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Abstract

Time series imputation is important for numerous real-world applications. To1

overcome the limitations of diffusion model-based imputation methods, e.g., slow2

convergence in inference, we propose a novel method for time series imputation in3

this work, called Conditional Lagrangian Wasserstein Flow. The proposed method4

leverages the (conditional) optimal transport theory to learn the probability flow5

in a simulation-free manner, in which the initial noise, missing data, and obser-6

vations are treated as the source distribution, target distribution, and conditional7

information, respectively. According to the principle of least action in Lagrangian8

mechanics, we learn the velocity by minimizing the corresponding kinetic energy.9

Moreover, to incorporate more prior information into the model, we parameterize10

the derivative of a task-specific potential function via a variational autoencoder,11

and combine it with the base estimator to formulate a Rao-Blackwellized sampler.12

The propose model allows us to take less intermediate steps to produce high-quality13

samples for inference compared to existing diffusion methods. Finally, the experi-14

mental results on the real-word datasets show that the proposed method achieves15

competitive performance on time series imputation compared to the state-of-the-art16

methods.17

1 Introduction18

Time series imputation is essential for various practical scenarios in many fields, such as transportation,19

environment, and medical care, etc. Deep learning-based approaches, such as RNNs, VAEs, and20

GANs, have been proved to be advantageous compared to traditional machine learning methods on21

various complex real-words multivariate time series analysis tasks [18]. More recently, diffusion22

models, such as denoising diffusion probabilistic models (DDPMs) [20] and score-based generative23

models (SBGMs) [43], have gained more and more attention in the field of time series analysis due to24

their powerful modelling capability [26, 32].25

Although many diffusion model-based time series imputation approaches have been proposed and26

show their advantages compared to conventional deep learning models [44, 11, 12], they are limited27

to slow convergence or large computational costs. Such limitations may prevent them being applied to28

real-world applications. To address the aforementioned issues, in this work, we leverage the optimal29

transport theory [47] and Lagrangian mechanics [3] to propose a novel method, called Conditional30

Lagrangian Wasserstein Flow (CLWF), for fast and accurate time series imputation.31

In our method, we treat the multivariate time series imputation task as a conditional optimal transport32

problem, whereby the random noise is the source distribution, the missing data is the target distribution,33

and the observed data is the conditional information. To generate new data samples efficiently and34

accurately, we need to find the shortest path in the probability space according to the optimal transport35

theory. To this end, we first project the original source and target distributions into the Wasserstein36
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space via sampling mini-batch OT maps. Afterwards, we construct the time-dependent intermediate37

samples through interpolating the source distribution and target distribution. Then according to38

the principle of least action in Lagrangian mechanics [3], the optimal velocity function moving the39

source distribution to the target distribution is learned in a self-supervised manner by minimizing40

the corresponding kinetic energy. Moreover, to further improve the model’s performance, we learn41

the task-specific potential function by training a Variational Autoencoder (VAE) model [22] on the42

observed time series data to build a Rao-Blackwellized trajectory sampler.43

Finally, CLWF is assessed on two real-word multivariate time series datasets. The obtained results44

show that the proposed method achieves competitive performance and admits fast convergence45

compared with other state-of-the-art time series imputation methods.46

The contributions of the paper ares summarized as follows:47

• We present Conditional Lagrangian Wasserstein Flow, a novel conditional generative frame-48

work based on the optimal transport theory and Lagrangian mechanics;49

• We propose a Rao-Blackwellized trajectory sampler to enhance the data generation perfor-50

mance by incorporating the prior information;51

• We develop the practical algorithms to solve the time series imputation problem via a52

conditional generative approach;53

• We demonstrate that the proposed method has competitive performance on time series54

imputation tasks compared other state-of-the-art methods.55

2 Preliminaries56

In this section, we concisely introduce the fundamentals of stochastic differential equations, optimal57

transport, Shrödinger Bridge, and Lagrangian mechanics.58

2.1 Stochastic Differential Equations59

We treat the data generation task as an initial value problem (IVP), in which X0 ∈ Rd is the initial60

data (e.g., some random noise) at the initial time t = 0, and XT ∈ Rd is target data at the terminal61

time t = T . To solve the IVP, we consider a stochastic differential equation (SDE) defined by a Borel62

measurable time-dependent drift function µt : [0, T ]× Rd → Rd, and a positive Borel measurable63

time-dependent diffusion function σt : [0, T ] → Rd
>0. Accordingly, the Itô form of the SDE can be64

described as follows [36]:65

dXt = µt(Xt, t)dt+ σtdWt, (1)

where Wt is a Brownian motion/Wiener process. When the diffusion term is not considered, the66

SDE degenerates to an ordinary differential equation (ODE). However, we will use the SDE for the67

theoretical analysis as it is more general.68

The Fokker–Planck equation (FPE) [40] describing the evolution of the marginal density pt(Xt)69

reads:70

∂

∂t
pt(Xt) = −∇ · (ptµt) +

σ2
t

2
∆pt, (2)

where ∆pt = ∇· (∇pt) is the Laplacian. In fact, both Eq. eq:sde and Eq. eq:fpe reveal the dynamics71

of the system and serve as the boundary conditions for the optimization problems we will introduce in72

later sections with different focuses. The differences are when the constraint is Eq. (1), the formalism73

is Lagrangian, which depicts the movement of each individual particle; while when the constraint is74

Eq.(2), the formalism is Eulerian, which depicts the evolution of population.75

2.2 Optimal Transport76

The optimal transport (OT) problem aims to seek the optimal transport plans/ maps that moves the77

source distribution to the target distribution [47, 41, 38]. In the Kantorovich’s formulation of the78

OT problem, the transport costs are minimized with respect to some probabilistic couplings/joint79

distributions [47, 41, 38]. Let p0 and pT be two Borel probability measures with finite second80

2



moments on the space Ω ∈ Rd. Π(p0, pT ) denotes a set of transport plans between these two81

marginals. Then, the Kantorovich’s OT problem is defined as follows:82

inf
π∈Π(p0,pT )

∫
X×Y

1

2
∥x− y∥2π(x, y)dxdy, (3)

where Π(p0, pT ) =
{
π ∈ P(X × Y) : (πx)#π = p0, (π

y)#π = pT
}

, with πx and πx being two83

projections of X × Y on Ω. The minimizer of Eq .(3), π∗, always exist and referred to as the optimal84

transport plan.85

Note that the R.H.S of Eq. (3) can also include an entropy regularization term DKL(π∥p0 ⊗ pT ), then86

the original OT problem transforms into the entropy-regularized optimal transport (EROT) problem87

with Eq. (2) as the constraint, which frames the transport problem better in terms of convexity and88

stability [13] In particular, from a data generation perspective, p0 is some random initial noise and pT89

is the target data distribution, and we can sample the optimal transport maps in a mini-batch manner90

[46, 45, 39].91

2.3 Shrödinger Bridge92

The transport problem in Sec. 2.2 can be further viewed from a distribution evolution perspec-93

tive, which is particularly suitable for developing the flow models that model the data generation94

process. For this reason, the Shrödinger Bridge (SB) problem is introduced [25]. Assume that95

Ω ∈ C1([0, T ],Rd), P(Ω) is a probability path measure on the path space Ω, then the goal of the SB96

problem aims to find the following optimal path measure:97

P∗ = argmin
P∈P(Ω)

DKL(P∥Q) subject to P0 = q0 and PT = qT , (4)

where the Kullback–Leibler (KL) divergence DKL(P∥Q) =

{
log dP

dQdP, if P ≪ Q,

+∞, otherwise,
and Q is98

a reference path measure, e.g., Brownian motion or Ornstein-Uhlenbeck process. Moreover, the99

distribution matching problem in Eq. (3) can be cast as a dynamical SB problem as well [19, 24, 28]:100

argmin
θ

Ep(Xt)

[1
2

∥∥µθ
t (Xt, t)

∥∥2], (5)

subject to Eq. (1) or Eq. (2),

where θ is the parameters of the variational drift function µt.101

2.4 Lagrangian Mechanics102

In this section, we formulate the data generation problem under the framework of Lagrangian103

mechanics [3]. Let pt and ṗt =
dpt

dt
be the density and law of the generalized coordinates Xt, respec-104

tively. K(pt, ṗt, t) is the kinetic energy, and U(pt, t) is the potential energy, then the corresponding105

Lagrangian is106

L(pt, ṗt, t) = K(pt, ṗt, t)− U(pt). (6)

We assume that Eq. (6) is lower semi-continuous (lsc) and strictly convex in ṗt in the Wasser-107

stein space. The kinetic energy K(xt, µt, t) and potential energy U(pt, t) are defined as follows,108

respectively:109

K(xt, µt, t) = Ep(Xt)

[∫ T

0

∫
Rd

1

2
∥µt(xt, t)∥2dxdt, (7)

U(pt, t) = Ep(Xt)

[∫
Rd

Ut(Xt)

]
dXt, (8)

where Ut(Xt) is the potential function. Then the action in the context of Lagrangian mechanics is110

defined as follow:111

A[µt(x)] =

∫ T

0

∫
Rd

L(xt, µt, t)dxtdt. (9)
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According to the principle of least action, the shortest path is the one minimizing the action, which is112

aligned with Eq. (4) in the SB theory as well. Therefore, we can leverage the Lagrangian dynamics113

to tackle the OT problem for data generation. To solve Eq. (6), we need to satisfy the stationary114

condition, i.e., the Euler-Lagrangian equation:115

d

dt

∂

∂ṗt
L(xt, µt, t) =

∂

∂pt
L(pt, ṗt, t), (10)

with the boundary condition dXt

dt = µ(Xt, t), q0 = p0, qT = pT .116

3 Conditional Lagrangian Wasserstein Flow for Time Series Imputation117

In the section, building upon the optimal transport theory, the Shrödinger Bridge problem, and118

Lagrangian mechanics introduced in Sec. 2, we propose Conditional Lagrangian Wasserstein Flow,119

which is a novel conditional generative method for time series imputation.120

3.1 Time Series Imputation121

Our goal is to impute the missing time series data points based on the observations. For training,122

we adopt adopt a conditionally generative approach for time series imputation in the sample space123

RK×L, where K represents the dimension of the multivariate time series and L represents sequence124

length. In our self-supervised learning approach, the total observed data xobs ∈ RK×L are partitioned125

into the imputation target xtar ∈ RK×L and the conditional data xcond ∈ RK×L.126

As a result, the missing data points xtar can be generated based on the conditions xcond joint with127

some uninformative initial distribution x0 ∈ RK×L (e.g., Gaussian noise) at time t = 0, then the128

imputation task can be described as: xtar ∼ p(xtar|xcond
0 ), where the total input of the model is129

xinput
0 := (xcond, x0) ∈ RK×L×2.130

3.2 Interpolation in Wasserstein Space131

To solve Eq. (7), we need to sample the intermediate variable Xt in the Wasserstein space first. To do132

so, the interpolation method is adopted to construct the intermediate samples. According to the OT133

and SB problems introduced in Sec. 2, we define the following time-differentiable interpolant:134

It : Ω× Ω → Ω such that I0 = X0 and IT = XT , (11)

where Ω ∈ Rd is the support of the marginals p0(X0) and pT (XT ), as well as the conditional135

p(Xt|X0, XT , t).136

For implement It, first, we independently sample some random noise X0 ∼ N (0, σ2
0) at the initial137

time t = 0 and the data samples XT ∼ p(xtar) at the terminal time t = T , respectively. Afterwards,138

the interpolation method is used to construct the intermediate samples Xt ∼ p(Xt|X0, XT , t), where139

t ∼ uniform(0, T ) [30, 2, 45]. More specifically, we design the following sampling approach:140

Xt =
t

T
(XT + γt) + (1− t

T
)X0 + α(t)

√
t(T − t)

T
ϵ, t ∈ [0, T ], (12)

where γt ∼ N (0, σ2
γ) is some random noise with variance σγ injected to the target data samples for141

improving the coupling’s generalization property, and α(t) ≥ 0 is a time-dependent scalar.142

Note that Eq. (12) can only allow us to generate time-dependent intermediate samples in the Euclidean143

space but not the Wasserstein space, which can lead to slow convergence as the sampling paths are144

not straightened. Hence, to address this issue, we need to project the interpolations in the Wasserstein145

space before interpolating to strengthen the probability flow. To this end, we leverage the method146

adopted in [46, 45, 39] to sample the optimal mini-batch OT maps between X0 and XT first, and147

perform the interpolations according to Eq. (12) afterwards. Finally, we have the joint variable148

xinput
t := (xcond, xt) as the input for computing the velocity of the Wasserstein flow.149

3.3 Flow Matching150

To estimate the velocity of the Wasserstein flow µt(Xt, t) in Eq. (1), the previous methods that require151

trajectory simulation for training can result in long convergence time and large computational costs152
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[9, 37]. To circumvent the above issues, in this work we adopt a simulation-free training strategy153

based on the OT theory introduce in Sec. 2.2 [30, 46, 2], which turns out to be faster and more154

scalable to large time series datasets.155

Since we can now draw mini-batch interpolated samples of the source distribution and target distribu-156

tion in the Wasserstein space using Eq. (12), we can model the variational velocity function using a157

neural network with parameters θ. Then, according to Eq. (1), the target velocity can be computed158

by the difference between the source distribution and target distribution. Therefore, the variational159

velocity function µθ(x
input
t , t) can be learned by160

argmin
θ

∫ T

0

∫
Rd×Rd×Rd

∥∥∥∥dXt

dt
− µθ

t (x
input
t , t)

∥∥∥∥2dx0dx
tardxinputdt (13)

≈ argmin
θ

Ep(x0),p(xtar),p(xinput),t

[∥∥∥∥xtar − x0

T
− µθ

t (x
input
t , t)

∥∥∥∥2
]
. (14)

Eq. (14) can be solved by drawing mini-batch samples in the Wasserstein space and performing161

stochastic gradient descent accordingly. In this fashion, the learning process is simulation-free as the162

trajectory simulation is not needed.163

Moreover, note that that Eq. (13) also obeys the principle of least action introduced in Sec. 2.4 as164

it minimizes the kinetic energy described in Eq. (7). Therefore, it indicates that the geodesic that165

drives the particles from the source distribution to the target distribution in the OT problem described166

in Sec. 2 is found as well, which enables us to generate new samples with less simulation steps167

compared to standard diffusion models.168

3.4 Potential Function169

So far, we have demonstrated how to leverage the kinetic energy to estimate the velocity in the170

Lagrangian described by Eq. 6. Apart from this, we can also incorporate the prior knowledge within171

the task-specific potential energy into the dynamics, which enables us to further improve the data172

generation performance. To this end, let U(Xt) : Rd × [0, T ] → R be the task-specific potential173

function depending on the generalized coordinates Xt [48, 37, 34]. Therefore, we can compute the174

dynamics of the system by175

dXt

dt
= vt(Xt, t) = −∇xUt(Xt). (15)

Since the data generation problem in our case can also be interpreted as a stochastic optimal control176

(SOC) problem [4, 17, 35, 50, 21, 5], then the existence of such Ut(Xt) is assured by Pontryagin’s177

Maximum Principle (PMP) [16].178

To estimate vt(Xt, t), according to the Lagrangian Eq. (6), we assume that the potential function179

takes the form Ut(Xt) ≈ − logN (Xt|X̂t, σ
2
p), where X̂t the learned mean and σ2

p is the pre-defined180

variance. As a result, the derivative is ∇xU(Xt) =
Xt−X̂t

σ2
p

. In terms of practical implementation, we181

parameterize ∇xU(Xt) via a Variational Autoencoder (VAE) [22]. More specifically, we pre-train a182

VAE on the total observed time series data Xobs. Afterwards, the reconstruction discrepancies of the183

VAE are used to approximate the task-specific vϕ(Xt, t) depending on Xt:184

vϕt (Xt, t) = − 1

σ2
p

(Xt −VAE(Xt)), (16)

where VAE(Xt) represents the reconstruction output of the pre-trained VAE model with input Xt,185

and σ2
p is treated as a positive constant for simplicity. In this manner, we can incorporate the prior186

knowledge learned from the accessible training data into the sampling process formulated by Eq. (14)187

to enhance the data generation performance.188

3.5 Rao-Blackwellized Sampler189

To generate the missing time series datapoints, we first formulate an unbiased ODE sampler190

S(Xt, µ
θ
t (Xt, t), t) for Xt+1 with the Euler method and µθ

t (Xt, t) learned by Eq. (14) (which191
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Figure 1: The overall training process of Conditional Lagrangian Wasserstein Flow.

means the diffusion term in Eq. 1 is omitted). Alternatively, one can also adopt the SDE sampler by192

using the Euler–Maruyama method. Nevertheless, to ensure achieve the best imputation performance,193

we choose the ODE sampler for implementation. Note that the ODE sampler alone is good enough to194

generate high-quality samples for time series imputation.195

Now we can construct a Rao-Blackwellized trajectory sampler [8] for time series data imputation196

using Eq. 14 and Eq. 16. To this end, we first treat S(Xt+1|Xt, µ
θ
t (Xt, t), t) be the base estimator197

for Xt+1 with E[S2] < ∞ for all Xt+1. And we assume T (Xt, v
ϕ
t (xt, t), t) is a sufficient statistic198

for Xt+1 based on Eq. 16, even it is not a very accurate estimator for Xt+1. As a result, we can199

formulate a new trajectory sampler S∗ = E[S|T ] to generate the missing time series data. Then200

according to the Rao-Blackwell theorem [8], we have201

E[S∗ −Xt+1]
2 ≤ E[S −Xt+1]

2, (17)

where the inequality is strict unless S is a function of T . Eq. 17 suggests we can construct a more202

powerful sampler with smaller errors than the base ODE sampler S using Rao-Blackwellization.203

3.6 The Algorithms204

The overall training process of CLWF is illustrated in Fig. 1, which consists of the following205

stages. First, the total observed data xobs are partitioned into the target data and conditional data for206

training. Next, the data pairs of xtar and x0 are sampled from the target dataset and random Gaussian207

noise, respectively. Then, the data pairs are projected into the Wasserstein space by sampling the208

corresponding OT maps. After that, the intermediate variable xt is sampled through interpolation209

using Eq. (12). We can approximate the target velocity dXt

dt by computing xtar−x0

T . Subsequently,210

we use the joint distribution of the conditional information xcond and the intermediate variable xt,211

xinput as the total input to feed the variational flow model µθ
t to compute the velocity. And the flow212

matching loss defined by Eq. (14) is minimized by stochastic gradient descent.213

Furthermore, to incorporate the prior information of into the model, we can choose to train a VAE214

model on the total observed data xobs. This is used to estimate the derivative of the task-specific215

potential function according to Eq. (16), which can be further utilized to construct a more powerful216

Rao-Blackwellized sampler for inference.217

For inference, at time t = 0, we sample the initial random noise x0 and conditional information218

xcond to formulate the joint variable xinput. Note that during the trajectory sampling x0 will evolve219

over time, while xcond remain invariant. We use xinput as the input of the flow model µθ
t to compute220

the velocity. Afterwards, we sample the new xt using the Euler method. If we perform Rao-221

Blackwellization, then xt is fed to the VAE model for computing the derivative of the potential222

function, and xt is updated again using the Euler method. The above process will be repeated until223

reach its convergence. Moreover, we can sample multiple trajectories using different initial random224
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noise, and the averages as the final imputation results. Finally, the proposed training and sampling225

procedures are presented in Algorithm 1 and Algorithm 2, respectively.226

Algorithm 1 Training procedure

Require: Terminal time: T , max epochs, ob-
served data Xobs, parameters: θ and ϕ.
while epoch < max epochs do

sample t, (x0, xT ), and OT maps;
sample xt according to Eq. (12);
minimize Eq. (14);

end while
if Rao-Blackwellization then

train a VAE model on Xobs.
end if

Algorithm 2 Sampling procedure

Require: initial time t = 0, terminal time:
T = 1, Euler method step number: N .
sample initial noise X0 ∼ N (0, σ2

0)
while t < T do

Xt = Xt + µθ
t (x

input, t) T
N

if Rao-Blackwellization then
Xt = Xt + vϕt (xt, t)

T
N

end if
t = t+ T

N
end while

227

4 Experiments228

4.1 Datasets229

We use two public multivariate time series datasets for validation. The first dataset is the PM 2.5230

dataset [51] from the air quality monitoring sites for 12 months. The missing rate of the raw data231

is 13%. The feature number K is 36 and the sequence length L is 36. In our experiments, only the232

observed datapoints are masked randomly as the imputation targets.233

The other dataset we use is the PhysioNet dataset [42] collected from the intensive care unit for 48234

hours. The feature number K is 35 and the sequence length L is 48. The missing rate of the raw data235

is 80%. In our experiments, 10% and 50% of the datapoints are masked randomly as the imputation236

targets, which are denoted as PhysioNet 0.1 and PhysioNet 0.5, respectively.237

4.2 Baselines238

For comparison, we select the following state-of-the-art timer series imputation methods as the239

baselines: 1) GP-VAE [18], which is combines a VAE model and a Gaussian Process prior; 2)240

CSDI [44], which is based on the conditional diffusion model; 3) CSBI [12], which is based on the241

Schrödinger bridge diffusion model; 4) DSPD-GP [7], which combines the diffusion model with the242

Gaussian Process prior.243

4.3 Experimental Settings244

In terms of the choices of architectures, tboth the flow model and the VAE model are built upon245

Transformers [44]. We use the ODE sampler for inference and sample the exact optimal transport246

maps for interpolations to achieve the optimal performance. The optimizer is Adam and the learning247

rate: 0.001 with linear scheduler. The maximum training epochs is 200. The mini batch size for248

training is 64. The total step number of the Euler method used in CLWF is 15, while the total step249

numbers for other diffusion models. i.e., is CSDI, CSBI, and DSPD-GP are 15 (as suggested in their250

papers). The number of the Monte Carlo samples for inference is 50. The standard deviation σ0251

for the initial noise X0 is 0.1, and the standard deviation σγ for the injected noise γt 0.001. The252

coefficient σ2
p in the derivative of the potential function is 0.01.253

4.4 Experimental Results254

4.4.1 Imputation Results255

We assess the proposed method on PM 2.5, PhysioNet 0.1 and PhysioNet 0.5, respectively. The root256

means squared error (RMSE) and mean absolute error (MAE) are used as the evaluation metrics.257

From the test results shown in Table 1 and Fig. 2, we can see that our method CLWF outperforms258

the existing deep learning-based method (GP-VAE) and the recent state-of-the-art diffusion methods259

(CSDI, CSBI, and DSPD-GP). Moreover, CLWF uses only 15 sampling steps for inference, while the260
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Table 1: Test imputation results on PM 2.5, PhysioNet 0.1, and PhysioNet 0.5 (5-trial averages). The
best are in bold and the second best are underlined.

Method PM 2.5 PhysioNet 0.1 PhysioNet 0.5
RMSE MAE RMSE MAE RMSE MAE

GP-VAE 43.1 26.4 0.73 0.42 0.76 0.47
CSDI 19.3 9.86 0.57 0.24 0.65 0.32
CSBI 19.0 9.80 0.55 0.23 0.630.630.63 0.31
DSPD-GP 18.3 9.709.709.70 0.54 0.220.220.22 0.68 0.30
CLWF 18.118.118.1 9.709.709.70 0.470.470.47 0.220.220.22 0.64 0.290.290.29
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Figure 2: Visualization of the test imputation results on PM 2.5, green dots are the conditions, blue
dots are the imputation results, and red dots are the ground truth.

Table 2: Single-sample test imputation results on PM 2.5, PhysioNet 0.1, and PhysioNet 0.5 (5-trial
averages).

Method PM 2.5 PhysioNet 0.1 PhysioNet 0.5
RMSE MAE RMSE MAE RMSE MAE

CSDI 22.2 11.7 0.74 0.30 0.83 0.40
CLWF 18.4 10.0 0.48 0.22 0.64 0.30

baseline diffusion method uses only 50 sampling steps. This suggests that CLWF is faster and more261

accurate than the existing methods on time series imputation tasks.262

4.4.2 Ablation Study263

Single-sample Imputation Result. We compare the time series imputation performance of CLWF264

with CSDI using only one Monte Carlo sample. The test results shown in Table 2 shows that CWFL265

outperforms CSDI, which suggests that CWFL exhibits lower imputation variances compared to266

diffusion-based models. This indicates that CWFL is more efficient and computationally economical267

for inference.268

Effect of Rao-Blackwellzation. We compare the
test imputation CLWF wth and without using Rao-
Blackwellzation. Note that the PhysioNet dataset
does not have enough non-zero data points to train
a valid VAE model, therefore we only construct the
Rao-Blackwellized sampler for the PM 2.5 dataset.
The results showed in Table 3 indicates

Table 3: Test imputation results on PM 2.5
(5-trial averages).

Method PM 2.5
RMSE MAE

CLWF (without RB) 18.2 9.75
CLWF (RB) 18.1 9.70

that the Rao-Blackwellized sampler can further improve the time series imputation performance of
the base sampler.
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5 Related Work269

5.1 Diffusion Models270

Diffusion models, such as DDPMs [20] and SBGM [43], are considered as the new contenders271

to GANs on data generation tasks. But they generally take relatively long time to produce high272

quality samples. To mitigate this problem, the flowing matching methods have been proposed from273

an optimal transport. For example, ENOT uses the saddle point reformulation of the OT problem to274

develop a new diffusion model [19] The flowing matching methods have also been proposed based275

on the OT theory [27, 29, 31, 2, 1]. In particular, mini-batch couplings are proposed to straighten the276

probability flows for fast inference [39, 45, 46].277

The Schrödinger Bridge have also been applied to diffusion models for improving the data generation278

performance of diffusion models. Diffusion Schrödinger Bridge utilizes the Iterative Proportional279

Fitting (IPF) method to solve the SB problem [14]. SB-FBSDE proposes to use forward-backward280

(FB) SDE theory to solve the SB problem through likelihood training [10]. GSBM formulates a281

generalized Schrödinger Bridge matching framework by including the task-specific state costs for282

various data generation tasks [28] NLSB chooses to model the potential function rather than the283

velocity function to solve the Lagrangian SB problem [24]. Action Matching [33, 34] leverages284

the principle of least action in Lagrangian mechanics to implicitly model the velocity function for285

trajectory inference. Another classes of diffusion models have also been proposed from an stochastic286

optimal control perspective by solving the HJB-PDEs [35, 50, 5, 28].287

5.2 Time Series Imputation288

Many diffusion-based models have been recently proposed for time series imputation [26, 32]. For289

instance, CSDI [44] combines a conditional DDPM with a Transformer model to impute time series290

data. CSBI [12] adopts the FB-SDE theory to train the conditional Schrödinger bridge model to for291

probabilistic time series imputation. To model the dynamics of time series from irregular sampled292

data, DSPD-GP [7] uses a Gaussian process as the noise generator. TDdiff [23] utilizes self guidance293

and learned implicit probability density to improve the time series imputation performance of the294

diffusion models. However, the time series imputation methods mentioned above exhibit common295

issues, such as slow convergence, similar to many diffusion models. Therefore, in this work, we296

proposed CLWF to tackle thess challenges.297

6 Conclusion, Limitation, and Broader Impact298

In this work, we proposed CLWF, a novel time series imputation method based on the optimal299

transport theory and Lagrangian mechanics. To generate the missing time series data, following the300

principle of least action, CLWF learns a velocity field by minimizing the kinetic energy to move301

the initial random noise to the target distribution. Moreover, we can also estimate the derivative of302

a potential function via a VAE model trained on the observed training data to further improve the303

performance of the base sampler by Rao-Blackwellization. In contrast with previous diffusion-based304

models, the proposed requires less simulation steps and Monet Carlo samples to produce high-quality305

data, which leads to fast inference. For validation, CWLF is assessed on two public datasets and306

achieves competitive results compared with existing methods.307

One limitation of CLWF is that the samples obtained are not diverse enough as we use ODE for308

inference, which results in slightly higher test (continuous ranked probability score) CRPS compared309

to previous works, e.g., CSDI. Therefore, for future work, we will seek suitable approaches to310

accurately model the diffusion term in the SDE. Moreover, we will also try to design better task-311

specific potential functions for sparse multivariate time series data. We plan to explore the potential312

of the Lagrangian Wasserstein Flow model for other time series analysis tasks, such as anomaly313

detection and uncertainty quantification.314

In terms of broader impact, our study on time series imputation has the potential to address important315

real-world challenges and consequently make a positive impact on daily lives.316
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A Stochastic Optimal Control448

The data generation task can also be interpreted as a stochastic optimal control (SOC) problem449

[4, 17, 35, 50, 21, 5] whose cost function J is defined as:450

J (Xt, t) = Ep(Xt)

[∫ T

0

∫
Rd

1

2
∥∇xΨ(Xt, t)∥2dXtdt

]
+ Ep(XT )

[
Ψ(XT )

]
, (18)

where 1
2∥∇xΨ(Xt, t)∥2 denotes the running cost, and Ψ(XT ) denotes the terminal cost. The above451

SOC problem can be solved by dynamic programming [4, 6].452

Further, let V (Xt, t) = inf J (Xt, t) be the value function/optimal-cost-to-go of the SOC problem,453

then the corresponding Hamilton-Jacobi-Bellman (HJB) partial differential equation (PDE) [15, 49]454

is given by455

∂Vt

∂t
− 1

2
∇V ′

t∇Vt +
1

2
∆Vt = 0, (19)

with the terminal condition: V (Xt, T ) = Ψ(Xt). (20)

B Rao-Blackwell Theorem456

Theorem 1 (Rao-Blackwell) Let S be an unbiased estimator of some parameter θ ∈ Θ, and T (X)457

the sufficient statistic for θ, then: 1) S∗ = E[S|T (X)],is an unbiased estimator for θ, and 2)458

Vθ[S∗] ≤ Vθ[S] for all θ. The inequality is strict unless S is a function of T .459

C Experimental Environment460

For the hardware environment of the experiments, we use a single NVIDIA A100-PCIE-40GB GPU461

and an Intel(R) Xeon(R) Gold-6248R-3.00GHz CPU. For the software environment, the Python462

version is 3.9.7, the CUDA version 11.7, and the Pytorch version is 2.0.1.463
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