Bjℓ)PijPkℓ = min
π∈Sn

∑
i,j

L
(
Aij , Bπ(i)π(j)

)
,

which is called Gromov-Monge distance.

The Gromov-Wasserstein distance is a relaxation of the Gromov-Hausdorff distance and is defined
in Mémoli (2011):

GWL(A,B, p, q) = min
T∈Cp,q

∑
i,j,k,ℓ

L(Aik, Bjℓ)TijTkℓ, (16)

where p, q are probability distributions on X , Y and the minimum is taken over Cp,q = {T ∈
Rn×n

+ , T1 = p, TT1 = q}. Taking p = q = 1/n the uniform distribution, we have Cp,q = 1
nDn and

GWL(A,B,1/n,1/n) is a relaxed version of GML(A,B). We typically consider L(a, b) = |a−b|2,
and then we get:

GML2(A,B) = min
π∈Sn

∑
i,j

(Aij −Bπ(i)π(j))
2,

and with the simplified notation GWL2(A,B) = GWL2(A,B,1/n,1/n),

n2GWL2(A,B) = min
D∈Dn

∑
i,j,k,ℓ

(Aik −Bjℓ)
2DijDkℓ

= min
D∈Dn

∑
i,k

A2
ik +

∑
jℓ

B2
jℓ − 2

∑
i,j,k,ℓ

AikBjℓDijDkℓ

= ∥A∥2F + ∥B∥2F − 2 max
D∈Dn

⟨AD,DB⟩.

In the particular case where A and B are semi definite positive matrices, i.e. A = UTU and
B = V TV , we have: ⟨AD,DB⟩ = ∥UDV T ∥2F which is a convex function of D and is always
maximized at an extremal point of its constraint polytope Dn. By Birkhoff’s theorem, the extremal
points of Dn are permutation matrices. Therefore, we have: GWL2(A,B) = GML2(A,B) in this
case. Maron & Lipman (2018) shows that a similar result holds for Euclidean distances, when
Aij = ∥xi − xj∥2 and Bij = ∥yi − yj∥2. Hence, we have:
Proposition A.1. For A, B Euclidean distance matrices, the indefinite relaxation (5) is tight and
solves the GAP (1). In this case, the GAP computes the Gromov-Monge distance and the indefinite
relaxation computes the Gromov-Wasserstein distance.
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Figure 5: Left: Training chained GNNs. Each color corresponds to a different training and GNN:
the first training (brown) reaches an accuracy below 0.1. The second training (magenta) uses as
input the output of the first training and get an accuracy ≈ 0.15. The remaining trainings using the
output of the previous training as input and reach higher and higher accuracy.
Right top: acc bottom: nce. First Violin plot ( faq green) for FAQ, then all other Violin plots
correspond to a different number of iterations Nmax = 0, 1, . . . , 9 of the chaining procedure
( gnn faq proj blue with Proj and gnn faq faq orange with FAQ).

A.7 NOTATIONS USED IN TABLES

• acc FAQ(Dcx) means the accuracy of FAQ algorithm initialized with Dcx.

• acc ChFGNN Proj means the accuracy of our chained FGNNs with Proj as the last step.

• acc ChFGNN FAQ means the accuracy of our chained FGNNs with FAQ as the last step.

• nce FAQ(Dcx) means the number of common edges found by FAQ algorithm initialized
with Dcx.

• nce FAQ(π⋆) means the number of common edges found by FAQ algorithm initialized
with π⋆.

• nce ChFGNN Proj means the number of common edges found by our chained FGNNs
with Proj as the last step.

• nce ChFGNN FAQ means the number of common edges found by our chained FGNNs
with FAQ as the last step.

A.8 BERNOULLI GRAPHS: GENERALIZATION PROPERTIES FOR CHAINED GNNS

A.8.1 TRAINING CHAINED GNNS

For the same dataset as in Lyzinski et al. (2015) (see Bernoulli graphs in Section A.1), we plot in
Figure 5 the training curves for the chained GNNs for the loss and the accuracy on the training
set and the validation set. We do not see any overfitting here as values are similar on both sides.
Chaining is very effective in this case: while the first training (brown) corresponding to the mapping
f in (10) saturates at an accuracy below 0.1, the second training (magenta) corresponding to the
mapping g(1) in (11) reaches a much higher accuracy because it uses the information about the
graph matching contained in the output of the first training f . The curves for the remaining trainings
are indeed ordered. This is due to the fact that for the training of g(k+1), we initialized it with the
weights obtained after the training of g(k) in order to speed up the training. Since we observe a
saturation in the learning of the g(k) for k ≥ 2, we stop the training after half the number of epochs
used for f and g(1).
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Figure 6: Bernoulli graphs: acc (top) and nce (bottom) as a function of the noise level. Chained
FGNNs were trained at noise level 0.5. gnn (resp. gnn faq) for chained FGNNs with Proj (resp.
FAQ) as the last step. faq for FAQ(Dcx) and faq(p) for FAQ(π⋆).

A.8.2 EFFICIENT INFERENCE FOR CHAINED FGNNS

These results suggest an extreme form of looping: since g(1) allows to improve the accuracy of
an initial guess (given by f ), we can keep only the GNNs f and g(1), and we loop through g(1)

for a fixed number of steps Nmax. Figure 5 gives the accuracy acc defined in (3) and the number of
common edges nce defined in (4) for the inference procedure as a function of the number of iterations
Nmax made on g(1). We give (in blue) the performances of Proj, and (in orange) the performances of
FAQ applied on the similarity matrix obtained after L loops. We see that the Frank-Wolfe algorithm
used in FAQ used as the last step of our chaining procedure is crucial to get better performances.
Indeed, we need only Nmax = 5 loops in order to get a perfect accuracy acc = 1 with FAQ.

We also give (in green) the performance of FAQ applied on the matrix Dcx (the default option
in the FAQ algorithm). Indeed, FAQ(Dcx) is able to find the correct permutation for the graph
matching in 13% of the cases and is stuck in a local maxima with a very small (less than 20%)
accuracy otherwise. This bimodal behavior is due to the fact that Dcx gives very little information
about the correct permutation. In contrast, the chaining procedure was able to learn a much
better initialization than Dcx for FAQ allowing to improve the accuracy from 50% to an exact
accuracy.

noise 0.4 0.45 0.5 0.55 0.6 0.65 0.7

acc Proj(Dcx) 0.3428 0.1956 0.1209 0.0815 0.0552 0.0411 0.0309
acc FAQ(Dcx) 1.0 0.9954 0.9531 0.6910 0.2621 0.0959 0.0225
nce Proj(Dcx) 3147.7 3000.0 2960.2 2945.8 2942.0 2942.4 2933.6
nce FAQ(Dcx) 4737.8 4622.8 4462.2 4056.1 3564.9 3408.0 3352.8

training 0.5 acc ChFGNN Proj 0.9994 0.9962 0.9639 0.7842 0.3400 0.1442 0.0737
acc ChFGNN FAQ 1.0 1.0 1.0 0.9915 0.8949 0.5105 0.1267
nce ChFGNN Proj 4736.1 4617.1 4439.4 4025.8 3319.0 3085.4 3038.0
nce ChFGNN FAQ 4737.8 4629.0 4520.0 4395.8 4188.4 3747.2 3413.5

Table 6: Accuracy acc and number of common edges nce for Bernoulli graphs as a function of the
noise pnoise.
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We now explore the generalization properties of the chaining procedure by applying the inference
procedure described in Section A.8.2 on datasets with different noise levels. The level of noise
used during training (described in Section A.8.1) is 0.5. 6 gives the accuracy acc and the number
of common edges nce for the inference procedure as a function of the noise level. We stop the
inference loop when the nce obtained after applying FAQ to the similarity matrix is not increasing
anymore. The red curve gives the performances of our chaining procedure with FAQ as the last step,
the orange curve gives the performances of our chaining procedure with Proj as the last step. We
compare our chaining procedure to FAQ(Dcx) in brown and to FAQ(π⋆) in grey which corresponds
to the maximum number of common edges for these noise levels. The curve for the accuracy of
FAQ(Dcx) is similar to the one obtained in Lyzinski et al. (2015). Our chaining procedure is able
to generalize to noise levels different from the one used during training and outperforms FAQ(Dcx)
in all cases. Indeed with a noise level less than 0.5, our chaining procedure recovers the correct
permutation for the graph matching problem. Note that we did not try to optimize the performances
of our chaining procedure with Proj as the last step, and they are indeed increasing if we allow for
more loops.

A.9 ADDITIONAL RESULTS FOR SPARSE ERDŐS-RÉYNI GRAPHS

Figure 7 gives the performance of our chained GNNs trained at noise level 0.25 for sparse Erdős-
Rényi graphs with average degree d = 4 and size n = 500. We observe that our chaining procedure
is able to generalize to noise levels different from the one used during training and outperforms
FAQ(Dcx) in all cases.

Figure 7: Sparse Erdős-Rényi graphs: acc (top) and nce (bottom) as a function of the noise level.
Chained FGNNs were trained at noise level 0.25. gnn (resp. gnn faq) for chained FGNNs with
Proj (resp. FAQ) as the last step. faq for FAQ(Dcx) and faq(p) for FAQ(π⋆).

Figure 8: Sparse Erdős-Rényi graphs: acc (top) and nce (bottom) as a function of the number of
iterations L at inference.
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Table 7: Accuracy (acc) defined in (3) for sparse Erdős-Rényi graphs as a function of the noise
pnoise. FGNN refers to the architecture in Section A.2 and ChFGNN to our chained FGNNs. Proj
and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 4 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 98.0 97.3 90.3 59.3 23.3 9.1 4.0 2.0
FAQ(DCX) 98.0 97.5 96.3 94.6 72.9 13.0 3.7 1.7

TRAINING 0.05 CHFGNN PROJ 97.9 97.3 94.3 67.1 12.5 6.72 3.70 2.13
CHFGNN FAQ 97.9 97.5 96.2 72.9 43.5 10.8 4.04 1.69

TRAINING 0.10 CHFGNN PROJ 97.9 97.5 96.1 91.6 35.4 7.24 4.03 2.36
CHFGNN FAQ 97.9 97.5 96.4 94.0 38.6 12.3 4.73 1.91

TRAINING 0.15 CHFGNN PROJ 97.9 97.5 96.3 93.7 87.4 49.1 7.51 2.28
CHFGNN FAQ 97.9 97.5 96.4 94.3 90.3 54.7 9.71 1.79

TRAINING 0.20 CHFGNN PROJ 97.9 97.4 96.3 94.5 91.4 72.0 31.2 3.30
CHFGNN FAQ 97.9 97.5 96.4 95.2 93.1 76.3 35.0 3.39

TRAINING 0.22 CHFGNN PROJ 97.9 97.5 96.2 94.4 91.1 78.9 44.5 7.11
CHFGNN FAQ 97.9 97.5 96.4 95.3 93.1 82.1 48.3 7.78

TRAINING 0.24 CHFGNN PROJ 97.9 97.4 96.1 94.1 91.0 77.0 40.3 6.52
CHFGNN FAQ 97.9 97.5 96.4 95.3 93.3 80.1 43.3 6.93

TRAINING 0.26 CHFGNN PROJ 97.9 97.3 95.2 92.3 88.0 75.8 43.1 6.43
CHFGNN FAQ 97.9 97.5 96.4 95.2 93.2 82.5 48.2 6.87

TRAINING 0.28 CHFGNN PROJ 97.9 95.2 88.4 79.3 68.4 55.1 26.7 6.69
CHFGNN FAQ 97.9 97.5 96.3 94.9 92.7 82.9 38.7 7.62

TRAINING 0.30 CHFGNN PROJ 97.9 91.5 78.0 63.6 50.6 35.4 15.1 4.76
CHFGNN FAQ 97.9 97.4 96.2 94.8 92.1 73.5 23.4 5.00

TRAINING 0.35 CHFGNN PROJ 97.6 88.2 65.1 40.8 21.5 10.9 5.46 2.54
CHFGNN FAQ 97.9 97.4 96.2 94.5 68.0 19.4 5.79 2.00

Each line in Tables 7 and 8 corresponds to a chained FGNN trained at a given level of noise (given
on the left) and tested for all different noises.
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Table 8: Number of common edges (nce) defined in (4) for sparse Erdős-Rényi graphs as a function
of the noise pnoise. FGNN refers to the architecture in Section A.2 and ChFGNN to our chained
FGNNs. Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 4 (NCE) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 997 950 853 499 195 130 115 112
FAQ(DCX) 997 950 898 847 723 504 487 485

TRAINING 0.05 CHFGNN PROJ 997 950 885 630 116 95 87 83
CHFGNN FAQ 997 950 898 761 607 495 485 481

TRAINING 0.10 CHFGNN PROJ 997 950 897 828 370 99 90 86
CHFGNN FAQ 997 950 899 845 606 501 487 483

TRAINING 0.15 CHFGNN PROJ 996 950 898 840 768 511 254 86
CHFGNN FAQ 997 950 899 846 791 651 520 484

TRAINING 0.20 CHFGNN PROJ 996 950 898 846 792 665 456 338
CHFGNN FAQ 997 950 899 849 800 715 596 529

TRAINING 0.22 CHFGNN PROJ 997 950 898 845 790 694 503 319
CHFGNN FAQ 997 950 899 849 800 730 626 534

TRAINING 0.24 CHFGNN PROJ 997 950 897 844 789 686 480 296
CHFGNN FAQ 997 950 899 849 800 726 613 527

TRAINING 0.26 CHFGNN PROJ 997 949 892 834 770 672 499 338
CHFGNN FAQ 997 950 899 849 800 731 626 537

TRAINING 0.28 CHFGNN PROJ 996 934 836 724 612 504 374 311
CHFGNN FAQ 997 950 899 848 799 732 599 530

TRAINING 0.30 CHFGNN PROJ 996 897 726 566 446 345 271 246
CHFGNN FAQ 997 950 898 848 797 704 552 513

TRAINING 0.35 CHFGNN PROJ 995 860 578 347 219 173 159 134
CHFGNN FAQ 997 950 898 847 702 524 494 489

A.10 ADDITIONAL RESULTS FOR DENSE ERDŐS-RÉYNI GRAPHS

For the correlated dense Erdős-Rényi graphs, we used the same dataset as in Yu et al. (2023) with
500 nodes and an average degree of 80. Again, with a noise level of 20%, our chaining GNNs
clearly outperform the existing learning algorithms, as we obtain a perfect accuracy (as opposed to
an accuracy of zero in Yu et al. (2023) and Chen et al. (2020) without any seed). We see in Table
9 that in this dense setting, FAQ(Dcx) is very competitive but is still slightly outperformed by our
chaining FGNNs (orange curve with Proj and red curve with FAQ, top). In terms of number of
common edges, our chained FGNNs does not perform well with Proj but performs best with FAQ,
see Table 9 where the level of noise used for training was 24%.

Figure 9 gives the performance of our chained GNNs trained at noise level 0.24 for sparse Erdős-
Rényi graphs with average degree d = 80 and size n = 500.
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Figure 9: Dense Erdős-Rényi graphs: acc (top) and nce (bottom) as a function of the noise level.
Chained FGNNs were trained at noise level 0.25. gnn (resp. gnn faq) for chained FGNNs with
Proj (resp. FAQ) as the last step. faq for FAQ(Dcx) and faq(p) for FAQ(π⋆).
Table 9: Accuracy (acc) defined in (3) for dense Erdős-Rényi graphs as a function of the noise pnoise.
FGNN refers to the architecture in Section A.2 and ChFGNN to our chained FGNNs. Proj and FAQ
are used to produce a permutation (from the similarity matrix computed).

ER 80 (ACC) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 100. 100. 100. 60.8 14.3 4.3 1.8 1.1
FAQ(DCX) 100. 100. 100. 100. 100. 21.2 0.9 0.5

TRAINING 0.05 CHFGNN PROJ 100. 100. 99.8 16.0 5.95 2.76 1.77 1.01
CHFGNN FAQ 100. 100. 100. 100. 54.4 1.16 0.72 0.47

TRAINING 0.10 CHFGNN PROJ 100. 100. 100. 88.9 7.49 3.47 1.99 1.16
CHFGNN FAQ 100. 100. 100. 89.0 80.0 6.58 0.85 0.52

TRAINING 0.15 CHFGNN PROJ 100. 100. 99.9 99.9 75.0 3.57 2.14 1.21
CHFGNN FAQ 100. 100. 100. 100. 75.1 3.85 0.85 0.55

TRAINING 0.20 CHFGNN PROJ 100. 100. 100. 99.9 94.0 22.9 2.06 1.22
CHFGNN FAQ 100. 100. 100. 100. 95.0 22.7 0.83 0.52

TRAINING 0.22 CHFGNN PROJ 100. 100. 100. 99.9 97.9 49.5 2.21 1.25
CHFGNN FAQ 100. 100. 100. 100. 99.0 50.5 1.00 0.52

TRAINING 0.24 CHFGNN PROJ 100. 99.9 93.5 83.4 67.4 34.0 2.16 1.33
CHFGNN FAQ 100. 100. 100. 100. 98.1 57.6 0.96 0.55

TRAINING 0.26 CHFGNN PROJ 100. 99.9 78.3 39.4 13.0 3.91 2.07 1.29
CHFGNN FAQ 100. 100. 100. 100. 94.1 5.75 0.82 0.54

TRAINING 0.28 CHFGNN PROJ 100. 99.8 70.7 31.2 9.88 3.94 2.01 1.19
CHFGNN FAQ 100. 100. 100. 100. 84.7 12.7 0.83 0.51

TRAINING 0.30 CHFGNN PROJ 100. 99.5 62.3 24.2 8.27 3.28 1.92 1.18
CHFGNN FAQ 100. 100. 100. 100. 80.7 3.24 0.81 0.49

TRAINING 0.35 CHFGNN PROJ 100. 96.1 47.8 18.3 6.86 3.47 1.92 1.14
CHFGNN FAQ 100. 100. 100. 100. 69.7 8.52 0.77 0.52

Each line in Tables 9 and 10 corresponds to a chained FGNN trained at a given level of noise (given
on the left) and tested for all different noises.
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Table 10: Number of common edges (nce) defined in (4) for dense Erdős-Rényi graphs as a function
of the noise pnoise. FGNN refers to the architecture in Section A.2 and ChFGNN to our chained
FGNNs. Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

ER 80 (NCE) NOISE 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

BASELINES PROJ(DCX) 19964 18987 17966 8700 3888 3646 3633 3624
FAQ(DCX) 19964 18987 17968 16990 15972 7922 6272 6276

TRAINING 0.05 CHFGNN PROJ 19964 18987 17941 3794 3457 3421 3429 3411
CHFGNN FAQ 19964 18987 17968 16990 11408 6244 6252 6253

TRAINING 0.10 CHFGNN PROJ 19964 18987 17968 15479 3522 3459 3453 3449
CHFGNN FAQ 19964 18987 17968 15811 13935 6681 6251 6257

TRAINING 0.15 CHFGNN PROJ 19964 18987 17967 16989 12842 3470 3469 3456
CHFGNN FAQ 19964 18987 17968 16990 13544 6421 6254 6256

TRAINING 0.20 CHFGNN PROJ 19964 18987 17968 16990 15216 6113 3483 3472
CHFGNN FAQ 19964 18987 17968 16990 15487 8172 6258 6254

TRAINING 0.22 CHFGNN PROJ 19964 18987 17968 16987 15701 9189 3644 3628
CHFGNN FAQ 19964 18987 17968 16990 15876 10614 6257 6263

TRAINING 0.24 CHFGNN PROJ 19964 18969 16241 13028 9561 6166 3615 3591
CHFGNN FAQ 19964 18987 17968 16990 15779 11227 6258 6255

TRAINING 0.26 CHFGNN PROJ 19964 18976 12528 5795 3925 3626 3591 3545
CHFGNN FAQ 19964 18987 17968 16990 15388 6515 6257 6257

TRAINING 0.28 CHFGNN PROJ 19964 18948 10846 4975 3756 3587 3542 3512
CHFGNN FAQ 19964 18987 17968 16990 14424 7207 6253 6256

TRAINING 0.30 CHFGNN PROJ 19964 18861 9289 4419 3651 3489 3478 3472
CHFGNN FAQ 19964 18987 17968 16990 14032 6354 6254 6258

TRAINING 0.35 CHFGNN PROJ 19964 17850 6943 4003 3578 3512 3492 3461
CHFGNN FAQ 19964 18987 17968 16990 12877 6853 6254 6256

A.11 ADDITIONAL RESULTS FOR REGULAR GRAPHS

Figure 10: Regular graphs: acc (top) and nce (bottom) as a function of the noise level. Chained
FGNNs were trained at noise level 0.1. gnn (resp. gnn faq)for chained FGNNs with Proj (resp.
FAQ) as the last step. faq for FAQ(Dcx), faq(p) for FAQ(π⋆) and p for nce(π⋆).

Finally, we propose a new dataset of regular graphs with 500 nodes and an average degree of 10.
This is a particularly challenging setting. Indeed, Table 11 shows that FAQ(Dcx) always fails to
solve the graph matching problem here. Similarly, we know that MPNNs are not expressive enough
to deal with regular graphs Xu et al. (2018). In view of the following result, we conjecture that using
MPNN would not provide a better estimation of the graph matching problem than Dcx.

Theorem A.2. Tinhofer (1991) GA and GB are fractionally isomorphic, i.e. minD∈Dn ∥AD −
DB∥2F = 0, if and only if 1-WL does not distinguish GA and GB .
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In contrast, our FGNN architecture defined in Section A.2 is able to deal with regular graphs and
our chaining procedure learns the correct information about the graph matching problem when the
noise is low enough.

Note that we are in a setting where FAQ(π⋆) ̸= π∗ as soon as the noise level is above 5% so that
π⋆ ̸= πA→B . In this case, we believe that πA→B = FAQ(π⋆) (but to check it we should solve
the graph matching problem!).In Figure 10, the training was done with a noise level of 10% so that
labels were noisy. Still performances of our chained FGNNs with FAQ are very good. We do not
know of any other algorithm working in this setting.

Table 11: Accuracy (acc) defined in (3) for Regular graphs as a function of the noise pnoise. FGNN
refers to the architecture in Section A.2 and ChFGNN to our chained FGNNs. Proj and FAQ are
used to produce a permutation (from the similarity matrix computed).

REGULAR RANDOM GRAPHS WITH DEGREE 10

REGULAR (ACC) NOISE 0 0.05 0.1 0.15 0.2

BASELINES PROJ(DCX) 0.2 0.2 0.3 0.1 0.2
FAQ(DCX) 0.2 0.2 0.2 0.2 0.2

TRAINING 0.05 CHFGNN PROJ 100. 95.2 2.60 0.67 0.27
CHFGNN FAQ 100. 95.6 8.31 0.49 0.24

TRAINING 0.07 CHFGNN PROJ 100. 95.3 34.6 0.70 0.27
CHFGNN FAQ 100. 95.6 36.0 0.54 0.25

TRAINING 0.09 CHFGNN PROJ 100. 95.2 54.4 0.86 0.34
CHFGNN FAQ 100. 95.6 55.6 0.78 0.22

TRAINING 0.11 CHFGNN PROJ 100. 72.4 30.5 0.86 0.27
CHFGNN FAQ 100. 95.6 61.8 0.70 0.25

TRAINING 0.13 CHFGNN PROJ 79.2 16.9 2.13 0.55 0.25
CHFGNN FAQ 100. 95.6 2.14 0.37 0.24

TRAINING 0.15 CHFGNN PROJ 60.4 13.3 1.69 0.52 0.30
CHFGNN FAQ 100. 95.6 1.37 0.34 0.21
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Each line in Tables 11 and 12 corresponds to a chained FGNN trained at a given level of noise (given
on the left) and tested for all different noises.

Table 12: Number of common edges (nce) defined in (4) for Regular graphs as a function of the
noise pnoise. FGNN refers to the architecture in Section A.2 and ChFGNN to our chained FGNNs.
Proj and FAQ are used to produce a permutation (from the similarity matrix computed).

REGULAR RANDOM GRAPHS WITH DEGREE 10

REGULAR (NCE) NOISE 0 0.05 0.1 0.15 0.2

BASELINES PROJ(DCX) 51 51 50 49 50
FAQ(DCX) 385 425 456 369 496

TRAINING 0.05 CHFGNN PROJ 2500 2034 178 101 100
CHFGNN FAQ 2500 2059 901 835 835

TRAINING 0.07 CHFGNN PROJ 2500 2036 741 103 172
CHFGNN FAQ 2500 2059 1193 836 852

TRAINING 0.09 CHFGNN PROJ 2500 2034 1105 281 95
CHFGNN FAQ 2500 2059 1381 871 836

TRAINING 0.11 CHFGNN PROJ 2500 1343 563 192 114
CHFGNN FAQ 2500 2059 1438 850 837

TRAINING 0.13 CHFGNN PROJ 1608 210 108 88 71
CHFGNN FAQ 2500 2059 841 836 834

TRAINING 0.15 CHFGNN PROJ 984 163 96 86 87
CHFGNN FAQ 2500 2059 837 836 836

A.12 LLM USAGE

Large language models (LLMs) were employed in this work to assist with grammatical and syntactic
corrections, to improve the clarity and readability of sentences and paragraphs, and to support the
generation of illustrative figures.

A.13 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the complete codebase used for training and inference, which
produces all results reported in this paper. Detailed descriptions of hyperparameters, training proce-
dures, and evaluation metrics are included in the main text and appendix.
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