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Competing risks data usually arise when an occurrence of an event precludes
other types of events from being observed. Such data are often encountered in
a clustered clinical study such as a multi-center clinical trial. For the clustered
competing-risks data which are correlated within a cluster, competing-risks
models allowing for frailty terms have been recently studied. To the best of
our knowledge, however, there is no literature on variable selection methods
for cause-specific hazard frailty models. In this article, we propose a variable
selection procedure for fixed effects in cause-specific competing risks frailty
models using a penalized h-likelihood (HL). Here, we study three penalty func-
tions, LASSO, SCAD, and HL. Simulation studies demonstrate that the proposed
procedure using the HL penalty works well, providing a higher probability of
choosing the true model than LASSO and SCAD methods without losing predic-
tion accuracy. The proposed method is illustrated by using two kinds of clustered
competing-risks cancer data sets.
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1 INTRODUCTION

Competing risks data are encountered in various research areas including biomedical research, engineering, and econo-
metrics. Two broad classes of competing-risks regression models for analyzing such data are the cause-specific hazard
model1 and the subdistribution hazard model.2 The former is to model the cause-specific hazard of each event type sep-
arately, while the latter is to model the hazard function of subdistribution (subhazard) for a particular event of interest.
Recently, the two types of models have been extended to clustered competing risks data, which are correlated within a
cluster, via frailty.3-8

Recently, variable selection methods using a penalized likelihood allowing for various penalty functions have been
widely developed in linear models, generalized linear models, and Cox’s proportional hazards (PH) models. The main
advantage of this method is to select important covariates and to estimate the regression coefficients, simultaneously;
that is, it deletes insignificant variables by estimating their coefficients as zero.9 In this article, we propose a hierarchical
likelihood (h-likelihood10) approach for variable selection of fixed effects in cause-specific competing risk frailty mod-
els. Unlike the classical likelihood for fixed parameters only, the h-likelihood is constructed for both fixed parameters
and unobserved frailties at the same time. The h-likelihood avoids the integration for random effects itself,11 whereas the
marginal likelihood approach often involves intractable integrations when eliminating the frailties. Ha et al12 have devel-
oped a variable selection procedure for fixed effects in standard frailty models using a penalized h-likelihood with a penalty
function (eg, LASSO).13 The penalized h-likelihood method has been extended to the variable selection in subhazard
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competing-risks frailty models.14 Recently, Fu et al15 and Ahn et al16 have proposed penalized variable-selection meth-
ods under subhazard competing-risks models without frailty term. Furthermore, Hou et al17 developed a penalized
high-dimensional variable selection framework under both cause-specific hazard and subhazard competing-risks mod-
els without frailty term. However, their variable selection methods have been mainly developed assuming independence
between subjects. To the best of our knowledge, there is no literature on variable selection methods for the cause-specific
hazard frailty model. In this article, we further extend the penalized procedures to variable selection in cause-specific
hazard frailty models, leading to a fast and efficient procedure. We study three penalty functions, LASSO,13 SCAD,9 and
HL.18

In Section 2, we review the cause-specific competing-risks hazard frailty models, together with the corresponding
h-likelihood. In Section 3, we propose a variable selection procedure for the cause-specific hazard frailty models using
a penalized h-likelihood. In Section 4, simulation studies are presented to evaluate the performance of the proposed
method. In Section 5, the proposed method is illustrated with two kinds of clustered competing-risks cancer data sets. We
conclude with a discussion in Section 6.

2 CAUSE-SPECIFIC HAZARD FRAILTY MODELS AND H-LIKELIHOOD

2.1 The model

Suppose that there are i = 1, … , q clusters (centers) where each center has j = 1, … ,ni observations, so that the total
sample size is n =

∑q
i=1ni. Here q is the number of clusters and ni is cluster size. For a subject j in cluster i, let Tijk be

time to event from cause k (k = 1, 2, … ,K) and let 𝜖ij ∈ {1, 2, … ,K} be the corresponding cause of event. Let Tij =
min(Tij1,Tij2, … ,TijK) be time to the first event and let Cij denote the independent censoring time. An unobserved frailty
variable for cluster i is denoted by Ui . Suppose that given Ui = ui, Cij is conditionally independent and non-informative
of (Tij, 𝜖ij) for j = 1, … ,ni. For simplicity, we consider two types of event (k = 1, 2); let Tij1 be an event (Type 1) time of
interest and Tij2 be a competing event (Type 2) time. These results can be easily generalized to K even types. We denote
Uik (k = 1, 2) be the frailty for Type k event in cluster i.

The cause-specific hazard function conditional on the frailty Uik = uik for the jth observation in the cluster i which
failed from cause k (k = 1, 2) is described as7

𝜆ijk(t|uik) = 𝜆0k(t) exp(xT
ij 𝛽k)uik, (1)

where 𝜆0k(t) is unspecified baseline hazard function for event type k and 𝛽k = (𝛽k1, … , 𝛽kp)T is a p × 1 vector of regression
parameters for event type k, and xij = (xij1, … , xijp)T is a p × 1 vector of fixed covariates corresponding to 𝛽k. If there is only
one event type K = 1, then the cause-specific frailty model (1) simply reduces to the standard univariate frailty model.19

Here, ui1 and ui2 in the same cluster i can be correlated; a shared bivariate frailty is often considered

ui1 = ui and ui2 = u𝛾

i ,

where 𝛾 is a real-valued association parameter that describes the dependency between Type 1 and 2 events. For the
distribution of Ui, log-normal distribution20 or gamma distribution7,21 has been usually assumed; the corresponding
distributions are, respectively, Vi = log Ui ∼ N(0, 𝛼) and Ui follows a gamma distribution with mean 1 and variance 𝛼.

Let vi = log ui. Then the model (1) is expressed as a joint model with a common log-frailty vi as follows. The event
times (Tij1) from Type 1 event follow a cause-specific PH model

𝜆ij1(t|vi) = 𝜆01(t) exp(xT
ij 𝛽1 + vi), (2)

and event times (Tij2) from Type 2 event follow a similar model

𝜆ij2(t|vi) = 𝜆02(t) exp(xT
ij 𝛽2 + 𝛾vi). (3)

If 𝛾 > 0 a cluster with higher frailty will experience an earlier competing event, whereas if 𝛾 < 0 the competing event
will be more likely delayed for a cluster with higher frailty.
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2.2 H-likelihood construction

The observed event time and the event indicator are defined as Yij = min(Tij,Cij) and 𝛿ijk = I(Yij = Tijk), respectively.
Here, Tij = min(Tij1,Tij2) is time to the first event, 𝛿ijk = 1 if Type k event occurs first (ie, Yij = Tijk) and 0 otherwise, and
I(⋅) is the indicator function. Note that 𝛿ijk is often referred to a cause-specific event indicator and that it can also be
expressed as

𝛿ijk = I(Tij ≤ Cij)I(𝜖ij = k).

Now, we construct the h-likelihood for the cause-specific models with shared log-normal and gamma frailty structures
having (2) and (3). Following Lee and Nelder10 and Ha et al,19 the h-likelihood for the joint competing-risks model above
is defined by

h = h(𝛽, 𝛾, 𝜆0, v, 𝛼) =
∑
ijk

𝓁1ijk(𝛽k, 𝜆0k, 𝛾; yij, 𝛿ijk|vi) +
∑

i
𝓁2i(𝛼; vi), (4)

where

𝓁1ijk(𝛽k, 𝜆0k, 𝛾; yij, 𝛿ijk|vi) = 𝛿ijk(log 𝜆0k(yij) + 𝜂ijk) − Λ0k(yij) exp(𝜂ijk)

is the conditional log-likelihood of (Yij, 𝛿ij) given Vi = vi and

𝓁2i(𝛼; vi) = log{g(vi; 𝛼)}

is the log-likelihood of Vi with a density function g(vi; 𝛼). For example, for the log-normal frailty 𝓁2i = (−1∕2) log(2𝜋𝛼) −
v2

i ∕(2𝛼) and for the gamma frailty 𝓁2i = (vi − ui)𝛼−1 + c(𝛼), where c(𝛼) = −logΓ(1∕𝛼) − 𝛼−1 log 𝛼. Here, 𝛽 = (𝛽T
1 , 𝛽

T
2 )

T is a
2p × 1 vector of all the regression coefficients for the two event types, 𝜆0 = (𝜆01(⋅), 𝜆02(⋅))T is a collection of k (k = 1, 2)
baseline hazards, v = (v1, … , vq)T , and Λ0k(⋅) is the baseline cumulative hazard function for cause k. Note here that the
linear predictors 𝜂ijk (k = 1, 2) are formed:

𝜂ijk = xT
ij 𝛽k + vik,

where vi1 = vi and vi2 = 𝛾vi.
Notice that the functional form of baseline hazard function 𝜆0k(t) in the h-likelihood (4) is unknown. Following

Breslow22 and Ha et al,7,12 we consider the cumulative baseline hazard function for event type k as a step function with
jumps at the observed event times,

Λ0k(t) =
∑

r∶y(kr)≤t
𝜆0kr, (5)

where y(k1) < y(k2) < · · · < y(kDk) denote the Dk ordered distinct event times of Type k among all of the yij’s, and 𝜆0k =
𝜆0k(y(kr)). By substituting Λ0k in (5) into (4), the h-likelihood (4) can be rewritten as

h =
2∑

k=1

⎡⎢⎢⎢⎣
Dk∑

r=1
d(kr) log 𝜆0kr +

∑
ij

𝛿ijk𝜂ijk − 𝜆0kr

⎧⎪⎨⎪⎩
∑

ij∈R(kr)

exp(𝜂ijk)
⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ +

q∑
i=1

𝓁2i(𝛼; vi), (6)

where d(kr) is the number of events of Type k that occur at time y(kr) and R(kr) = {ij ∶ yij ≥ y(kr)} is the risk set at time y(kr).
However, the h-likelihood (6) has high-dimensional nuisance parameter 𝜆0kr which increases with the number of

events. Following Ha et al (2001), by fixing (𝛽k, vi, 𝛼, 𝛾), the nonparametric maximum h-likelihood (MHL) estimator of
𝜆0kr, obtained from 𝜕h∕𝜕𝜆0kr = 0, is given by

�̂�0kr =
d(kr)∑

ij∈R(kr)
exp(𝜂ijk)

,
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leading that Λ̂0k(t) =
∑

r∶ y(kr)≤t �̂�0kr (k = 1, 2) is an extension of the Breslow estimator of the baseline cumulative hazard
function. Replacing 𝜆0kr in (6) with �̂�0kr gives a partial h-likelihood (PHL; denoted by hp) with 𝜆0k eliminated:

hp = hp(𝛽, 𝛾, v, 𝛼) =
∑
ijk

𝛿ijk𝜂ijk −
∑

kr
d(kr) log

⎧⎪⎨⎪⎩
∑

ij∈R(kr)

exp(𝜂ijk)
⎫⎪⎬⎪⎭ +

q∑
i=1

𝓁2i(𝛼; vi). (7)

Accordingly, hereafter the h-likelihood inference is based on the PHL hp.7

3 VARIABLE SELECTION PROCEDURE

For the variable selection of 𝛽 in the competing-risks models (1), along the lines of Ha et al,12,14 we propose a penalized
h-likelihood, hv, using hp and a penalty; it is defined by

hv(𝛽, v, 𝜃) = hp − n
p∗∑

j=1
J𝜉(|𝛽j|), (8)

where p∗ = Kp with K = 2, and J𝜉(| ⋅ |) is a penalty function that controls model complexity using the tuning parameter
𝜉. Note that we do not impose any penalty on the dispersion parameters 𝜃 = (𝛾, 𝛼)T . Typically, the larger value of 𝜉 tends
to choose the simpler model, whereas the smaller value of 𝜉 inclines to more complex model. To get the optimal value of
𝜉, we use a BIC-type criterion12 as will be shown in Section 3.2; the generalized cross-validation cannot select the tuning
parameter satisfactorily, with a non-ignorable overfitting effect in the resulting model.23,24

Various penalty functions have been used in the literature on variable selection in statistical models including the
Cox PH model. Here, we consider the following three penalty functions (LASSO, SCAD, and HL), but our results can be
applied to other penalty functions.

(i) LASSO:13

J𝜉(|𝛽|) = 𝜉|𝛽|.
(ii) SCAD:9

J′𝜉(|𝛽|) = 𝜉I(|𝛽| ≤ 𝜉) + (a𝜉 − |𝛽|)+
a − 1

I(|𝛽| > 𝜉),

where a = 3.7 and x+ denotes the positive part of x.
(iii) HL:18

J𝜉(|𝛽|) ≡ J(a,w)(|𝛽|) = logΓ(1∕w) +
log w

w
+ 𝛽2

2au(|𝛽|) + (w − 2) log u(|𝛽|)
2w

+ u(|𝛽|)
w

,

where u(|𝛽|) = [{8w𝛽2∕a + (2 − w)2}1∕2 + 2 − w]∕4.

A good penalty function should produce estimates that satisfy the oracle properties (ie, unbiasedness, sparsity, and
continuity).9 LASSO is the most common penalty, but it does not satisfy the oracle properties. Moreover, the LASSO has
been criticized on the grounds that it typically ends up selecting a model with too many variables to prevent over-shrinkage
of the regression coefficients.25 However, SCAD and HL satisfy the oracle properties and these can perform well as the
oracle procedure in terms of selecting the correct subset models and estimating the true nonzero coefficients at the same
time.9,18 The HL function changes its shape according to the value of w; it becomes a ridge penalty when w = 0 and
becomes a LASSO penalty when w = 2. When w > 2, it becomes an unbounded form at the origin.18 In this article, we
use w = 30 in the HL penalty as suggested by Lee and Oh.18
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SCAD provides ordinary least square (OLS) estimates, whereas LASSO and HL give shrinkage estimates which have
better prediction error. However, LASSO estimate is often over-shrunken. SCAD and HL give oracle estimates which
have better variable selection. By controlling sparsity and shrinkage simultaneously, the HL has a higher probability of
choosing the true model than the LASSO and SCAD methods without losing the prediction accuracy.11,26 In change point
problems, the HL method provides a consistent estimation of the number of change points and their locations and sizes,
whereas conventional methods such as LASSO and SCAD may not satisfy such property.27

3.1 Estimation procedure for variable selection

For estimating the fixed and random effects (𝛽, v), we use penalized maximum h-likelihood estimators (PMHLEs) which
maximize hv in (8). Given dispersion parameters 𝜃 = (𝛾, 𝛼)T , the PMHL estimating equations for 𝛽 = (𝛽T

1 , 𝛽
T
2 )

T and v are
as follows:

𝜕hv

𝜕𝛽
=

𝜕hp

𝜕𝛽
− n

p∗∑
j=1

[J𝜉(|𝛽j|)]′ = 0 (9)

and

𝜕hv

𝜕v
=

𝜕hp

𝜕v
= 0. (10)

Note that (9) is an adjusted estimating equation induced by adding the penalty term, whereas (10) is the same as the
standard estimating equation without penalty. Here, the kth (k = 1, 2) component of 𝜕hp∕𝜕𝛽 and 𝜕hp∕𝜕v are, respectively,
given by

𝜕hp

𝜕𝛽k
= XT(𝛿k − �̂�k)

and

𝜕hp

𝜕v
= ZT(𝛿1 − �̂�1) + 𝛾ZT(𝛿2 − �̂�2) +

𝜕𝓁2

𝜕v
,

where 𝜕𝓁2∕𝜕v = −𝛼−1v for the log-normal frailty and 𝜕𝓁2∕𝜕v = 𝛼−1 − 𝛼−1 exp(v) for the gamma frailty model, X and Z
are n × p and n × q model matrices for 𝛽 and v whose ijth row vectors are xT

ij and zT
ij , respectively, zij = (zij1, zij2, … , zijq)T

is a q × 1 cluster indicator vector such that zijm = 1 if i = m and 0 otherwise, and 𝛿k is an n × 1 Type k event indi-
cator vector with ijth element 𝛿ijk, Here �̂�k = Λ̂0k exp(𝜂k) with Λ̂0k(t) =

∑
r∶ y(kr)≤t �̂�0kr (k = 1, 2), and 𝜂1 = X𝛽1 + Zv and

𝜂2 = X𝛽2 + 𝛾Zv.
However, solving directly the estimating equations of 𝛽 in (9) is difficult because the penalty function J𝜉(⋅) becomes

non-differentiable at the origin and they do not have continuous second-order derivatives. Thus, we use a local quadratic
approximation (LQA) for such penalty functions.9 Given an initial value 𝛽(0) that is close to the true value of 𝛽, the penalty
function J𝜉(⋅) can be locally approximated by a quadratic function as

[J𝜉(|𝛽j|)]′ = J′𝜉(|𝛽j|)sgn(𝛽j) ≈ {J′𝜉(|𝛽(0)j |)∕|𝛽(0)j |}𝛽j for 𝛽j ≈ 𝛽
(0)
j . (11)

Now, to obtain the penalized estimating equations of (𝛽, v) based on the LQA, let us define X, Z, and W∗ as the partition
matrices such that

X =

(
X 0
0 X

)
, Z =

(
Z
𝛾Z

)
, and W∗ =

(
W∗

1 0
0 W∗

2

)
,

where W∗
k = −𝜕2hp∕𝜕𝜂k𝜕𝜂

T
k (k = 1, 2).12 Then, following Ha et al,12,14 we can show that the PMHLEs for (𝛽, v) are obtained

from the iterative least squares (ILS) score equations:
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(
XTW∗X + nΣ𝜉 XTW∗Z

ZTW∗X ZTW∗Z + Q

)(
𝛽

v̂

)
=

(
XTw∗

ZTw∗

)
, (12)

whereΣ𝜉 = diag{J′
𝜉
(|𝛽j|)∕|𝛽j|}, w∗ = (w∗T

1 ,w∗T
2 )T with w∗

k = W∗
k 𝜂k + (𝛿k − 𝜇k), and Q = diag(−𝜕2𝓁2∕𝜕v2) is a q × q diagonal

matrix; Q = 𝛼−1Iq with q × q identity matrix Iq for the log-normal frailty and Q = diag(𝛼−1ui) for the gamma frailty.
The score equations (12) are the extensions of the existing estimation procedures. For example, under no penalty (ie,

Σ𝜉 = 0) they become the score equations of Christian et al5 for the standard cause-specific frailty models. For variable
selection under the cause-specific hazard model without frailty term v, they reduce to

(XTW∗X + nΣ𝜉)𝛽 = XTw∗, (13)

implying that the new equations(12) give a special case of the penalized equation (13) for the cause-specific hazard model
without frailty term; the resulting estimates 𝛽 are the same as those by Hou et al17 under the LASSO and adoptive LASSO
penalties.

The dispersion parameters 𝜃 = (𝛾, 𝛼)T are estimated by maximizing the partial restricted h-likelihood p𝛽,v(hp)14 based
on hp because 𝜃 does not depend on the penalty term in hv of (8); it is given by a function of 𝜃

p𝛽,v(hp) =
[

hp −
1
2

log(det(Hp∕2𝜋))
]||||(𝛽,v)=(𝛽(𝜃),v̂(𝜃)) , (14)

where Hp = −𝜕2hp∕𝜕(𝛽, v)2 = Hv − blockdiag(nΣ𝜉 , 0) and Hv = −𝜕2hv∕𝜕(𝛽, v)2 is given by the square matrix of left-hand
corner of (12). Using the properties of determinations, Equation (14) can be expressed as

p𝛽,v(hp) = ĥp −
1
2

log{det(Ĥp)} +
(2p + q)

2
log(2𝜋), (15)

where ĥp = hp(𝛽(𝜃), v̂(𝜃)) is a profile h-likelihood of 𝜃 and Ĥp = Hp(𝛽(𝜃), v̂(𝜃)). Then the estimates of 𝜃 are obtained by
solving the score equation

𝜕p𝛽,v(hp)∕𝜕𝜃 = 0. (16)

Note that this procedure works well for the log-normal frailty, but not for non-lognormal frailty such as the gamma
frailty.7,11 Thus, we use the second-order approximation under gamma frailty,7,11 given by

s𝛽,v(hp) = p𝛽,v(hp) − {F(h)∕24}, (17)

where the detailed form of F(h) is given in Appendix A of the Supplementary Materials.
Accordingly, we see that the proposed procedure is easily implemented via a slight modification to the existing HL

procedures for standard frailty models.12

3.2 Standard error and selection of tuning parameter

Following Ha et al,12,14 an approximated standard error (SE) of 𝛽 is obtained from a sandwich formula based on hp:

cov(𝛽) = (H𝛽𝛽 + nΣ𝜉)−1H𝛽𝛽(H𝛽𝛽 + nΣ𝜉)−1, (18)

where H𝛽𝛽 = {(XTW∗X) − (XTW∗Z)(ZTW∗Z + Q)−1(ZTW∗X)}|v=v̂. For the choice of tuning parameter 𝜉, we use a
BIC-type criterion based on the penalized HL as in Ha et al,12 defined by

BIC(𝜉) = −2pv(hp) + e(𝜉) log(n), (19)

where pv(hp) is the first-order Laplace approximation to the marginal partial likelihood12 mp(𝛽, 𝜃) = log{∫ exp(hp)dv},
and e(𝜉) = tr[{H𝛽𝛽 + nΣ𝜉}−1H𝛽𝛽] is the effective number of parameters.10,11
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Our variable-selection algorithm consists of two loops as follows.

1. Inner loop: We maximize hv for 𝜏 = (𝛽T , vT)T (ie, we solve the ILS equations in (12) for (𝛽, v)) and p𝜏(hp) in (15) for 𝜃
under log-normal frailty, respectively. Here, we maximize s𝜏(hp) in (17) for 𝜃 under gamma frailty.

2. Outer loop: We select 𝜉 that minimizes BIC(𝜉) in (19).

Note that 𝜉 = arg min𝜉 BIC(𝜉) is calculated using a simple grid search method. A good initial value is essential to
obtain a proper estimate 𝛽. Here, we use the solutions under no-penalty (ie,Σ𝛾 = 0)) for the initial value of LASSO penalty
and use the LASSO solution as the initial value for the SCAD and HL penalties.12,14 After convergence, we compute the
estimates of the SEs for 𝛽 using (18).

4 SIMULATION STUDY

We conduct numerical studies, based upon 100 replications of simulated data as in Fan and Li28 to evaluate the per-
formance of the proposed procedures for the cause-specific frailty models. Here, for the model fitting we first use the
shared log-normal frailty. We compare performances of the three variable-selection methods with LASSO, SCAD, and HL
penalties.

Following the simulation schemes of Fan and Li,28 data for the cause-specific hazard frailty model with two types are
generated using a technique similar to Beyersmann et al29 and Christian et al5 Here, the conditional cause-specific hazard
rates for each event type are,

𝜆ij1(t|xij, vi) = 𝜆01(t) exp(xT
ij 𝛽1 + vi),

𝜆ij2(t|xij, vi) = 𝜆02(t) exp((xT
ij 𝛽2 + 𝛾vi).

Included in the model above were eight covariates xij = (xij1, … , xij8)T and a shared Normal random effect vi with
mean 0 and variance 𝛼 = 0.5. Here, the eight covariates xij were generated with an AR(1) structure with a correlation
coefficient 𝜌 = 0.5. The true regression coefficients for the Type 1 events were set to 𝛽1 = (0.8, 0, 0, 1, 0, 0, 0.6, 0)T and
𝛽2 = −𝛽1 for the Type 2 events. The association parameter was set to 𝛾 = 1 or −1 as in Huang and Wolfe.20 Here, we
consider two cases for the baseline hazard functions 𝜆01(t) and 𝜆02(t) based on exponential and Weibull distributions as
follows:

Case 1 ∶ 𝜆01(t) = 0.5 and 𝜆02(t) = 2,
Case 2 ∶ 𝜆01(t) = 0.5 and 𝜆02(t) = 4t.

Censoring times are generated from a Uniform(0, c) distribution where the value of c was empirically selected to
achieve the approximate right censoring rate 20%. With 20% censoring, the proportions of Type 1 and Type 2 events are
about 30% and 50%, respectively. Samples sizes of n = 250 and n = 500, where (q,ni) = (50, 5) and (100, 5), are considered.
We also added a sample size with n = 400, with a larger cluster size having (q,ni) = (20, 20).

Following Fan and Li28 and Ha et al12 the model error (ME) for the cause-specific hazard frailty model is defined by

ME(𝛽k) = E{exp(−xT𝛽k) − exp(−xT𝛽k)}2

for Type k = 1, 2. For the criteria for variable selection, we report the average number of zero coefficients, the probability
of choosing the true model (PT), and ME. Let MRME stand for the median of ratios of ME of a selected model to that of
the standard estimate under the full model. For model fitting and computation SAS/IML was used. The simulation results
under Case 1 are summarized in Table 1. Here, the column labeled “C” (5 is the best) indicates the average number of
regression coefficients in each type, of the five true zeros, correctly found to zero, and “IC” (0 is the best) indicates the
average number of the three true nonzeros incorrectly found to zero.

From Table 1 one can notice that the SCAD and HL overall perform quite well and they both outperform the LASSO
in terms of “C,” “PT,” and MRME. Both the SCAD and HL methods can be further improved with an increase of the size
of q or ni. In particular, the HL overall outperforms the SCAD in terms of “C,” but it consistently outperforms the SCAD in
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T A B L E 1 Case 1: Simulation results using 100 replications under the cause-specific hazard log-normal frailty
model (Type 1 = 30%, Type 2 = 50%, and Censoring = 20%)

Type 1 Type 2

(q,ni) Method C IC PT MRME C IC PT MRME

𝛾 = 1

(50, 5) LASSO 3.31 0 0.14 1.261 3.87 0 0.31 2.154

SCAD 4.63 0.01 0.70 0.510 4.54 0 0.60 0.654

HL 4.65 0.03 0.69 0.442 4.75 0 0.76 0.480

(100, 5) LASSO 3.40 0 0.12 2.449 3.70 0 0.22 2.482

SCAD 4.80 0 0.82 0.719 4.66 0 0.69 0.610

HL 4.84 0 0.86 0.282 4.80 0 0.82 0.553

(20, 20) LASSO 3.36 0 0.14 2.028 3.73 0 0.26 2.238

SCAD 4.76 0 0.78 0.644 4.63 0 0.70 0.708

HL 4.75 0 0.77 0.535 4.77 0 0.77 0.508

𝛾 = −1

(50, 5) LASSO 3.20 0 0.11 0.304 3.78 0 0.25 2.045

SCAD 4.71 0.01 0.75 0.573 4.52 0 0.65 0.547

HL 4.71 0.01 0.74 0.249 4.76 0 0.80 0.593

(100, 5) LASSO 3.41 0 0.17 1.776 3.69 0 0.23 2.212

SCAD 4.78 0 0.79 0.536 4.61 0 0.65 0.617

HL 4.79 0 0.81 0.313 4.80 0 0.81 0.519

(20, 20) LASSO 3.56 0 0.17 1.818 3.57 0 0.20 2.489

SCAD 4.68 0 0.72 0.730 4.49 0 0.60 0.660

HL 4.71 0 0.74 0.366 4.67 0 0.71 0.649

Note: q, no. of clusters; ni, cluster size; HL, h-likelihood penalty function; C, average number of coefficients, of the five true zeros,
correctly set to zero; IC, average number of the three true nonzero incorrectly set to zero; PT, probability of choosing the true model;
MRME, median of relative model errors.

terms of MRME, providing a higher probability (PT) of choosing the true model than LASSO and SCAD methods without
losing prediction accuracy. In addition, from 100 replications of simulated data, we also computed the mean of nonzero
coefficients of 𝛽, their standard deviation (SD), and standard error (SE) which is obtained from the sandwich formula
(18). Note here that the SE is the average of 100 estimated standard errors for 𝛽 and that the SD is the estimates of the true
{var(𝛽)}1∕2. Though not reported here, we have observed that the bias of the SCAD estimates is the smallest compared to
the LASSO and HL, but the HL estimates are improved with q or ni, and that the SEs in the SCAD and HL substantially
improve in that a discrepancy between SE and SD decreases when q or ni increases; these results confirm the simulation
results of Ha et al12,14

The simulation results under Case 2 are given in Table 2. We find that the trends of results from Table 2 are similar
to those evident in Table 1 under Case 1, and that the HL method still works well as compared to the LASSO and SCAD
methods.

Next, with the gamma frailty ui with mean 1 and variance 𝛼 = 0.5, we have also conducted the same simulation above
under Case 2. The results are given in Table S1 of the Supplementary Materials; we again find that their trends are similar
to those evident in Tables 1 and 2 under the log-normal frailty. For the frailty models, several authors have shown that
misspecifying the random-effect (frailty) distribution such as log-normal or gamma frailty has little effect on the fixed
effect estimates (ie, estimated regression parameters), not the frailty variance estimates.30-33 Moreover, the results from
Tables 1 and 2 confirm the simulation results of Park et al34 that the penalized variable selection procedure of fixed effects
in the accelerated failure time models with random effects is not sensitive to the choice of a particular random effect
distribution.
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T A B L E 2 Case 2: Simulation results using 100 replications under the cause-specific hazard log-normal frailty
model (Type 1 = 30%, Type 2 = 50%, and Censoring = 20%)

Type 1 Type 2

(q,ni) Method C IC PT MRME C IC PT MRME

𝛾 = 1

(50, 5) LASSO 3.27 0 0.07 1.376 4.00 0 0.31 0.638

SCAD 4.74 0 0.75 0.685 4.65 0 0.69 0.573

HL 4.78 0 0.80 0.543 4.78 0 0.80 0.375

(100, 5) LASSO 3.39 0 0.15 1.052 3.86 0 0.27 1.026

SCAD 4.73 0 0.75 0.621 4.62 0 0.71 0.690

HL 4.82 0 0.84 0.476 4.85 0 0.86 0.598

(20, 20) LASSO 3.11 0 0.09 1.256 3.82 0 0.27 1.119

SCAD 4.73 0 0.75 0.913 4.60 0 0.68 0.779

HL 4.69 0 0.76 0.684 4.70 0 0.72 0.528

𝛾 = −1

(50, 5) LASSO 3.23 0 0.12 1.568 3.89 0 0.33 1.581

SCAD 4.66 0 0.70 0.724 4.53 0 0.63 0.512

HL 4.81 0.01 0.82 0.359 4.73 0 0.77 0.468

(100, 5) LASSO 3.43 0 0.15 1.738 3.82 0 0.24 1.466

SCAD 4.76 0 0.79 0.537 4.50 0 0.62 0.638

HL 4.84 0 0.84 0.635 4.74 0 0.78 0.569

(20, 20) LASSO 3.48 0 0.20 1.912 3.98 0 0.30 1.369

SCAD 4.79 0 0.80 0.833 4.65 0 0.70 0.623

HL 4.87 0 0.87 0.613 4.74 0 0.76 0.395

Note: q, no. of clusters; ni, cluster size; HL, h-likelihood penalty function; C, average number of coefficients, of the five true zeros,
correctly set to zero; IC, average number of the three true nonzero incorrectly set to zero; PT, probability of choosing the true model;
MRME, median of relative model errors.

5 ILLUSTRATION

For an illustration of the proposed variable selection procedure, we consider two kinds of competing-risks clinical
example, that is, two event types and three event types.

5.1 Bladder cancer data: Two types of events

We consider a multicenter clinical dataset from a bladder cancer trial conducted by the European Organization for
Research and Treatment of Cancer (EORTC).35 We use the subset of the bladder cancer data as considered in Section 1.2.4
of Ha et al7 The dataset consists of 396 bladder cancer patients from 21 centers, where the numbers of patients per center
varied from 3 to 78, with mean 18.9 and median 14. Here we consider two competing endpoints, time to the first bladder
recurrence (an event of interest; Type 1 event) and time to the death prior to the recurrence (competing event; Type 2
event). Of 396 patients, 200 patients (50.51%) had recurrence of bladder cancer and 81 patients (20.45%) died prior to the
recurrence. One hundred and fifteen patients (29.04%) who were still alive without recurrence were censored at the date
of the last available follow-up.

We consider the following 12 categorical covariates (x) of interest:

• Chemotherapy as the main covariate (CHEMO; no = 0, yes = 1),
• Age (0 if Age ≤65 years, 1 if Age >65 years),



6550 RAKHMAWATI et al.

• Sex (male = 0, female = 1),
• Prior recurrent rate (PRIORREC; primary, ≤1/yr, >1/yr);

PRIORREC1 = I(PRIORREC ≤1/yr), PRIORREC2 = I(PRIORREC >1/yr)
• Number of tumors (NOTUM; single, 2-7 tumors, ≥8 tumors);

NOTUM1 = I(NOTUM = 2-7 tumors), NOTUM2 = I(NOTUM ≥8 tumors);
• Tumor size (TUM3CM; 0 if Tumor size <3 cm, 1 if Tumor size ≥3 cm),
• T category (TLOCC; Ta = 0, T1 = 1),
• Carcinoma in situ (CIS; no = 0, yes = 1),
• G grade (GLOCAL; G1, G2, G3);

GLOCAL1 = I(GLOCAL = G2), GLOCAL2 = I(GLOCAL = G3).

We fitted the cause-specific hazard models (2) and (3) with a shared log-normal frailty structure, as in Section 4, using
the penalized h-likelihood procedure presented in Section 3. The estimated coefficients and their standard errors for Type
1 (ie, bladder cancer recurrence) and Type 2 (ie, death prior to the recurrence) are summarized in Table 3, respectively.
First, the estimation results under no penalty are as follows. The estimated association parameter �̂� = 0.406 shows a
positive correlation between the risks of these two events. Meaning that the increment on the risk of bladder cancer recur-
rence (Type 1 event) increases the risk of dying (Type 2 event). The estimated variance of the frailty is �̂� = 0.101. For Type
1 event, the following t-values (=Estimate/SE), from six covariates (x1, x5, x6, x7, x11, x12) are significant. In particular, the
main covariate, CHEMO (x1), is the most significant. However for Type 2 event, only three covariates (x2, x6, x7) are signif-
icant, but the main covariate, that is, CHEMO (x1), is not significant. In particular, we find that the CHEMO significantly
reduces the risk of recurrence, but there is not enough evidence to conclude that CHEMO increases the risk of death.

Next, we are interested in the important variable selection among 12 covariates under the cause-specific frailty model
by using LASSO, SCAD, and HL methods. The selected values of the tuning parameters 𝜉 based on BIC in (19) are 0.013,
0.083, and 0.011 for the LASSO, SCAD, and HL, respectively. The estimates of dispersion parameters 𝜃 = (𝛾, 𝛼) for LASSO,
SCAD, and HL are similar, with (1.001, 0.061), (0.785, 0.093), and (0.863, 0.074), respectively. The estimated coefficients
and their standard errors for Type 1 (ie, bladder cancer recurrence) under the three penalties are given in Table 3. The
main covariate, CHEMO (x1), is very significant in all the three variable selection methods (ie, LASSO, SCAD, and HL).
The LASSO method chooses 9 covariates (x1, x2, x5, x6, x7, x8, x9, x11, x12) among 12 covariates, while SCAD and HL choose
the same 6 covariates (x1, x5, x6, x7, x11, x12). Notice here that LASSO chooses the three covariates (x2, x8 and x9) which
are not significant under no-penalty. For Type 2, the estimated coefficients and their standard errors are also presented in
Table 3. Here, LASSO selects two covariates (x2 and x11), where x11 is not significant under no-penalty. Meanwhile, SCAD
and HL choose only one covariate (x2).

We observe that the nonzero estimates by the SCAD are overall similar to the corresponding estimates without penalty
(𝜉 = 0). Note here that SCAD provides OLS estimates and that LASSO and HL give shrinkage estimates for nonzero
regression coefficients; LASSO shrinks more than HL does. As expected by Ha et al12,14 the LASSO selects more covariates
as compared to the SCAD and HL. A possible reason may be that the LASSO selects unimportant variables much more
than the SCAD and HL methods. These findings indicate that the LASSO may not properly identify important variables
in the cause-specific hazard frailty model (1), as evident in the lower “C" value of LASSO in Tables 1 and 2. Accordingly,
we see that SCAD and HL methods provide a parsimonious model compared to no-penalty and LASSO, indicating that
the former can give better inferences including interpretation and prediction than the latter.11

In addition, we fitted the cause-specific hazard models with the gamma frailty. We have found that the estimation
results of gamma model (in Table S2 of the Supplementary Materials) are similar to those in Table 3. Below we present a
selection procedure between log-normal and gamma frailty models, using the conditional Akaike information criterion
(cAIC),7,36,37 given by

cAIC = −2𝓁p + 2dfc. (20)

Here

𝓁p =
∑
ijk

𝛿ijk𝜂ijk −
∑

kr
d(kr) log

⎧⎪⎨⎪⎩
∑

ij∈R(kr)

exp(𝜂ijk)
⎫⎪⎬⎪⎭
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T A B L E 3 Estimated regression coefficients (standard errors) and estimated dispersion parameters in the
cause-specific hazard log-normal frailty model for two types of events in the multi-center bladder cancer data

Event Variable No-penalty LASSO SCAD HL

Type 1 x1: CHEMO −0.876 (0.187) −0.598 (0.142) −0.870 (0.182) −0.696 (0.158)

x2: Age −0.266 (0.147) −0.131 (0.079) 0 (0) 0 (0)

x3: Sex 0.000 (0.210) 0 (0) 0 (0) 0 (0)

x4: PRIORREC1 0.289 (0.252) 0 (0 0 (0) 0 (0)

x5: PRIORREC2 0.534 (0.200) 0.336 (0.119) 0.426 (0.178) 0.337 (0.127)

x6: NOTUM1 0.688 (0.167) 0.455 (0.118) 0.671 (0.163) 0.514 (0.131)

x7: NOTUM2 1.217 (0.283) 0.693 (0.171) 1.213 (0.269) 0.863 (0.209)

x8: TUM3CM 0.152 (0.176) 0.002 (0.002) 0 (0) 0 (0)

x9: TLOCC 0.225 (0.173) 0.183 (0.091) 0 (0) 0 (0)

x10: CIS 0.246 (0.279) 0 (0) 0 (0) 0 (0)

x11: GLOCAL1 0.522 (0.166) 0.269 (0.103) 0.540 (0.159) 0.356 (0.119)

x12: GLOCAL2 0.801 (0.274) 0.276 (0.111) 0.914 (0.249) 0.552 (0.178)

Type 2 x1: CHEMO 0.381 (0.391) 0 (0) 0 (0) 0 (0)

x2: Age 0.854 (0.285) 0.357 (0.131) 0.692 (0.263) 0.444 (0.164)

x3: Sex −0.509 (0.356) 0 (0) 0 (0) 0 (0)

x4: PRIORREC1 0.153 (0.400) 0 (0) 0 (0) 0 (0)

x5: PRIORREC2 0.506 (0.323) 0 (0) 0 (0) 0 (0)

x6: NOTUM1 −0.523 (0.259) 0 (0) 0 (0) 0 (0)

x7: NOTUM2 −1.396 (0.552) 0 (0) 0 (0) 0 (0)

x8: TUM3CM −0.139 (0.272) 0 (0) 0 (0) 0 (0)

x9: TLOCC −0.174 (0.267) 0 (0) 0 (0) 0 (0)

x10: CIS 0.473 (0.497) 0 (0) 0 (0) 0 (0)

x11: GLOCAL1 0.273 (0.260) 0.010 (0.008) 0 (0) 0 (0)

x12: GLOCAL2 −0.135 (0.470) 0 (0) 0 (0) 0 (0)

is a conditional partial log-likelihood which is the first and second terms of the right-hand side of (7), and dfc =
trace(H−1

v H∗
v ) is an effective degree of freedom adjustment for estimating the fixed and random effects, computed by

the Hessian matrix Hv = −𝜕2hv∕𝜕(𝛽, v)2 in (14) and H∗
v = −𝜕2𝓁p∕𝜕(𝛽, v)2. Note that the smaller value of cAIC indi-

cates a better model. With this dataset, under no-penalty, the log-normal frailty model gave cAIC= 2780.22 and the
gamma frailty model had cAIC= 2780.51, leading that the cAIC selects the log-normal model even if cAIC of the
log-normal is slightly smaller than that of the gamma model. The resulting cAIC values from three variable selection
methods under the log-normal model are 2774.10, 2768.69, and 2771.71 for LASSO, SCAD, and HL, respectively. Thus,
we observe that the values of cAIC are smaller in the models with penalty than in models without penalty, leading
that the cAIC detects a parsimonious model as a better model. Hence, we may choose the log-normal frailty model
with SCAD penalty as a final model parsimoniously, even if the SCAD and HL select the same variables as shown
in Table 3.

Furthermore, we fitted the cause-specific hazard models to conduct the variable selection under the generalized
gamma frailty38 which includes the gamma, log-normal, and Weibull distributions as special cases.38-40 The estimation
procedure and the variable selection results using the bladder cancer data are given in Appendix B of the Supplementary
Materials. We again found that the estimation results including cAIC (in Table S3 of the Supplementary Materials) are
similar to the results of the gamma frailty in Table S2. Because cause-specific models under the three frailty distributions
(in Tables 3, S2, and S3) give small frailty variances, the analysis results are similar. Thus, in this data set, the choice of
frailty distribution is difficult.
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T A B L E 4 Estimated regression coefficients (standard errors) and estimated dispersion parameters in the
subdistribution hazard log-normal frailty model for two types of events in the multi-center bladder cancer data

Event Variable No-penalty LASSO SCAD HL

Type 1 x1: CHEMO −0.933 (0.187) −0.666(0.166) −0.929 (0.182) −0.785 (0.174)

x2: Age −0.343 (0.147) −0.214 (0.120) 0 (0) −0.218 (0.119)

x3: Sex 0.058 (0.208) 0 (0) 0 (0) 0 (0)

x4: PRIORREC1 0.276 (0.249) 0 (0 0 (0) 0 (0)

x5: PRIORREC2 0.514 (0.200) 0.327 (0.149) 0.395 (0.180) 0.294 (0.150)

x6: NOTUM1 0.713 (0.168) 0.494 (0.139) 0.688 (0.164) 0.593 (0.150)

x7: NOTUM2 1.307 (0.283) 0.816 (0.229) 1.293 (0.272) 1.051 (0.249)

x8: TUM3CM 0.213 (0.175) 0.060 (0.094) 0 (0) 0 (0)

x9: TLOCC 0.171 (0.173) 0.127 (0.115) 0 (0) 0 (0)

x10: CIS 0.266 (0.278) 0 (0) 0 (0) 0 (0)

x11: GLOCAL1 0.474 (0.165) 0.250 (0.126) 0.491 (0.159) 0.384 (0.137)

x12: GLOCAL2 0.808 (0.274) 0.347 (0.189) 0.910 (0.250) 0.610 (0.222)

Type 2 x1: CHEMO 0.733 (0.378) 0.203 (0.184) 0 (0) 0 (0)

x2: Age 1.049 (0.262) 0.737 (0.213) 1.013 (0.258) 0.787 (0.220)

x3: Sex −0.435 (0.340) 0 (0) 0 (0) 0 (0)

x4: PRIORREC1 0.014 (0.399) 0 (0) 0 (0) 0 (0)

x5: PRIORREC2 0.052 (0.321) 0 (0) 0 (0) 0 (0)

x6: NOTUM1 −0.771 (0.251) −0.379 (0.184) −0.581 (0.231) −0.343 (0.177)

x7: NOTUM2 −1.140 (0.481) −0.110 (0.151) 0 (0) 0 (0)

x8: TUM3CM −0.165 (0.259) 0 (0) 0 (0) 0 (0)

x9: TLOCC −0.141 (0.251) 0 (0) 0 (0) 0 (0)

x10: CIS 0.202 (0.439) 0 (0) 0 (0) 0 (0)

x11: GLOCAL1 −0.110 (0.243) 0 (0) 0 (0) 0 (0)

x12: GLOCAL2 −0.461 (0.466) 0 (0) 0 (0) 0 (0)

On the other hand, Ha et al14 also used the same dataset for the variable selection, as shown in Table 4, for recurrence
(Type 1) using the subdistribution hazard (subhazard) frailty model6 with a shared log-normal frailty. The cause-specific
hazard and subhazard models have different interpretations for covariate effects because both regression models are
formalized under different types of hazard functions.7,41,42 That is, the subhazard model directly associates covariate
effects with the cumulative probability of a specific cause of events over time, that is, the cumulative incidence function
(CIF), whereas the cause-specific hazard model associates the covariate effects with the cause-specific hazard function.
In Table 4, we added the results of variable selection for death (Type 2) using the same subhazard frailty model. Here,
we find that the trends of variable selection in the subhazard frailty model for Types 1 and 2 are overall similar to those
in the cause-specific frailty model in Table 3. For example, in both models, the three methods (LASSO, SCAD, and HL)
all select the CHEMO (ie, main covariate) for Type 1, and the two methods (SCAD and HL) do not it for Type 2. We also
see that in cause-specific hazard frailty model, the CHEMO significantly reduces the cause-specific hazard of Type 1, but
that in subhazard frailty model, it significantly reduces the subdistribution hazard of Type 1 (ie, lower CIF).

It is interesting to compare different regression models for competing risks outcomes. In this article, we compare
the cause-specific hazard (CSH) and subhazard (SH) frailty models using an extended Brier score. The definition (C2)
and estimator (C3) of the proposed Brier score are given in Appendix C of Supplementary Materials. Following Gerds
and Schumacher,43 we use two Brier score methods based on the Kaplan-Meier (KM) estimator and Cox’s PH model for
estimating the censoring distribution: see Appendix C for more detailed explanations. Table 5 shows the results based
on the integrated Brier score (IBS) in Equation (C7) of Appendix C. Note that the smaller value of IBS indicates a better
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T A B L E 5 The results of an extended IBS (integrated Brier score) for model selection of the cause-specific hazard (CSH)
and subdistribution hazard (SH) log-normal frailty models for two types of events in the multi-center bladder cancer data

No-penalty LASSO SCAD HL

Censoring Event CSH SH CSH SH CSH SH CSH SH

KM Type 1 6.966 7.079 7.633 6.972 7.198 6.922 7.579 6.927

Type 2 3.015 3.590 2.995 3.555 2.991 3.587 2.991 3.560

Cox Type 1 7.601 7.896 8.414 7.640 7.172 6.895 7.556 7.681

Type 2 2.832 3.702 2.931 3.584 2.904 3.593 2.928 3.552

Note: Censoring, the estimation method of censoring distribution; KM and Cox indicate the IBS based on the Kaplan-Meier estimator and
Cox’s PH model, respectively.

model. The IBS based on the KM method under no-penalty selects the CSH model for both Types 1 and 2 outcomes,
whereas IBSs under LASSO, SCAD, and HL penalties select the SH model for Type 1 outcome and the CSH model for
Type 2 outcome. The IBSs based on the Cox PH model under no-penalty and HL penalty select the CSH model for Types 1
and 2 outcomes, whereas those under LASSO, and SCAD penalties select the SH model for Type 1 outcome and the CSH
model for Type 2 outcome. We prefer to use the CSH model for both Types 1 and 2 outcomes based on IBS under the HL
penalty. However, further research on the model selection would be of interest.

5.2 Breast cancer data: Three types of events

We consider a breast cancer data set (B-14) from a multicenter clinical trial, conducted by the National Surgical Adjuvant
Breast and Bowel Project (NSABP).44,45 The aim of this study is to investigate the effect of tamoxifen against placebo
following surgery in patients who had negative axillary lymph nodes and estrogen receptor positive breast cancer. We
use a high risk subset of patients from the B-14 study, with tumor size greater than 2.5 cm as in the analysis of Christian
et al.5 In this subset, there were 731 women with follow-up (371 placebo and 360 tamoxifen) who were eligible for the
study. The median age for women on either placebo or treatment was 55 years. A series of multiple types of treatment
failure were possible; local, regional, or distant recurrence of the original cancer as well as a new second primary cancer
or death because patients were followed as long as they did not withdraw their consents.

Thus, we consider the three types of failures:

• Type 1: A local or regional recurrence,
• Type 2: A new second primary cancer in the contralateral breast,
• Type 3: A distant recurrence, other new second primary cancer or death.

Among all 840 observations including multiple observations from 731 patients, the number of Types 1, 2, and 3 events
was 113 (13.45%), 64 (7.62%), and 388 (46.19%), respectively, and the number of no events (censoring) until the last
follow-up was 275 (32.74%). Here, about 57% of the 95 patients who had multiple events experienced both Type 1 and
Type 3 events and about 20% had Type 2 and Type 3 events.

We assume that these three types of events compete against each other because once a recurrence or second pri-
mary event occurs, non-protocol therapies are often administered after the event, which would prohibit an accurate
assessment of the effect of the treatment solely on that particular event type under consideration. Here, the interest
of covariates were age (x1) and treatment (x2 is 1 for tamoxifen and 0 for placebo) which is a main covariate in this
trial.

We also consider a cause-specific hazard frailty model with age and treatment under the three events above. For
this purpose, the cause-specific frailty model with (2) and (3) is extended to a joint model with a common log-frailty vi,
composed of three interlinked cause-specific submodels. That is, the three event times Tij1, Tij2, and Tij3, respectively,
follow the conditional cause-specific PH model:

(i) 𝜆ij1(t|vi) = 𝜆01(t) exp(xT
ij 𝛽1 + vi),
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T A B L E 6 Estimated regression coefficients (standard errors) and estimated dispersion parameters in the
cause-specific hazard log-normal frailty model for three types of events in the breast cancer data

Event Variable No-penalty LASSO SCAD HL

Type 1 x1: Age −0.015 (0.010) −0.015 (0.010) −0.005 (0.003) 0 (0)

x2: Treatment −0.744 (0.226) −0.170 (0.059) −0.593 (0.208) −0.354 (0.123)

Type 2 x1: Age −0.002 (0.013) 0 (0) 0 (0) 0 (0)

x2: Treatment −0.158 (0.266) 0 (0) 0 (0) 0 (0)

Type 3 x1: Age 0.016 (0.008) 0.016 (0.008) 0.012 (0.005) 0.018 (0.006)

x2: Treatment −0.289 (0.165) 0 (0) 0(0) 0 (0)

(ii) 𝜆ij2(t|vi) = 𝜆02(t) exp(xT
ij 𝛽2 + 𝛾1vi),

(iii) 𝜆ij3(t|vi) = 𝜆03(t) exp(xT
ij 𝛽3 + 𝛾2vi).

Here, 𝛾1 and 𝛾2 are real-valued dispersion parameters to represent associations among the three submodels above via a
shared log-frailty vi. That is, 𝛾1 [𝛾2] represents association between submodels (i) and (ii) [(i) and (iii)], respectively.7,20 For
simplicity, we use log-normal frailty distribution for vi, that is, vi ∼ N(0, 𝛼). Then the three cause-specific models above
(k = 1, 2, 3) are straightforwardly fitted using the penalized h-likelihood procedure with (12) and (16), by extending the
partition matrices in (12) to

X =
⎛⎜⎜⎜⎝
X 0 0
0 X 0
0 0 X

⎞⎟⎟⎟⎠ , Z =
⎛⎜⎜⎜⎝

Z
𝛾1Z
𝛾2Z

⎞⎟⎟⎟⎠ , and W∗ =
⎛⎜⎜⎜⎝
W∗

1 0 0
0 W∗

3 0
0 0 W∗

3

⎞⎟⎟⎟⎠
with w∗ = (w∗T

1 ,w∗T
2 ,w∗T

3 )T .
The estimated coefficients and their standard errors for the three event types are summarized in Table 6, respectively.

First, the estimation results under no penalty are as follows. The two estimated association parameters �̂�1 = 0.820 [�̂�2 =
1.169] show a positive correlation between Type 1 and Type 2 [Type 1 and Type 3], respectively. The results indicate that
patients who experienced a local or regional recurrence will also be at a greater risk for developing a second primary cancer
in the contralateral breast as well as any of Type 3 events. The estimated variance of the frailty is �̂� = 1.954, indicating a
fairly heterogeneous group of patients. Among covariates of three events, x2 in Type 1 and x1 in Type 3 are significant by
t-value (=Estimate/SE). In particular, we find that tamoxifen (x2) significantly reduces only the risk of a local or regional
recurrence (ie, Type 1) as compared to patients who receive placebo.

Next, we study variable selection by LASSO, SCAD, and HL methods. The selected values of the tuning parameters
𝜉 based on BIC in (19) are 0.012, 0.160, and 0.004 for the LASSO, SCAD, and HL, respectively. The estimates of disper-
sion parameters 𝜃 = (𝛾1, 𝛾2, 𝛼) for LASSO, SCAD, and HL are similar, with (0.807, 1.162, 1.935), (0.809, 1.145, 1.871), and
(0.797, 1.148, 1.951), respectively. The estimated coefficients and their standard errors for Types 1, 2, and 3 under the three
penalties are also given in Table 6. The main covariate (tamoxifen; x2) in Type 1 and age (x1) in Type 3 are significant in all
the three variable selection methods (ie, LASSO, SCAD, and HL). The LASSO and SCAD select age (x1) in Type 1 which
are not significant under no-penalty, while HL does not. Here, HL provides the most pasimonious model.

6 DISCUSSION

We have shown that the penalized h-likelihood method is useful for selecting jointly important variables of fixed effects
corresponding to two or more types of events in the cause-specific hazard frailty models. The proposed variable selec-
tion method can be easily implemented by a slight modification to the existing h-likelihood estimation procedures for
standard frailty models. We have also demonstrated via simulation studies and two practical data sets that the proposed
procedure with SCAD or HL penalties works well overall. In particular, we have found by the simulation that HL pro-
vides a higher probability of choosing the true model than LASSO and SCAD methods without losing prediction accuracy.
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Accordingly, we recommend using the HL method for the variable selection in cause-specific competing risks frailty
models,

The main advantage of the proposed method based on the h-likelihood avoids intractable integrations over frailties
in computing marginal likelihood, with a nonparametric estimation for high-dimensional baseline hazards.7,46 Thus, our
method provides efficient procedure for variable selection in various types of frailty models including semi-competing
risks frailty models46 and joint models7 for repeated measures and time-to-event data. Both cause-specific hazards frailty
model and subhazard frailty model can be used for analyzing the clustered survival data. However, both modeling
approaches are different even if they could empirically give similar results;7,17,47 in particular, the former can take into
account the correlation between events of interest and competing events via frailties, while the latter does not by assum-
ing that the frailty effects on both types of events are independent.5,7 Thus, the cause-specific frailty model would be more
appropriate when a dependency between different types of events or informative censoring is present. The subhazard
model is useful for direct statistical inference about the CIF of the particular event type of interest. According to the results
of analysis of bladder cancer data, the variable selection for Type 1 (recurrence) is identical in the two models, but that for
Type 2 (death) is slightly different. However, the two models have different interpretations for covariate effects because
they are defined under different types of hazard functions. For example, in both models the three methods (LASSO, SCAD,
and HL) all select the CHEMO (ie, main covariate) for Type 1. Here, in cause-specific hazard frailty model the CHEMO
significantly reduces the cause-specific hazard of Type 1, whereas in subhazard frailty model it significantly reduces the
subdistribution hazard of recurrence (ie, lower CIF). The study on model choice would be of interest for future research.

Even if the fixed effect estimates are somewhat insensitive to the choice of frailty distribution, commonly used
log-normal or gamma frailty distribution may be simple. It would be useful to consider a wider class of frailty distributions
when the frailty distribution is in suspicion; for instance, we can consider the generalized gamma distribution,38 which
contains the gamma, log-normal, and Weibull distributions as special cases. For the selection of frailty distributions, we
used the cAIC which is an interesting future research for further justification, including extended cause-specific hazard
frailty models as in Section 5.2.

When there are two causes (K = 2) in the competing-risks setting of Section 2, the proposed variable selection frame-
work is similar to the variable selection framework of joint frailty model for recurrent events and a terminal event by
Han et al48 in that both procedures provide the variable selection in the joint model with a shared frailty term for two
different types of events. Note that our method uses a nonparametric baseline hazard, whereas Han et al’s48 method uses
piecewise constant baseline hazard. Extensions of variable selection to cause-specific models with correlated frailties4,5

or high dimensional case17,24 having p > n would be also an interesting further work.
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