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ABSTRACT

Cross-source point cloud registration, which aims to align point cloud data from
different sensors, is a fundamental task in 3D vision. However, compared to
the same-source point cloud registration, cross-source registration faces two core
challenges: the lack of publicly available large-scale real-world datasets for train-
ing the deep registration models, and the inherent differences in point clouds cap-
tured by multiple sensors. The diverse patterns induced by sensors pose great chal-
lenges in robust and accurate point cloud feature extraction and matching, which
negatively influence the registration accuracy. To advance research in this field,
we construct Cross3DReg, the currently largest and real-world multi-modal cross-
source point cloud registration dataset, which is collected by a rotating mechanical
LiDAR and a hybrid semi-solid-state LiDAR, respectively. Moreover, we design
an overlap-based cross-source registration framework, which utilizes unaligned
images to predict the overlapping region between source and target point clouds,
effectively filtering out redundant points in the irrelevant regions and significantly
mitigating the interference caused by noise in non-overlapping areas. Then, a
visual-geometric attention guided matching module is proposed to enhance the
consistency of cross-source point cloud features by fusing image and geometric
information to establish reliable correspondences and ultimately achieve accurate
and robust registration. Extensive experiments show that our method achieves
state-of-the-art registration performance. Our framework reduces the relative ro-
tation error (RRE) and relative translation error (RTE) by 63.2% and 40.2%, re-
spectively, and improves the registration recall (RR) by 5.4%, which validates its
effectiveness in achieving accurate cross-source point cloud registration.

1 INTRODUCTION

Cross-source point cloud registration Zhao et al. (2025a); Huang et al. (2021b) is a fundamental task
in 3D vision, which plays an important role in robot Zhao et al. (2025b), autonomous driving Kim
et al. (2025). The goal of cross-source point cloud registration is to align point clouds acquired from
different sensors to construct complete 3D scenes Huang et al. (2023a) or estimate the robot location
on maps Wang et al. (2025).

Compared to the same-source point cloud registration, advancements in cross-source registration are
relatively slow for two main reasons. Firstly, there is a severe lack of public benchmark datasets that
possess sufficient cross-source point cloud pairs. Existing public datasets, such as 3DCSR Huang
et al. (2021b) and KITTI-CrossSource Xiong et al. (2024), exhibit notable limitations. 3DCSR
Huang et al. (2021b) provides point clouds of Kinect-SFM indoor scenes. Its data scale is rela-
tively small and insufficient for training deep registration models. The KITTI CrossSource dataset
Xiong et al. (2024) consists of LiDAR scans and reconstructed point clouds from sequences using
MonoRec Wimbauer et al. (2021). In these two cross-source point cloud datasets, the source or
target point clouds are mainly synthesised with image sequences, not captured with real sensors.
Secondly, as shown in Figure 1, point clouds scanned from different types of real scanners exhibit
significant variance in data density and structural pattern. For example, point clouds captured by
rotating LiDAR typically display sparse ring-like structures, whereas point clouds scanned by semi-
solid-state LiDAR are often fan-shaped. In addition, point clouds acquired from different sensors
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vary considerably in terms of noise levels, outlier distributions, and missing regions. These discrep-
ancies can easily lead to a large number of mismatched features, which in turn severely degrade
registration performance. Moreover, challenges from the real world, like inherent noise, outliers
from capturing sensors and different data structure patterns, are not presented in currently available
cross-source datasets. Facing these real-world cross-source point clouds, the accuracy of the most
existing same-source point cloud registration methods Yu et al. (2023); Ren et al. (2024); Mu et al.
(2024); Jiang et al. (2025) often deteriorates significantly due to different levels of noise and variance
in density and structural patterns. Recent cross-source point cloud registration methods Zhao et al.
(2025a); Xiong et al. (2024); Huang et al. (2023b; 2017a) are also proposed to improve registration
accuracy. However, they are only designed for synthetic cross-source settings like Kinect-SFM, not
real-world cross-source datasets.

Noise and Outliers

Pattern difference Density difference

Rotating Mechanical LiDAR Point Cloud Hybrid Semi-solid-state LiDAR Point Cloud

Figure 1: Challenges like differences in structural pat-
tern and density, and realistic noise and outliers pre-
sented in real-world cross-source point clouds.

To address the above challenges, we first
construct a large-scale real-world cross-
source point cloud registration dataset
named Cross3DReg. The source point
clouds are captured by a hybrid semi-
solid-state LiDAR, and the target point
clouds are acquired with a 64-line rotat-
ing mechanical LiDAR. We also capture
front views of the scenes from a roughly
co-located view with the LiDAR. To mit-
igate interference from outliers and noise
in point cloud matching, as well as the fea-
ture inconsistency arising from differences
in cross-source point cloud density and
structural pattern, we propose an overlap-
based cross-source point cloud registration
method by leveraging images to provide

consistent visual clues. To this end, a dual-modal encoder is designed that effectively fuses image
features with the coarse-grained geometric features of point clouds, which allows for predicting the
probability of a 3D point located in the overlap region between source and target point clouds. In this
way, we can effectively filter out redundant points and reduce noise out of the image view. After we
predict the possible points locating in the overlap region between source and target point clouds, it is
expected to establish correct correspondences among these points. However, as the source and tar-
get cross-source point clouds present different point patterns, distributions, resolutions and levels of
noise and outliers, traditional geometric feature based matching methods are infeasible. Considering
that correct correspondences within overlap region should have consistent features and the common
image information is beneficial to enhance the feature consistency, we propose a visual-geometric
attention-guided matching module to enhance the feature consistency between cross-source point
clouds by fusing visual and geometric information adaptively with an attention mechanism, thereby
establishing reliable correspondences. Please note that our method does not rely on calibration be-
tween cameras and LiDAR sensors. This is beneficial to avoid the inaccurate calibration caused by
inevitable sensor vibration and the inherent extrinsic parameter drift. By leveraging images to en-
hance the consistency of point cloud features, our approach achieves accurate registration as long as
the images are captured from a nearly co-located view, regardless of camera positions. This relaxed
requirement for image input enhances the practical value of our approach. Experimental results also
demonstrate the strong generalization capability of our method across images of varying quality and
frames.

Our main contributions are listed below:

• To the best of our knowledge, Cross3DReg is the first large-scale real-world cross-source
point cloud registration dataset. It includes 13, 231 point cloud pairs where different levels
of noise, outliers, densities, and structural patterns are presented. Images showing common
views between source and target point clouds are also collected. The dataset and code will
be released.

• An overlap-based cross-source point cloud registration method is proposed to achieve ac-
curate registration by predicting the overlap region with the help of unaligned images and
ignoring redundant points and noise.
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• To achieve accurate feature matching within the overlap region, a visual-geometric
attention-guided matching module is proposed to fuse visual and geometric information
adaptively with an attention mechanism, enhancing feature consistency of points within
the overlap region between cross-source point clouds.

2 RELATED WORK

Same-source point could registration. Currently, same-source point cloud registration methods
can be categorized into three classes. The first class is traditional iterative optimization-based ap-
proaches Besl & McKay (1992); Rusinkiewicz & Levoy (2001); Segal et al. (2009). However,
these methods often suffer from a significant drop in registration accuracy when dealing with noisy
or structurally complex scenes. The second class is correspondence-based point cloud registration
methods Choy et al. (2019); Wang et al. (2022); Yu et al. (2023). Early approaches primarily rely
on handcrafted feature descriptors Rusu et al. (2008; 2009) to establish point-wise correspondences.
With the rapid development of deep learning in point cloud registration, a series of deep learning-
based feature extraction models Bai et al. (2020); Ao et al. (2021) have been proposed, enabling
more accurate and robust registration. Nevertheless, these methods still experience notable per-
formance degradation when applied to regions with low overlap or a large number of outliers. To
address these challenges, coarse-to-fine registration strategies Yu et al. (2021); Qin et al. (2023)
have recently been adopted, showing accurate registration results under conditions of low overlap
and high noise levels. The third class is end-to-end point cloud registration methods Xu et al. (2021);
Zhang et al. (2022b); Lu et al. (2019). Unlike conventional two-stage registration frameworks, end-
to-end approaches directly utilise deep neural networks to predict rigid transformations between
point clouds without explicitly establishing point correspondences, thereby improving overall regis-
tration efficiency. Moreover, since raw point cloud data contains only geometric information, recent
multimodal point cloud registration methods Zhang et al. (2022a); Xu et al. (2024; 2025) attempt
to enhance feature discriminability by incorporating additional modalities (like colour, semantics,
texture), allowing for more reliable correspondences. However, they all rely on explicit camera cal-
ibration to achieve geometric correspondence between pixel and point cloud, making them difficult
to adapt to real-world scenarios.

Cross-source point cloud registration. The core challenge in cross-source point cloud registration
lies in addressing the significant discrepancies introduced by different types of sensors. Compared
to the same-source registration, cross-source point clouds exhibit a gap in density and pattern dis-
tribution, and are more susceptible to outliers. Traditional methods Huang et al. (2017b; 2019) are
not designed to cope with these problems. To address the specific challenges posed by cross-source
data, in recent years, mainstream cross-source point cloud registration methods Ma et al. (2024);
Xiong et al. (2024); Zhao et al. (2025a) widely adopt a coarse-to-fine strategy. Correspondences
are established by learning consistent deep features between the cross-source point clouds, thereby
achieving robust registration. However, the advancement of this field is constrained by limited
datasets; the efficacy of current approaches Zhao et al. (2024; 2025a) has primarily been validated
on cross-source datasets where the source/target point clouds are synthesised with images, not real-
world cross-source datasets. Therefore, developing cross-source point cloud registration data using
real-world sensors represents a key future research objective in this area.

3 THE CROSS3DREG DATASET

To facilitate the development of cross-source point cloud registration, we introduce a large-scale
real-world Cross3DReg dataset that contains 13, 231 point cloud pairs captured by a Rotating me-
chanical LiDAR and a Hybrid semi-solid-state LiDAR. The images are collected at co-located view
with the Hybrid semi-solid-state LiDAR. And only one sensor is activated during a single data col-
lection session. Table 1 shows the differences of the Cross3DReg compared with other cross-source
datasets. More details about the capturing equipment, scanning process and the overlap ratio of
Cross3DReg dataset, please refer to the Appendix A.1.
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Dataset Scenes Sensors Pairs Img. Po. Rno. Rdp. Dens. Open.

3DCSR Indoors Kinect, LiDAR, SFM 202 × ✓ × × ✓ ✓
KITTI-CrossSource outdoors LiDAR, SFM 2006 × ✓ × × ✓ ✓

Cross3DReg outdoors RL,HL 13231 ✓ ✓ ✓ ✓ ✓ ✓

Table 1: The comparison of cross-source point cloud datasets. Img: RGB images. Po: Partial
overlap. Rno: Real-world noise and outliers. Rdp: Real difference of structural pattern. Dens:
Density difference. Open: Open source. RL: Rotating mechanical LiDAR. HL: Hybrid semi-solid-
state LiDAR.
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Figure 2: Our Cross3DReg registration method consists of four parts. We first encode the source and
target point clouds, P and Q, and an unaligned image I, to extract superpoints and corresponding
features. Based on the OMP module, image features are then fused with each point cloud’s features
to predict if superpoints are within the image view with the predicted binary mask vector MQ̂ for
the target (and MP̂ for the source). With these superpoint sets of the source and target, the VGAM
module establishes superpoint correspondences C′ between source and target point clouds based
on the visually enhanced features. Finally, these established correspondences are propagated to the
original dense point clouds to generate final correspondences Cl′ , which are fed into a pose estimator
to compute the transformation matrix.

4 METHOD

Problem Statement. The cross-source point cloud registration is formulated as follows. Given
the source point cloud P = {pi ∈ R3|i = 1, . . . , N} and target point cloud Q = {qj ∈ R3|j =
1, . . . ,M}, we estimate an optimal rigid transformation matrix T = {R, t} to align P and Q, where
R ∈ SO(3) is the rotation matrix and t ∈ R3 is the translation vector. The optimisation goal can be
formulated as:

T = argmin
R,t

∑
(pi,qj)∈C∗

∥Rpi + t− qj∥2, (1)

where C∗ represents the correspondences between P and Q and the ∥.∥2 denotes the Euclidean
distance.

For accurate cross-source registration, we propose an overlap-based cross-source point registration
method to establish the correspondence between point clouds. As shown in Figure 2, the framework
contains four phases: 1) Feature extraction. Features of Image I and point clouds P and Q are
extracted through a two-branch network. The point cloud branch downsamples the original point
clouds to acquire superpoints P̂ and Q̂. The corresponding features FP̂ and FQ̂ are also extracted;
2) Overlapping Mask Predictor (OMP). Although images are not aligned with point clouds, they con-
tain the common views of the source and target point clouds. Thus, the coarse-grained superpoint
features are firstly fused with image features to predict the mask of superpoints that indicates if the
superpoint is within the image view. Both the overlap masks of the source and target point clouds are
predicted. The following matching step is only performed between overlapping masks. 3) Visual-
Geometric Attention guided superpoint Matching (VGAM). With the overlapping masks, visually
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enhanced superpoint features are utilised for similarity computation, and robust coarse-grained cor-
respondences are established between the source and target. 4) Point matching and registration.
Based on the superpoint matching results, precise point-level correspondences are obtained by local
point cloud feature matching. Based on the point correspondences, transformations are estimated
using the pose estimators.

4.1 FEATURE EXTRACTION

Due to the significant density variations and a large number of points, we first preprocess the raw
point clouds using a voxel-based downsampling method (voxel size = 0.25) before feeding them
into the feature extractor. The downsampled source point cloud P and the target point cloud Q are
then put into the KPConv-FPN backbone network Thomas et al. (2019), which can extract the point
cloud features at different scales. At the coarsest scale, we obtain the superpoint sets P̂ and Q̂. Their
corresponding features are FP̂ ∈ R|P̂ |×d̂ and FQ̂ ∈ R|Q̂|×d̂, d̂ is the feature dimension of super-
points at the coarsest level. Points at the densest level are denoted as P ′,Q′ and its corresponding
features are FP′ ∈ R|P′|×d′

and FQ′ ∈ R|Q′|×d′
, d′ is the corresponding feature dimension.

For image feature extraction, we employ a U-Net backbone network with residual connections to
process the intermediate unaligned images. Given an input image I ∈ RH×W , its feature is repre-
sented as FI ∈ RH×W×d.

4.2 OVERLAPPING MASK PREDICTOR MODULE

As various point densities, prevalent noise, outliers and different structural patterns exist in the
cross-source point cloud registration, traditional point features-based overlapping region estimation
is inaccurate. Since the captured images in our dataset contain the common views, we can utilise
these images to identify possible points that are located in the overlap region between the source and
target point clouds. This is also beneficial to filter redundant points out of the image view.

Therefore, we propose an overlapping mask prediction module based on misaligned images. We
define this problem as a binary regression task, fusing image information to directly perform linear
regression for the mask of each superpoint. Since the camera calibration information is unavailable,
images and point clouds are unaligned. We first perform image and point cloud feature dimension
alignment. The image features FI ∈ RH×W×d and superpoint features FQ̂ ∈ R|Q̂|×d̂ are mapped
to a unified dimensional space by linear projection to obtain aligned features. The aligned image

features and the superpoint features of point clouds are represented as F̂
Q̂

and F̂I . Then, we use the
multi-attention mechanism Vaswani et al. (2017) to carry out the cross-modal feature fusion. Finally,
the fused features are processed by a residual feed-forward network (FFN) with layer normalization.
The overlap probability of superpoints is output via an MLP net. Taking the prediction of the overlap
mask for the target point cloud Q as an example, the process can be formalized as follows.

Ffuse = MultiHeadAttn(F̂Q̂, F̂I). (2)

Given the fused image and point cloud features, the probability of each superpoint belonging to the
overlap region, denoted as PQ̂

overlap, can be estimated as:

PQ̂
overlap = σ(MLP (Ffuse + (FFN(Ffuse + F̂ Q̂)))), (3)

MQ̂i
=

{
1 if PQ̂i

overlap > λ

0 otherwise
, (4)

where MQ̂ ∈ {0, 1} is a binary mask vector, σ represents the sigmoid function, and the λ denotes
the confidence threshold, default is 0.5.
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4.3 VISUAL-GEOMETRIC ATTENTION GUIDED MATCHING

To effectively incorporate visual context into geometric features for point cloud registration, we
introduce the visual-geometric attention guided matching module to leverage both visual and ge-
ometric information to enhance the consistency of superpoint features between point cloud of dif-
ferent sources. The core of our approach is a two-stage attention mechanism. First, the visual
cross-attention mechanism fuses visual context from image features into the superpoint features.
Subsequently, a geometric self-attention mechanism Qin et al. (2023) refines these fused features to
capture global geometric relationships within the point cloud.

Let’s take the target point cloud Q as an example. We first use a predicted overlap mask MQ̂ to
select a subset of superpoints Q̃′ and their corresponding features FQ̃′ . The corresponding image
features FI are flattened into a vector. To provide the attention mechanism with spatial awareness,
we introduce positional encoding, FQ̃′

pos for superpoints and FI
pos for image pixels.

The superpoint features, image features, and their respective positional encodings are projected into
Query (Qc), Key (Kc), and Value (Vc) spaces using learnable linear matrices. The positional en-
codings are also projected to generate point cloud positional embeddings (Ec) and image positional
embeddings (Gc). The process is formulated as:

Qc = FQ̃′WQc
, Kc = FIWKc

, Vc = FIWVc
, (5)

Ec = FQ̃′

posWEc
, Gc = FI

posWGc
, (6)

where WQc
,WKc

,WVc
are learnable projection matrices for the Query, Key, and Value, and

WEc
,WGc

are the projection matrices for their respective positional embeddings.

By integrating content and position information, we compute the cross-attention scores. These
scores weigh the aggregation of the Value and image positional embeddings. The superpoint features
are then updated via a residual connection:

Scoresc = softmax
(
(Qc +Ec)(Kc +Gc)

T

√
d′

)
, (7)

F′
Q̃′ = Scoresc(Vc +Gc) + FQ̃′ , (8)

where F′
Q̃′ denotes the updated superpoint features enriched with visual context information.

To enhance the global structural integrity of the features and mitigate potential noise, we employ a
self-attention mechanism. This step promotes information propagation across entire point clouds.
The visually-enhanced features F′

Q̃′ are linearly projected into a new set of Query (Qs), Key (Ks),
and Value (Vs). Self-attention weights are then computed to update the features in a residual man-
ner:

Scoress = softmax
(
QsK

T
s√

d′

)
, (9)

F′′
Q̃′ = ScoressVs + F′

Q̃′ . (10)

Finally, combined with the geometric self-attention mechanism, we can maximize the descriptive
power of the final features. After the feature enhancement process, we can obtain highly discrimina-
tive superpoint features, F̄P̃ ′ and F̄Q̃′ , for the source and target point clouds, respectively. We then
construct a feature similarity matrix Z′ by the following formulation:

Z′
ij = exp

(
−∥F̄P̃ ′

i
− F̄Q̃′

j
∥22
)
, (11)

where Z′
ij measures the similarity between the i-th source superpoint P̃′

i and the j-th target su-
perpoint Q̃′

j . Finally, we apply dual normalization Rocco et al. (2018); Sun et al. (2021) to the
similarity matrix Z′ and select the top-K entries with the highest scores to form the final set of
superpoint correspondences C′ = {(P̃′

i, Q̃
′
j)|P̃′

i ∈ P̂, Q̃′
j ∈ Q̂}.

6
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4.4 POINT MATCHING AND REGISTRATION

After obtaining the superpoint correspondences in the overlapping regions, we employ a point-to-
node grouping strategy Yu et al. (2021) to further establish correspondences between the dense
points. The core idea of this strategy is to assign dense points to their nearest neighboring super-
points based on spatial distance. Specifically, for a matched superpoint pair (P̃′

i, Q̃
′
j), we denote

their corresponding dense point groups as GP̃ ′
i

and GQ̃′
j
, and their feature groups as GFP′

i and

GFQ′

j , respectively. Based on the superpoint correspondence (P̃′
i, Q̃

′
j), we compute the similarity

matrix between the feature groups GFP′

i and GFQ′

j as Sl′ =
GP′

i (GFQ′

j )T

d̃
, where d̃ denotes the

feature dimension. To enhance matching robustness, we adopt the method from Sarlin et al. (2020)
by adding slack terms, controlled by a learnable parameter α, to the last row and column of the
similarity matrix Ŝ′. Subsequently, we apply the Sinkhorn algorithm to find the optimal matching.
After removing the slack terms, we select the top K ′ matching pairs with the highest confidence
scores to establish the group-level dense point correspondences Cl′ . Finally, by aggregating the
correspondences from all groups, we obtain the global correspondences C∗ =

⋃|C′|
l′=1 Cl′ . Based

on the correspondences, we employ the LGR estimator Qin et al. (2023) to accurately estimate the
transformation matrix. The pseudocode of the proposed method is shown in Appendix A.3.

4.5 LOSS FUNCTION

Our loss function is composed of three components and can be expressed as: Ltotal = Lcoarse +
Lfine + Lmask. Here, following the framework of GeoTrans Qin et al. (2023), Lcoarse and Lfine

are the losses supervising the coarse-grained (superpoint) and fine-grained (point-level) matching,
respectively. For Lmask, we employ the Focal Loss Lin et al. (2017). For further details regarding
the loss function, please refer to the Appendix A.2.

5 EXPERIMENTS

Metrics. We use the following metrics to evaluate methods: Relative Rotation Error (RRE), Rela-
tive Translation Error (RTE), Registration Recall (RR), and Inlier Ratio (IR). For the Cross3DReg
dataset, the threshold for RR is defined as RRE < 2◦ and RTE < 0.5 m. The IR evaluates the quality
of the point matching by calculating the proportion of corresponding points whose distances under
the true transformation are below the threshold of 1.0m.

Implementation Details. All experiments are implemented based on the PyTorch framework and
trained on the NVIDIA RTX A6000 GPU with the following key parameters: initial learning rate is
10−4; Batch size is 1, and the weight decay is 10−6. Our model is trained with Adam optimizer for
20 epochs.

5.1 QUANTITATIVE COMPARISON

To validate the effectiveness of the proposed method and evaluate its registration performance on
the Cross3DReg dataset, we conduct a comparative experiment with several state-of-the-art point
cloud registration approaches, as summarized in Table 2. The selected methods cover a diverse
spectrum of methodologies, including: a traditional iterative optimization technique (ICP Besl &
McKay (1992)); correspondence-based approaches (FCGF Choy et al. (2019), Omnet Xu et al.
(2021), Predator Huang et al. (2021a),CoFiNet Yu et al. (2021), RoiTr Yu et al. (2023), GeoTrans
Qin et al. (2023)). In addition, we compare with VRHCF Zhao et al. (2024), a cross-source point
cloud registration method based on feature learning, as well as the multimodal registration method
IMFNET Huang et al. (2022). The results show that our approach significantly outperforms the
state-of-the-art methods in all evaluation metrics. In terms of registration accuracy, the lowest RRE
= 6.68◦ and RTE = 1.01m are achieved, which reduces the rotation and translation error by 63.2%
and 40.2%, respectively. Our method also achieves the highest RR metrics, which is 5.4% higher
than the state-of-the-art GeoTrans.
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Methods RRE(◦) ↓ RTE(m)↓ RR(%) ↑

Same-source

ICP 94.69 9.30 0.0
FCGF 94.70 9.00 0.0
Omnet 95.01 11.20 0.0
Predator 100.81 30.37 0.0
CoFiNet 99.34 16.97 0.0
RoITr 16.79 3.10 43.1
IMFNET 94.8 9.07 0.0
GeoTrans 18.15 1.69 81.7

Cross-source VRHCF 110.62 16.35 0.0
Cross3DReg (Ours) 6.68 1.01 87.1

Table 2: The comparison of the same- and cross-source registration methods on Cross3DReg.

Additionally, while methods such as FCGF, Omnet, Predator, IMFNET, and CoFiNet achieve strong
performance on same-source point clouds, their Registration Recall (RR) drops to nearly zero in
cross-source scenarios. This indicates the inherent difficulty for same-source registration methods
in handling the cross-source cases where substantial point pattern variations and significant noise
interference are prevalent. The keypoint-based methods like FCGF, Predator can hardly acquire
correct point correspondences only based on the geometric features as geometry cannot remain
consistent in cross-source point clouds. The coarse-to-fine methods, like CoFiNet, cannot achieve
successful registration either. The accuracy of the initial super-point matching is pivotal for coarse-
to-fine methods. However, under the influence of point cloud discrepancies and noise, super-point
feature extraction becomes unreliable without the guidance of consistent information. After con-
sistent geometric structural information, like angles and distances between super-points or rotation-
invariant features, is fused in geometric features to enhance the consistency, GeoTransformer and
RoITr methods can achieve more accurate registration. Notably, we also observe that IMFNET’s
global fusion approach is ineffective for cross-source registration. Failing to capture pixel-to-point
correspondence, the method leads to feature mismatching and subsequent noise injection.

For the current cross-source VRHCF method, a spherical voxelization operation is used to resam-
ple the density-variant cross-source point clouds into evenly distributed point clouds and geometric
fearures are then extracted. However, faced with our Cross3DReg, which fully presents real-world
point uneven distribution, noise, outliers, and pattern difference, VRCHF cannot get evenly dis-
tributed point clouds only with a simple sampling method. The extracted geometric feature cannot
maintain consistency and totally failed in our dataset.

Time (s)↓
Estimator Method RRE(◦) ↓ RTE(m)↓ RR(%) ↑ IR(%) ↑ Model Pose Total

LGR
Geotrans 18.148 1.690 81.7 60.1 0.186 0.032 0.218
RoiTr 16.718 3.098 53.1 25.8 0.245 0.033 0.278
Ours 6.683 1.010 87.1 70.3 0.252 0.031 0.283

RANSAC-50k

RoiTr 9.731 2.923 67.8 25.8 0.245 0.144 0.389
Predator 100.81 30.37 0.0 0.25 0.354 0.564 0.918
CoFiNet 99.34 16.97 0.0 0.13 0.073 0.026 0.099
Geotrans 13.05 1.436 72.2 60.1 0.186 1.299 1.485
Ours 8.150 1.135 78.6 70.3 0.252 1.353 1.605

weighted SVD
Geotrans 16.491 2.193 62.9 60.1 0.186 0.002 0.188
RoiTr 54.21 16.54 0.2 25.8 0.245 0.003 0.248
Ours 8.684 1.153 57.8 70.3 0.252 0.002 0.254

Table 3: Registration performance on the Cross3DReg dataset with different pose estimators. Model
time refers to the time required for feature extraction, while pose time refers to the time required for
transformation estimation.

To fully evaluate the correspondence of our cross-source point cloud registration method, we eval-
uate the registration accuracy with different estimators. As shown in Table 3, when combined with
the LGR Qin et al. (2023) pose estimator, our method exhibits optimal performance in all key eval-
uation metrics. When we employ the RANSAC estimator, our method still outperforms with RRE =
8.150◦ and RTE = 1.135 m, significantly better than GeoTrans, Predator, and CoFiNet, which also
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employ RANSAC. It is worth noting that both Predator and CoFiNet have an RR of 0.0% in this
setup, indicating that they fail to produce correspondences of sufficient quality for the RANSAC
estimator to achieve accurate alignment. Finally, we perform the tests in the weighted SVD Besl
& McKay (1992), our method still achieves accurate registration where RRE=8.684◦, RTE=1.153
m, and registration recall reaches 57.8%. In contrast, the registration recall of RoiTr is only 0.2%.
Furthermore, it is observed that despite our method achieving approximately 10% higher inlier ratio
and lower registration error compared to GeoTrans, there is a gap in registration recall. The core rea-
son for this is not due to the low quality of our generated correspondences, but rather the insufficient
robustness of the pose estimator. Specifically, weighted SVD, a least-squares solution, attempts to fit
all given corresponding points. This makes it highly sensitive to the mismatched correspondences.
Moreover, we also evaluate the computational efficiency of our approach. Despite requiring the
processing of additional image information, our method achieves a balance between efficiency and
performance. For the robustness of generalization of the proposed method, please refer to Appendix
A.5.

5.2 QUALITATIVE COMPARISONS.

Besides the quantitative comparison, in Figure 3, we also present a qualitative comparison of our
method against current baseline approaches in the selected three challenging scenes, which has
significant differences in density and pattern. As can be observed, methods such as Predator and
CoFiNet fail to achieve successful alignment in the three challenging scenarios. In contrast to RoiTr
and GeoTransformer, our method attains the optimal registration performance, with results that are
visually closest to the Ground Truth.

P Q I GT Predator RoitrCofiNet Geotrans Ours

Figure 3: The qualitative comparison on Cross3DReg.

Figure 4 visualizes the point correspondences generated by different registration approaches. The
qualitative comparison clearly reveals that, compared to current state-of-the-art methods, the corre-
spondences extracted by our method are more precise and highly concentrated on the overlapping
regions of the point clouds. In contrast, methods like Predator, CoFiNet, and Roit produce a substan-
tial number of incorrect correspondences. We attribute this primarily to two factors: a significant
decrease in feature consistency within the overlapping regions when faced with considerable den-
sity variations across point clouds, and severe interference in feature matching caused by prominent
noise in the scenes. For more visual qualitative comparisons, please refer to Appendix A.4.

GT Predator CofiNet Roitr Geotrans Ours

Figure 4: The visualization of correspondences on Cross3DReg.
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Additionally, as shown in Figure 5, we provide a visual comparison of the overlapping regions be-
tween our proposed method and Omnet to show the necessity of using a common image to predict
the overlap region. It can be observed that the point cloud overlap region estimated by our method
aligns more closely with the ground truth, whereas Omnet’s results exhibit noticeable deviations.
This discrepancy arises because Omnet directly regresses the overlapping regions from the features
of two point cloud frames. In cross-source outdoor scenarios, however, point clouds are typically
structurally different and of different levels of noise and outliers, leading to low feature similarity
between point clouds. As a result, the model struggles to accurately locate overlap regions, only
relying on the geometric features. Incorrect predictions of overlap regions subsequently cause in-
correct matches, resulting in registration failure.

GT Omnet Ours

Figure 5: The comparison of overlap regions extracted with our method and Omnet.

5.3 ABLATION STUDIES

As shown in Table 4, we conduct ablation experiments on the Cross3DReg dataset to evaluate the
effectiveness of modules proposed in the method.

Method RRE(◦)↓ RTE(m)↓ RR(%)↑ IR(%)↑
(a) Geo self-attention w/o OMP 18.184 1.690 81.7 60.1
(b) VGAM w/o OMP 17.812 1.592 82.1 60.3
(c) OMP w/ Vanilla self-attention 8.496 1.242 85.3 70.0
(d) OMP w/ Geo self-attention 8.371 1.287 86.7 70.1
(e) OMP w/ VGAM(full) 6.683 1.010 87.2 70.3

Table 4: The ablation study of each module of the proposed method.

Experiments are set up with five scenarios in comparison: (a) only the geometric self-attention
module is used; (b) only the VGAM is used; (c) the OMP module is used with the vanilla attention
module; (d) the OMP module is used with the geometric self-attention module; and (e) the complete
Cross3DReg method. The comparison among (a), (b), (e) shows the OMP module can effectively
mitigate the interference of redundant and noisy points, significantly improving the accuracy of
cross-source point cloud alignment. The comparison of schemes (b), (c), (d), and (e) further shows
that our visual-geometric feature attention guidance module improves the consistency of feature
space among cross-source point clouds, enhancing the registration accuracy.

6 CONCLUSION

In this paper, we first propose a large-scale and real-world cross-source point cloud registration
dataset, named Cross3DReg, to show different levels of noise, outliers, densities and structural pat-
terns. An overlap-based cross-source point cloud registration method is then proposed to achieve
accurate registration by predicting the overlap region with the help of unaligned images and ignoring
redundant points and noise. Extensive experiments verify the challenges of our proposed dataset and
the effectiveness of the proposed method.
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A APPENDIX

A.1 MORE DETAILS ABOUT CROSS3DREG DATASET

Here, we present the devices we used to collect the dataset, the scanning process and the overlap
information between the source and target point clouds of Cross3DReg dataset in the following.

(1) The capturing equipment. As shown in Figure 6, our Cross3DReg dataset is collected by
a custom-built Unmanned Ground Vehicle (UGV), equipped with a 64-beam rotating mechanical
LiDAR, a hybrid semi-solid-state LiDAR, a RGB-D stereo camera (ZED camera) and RGB cameras.
Due to the high quality of captured images, in our dataset, RGB images acquired with the left camera
of ZED are used as the visual information and available to the public. The reasons for employing
these sensors can be summerized as follows:

• According to our research, the primary representative cross-source point cloud datasets cur-
rently available are 3DCSRHuang et al. (2023b) and Kitti-CrossSourceXiong et al. (2024).
3DCSR comprises 202 pairs of indoor LiDAR and SFM cross-source point clouds, whilst
Kitti-CrossSource contains 2006 pairs of outdoor LiDAR and SFM cross-source point
clouds. It should be noted that at least one point cloud in these datasets is synthesised
via SFM methods; the academic community currently lacks cross-source point cloud data
entirely derived from real sensor acquisitions.
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• From a sensor characteristics perspective, Roatating mechanical LiDAR boasts high preci-
sion and high cost, capable of capturing a complete 360° point cloud of the surroundings.
It is commonly employed for high-precision map construction. Conversely, hybrid semi-
solid-state LiDAR offers relatively lower accuracy at a more economical price point, yet
can only acquire point cloud data within a limited field of view. It is typically mounted
on small unmanned mobile devices. These two point cloud types exhibit distinct pattern
differences, density variations, and varying degrees of noise. These characteristics fully
reveal the core challenges inherent in cross-source point cloud registration.

(2) The scanning process. We design and execute 11 distinct collection routes across a university
campus. These routes encompass typical campus environments, featuring a rich variety of dynamic
and static elements, which include dynamic traffic participants (e.g., vehicles and pedestrians), static
obstacles (e.g., road barriers), as well as infrastructure and natural landscapes (e.g., buildings and
vegetation). Furthermore, to establish authentic cross-source acquisition conditions and maintain the
independence of each modality, only one sensor is activated during a single data collection session.
Table 1 shows the differences of the Cross3DReg compared with other cross-source datasets.

Rotating Mechanical LiDAR

Hybrid Semi-solid-state LiDAR

ZED Camera

RGB Camera

Figure 6: Data acquisition platform

(3) Dataset information. We split the dataset into training, validation, and test sets. Training data is
drawn from routes 00-05 (7, 772 pairs), validation data from routes 06–07 (1, 314 pairs), and test data
from routes 08–10 (4, 145 pairs). For every source – target point cloud pair, the ground-truth label
is the rigid transformation that precisely registers the source to the target. These transformations
are deliberately varied, covering rotation errors from 8◦ to 180◦ and translation offsets from 3 m
to 15 m. Figure 7 shows the statistics of the rotations and translations of Cross3DReg dataset. We
also define the overlap ratio between the source and target point clouds as follows. Given two point
clouds Psrc, Qref , we compute the overlap ratio between two point clouds as follows:

P
′

src = Trans(Psrc), (12)

Oref→src =
1

|Qref |

|Qref |∑
i=1

I(min||qi − p′||2 < r), (13)

Osrc→ref =
1

|P ′
src|

|P
′
src|∑

j=1

I(min||pj − q||2 < r), (14)

O = min(Oref→src,Osrc→ref ), (15)

where Q′

ref = {qi ∈ R3|i = 1, ...,m}; Psrc = {pj ∈ R3|j = 1, ..., n}; Trans(.) represents
the rigid transformation; ||.||2 is the Euclidean distance; I(.) is the indicator function; r denotes the
distance threshold. Based on a calculated average inter-point distance of 0.2m, we set the distance
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Figure 7: The statistics of the rotation angles, translation and the overlap ratio of Cross3DReg.

threshold r to 0.2m. As shown in Figure 7, the cross3DReg dataset has a low point cloud overlap
ratio of less than 30%.

Examples of the Cross3DReg dataset are visualized in Figure 8. Source and target point clouds are
shown in the first two columns. It is obvious to see that the Cross3DReg dataset is very challeng-
ing where different point patterns, level of noise and outliers, and various densities are presented.
Corresponding images and aligned point clouds are also presented in the last two columns.

A.2 LOSS FUNCTIONS

Our total loss function Ltotal is composed of three parts. Ltotal = Lcoarse + Lfine + Lmask. The
definition of Lcoarse and Lfine follows GeoTrans Qin et al. (2023). Lmask employs the Focal Loss
Lin et al. (2017). Due to the lack of camera intrinsic and extrinsic parameters, which prevents the
establishment of a projection relationship from the 3D point cloud to the 2D image, we adopt a mask
generation strategy based on the point cloud overlap. Specifically, for a given source point cloud P
and a target point cloud Q, the ground-truth overlapping mask at the superpoint level, Mi

g , is defined
as:

Mi
g =

{
1 if P̂i correspondent to P̂j

0 otherwise
, (16)

pi
t =

{
pi if Mi

g = 1

1− pi otherwise
, (17)

Lmask =
1

|Mg|

|Mg|∑
i

−α(1− pi
t)

γ log(pi
t), (18)

where pi denotes the mask probability of model output. pi
t denotes the probability that the mask

value is true. γ = 2.0 and α = 0.25 are the focusing parameter and balancing parameter, respec-
tively.

A.3 PSEUDOCODE OF CROSS3DREG METHOD

Algorithm 1 presents the pseudocode of the proposed Cross3DReg method, detailing its overall
process.

A.4 MORE QUALITATIVE RESULTS

Figure 9 shows additional registration results. Given the unaligned image I, source and target point
clouds P and Q, we visualize the predicted overlapping area, which is the highlighted parts. We also
show the visual comparison of the registration results between the proposed Cross3DReg method
and ground truth.

A.5 THE ROBUSTNESS AND GENERALIZATION OF THE CROSS3DREG METHOD

Our method utilises unaligned images to assist predicting the candidate overlap region without cali-
bration information. To evaluate the robustness and generalization of the proposed method, we first
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Figure 8: The visualization of Cross3DReg dataset.

evaluate the registration accuracy when different image sequences are adopted as visual informa-
tion. As illustrated in Figure 10, we select the original input image alongside frames positioned
20 frames before and after the current frame for comparison. The results demonstrate that our ap-
proach maintains excellent stability even when confronted with input images captured from other
viewpoints.

We also evaluate the scenarios where images are captured with different installation positions of
RGB cameras. Here, we test the registration results when the visual information are obtained with
images of the top RGB camera on our autonomous vehicle platform. As we can see in Figure 11,
I1 is the original image from ZED camera and I2 is the image from the top RGB camera. Images
from the top RGB camera present obvious distortion and some examples are overexposed where
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Algorithm 1 Cross3DReg Approach
Input: source points P , target pointsQ, unalliged image I.
Output: Transfmation matrix T
1: (P̂,P ′), (FP̂ ,FP′)← PointFeatureExtractor(P)
2: (Q̂,Q′), (FQ̂,FQ′)← PointFeatureExtractor(Q)
3: FI ← ImgFeatureExtractor(I)
4: PQ̂

overlap,P
P̂
overlap ← OMP(P̂,FP̂ , Q̂,FQ̂,FI)

4: MP̂ ← (PP̂
overlap > λ), MQ̂ ← (PQ̂

overlap > λ)

5: F̄P̃ ′
i
, F̄Q̃′

j
← VGAM(P̂,FP̂ ,MP̂ , Q̂,FQ̂,MQ̂)

5: for i← 1 to N do
5: for j ← 1 to M do
5: Z′

ij ← exp
(
−∥F̄P̃ ′

i
− F̄Q̃′

j
∥22
)

5: end for
5: end for
6: C′ ∈ {(P̃′

i, Q̃
′
j)|P̃′

i ∈ P̂, Q̃′
j ∈ Q̂} ← select top K Z′

ij

7: GP̃′ ,GQ̃′ ← GroupPints(C′,Q′,P ′)

8: GFP′
,GFQ′

← GroupFeats(GQ̃′ ,GP̃′FQ′ ,FP′)
8: for i← 1 to Nc′ do

8: Si =
GFP′

i (GFQ′

i )T

d̃
8: end for
9: Ci ← select top K′ in Si

10: Cfine ← C1 ∪ ... ∪ CNc

11: T ← Estimator(Cfine)
12: return T =0

Our registration GTOverlap region prediction

Figure 9: Additional visualization of Cross3dReg registration results.
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RRE: 0.420  RTE: 0.046 RRE: 0.421  RTE: 0.046 RRE: 0.420  RTE: 0.046

I1 I2 I3

RRE: 0.480  RTE: 0.143 RRE: 0.476  RTE: 0.143 RRE: 0.479  RTE: 0.143

I1 I2 I3

Figure 10: The registration when input images are captured from other views. I1 represents the
image 20 frames prior to I2, while I3 denotes the image 20 frames subsequent to I2.

details cannot be seen. With these challenging and imperfect images, our approach still maintain
superior performance in such cases. These experiments verify that our method is robust to different
hardware installation settings, low-quality images and easy to generalized to arbitrary camera and
LiDAR relative positions.

I1

I2

I1

I2

GT

GT

RRE: 0.620  RTE:0.061

RRE: 0.498  RTE:0.049

RRE: 0.901  RTE:0.155

RRE: 0.899  RTE:0.154

Our registration

Our registration

Figure 11: The visualization registration result by using a distorted and overexposed image captured
from the RGB camera with different installation position.

Furthermore, Figure 12 displays the registration recall of each method under different relative rota-
tion and translation error thresholds, utilizing different pose estimators. The results demonstrate that
when robust pose estimators such as LGR and RANSAC are employed, the poses computed from
the correspondences generated by our method exhibit the highest registration recall across all error
thresholds.

Figure 12: Registration recalls with different RRE and RTE thresholds in different estimators on
Cross3DReg.
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