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Abstract

We study the sufficiency of demonstrations001
in enabling pre-trained large language mod-002
els (LLMs) to implicitly learn the underlying003
task distribution for long-form generation. We004
prove the answer is no. For any long-form gen-005
eration task, we show that if an LLM fails to006
initially grasp the task’s language distribution,007
demonstrations alone are insufficient. This gap008
is caused by a lack of explicit task-language dis-009
tribution characterization exposed to the model.010
Addressing this by capturing these distributions011
explicitly through task guidelines enhances012
model performance. We then present Long-013
Guide, the first efficient algorithm that gener-014
ates two types of guidelines as additional in-015
structions for LLMs: (i) Metric Guideline (MG)016
that instructs models to optimize for selected017
metrics; and (ii) Output Constraint Guideline018
(OCG) that constrains generation at both the019
token and sentence levels. LongGuide automat-020
ically selects the most useful combination of021
guidelines, improving strong open- and closed-022
source LLMs by 5.39% and 6.58% under zero-023
and few-shot settings across seven tasks. Fur-024
thermore, LongGuide enhances LLMs beyond025
demonstrations, is learnable by weaker models026
to enhance stronger ones, and synergistically027
combines with prompt optimizers.028

1 Introduction029

In recent years, pre-trained large language models030

(LLMs) have demonstrated impressive instruction-031

based performance through zero- and few-shot032

learning capabilities (Brown et al., 2020; Chowd-033

hery et al., 2022; OpenAI, 2022; Touvron et al.,034

2023; Jiang et al., 2023; Team et al., 2023). No-035

tably, few-shot learning, termed as in-context learn-036

ing (ICL), has proven highly effective and widely037

used (Dong et al., 2022). Let us first state ICL for-038

mally: the goal is to predict a token sequence Y ,039

given another token sequence X , for a task T with040

a probability distribution PT . In this context, ICL041

Ground-truth Summary: Suzanne is at work and is having a break now. Morgan
invites Suzanne to a concert of Maroon 5 which takes place next week at the Hulu
Theatre at Madison Square Garden. Suzzanne agrees.

Zero-shot 
(ROUGE-L = 25.00)

Output: The dialogue shows
Morgan and Suzanne having a
flirty conversation while
discussing mundane work and
expressing their affection for each
other. Morgan surprises Suzanne
with tickets to a Maroon 5 concert,
and Suzanne expresses her
excitement and gratitude.

Few-shot (3 random shots)
(ROUGE-L = 26.67)

Output: Morgan and 
Suzanne discuss their day, 
with Morgan inviting 
Suzanne to a Maroon 5 
concert. Suzanne 
excitedly accepts, 
and Morgan expresses 
his desire for her happiness.

Few-shot (3 shots) + LongGuide 
(ROUGE-L = 40.74)

Guidelines: The summary is highly
concise and to the point without being
comprehensive......The summary must
have from 1 to 4 sentences and from 5 to
51 words with an average of 22 words
and 1 sentences.
Output: Morgan invites Suzanne to a
Maroon 5 concert at Madison Square
Garden and she gladly accepts,
expressing happiness and gratitude.

Zero-shot + LongGuide 
(ROUGE-L = 29.85)

Guidelines: The summary must have
from 1 to 4 sentences and from 5 to 51
words with an average of 22 words and 1
sentences.
Output: Morgan and Suzanne are talking
about their day at work. Morgan offers
Suzanne tickets to a Maroon 5 concert,
and Suzanne expresses excitement and
thanks Morgan. They plan to attend the
concert together.

With guideline Without guideline

Dialogue
Morgan: Hey gorgeous, how’s your day?
Suzanne: Nothing special, it’s just one of many boring days at work. But… better...

Figure 1: ChatGPT results on a SAMSum example
(Gliwa et al., 2019) w/ & w/o LongGuide guidelines.

generation using an LLM M involves concatenat- 042

ing k demonstrations {(x1, y1), ..., (xk, yk)}. Let 043

Df denote the random variable for the demonstra- 044

tion token sequence. Then, we define PM as M’s 045

output probability function as: 046

PM(Y |Df , X) :=

M(Y |Concat(x1, y1, ..., xk, yk), X)
(1) 047

048where Df = Concat(x1, y1, ..., xk, yk). For sim- 049

plicity, we omit formatting tokens of demonstra- 050

tions and separator tokens between examples. 051

Several prior studies try to explain the ICL capa- 052

bilities of LLMs, advocating for the sufficiency of 053

well-chosen Df as implicitly teaching the LLM to 054

perform the tasks, especially those involving clas- 055

sification (Saunshi et al., 2020; Xie et al., 2021; 056

Wang et al., 2024). Central to their theoretical 057

analyses is a strong assumption that the model M 058

accurately captures the underlying distribution of 059

the task’s language; i.e., PM(X) = PT (X). 060

1



However, this assumption is often not met, par-061

ticularly with domain-specific terminologies (Yang062

et al., 2023a; Cheng et al., 2024), questioning the063

sufficiency of demonstrations. Furthermore, recent064

empirical studies highlight the deficiency of ICL in065

long-form generation tasks where answers are sen-066

tences or paragraphs such as summarization (Sun067

et al., 2023a). This poses significant gaps in our068

understanding of ICL’s limitations and instructing069

LLMs to solve such tasks effectively.070

We question the proficiency of demonstrations071

for long-form generation tasks. We prove that072

for any long-form generation task, if a language073

model fails to grasp the task’s language distribu-074

tion initially, demonstrations cannot correct this075

deficiency. We then hypothesize and empirically076

verify that LLMs do not fully transfer the text prop-077

erties (language and format properties) of demon-078

strations to generated (long-form) answers. Based079

on this, we posit that instructing LLMs with explicit080

task guidelines that capture the text properties of081

the task comprehensively is essential for LLMs to082

enhance their performance. Fig. 1 illustrates such083

an example where instructing LLMs explicitly by084

guidelines carrying certain properties of the task085

output distribution leads to superior outcomes.086

Motivated by this, we introduce LongGuide, a087

five-step, efficient guideline-learning algorithm that088

generates two streams of guidelines as supplement-089

ing instructions for LLMs from limited training090

data: (i) Metric Guideline (MG) directing models091

toward optimizing selected metrics on the task, mo-092

tivated by prior studies in machine translation (Ran-093

zato et al., 2015); (ii) Output Constraint Guideline094

(OCG) constraining generated outputs at both sen-095

tence and token levels, inspired by controllable gen-096

eration studies (Fan et al., 2018a). Our method is097

related to prior studies in task instruction construc-098

tion (Wang et al., 2022b) and enhancing LLM task099

understanding through task definitions (Yin et al.,100

2023). However, it differs by offering “post-hoc”101

instructions that guide LLMs to enhance responses102

based on learned quality and quantitative criteria.103

LongGuide automatically identifies the optimal104

set of guidelines, resulting in significant overall per-105

formance enhancements for both open- and closed-106

source LLMs by 5.30% and 6.20%, respectively,107

across seven tasks including summarization, text108

simplification, translation, dialogue generation, ta-109

ble2text generation. Moreover, it learns guidelines110

from demonstrations boosting ICL performance,111

can be learned by weaker models to boost stronger 112

models, and be developed concurrently and inte- 113

grated with prompt optimization algorithms. 114

2 Demonstrations Alone Are Insufficient 115

for Long-form Generation 116

Problem formulation. We define a long-form 117

generation dataset with n data points as D = 118

{⟨x, y⟩i}ni=1, where x and y respectively indicate 119

the input context and ground truth sentence- or 120

paragraph-long answer. Without loss of generality, 121

X denotes the random variable for the input token 122

sequence of x, and Y denotes the answer token 123

sequence of y. An LLM M solving the task in the 124

instruction-based setting is expected to generate 125

Y given X and an input Instruction I . 126

2.1 Theoretical Analysis 127

Assumption 2.1. For the test long-form generation 128

task T that we consider, there exists x ∈ X for 129

which PM(X = x) ̸= PT (X = x), where X is 130

the input token sequence space. 131

Asm.-2.1 is equivalent to M does not fully cap- 132

ture T ’s true language distribution. We assume: 133

Assumption 2.2. We define two probability func- 134

tions as functionally zero equivalent if they act 135

on the same input space and any arbitrary event 136

causes both functions to be simultaneously zero or 137

non-zero. We assume that PT and PM are func- 138

tionally zero equivalent, i.e., ∀x ∈ X , PM(X = 139

x) = 0 ⇔ PT (X = x) = 0. 140

Note that Asm.-2.1 contradicts the common as- 141

sumption PM(X) = PT (X) made by multiple 142

prior studies (Xie et al., 2021; Min et al., 2022; 143

Wang et al., 2024), while Asm.-2.2 is a relaxed ver- 144

sion of that common assumption. With the above 145

assumptions, we prove the following result: 146

Theorem 2.1. For any demonstration token se- 147

quence Df ∈ D, the distribution PM(X|Df ) 148

does not fully approximate PT (X) i.e, there exists 149

x ∈ X such that PM(X = x|Df ) ̸= PT (X = x). 150

where D is the demonstration token sequence space. 151

The proof of Thm.-2.1 is presented in Appx.-A. In 152

short, this proof shows that if a language model 153

fails to grasp the generation task’s language distri- 154

bution (Asm.-2.1), demonstrations cannot correct 155

this deficiency. This finding reveals flaws in our 156

beliefs about demonstrations in ICL, suggesting we 157

rethink methods to assist LLMs in characterizing 158

their tasks in terms of language distribution, which 159
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is essential for long-form generation to ensure that160

outputs accurately reflect the task’s requirements.161

This is the key distinction between long-form gen-162

eration and classification, since in classification163

tasks, the output may not necessarily reflect the164

language properties of the input provided.165

In practice, evaluating how accurately M cap-166

tures the language distribution of a task T is highly167

challenging because the true distribution PT is un-168

known. The widely adopted approach is by an-169

alyzing M’s responses on testing samples of T170

using reference-based evaluation metrics such as171

ROUGE (Lin, 2004) and/or reference-free ones172

like Fluency (Fu et al., 2023; Zeng et al., 2020).173

While reference-based metrics are commonly used174

to assess M’s performance on task T , reference-175

free metrics are typically employed to evaluate the176

linguistic properties of the answers.177

Since M does not fully capture the task’s lan-178

guage distribution even with Df as input, hypo-179

thetically, it does not entirely transfer the linguistic180

properties of demonstrative outputs into the newly181

generated ones. This implies the existence of at182

least one reference-free language evaluation met-183

ric whose scores on M’s generated answers do184

not wholly result from its score distribution of185

demonstrative answers. From our empirical ex-186

plorations verifying this hypothesis in Appx.-C.1,187

we further discover that not only language prop-188

erties but the text formatting properties (e.g., # of189

sentences) are not fully transferred from demon-190

strations. Therefore, we generalize this hypothesis.191

Denoting GM : X 7→ Y as the generation function192

of M, we propose the following theorem:193

Theorem 2.2. Suppose that there exists x ∈ X194

such that PM(X = x) ̸= PT (X = x), for any195

finite set of demonstrations {(xi, yi)}ki=1, there ex-196

ists at least one text property (language or format197

property) metric E : X 7→ R such that ∃x ∈ X so198

that E(GM(x)) /∈ {E(yi)}ki=1.199

Thm.-2.2 is equivalent to there exists one lan-200

guage/format metric such that M cannot fully201

transfer its level from demonstrations to responses,202

regardless of how many finite demonstrations are203

used. Our proof is in Appx.-A with empirical sup-204

porting evidence in Appx.-C.1. This highlights a205

significant limitation of demonstrations: if they do206

not cover all possible outcomes of GM in Y , which207

is often the case, they alone cannot enable M to208

fully integrate the text properties into responses.209

Generalizing from the demonstrations to limited210

labeled data, we term this as the text property 211

transfer (PT) problem: the challenge of ensuring 212

that a model M can transfer specific desired text 213

properties observed in a limited set of labeled data, 214

such as demonstrations, to its responses. These 215

findings partly explain why ICL is not an effective 216

strategy for long-form tasks, as empirically found 217

by (Sun et al., 2023a; Pu et al., 2023). We hy- 218

pothesize that addressing PT problem enhances the 219

instruction-based performance of M. To formally 220

study this hypothesis, we define text property task: 221

Definition 2.1. (Text property task) For a 222

task T
△
= {D,L} with the train dataset D = 223

{(xti, yti)}ni=1, a text property task T ′ of T with 224

a property measurement f ′ : Y 7→ R is defined as 225

T ′ △
= {D′,L′} such that D′ = {(xti, f ′(yti))}ni=1. 226

where L and L′ are the learning objectives of T and 227

T ’ respectively, and f ′ can be any reference-free 228

language property or format property measurement. 229

Let us denote the long-form text generation ob- 230

jective of a language model M for a task T as 231

minθ∈Θ L(θ, T ), with θ is a tunable factor of M 232

(such as its parameters or input instruction), and Θ 233

is its space. With Definition 2.1, we propose: 234

Hypothesis 2.1. (LongGuide Hypothesis) We hy- 235

pothesize that T can be decomposed into r well- 236

chosen text property tasks T1, ..., Tr with corre- 237

sponding objectives L1, ..,Lr such that when r is 238

large enough, T ≈ T1 ⊕ ... ⊕ Tr. By jointly opti- 239

mizing r text property task objectives L1, ..,Lr, we 240

can approximately optimize the original task loss 241

L: argminθ∈Θ
∑r

i=1 Li ≈ argminθ∈Θ L. 242

When it comes to our instruction-based objec- 243

tive, θ becomes I . Essentially, Hyp.-2.1 proposes a 244

solution to enhance the performance of LLMs by 245

addressing the PT problem, which involves opti- 246

mizing responses based on the text property distri- 247

butions present in the training data. We provide an 248

empirical evidence supporting it in §4.1. Note that 249

our proposed hypothesis differs from previous per- 250

formance optimization approaches (Ranzato et al., 251

2015; Wieting et al., 2019), which primarily focus 252

on single reference-based metrics like BLEU (Pa- 253

pineni et al., 2002), as well as generalizes prior 254

efforts to optimize certain reference-free metrics 255

to enhance model performance, such as relevancy 256

(Gao et al., 2019). Additionally, while Hyp.-2.1 257

offers an alternative to optimizing reference-based 258

metrics with large datasets, it demonstrates superior 259

effectiveness under limited data constraints when 260
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Min, Max, Avg #sentences
Min, Max, Avg #tokens

(1) Metric
Collection

& Selection

(2) Metric
Score

Collection

Brevity: Summary is very concise, without any unnecessary details
Relevance: Summary is highly relevant and closely aligned with the original dialogue
Informativeness: Summary provides a good amount of informative, and relevant information.

Tiny train 
data

(4) Output Constraint
Guideline (OCG)          Brevity ...

Coherence ...

Brevity ...

...

Brevity
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Informative
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Releva
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Inf.
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(3) Generating Metric Guideline (MG)

Metrics

(5) MG-OCG Selection
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OCG No Guideline

Linguistics 
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Figure 2: Overview of our LongGuide framework. Light blue and yellow boxes show the learned (in parallel) metric
guideline (MG) and output constraint guideline (OCG).

we choose appropriate text property tasks. This is261

evident when we compare our method to one of the262

strongest prompt optimization algorithms in §4.1263

which optimizes ROUGE directly.264

Our experiments verifying Thm.-2.2 reveal that265

providing simple guidelines instructing LLMs to266

optimize certain text property metrics can enhance267

those properties in the responses, possibly because268

LLMs are optimizers (Yang et al., 2024). Based269

on Hyp.-2.1, our solution to enhance LLM per-270

formance by mitigating the PT problem is to de-271

velop a framework that automatically learns crucial272

guidelines as additional instructions for LLMs to273

optimize under the limited data constraints.274

3 LongGuide275

Motivation. Based on findings in §2, we propose276

LongGuide for improving LLM performance by ad-277

dressing the PT problem. LongGuide self-employs278

crucial text property tasks to capture task distribu-279

tion efficiently as shown in Fig. 2. To ensure our280

method is efficiently generalizable to new tasks,281

we only assume access to at most 50 task training282

samples: Dtrain = {(xti, yti)}ni=1, n ≤ 50. We283

focus on two guidelines, concerning two streams284

of text properties: (1) reference-free evaluation285

metrics capturing the intrinsic properties of a text286

(Metric Guideline (MG), Steps 1-3), and (2) out-287

put constraint metrics capturing the format that the288

generated text must adhere to (Output Constraint289

Guideline (OCG), Step 4). Finally, LongGuide au-290

tomatically evaluates different combinations of MG291

and OCG on Dtrain to determine the best guide-292

line(s) as additional instructions for testing (Step293

5). Let M be the LLM and GM be its generation294

function. Below, we outline 5 steps of LongGuide 295

in detail and prompts are in Appx.-E. 296

Step 1: Metric Collection & Selection. We aim 297

to select suitable metrics using the LLM M to 298

reason their importance for training data batches. 299

We first construct our pool of evaluation metrics 300

S widely used for text generation tasks. S con- 301

sists of 27 distinct metrics from 4 main sources 302

(Appx.-Tab. 9 for details). Specifically, we include 303

3 metrics from ABC’s of Communication (Wagner, 304

1963) evaluating communication skills. We follow 305

previous work (Yuan et al., 2021; Fu et al., 2023) 306

to include 12 more metrics for dialogue generation, 307

summarization, data2text generation, and machine 308

translation. We further propose 12 metrics for a 309

broader spectrum. We do not collect the metrics’ 310

definitions as they may differ across tasks. 311

Given Dtrain and S, we perform K iterations 312

to select the important metrics. At each iteration, 313

we randomly sample a batch Bi ⊆ Dtrain and 314

instruct M to generate the top-5 most important 315

metrics in S for evaluating the quality of the out- 316

puts in Bi: Ti = GM(IM , Bi, S) with IM being 317

the instruction to M to generate top-5 metrics. 318

We apply the top-5 constraint to prevent select- 319

ing too many metrics. The final set of metrics 320

selected, denoted by M , consists of the metrics se- 321

lected across all iterations sorted in alphabetic or- 322

der to ensure consistent results across multiple runs: 323

M = sorted(T1 ∪ · · · ∪ TK) = {M1, ...,Mm}. 324

Step 2: Metric Score Collection. This step fo- 325

cuses on evaluating the selected metrics M on 326

task data for comprehensively capturing the task 327

properties. Motivated by prior studies (Wang 328
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et al., 2023a), we utilize M to score the met-329

rics on a scale of 1–5. On ith training sample330

(xti, y
t
i) ∈ Dtrain, we infer M to evaluate yti on331

the metrics: scoresi = GM(Iscore, x
t
i, y

t
i ,M) =332

{siM1
, ..., siMm

}, where Iscore is the instruction333

to score the metrics. We employ self-consistency334

(Wang et al., 2022a) to obtain the evaluation scores335

minimizing variance. The final scores, scoresM =336

{sM1 , ..., sMm}, are the average of scores over all337

data outputs with sMj =

∑n
i=1(siMj

)

n . We separate338

this step from metric selection in Step 1 because,339

once a metric is chosen, we aim to evaluate it on340

Dtrain, not just the samples that led M to select it.341

Step 3: Generating Metric Guidelines. After342

obtaining scoresM , the goal of this step is to gen-343

erate metrics’ definitions moderated by scoresM ,344

which serves as the Metric Guideline (MG): GM =345

{dMG
M1

, ..., dMG
Mm

} = GM(IMG, scoresM ,M),346

where IMG is the instruction for M to generate the347

moderated definitions. We use the moderated met-348

rics’ definitions instead of scoresM because they349

are more expressive. Fig. 2 illustrates an instance350

where “Inf.” in the task “dialogue sum.” achieving351

a score of 4/5 is defined as “The summary pro-352

vides a good amount of inf...”. Essentially, GM353

delineates the expected properties of the answers354

that M must uphold during generation.355

Step 4: Output Constraint Guideline (OCG).356

Research on controlling long-form generation out-357

put has extensively proposed various constraints.358

These include constraints on the length, which are359

broadly applicable, as well as linguistic or keyword-360

based controls on the output, which are more spe-361

cific to certain tasks (Fan et al., 2018a; Martin362

et al., 2020; He et al., 2022). Our target in this363

step is to propose a robust set of output constraints364

which are the universal applicability of LongGuide365

to any long-form generation tasks. We develop366

LongGuide specifically to learn six key output con-367

straints, focusing on two distributions: #sentences368

and #tokens in ground-truth answers. These in-369

clude minimum (MIN), maximum (MAX), and av-370

erage (AVG) counts of sentences and tokens, which371

serve as basic exploratory statistics about length372

bins and specific expected values of these distribu-373

tions. The Output Constraint Guideline (OCG) is374

formulated as GOC = “The response must have375

from {MINs} to {MAXs} sentences and from376

{MINt} to {MAXt} tokens with an average of377

{AV Gs} sentences and {AV Gt} tokens.”.378

Step 5: MG–OCG selection. The inherent 379

knowledge of various models for different tasks 380

varies, leading to GM and GOC demonstrating 381

varying degrees of enhancement. This step targets 382

mitigating this by automatically selecting the 383

best combination of guidelines for a given model. 384

Specifically, we assess the model’s performance on 385

the limited training data Dtrain under 4 guideline 386

settings G = {w/o guideline, GM , GOC , GM 387

& GOC}. The best-performing combination on 388

Dtrain is then the final LongGuide: Gbest = 389

argmaxg∈G(performance(M|I, g,Dtrain)) 390

with I being the task input instruction (§2). 391

4 Experiments 392

Task selection. We select 7 widely evaluated 393

long-form generation tasks from 4 main categories: 394

summarization, text simplification, machine trans- 395

lation and generation. The tasks are SAMSum 396

(Gliwa et al., 2019), CNN/Daily Mail (3.0.0) (See 397

et al., 2017) and XL-SUM (Hasan et al., 2021) for 398

summarization, SWiPE (Laban et al., 2023) for text 399

simplification, IWSLT-2017 en-ja (Cettolo et al., 400

2017) for machine translation, Synthetic-Persona- 401

Chat (Jandaghi et al., 2023) for dialogue generation, 402

and CommonGen-Challenge (Lin et al., 2020) for 403

data-to-text generation. Our data preprocessing 404

details are provided in Appx.-D. 405

Baselines and evaluation. Since LongGuide is 406

the first method of self-learning guidelines as ad- 407

ditional instructions for long-form generation, we 408

compare it with the zero-/few-shot prompting base- 409

lines. We also compare it with one of the strongest 410

prompt optimization algorithms, APO (Pryzant 411

et al., 2023) which optimizes the input prompt 412

on the Dtrain. More baselines are in §5.1 and 413

Appx.-B.3. We empirically examine both open- 414

and closed-source LLMs: Mistral-7B-it v0.2 (Jiang 415

et al., 2023) as an open-source model and ChatGPT 416

(gpt-3.5-turbo-1106) (OpenAI, 2022) as a closed- 417

source model. Both are among the strongest LLMs 418

to date. Our main evaluation metric is ROUGE-L 419

(Lin, 2004). The results we report are averaged 420

over 3 runs, with 95% CI from t-tests. 421

4.1 Findings 422

LongGuide significantly mitigates the PT prob- 423

lem. We show that LongGuide effectively ad- 424

dresses the PT problem identified in §2. Our experi- 425

mental results are presented in Tab. 1, conducted on 426
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Models Method SAMSum ROUGE-L↑ SAMSum Avg.JS↓ CNN ROUGE-L↑ CNN Avg.JS↓ SWiPE ROUGE-L↑ SWiPE Avg.JS↓

M
is

tr
al

-it
(0

.2
)

Zero-shot (ZS) 22.20±0.43 0.10139 19.23±0.34 0.12623 36.60±0.59 0.05647
ZS w/ OCG 27.55±0.98 0.04015 22.46±0.64 0.07178 32.48±1.91 0.06500
ZS w/ MG 27.81±1.17 0.03880 18.35±0.60 0.14130 38.21±1.72 0.05496
ZS w/ MG-OCG 28.35±1.66 0.03746 22.05±0.84 0.07885 35.47±2.89 0.05538
ZS w/ LongGuide 28.35±1.66 0.03746 22.46±0.64 0.07178 38.21±1.72 0.05496

Few-shot (FS) 27.13±0.26 0.05018 17.56±0.63 0.08436 39.47±0.45 0.04691
FS w/ OCG 27.84±0.88 0.03362 15.20±5.28 0.09218 29.54±1.90 0.05961
FS w/ MG 27.50±2.08 0.03518 18.13±5.28 0.08301 41.36±1.37 0.04503
FS w/ MG-OCG 30.65±0.88 0.03184 19.19±0.49 0.08139 38.56±1.39 0.05289
ZS w/ LongGuide 30.65±0.88 0.03184 19.19±0.49 0.08139 41.36±1.37 0.04503

Table 1: Avg. Jensen–Shannon divergence scores across distributions of text properties of generated answers vs ground truths
(ChatGPT judge): (1) the trends of ROUGE-L and Avg. JS is nearly identical, supporting our proposed Hyp.-2.1; (2) LongGuide
significantly mitigates the PT problem.

Summarization Simplification Translation Dialogue Generation Table2Text

Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Synthetic Persona CommGen-Chall.

#shots (random) 3 3 5 3 3 5 5

M
is

tr
al

-it
(0

.2
)

Zero-shot (ZS) 22.20±0.43 19.23±0.34 9.19±0.03 36.60±0.59 13.12±1.39 12.76±1.54 10.12±0.02

ZS w/ APO 23.77±1.88 19.53±2.08 12.06±1.55 36.92±1.81 14.45±1.84 10.66±1.08 11.21±2.02

ZS w/ LongGuide 28.35±1.66 22.46±0.64 14.38±0.15 38.21±1.72 16.53±0.59 14.69±1.08 25.20±1.89

% gain over ZS +6.15 +3.23 +5.19 +1.61 +3.41 +1.93 +15.08

Few-shot (FS) 27.13±0.26 17.56±0.63 9.79±0.18 39.47±0.45 12.69±1.82 3.56±0.36 3.98±0.17

FS w/ APO 26.23±2.22 18.18±2.01 11.99±1.46 39.55±2.07 14.08±1.97 4.26±1.45 5.45±0.92

FS w/ LongGuide 30.65±0.88 19.19±0.49 15.23±0.33 41.36±1.37 16.62±0.81 5.25±0.94 25.05±0.76

% gain over FS +3.52 +1.63 +5.44 +1.89 +3.66 +1.69 +21.07

C
ha

tG
PT

Zero-shot (ZS) 23.83±0.54 20.12±0.27 10.80±0.18 45.09±1.45 36.13±0.87 19.46±0.40 24.21±0.37

ZS w/ APO 25.05±1.32 20.34±0.91 12.19±1.30 46.32±1.92 37.74±1.54 19.91±1.62 23.63±1.99

ZS w/ LongGuide 30.47±1.57 22.19±0.65 20.93±0.52 45.09±1.45 41.22±0.46 22.98±2.65 34.41±1.01

% gain over ZS +6.64 +2.07 +10.13 +0.00 +5.09 +3.52 +10.20

Few-shot (FS) 22.21±2.35 14.51±0.80 11.42±0.13 33.72±2.61 31.93±1.88 16.10±2.61 22.08±0.63

FS w/ APO 24.22±2.33 15.20±2.19 14.07±3.05 34.46±2.01 33.72±3.20 17.68±1.80 25.09±3.15

FS w/ LongGuide 31.46±1.34 18.17±1.32 19.95±1.38 37.60±2.85 38.43±2.37 22.36±0.89 38.21±3.70

% gain over FS +9.25 +3.66 +8.53 +3.88 +6.50 +6.53 +16.13

Table 2: Main experiments on summarization, text simplification, translation, and long-form question-answering tasks. Long-
Guide significantly outperforms APO on most of the tasks and enhances instruction-based performance of LLMs substantially.

3 datasets SAMSum, CNN, and SWiPE with Mis-427

tral. We use different combinations of LongGuide428

as additional instructions for the model under zero-429

shot and few-shot settings. For each task, we first430

have the set of selected text properties from Long-431

Guide that the model needs to optimize, denoted432

as {M1, ...,Mm,#sentences,#tokens} (for the433

full lists, see Appx.-Tab. 12). We then measure the434

average of Jensen-Shannon divergence (Lin, 1991)435

between the property score distributions (judged by436

ChatGPT) between the generated answers and the437

ground truth answers, across all selected properties,438

denoted as Avg.JS: the lower the Avg.JS value,439

the better the mitigation of the PT problem. From440

Tab. 1, we observe that LongGuide significantly441

reduces the Avg.JS score compared to the base-442

lines, showcasing the success of using guidelines443

as additional instructions to enhance property trans-444

fer. Moreover, across all benchmarks, the trend of445

ROUGE-L scores is nearly identical with Avg.JS,446

providing strong evidence verifying Hyp.-2.1. A447

case study is shown in Appx.-C.3.448

LongGuide significantly boosts instruc-449

tion-based performance of LLMs. Our main450

experiments with LongGuide on downstream451

tasks, as presented in Tab. 2, reveal four primary452

findings. Firstly, interestingly, for baselines,453

zero-shot performance is higher than few-shot454

performance for both models on average, and the 455

gaps are especially large in Synthetic Persona 456

and CommonGen-Challenge. We hypothesize 457

that the models might have been partly exposed 458

to the tasks’ data during training, therefore, 459

supplementing demonstrations into the prompts 460

(few-shot) makes them out-of-distribution: when 461

additional demonstrations are provided, the models 462

often refuse to answer the queries. Meanwhile, 463

LongGuide helps models overcome this issue for 464

the few-shot setting. Secondly, LongGuide sub- 465

stantially improves zero- and few-shot baselines 466

by 5.30% and 6.20% on average across models: 467

improvement for few-shot prompting is surpris- 468

ingly higher than in zero-shot, possibly because 469

improving a stronger baseline is harder than a 470

weaker one. Notably, LongGuide outperforms 471

APO (Pryzant et al., 2023) in most benchmarks, 472

especially under zero-shot, demonstrating that 473

our strategy of optimizing reference-free property 474

tasks (Hyp.-2.1) is significantly more effective than 475

optimizing ROUGE-L on limited data. Thirdly, 476

we observe that LongGuide achieves the highest 477

improvements on CommonGen-Challenge with 478

15.62% and XL-SUM with 7.32%, and lowest 479

improvement on SWiPE with 1.84% on average. 480

These improvements are mainly because the 481

answers generated by the baselines are often far 482
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Models Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Synthetic Persona CommGen-Chall.

M
is

tr
al

-7
B

-it
(0

.2
)

Zero-shot (ZS) 22.20±0.43 19.23±0.34 9.19±0.03 36.60±0.59 13.12±1.39 12.76±1.54 10.12±0.02

ZS w/ OCG 27.55±0.98↑ 22.46±0.64↑ 14.38±0.15↑ 32.48±1.91↓ 16.53±0.59↑ 14.35±0.47↑ 24.16±0.11↑
ZS w/ MG 27.81±1.17↑ 18.35±0.60↓ 9.37±0.25↑ 38.21±1.72↑ 8.71±0.53↓ 12.53±0.58↓ 21.54±7.50↑
ZS w/ MG-OCG 28.35±1.66↑ 22.05±0.84↑ 13.64±0.38↑ 35.47±2.89↓ 15.76±1.85↑ 14.69±1.08↑ 25.20±1.89↑
MG-OCG selection MG-OCG OCG OCG MG OCG MG-OCG MG-OCG

Few-shot (FS) 27.13±0.26 17.56±0.63 9.79±0.18 39.47±0.45 12.69±1.82 3.56±0.36 3.98±0.17

FS w/ OCG 27.84±0.88↑ 15.20±5.28↓ 12.22±1.19↑ 29.54±1.90↓ 16.62±0.81↑ 5.06±1.05↑ 25.05±0.76↑
FS w/ MG 27.50±2.08↑ 18.13±5.28↑ 11.80±2.06↑ 41.36±1.37↑ 8.67±0.62↓ 4.32±0.39↑ 14.58±2.24↑
FS w/ MG-OCG 30.65±0.88↑ 19.19±0.49↑ 15.23±0.33↑ 38.56±1.39↓ 15.83±0.95↑ 5.25±0.94↑ 5.94±1.00↑
MG-OCG selection MG-OCG MG-OCG MG-OCG MG OCG MG-OCG OCG

C
ha

tG
PT

(1
10

6)

Zero-shot (ZS) 23.83±0.54 20.12±0.27 10.80±0.18 45.09±1.45 36.13±0.87 19.46±0.40 24.21±0.37

ZS w/ OCG 29.19±0.77↑ 22.39±0.82↑ 20.93±0.52↑ 37.76±1.44↓ 38.86±1.11↑ 22.98±2.65↑ 34.41±1.01↑
ZS w/ MG 25.38±0.79↑ 20.37±0.41↑ 10.42±1.15↓ 45.06±2.96↓ 37.88±2.42↑ 19.91±0.59↑ 17.23±2.57

ZS w/ MG-OCG 30.47±1.57↑ 22.19±0.65↑ 20.02±0.89↑ 41.38±4.91↓ 41.22±0.46↑ 20.95±1.91↑ 31.57±0.99↑
MG-OCG selection MG-OCG MG-OCG OCG ZS MG-OCG MG-OCG OCG

Few-shot (FS) 22.21±2.35 14.51±0.80 11.42±0.13 33.72±2.61 31.93±1.88 16.10±2.61 22.08±0.63

FS w/ OCG 30.00±1.07↑ 18.17±1.32↑ 19.95±1.38↑ 16.68±1.29↓ 38.57±1.81↑ 22.36±0.89↑ 38.12±1.99↑
FS w/ MG 29.43±0.83↑ 15.45±2.16↑ 12.49±0.59↑ 19.36±1.40↓ 39.45±3.55↑ 18.64±0.49↑ 22.18±7.50↑
FS w/ MG-OCG 31.46±1.34↑ 14.84±2.58↑ 18.58±0.44↑ 37.60±2.85↑ 38.43±2.37↑ 19.47±1.20↑ 38.21±3.70↑
MG-OCG selection MG-OCG OCG OCG MG-OCG MG-OCG OCG MG-OCG

Table 3: Ablation results on seven tasks. The gray rows represent baselines. The benefits of LongGuide’s components vary
across different models and tasks. The “MG-OCG selection” results are reported in Appx.-Tab. 10.

longer than the ground truths. LongGuide rectifies483

this issue by controlling the output length and484

quality, leading to significant performance gains.485

Finally, among the two models, interestingly,486

LongGuide improves Mistral by an average of487

5.39%, while ChatGPT, commonly regarded as a488

stronger model, is improved by a larger margin,489

6.58%. This suggests that LongGuide has the490

potential to benefit stronger models in the future.491

Where do the improvements come from? To492

identify the primary source of improvements493

(whether from MG, OCG, or both), we present494

the results of LLMs with LongGuide’s components495

in Tab. 3. Firstly, MG-OCG combination (w/ MG-496

OCG) is the most useful guideline for LLMs, ob-497

served to be the best 15 times, followed by OCG498

(w/ OCG) observed 10 times, and MG (w/ MG)499

twice. While these statistics underscore the effec-500

tiveness of combining MG-OCG, OCG particularly501

proves itself highly effective in tasks such as sum-502

marization, translation, and table-to-text generation.503

Secondly, MG and OCG individually improve most504

of the baselines, with OCG showing a slight over-505

all advantage. This could be because while MG506

focuses on controlling the language properties of507

answers, it does not manage the output structure,508

sometimes resulting in longer/shorter answers than509

the ground truths. Exceptionally, on SWiPE, OCG510

affects all models, whereas MG shows particularly511

strong effectiveness with Mistral. Manual investi-512

gations reveal that ground-truth answers in SWiPE513

exhibit high variances in #sentences and #tokens514

which explains why OCG may not be effective for515

this benchmark. Thirdly, an interesting case is Chat-516

GPT with few-shot prompting on SWiPE, where517

individual MG and OCG impair performance but518

CNN (3.0.0) IWSLT17 CommGen-Chall.0

5

10

15

20

25

F1
 S

co
re

 (%
)

Baseline
LongGuide
Gen. Gui. on Demos
LongGuide on Demos

Table 4: LongGuide learned from demonstrations substan-
tially enhances Mistral few-shot performance.

their combination enhances it. This shows evidence 519

that MG and OCG complement each other. As dis- 520

cussed above, due to the uneven nature of answers 521

in SWiPE, using MG or OCG alone may not work 522

well for multiple samples, as MG and OCG only 523

provide expected statistics. However, combining 524

them could enhance performance by allowing them 525

to complement each other. An illustrative SWiPE 526

example of complement is in Appx.-Fig. 9. 527

5 Discussion 528

We discuss two key characteristics here, while Ap- 529

pendices B and C contain additional properties 530

and analyses: (1) Understanding MG and OCG, 531

the distributions of selected metrics and evaluated 532

scores (Appx.-B.1); LongGuide is (2) transferable 533

from weaker to stronger models (Appx.-B.2); (3) 534

beneficial for non-instruct LLMs (Appx.-B.4); (4) 535

synergistically combined with prompt optimizers 536

(Appx.-B.3); (5) Extra ablation studies for #tokens 537

and #sentences (Appx.-C.7); (6) Generalizability 538

and customization of LongGuide (Appx.-C.8). 539

5.1 LongGuide Learns From Demonstrations 540

To Boost ICL Performance 541

Here, we revisit the question posed in §2 and 542

demonstrate that LongGuide learned from demon- 543
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Methods SAMSum SWiPE CommGen-Chall.

Zero-shot (ZS) 22.20±0.43 36.60±0.59 3.98±0.17

ZS w/ LongGuide 28.35±1.66 38.21±1.72 25.20±1.89

ZS w/ LongGuide w/o step 2 26.99±1.61 36.90±1.91 25.03±2.01

Few-shot (FS) 27.13±0.26 39.47±0.45 3.98±0.17

FS w/ LongGuide 30.65±0.88 41.36±1.37 27.23±0.58

FS w/ LongGuide w/o step 2 30.37±1.07 35.54±1.10 27.15±1.09

Table 5: Main ablation study with Mistral with LongGuide
when Step 2 is skipped.

strations can significantly enhance ICL perfor-544

mance. Our experiments using Mistral cover CNN,545

IWSLT17 en-ja, and CommGen-Chall. datasets.546

Our results, presented in Tab. 4, involve averag-547

ing the performance under zero- and few-shot set-548

tings. For “Baseline”, no guideline is utilized. For549

“LongGuide on Demos”, we train LongGuide on550

demonstrations used in Tab. 2, in contrast to the551

Dtrain for the case of “LongGuide”. We add one552

more baseline, “General Guidelines (Gen. Gui.)553

on Demos”, where we ask the models to generate554

general task guidelines from demonstrations. The555

performance is summarized in Tab. 4, with detailed556

component results in Appx.-Tab. 11. Specifically,557

LongGuide trained on Dtrain outperforms it on558

demonstrations, suggesting its possible scalability559

with more training data. Moreover, while Gen. Gui.560

slightly worsens the Baseline on CNN, both Long-561

Guide and LongGuide on Demos notably surpass562

the Baseline, and Gen. Gui., highlighting the effec-563

tiveness of LongGuide in capturing task-specific564

properties, thereby enhancing ICL performance.565

5.2 Main Ablation Studies566

From Tab. 3, we identify the unique contributions567

of each step within LongGuide. Notably, omitting568

Step 1 transforms LongGuide into OCG, whereas569

excluding Step 3 yields MG, and skipping Step 4570

yields MG-OCG. We now investigate LongGuide571

under the condition of skipping Step 2, Metrics’572

scores collection. Essentially, for selected metrics573

from Step 1, we directly task the models to opti-574

mize them for the generated answers. As discussed575

in §3 (and Appx.-B.1), Step 2 is crucial for accu-576

rately capturing the task output properties for gen-577

eration and avoiding conflicts among the metrics578

selected by MG. We experiment with Mistral on579

SAMSum, SWiPE, and CommGen-Chall. datasets580

because for these datasets, the best guideline com-581

bination involves MG. The results are presented in582

Tab. 5. As expected, without Step 2, the model per-583

forms worse, particularly for SAMSum and SWiPE584

where the highest drops are shown in the zero-shot585

setting. A case study is provided in Appx.-Fig. 11.586

6 Related Work 587

Automatic prompt design for long-form gener- 588

ation. Long-form generation tasks are essential 589

and have been studied extensively (Li et al., 2024). 590

With LLM advancements, adapting these models 591

for such tasks using prompt-based methods is crit- 592

ical. However, prior works (Bang et al., 2023; 593

Yang et al., 2023b; Hadi et al., 2023; Zhou et al., 594

2023b; Pan et al., 2024) highlight the limited ef- 595

ficacy of LLMs in producing outputs that resem- 596

ble ground truths, as evaluated by ROUGE-L (Lin, 597

2004). Our approach autonomously composes ad- 598

ditional contexts, integrating evaluation targets and 599

constraints. Additionally, enhancing instructions 600

for LLMs (Wang et al., 2022b; Yin et al., 2023; 601

Wang et al., 2023b), automatic prompt optimiza- 602

tion (Zhou et al., 2023a; Pryzant et al., 2023), and 603

demonstration selection (Yang et al., 2023c; Qin 604

et al., 2023) are related areas that can be developed 605

in parallel & combined with ours (Appx.-B.3). 606

Prompting for controllable generation. Con- 607

trollable generation during fine-tuning has been 608

extensively studied (Fan et al., 2018a; Lakew et al., 609

2019; Martin et al., 2020; He et al., 2022). More re- 610

cently, researchers have explored prompting meth- 611

ods to control LLM generation. For instance, (Sun 612

et al., 2023b) found that LLMs struggle to meet 613

fine-grained hard constraints, while (Fonseca and 614

Cohen, 2024) proposed controlling stylistic fea- 615

tures like keywords and narrative during genera- 616

tion, leading to improved LLM summarization out- 617

comes. Although (Fonseca and Cohen, 2024) is 618

closely related to our output constraint guideline 619

(OCG), our approach goes beyond summarization 620

features, as discussed in §3. We focus on univer- 621

sally applicable features across multiple tasks. 622

7 Conclusion 623

We provide a theoretical understanding of the de- 624

ficiencies of demonstrations alone in instructing 625

large language models (LLMs) on the language & 626

format (text) properties of long-form generation 627

tasks, supported by illustrative evidences. To ad- 628

dress this, we propose LongGuide, an efficient, 629

guideline-learning algorithm that automatically 630

identifies the crucial text properties and converts 631

them into textual guidelines for LLMs. LongGuide 632

enhances the performance of LLMs on these tasks 633

significantly and shows promise for various down- 634

stream applications with minimal data required. 635
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Limitations636

Our study has several limitations. One limitation637

of our theoretical analysis is that it focuses solely638

on the task language distribution which is PM(X)639

or PM(X|Df ) instead of the actual output distri-640

bution, which is argmaxy∈Y PM(Y = y | X) or641

argmaxy∈Y PM(Y = y | Df , X). In our study,642

while leveraging the task language distribution al-643

lows us to hypothesize and highlight the limitations644

of demonstrations, shifting focus to the actual out-645

put distribution could yield more insights.646

An additional limitation of LongGuide is that647

its learned guidelines are based on task-level and648

average statistics rather than sample-based details.649

We designed our framework at the task level to650

address limited data constraints, as we found that651

sample-based learning under these conditions leads652

to high errors. While task-level guidelines already653

demonstrate significant improvements for LLMs,654

sample-based guidelines could offer more tailored655

guidance, potentially leading to optimal results.656

Moreover, this average guidance approach may be657

ineffective for tasks with high variance in the statis-658

tics that LongGuide learns. In such cases, the final659

step of LongGuide can prevent performance de-660

cline by likely choosing no guideline. For example,661

we found this applies to Code2Text (Richardson662

et al., 2017) & StoryGeneration (Fan et al., 2018b).663

Furthermore, LongGuide relies on models hav-664

ing a certain level of task knowledge to perform665

self-evaluation effectively, and LongGuide necessi-666

tates LLMs with strong instruction-following capa-667

bilities. However, we anticipate that cutting-edge668

AI language models will overcome this limitation669

both now and in the near future.670

Lastly, the guidelines learned by LongGuide may671

not be useful for the tasks the models are trained672

on. This is because these guidelines might intro-673

duce out-of-distribution context relative to the train-674

ing data, thereby reducing the effectiveness of the675

testing inference. For instance, while we see no-676

table enhancements on the CommonGen-Challenge677

dataset (Lin et al., 2020), it’s intriguing that we678

don’t observe any improvements on the WebNLG679

(Gardent et al., 2017) and E2E NLG (Puzikov and680

Gurevych, 2018) datasets, despite their expected681

similarity. Given the popularity of these datasets,682

we suspect the models we tested may have been683

previously trained on them.684

Ethical Considerations 685

This method could be misused to optimize prompts 686

for harmful purposes such as generating misinfor- 687

mation, hate speech, or privacy violations. While 688

our method is not intended for such uses, it is im- 689

possible to completely prevent misuse. Although 690

our method could enhance the efficiency and effi- 691

cacy of bad actors, we do not anticipate that Long- 692

Guide is inherently more effective in these negative 693

contexts than in positive applications. 694
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A Proofs1084

A.1 Proof of Thm.-2.11085

Proof of Thm.-2.1. We prove this theorem by contradiction. Suppose the negation of Thm.-2.1 is true, i.e.,1086

there exists a D1 ∈ D such that ∀X ∈ X , PM(X|D1) = PT (X) (S1).1087

Now, let us consider the event X∩Dc
1 where Dc

1 is the conjugate of event D1, or Dc
1 = D\D1. We have1088

PM(X ∩Dc
1|D1) = 0. From the assumption of the negation statement (S1), we derive PT (X ∩Dc

1) = 0.1089

From the Asm.-2.2 of equivalent zero probability, we have PM(X ∩Dc
1) = 0. Similarly, we can consider1090

the event Xc∩Dc where Xc is the conjugate of X , we arrive at PM(Xc∩Dc
1) = 0. Since the two X∩Dc

11091

and Xc∩Dc
1 form a disjoint union of Dc

1, we derive PM(Dc
1) = PM(X∩Dc

1)+PM(Xc∩Dc
1) = 0+0 = 0.1092

Since D1 and Dc
1 form a disjoint union of D, we have PM(D1) = 1.1093

Now, we consider the event of X ∈ X . From the negation statement (S1), we have PM(X|D1) =1094

PT (X) ∀X ∈ X . Since X ∩D1 and X ∩Dc
1 form a disjoint union of X , we have PM(X) = PM(X ∩1095

D1) + PM(X ∩Dc
1) = PM(X ∩D1) + 0 = PM(X ∩D1). We also have PM(X|D1) =

PM(X∩D1)
PM(D1)

1096

from Bayes’s theorem, meaning that PM(X|D1) = PM(X ∩ D1) = PM(X) (since PM(D1) = 1).1097

Meanwhile, from the negation statement (S1), we have PM(X|D1) = PT (X), thus PM(X) = PT (X)1098

for all X ∈ X , which contradicts to our Asm.-2.1. Therefore, our negation statement (S1) is false, leading1099

to Thm.-2.1 is true.1100

A.2 Proof of Thm.-2.21101

Proof of Thm.-2.2. We prove Thm.-2.2 by identifying a trivial text property function. However, for1102

suitable language or format text property functions, we hypothesize that the condition of M capturing the1103

language distribution must be satisfied. We assume that the demonstration string Df does not capture all1104

possible outcomes of GM in Y , which is often the case.1105

Recall that the demonstration string Df consists of demonstrations {(xi, yi)|i ∈ (1, k)} as defined in1106

§1. We consider a trivial reference-free evaluation function A : Y 7→ {0, 1} defined as:1107

A(y) =

{
0, if y ∈ {y1, y2, ..., yk}
1, otherwise

(2)1108

Since ∃x0 ∈ X such that GM(x0) = ŷ0 /∈ {y1, y2, ..., yk}, by the definition of A, we obtain A(ŷ0) = 1.1109

Meanwhile, for all (xi, yi) ∈ Df , we have A(yi) = 0. This shows that the trivial attribute obtained from1110

the function A is not transferred from the demonstrations to the testing output, verifying that M can not1111

fully learn the attribute A from Df .1112
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Methods CNN (3.0.0) IWSLT17 en-ja CommGen-Chall.

ChatGPT Zero-shot (ZS) 20.12±0.27 36.13±0.87 24.21±0.37

ChatGPT ZS w/ Mistral’s MG 21.41±0.62↑ 39.66±2.47↑ 29.95±23.66↑

ChatGPT Few-shot (FS) 14.51±0.80 31.93±1.88 22.08±0.63

ChatGPT FS w/ Mistral’s MG 13.96±11.50↓ 32.34±13.79↑ 33.34±13.56↑

Mistral Zero-shot (ZS) 19.23±0.34 13.12±1.39 10.12±0.02

Mistral w/ ChatGPT’s MG 19.67±0.71↑ 7.98±1.49↓ 6.29±1.06↓

Mistral Few-shot (FS) 17.56±0.63 12.69±1.82 3.89±0.17

Mistral FS w/ ChatGPT’s MG 19.00±7.82↑ 11.86±2.79↓ 3.61±0.38↓

Table 6: LongGuide can be transferable from weaker to stronger models.

B LongGuide’s Extra Preliminary Properties 1113

B.1 Understanding MG and OCG 1114

Metric guideline (MG) (Step 1-3). To understand better how models select metrics to address the 1115

PT problem, we provide the specific metrics selected by tasks in Appx.-Tab. 12 and plot Appx.-Fig. 6 1116

showing the frequency of metrics being selected. Among the 27 metrics, common linguistic metrics 1117

such as “Clarity” are selected frequently, highlighting their importance in capturing essential linguistic 1118

properties of answers for most of the tasks. In contrast, task-specific metrics like “Creativity” are 1119

less commonly selected, possibly because they have a lesser impact on multiple tasks. By examining 1120

the average score of selected metrics (Appx.-Fig. 7), we find that common linguistic metrics receive 1121

predominantly high scores, as expected. However, task-specific metrics like “Creativity” demonstrate 1122

diverse scores across tasks, indicating their varying importance and relevance. 1123

Additionally, we find that metrics within MG can conflict with each other. This underscores the 1124

importance of LongGuide’s Step 2 in weighting the metrics to avoid conflicts. For example, if MG consists 1125

of both “Conciseness” and “Informativeness”, a very concise summary can not be highly informative, and 1126

vice versa (see Appx.-Fig. 10 for an example). 1127

Output constraint guideline (OCG) (Step 4). For OCG, our ablation studies in Appx.-C.7 show that 1128

both the token and sentence constraints are useful for LLMs, with the sentence constraint being dominant. 1129

We hypothesize that LLMs can control #sentences better than #tokens generated. This can be partly 1130

observed in Appx.-Fig. 4 when we provide guidelines controlling #sentences and #tokens. 1131

MG and OCG are complementary and non-interchangeable. In most tasks, the MG and OCG 1132

complement each other rather than conflict. This is because the language metrics used to construct the 1133

MG primarily evaluate the quality and characteristics of responses rather than their structure aspects such 1134

as sentence and token count, which is the main focus of the OCG. Moreover, the MG and OCG are not 1135

interchangeable. One might question whether utilizing conciseness and brevity metrics can sufficiently 1136

alter the OCG or if the OCG can effectively encompass the MG guideline. Our answer is no. While the 1137

MG can steer LLMs towards brevity in responses, it lacks precise criteria for conciseness. Modern LLMs, 1138

often trained to generate verbose responses, may struggle to meet human standards about conciseness 1139

without explicit quantitative. In contrast, the OCG supplies quantitative metrics like bins and means, yet 1140

these statistics alone do not directly address linguistic qualities. Therefore, the MG and OCG complement 1141

each other by emphasizing different facets. We provide examples to illustrate our explanations (see 1142

Appx.-Fig. 8, Fig. 9). 1143

B.2 LongGuide Can Be Transferable From Weaker To Stronger Models 1144

We find that the guidelines learned by LongGuide are transferable from weaker to stronger models. A 1145

weaker model can learn the guidelines at a low cost, which can then be used to enhance the performance 1146

of stronger models. This is particularly advantageous because powerful models are often closed-source 1147

and expensive to query, whereas open-source models are weaker but free to use. 1148
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Methods CNN (3.0.0) IWSLT17 CommGen-Chall.

Zero-shot (ZS) 19.23±0.34 13.12±1.39 10.12±0.02

ZS w/ APO 19.53±2.08 14.45±1.84 11.21±2.02

ZS w/ adv-ICL 18.87±2.69 15.01±1.72 13.12±2.21

ZS w/ LongGuide 22.46±0.64 16.53±0.59 25.20±1.89

ZS w/ LongGuide w/ APO 22.76±1.04↑ 17.13±1.05↑ 27.01±1.01↑
ZS w/ LongGuide w/ adv-ICL 21.97±3.21↓ 16.90±2.15↑ 26.18±3.47↑

Table 7: Guidelines learned by LongGuide are further optimized by discrete prompt optimization frameworks bringing even
better performance, with Mistral.

Since the output constraint guideline (OCG) learned for each dataset is independent of the models and1149

consistent across models, it is transferable. Interestingly, we also find that the metric guideline (MG) is1150

transferable from weaker to stronger models on most benchmarks, though the reverse is not generally1151

true. We demonstrate this through experiments on CNN (3.0.0), IWSLT17 en-ja, and CommGen-Chall,1152

representing all the tasks. We used the MG generated by Mistral for experiments on ChatGPT and vice1153

versa under both zero-shot and few-shot settings. Tab. 6 shows the results. We observe that using ChatGPT1154

with Mistral’s MG generally improves performance, except when using few-shot on the CNN dataset. In1155

this exception, the few-shot demonstrations often cause the model to refuse to summarize, a problem that1156

the MG cannot entirely correct.1157

Hypothesizing for this transferability from weaker to stronger models, we argue that while guidelines1158

learned by LongGuide help models better capture the task distributions, guidelines learned by a stronger1159

model may not be beneficial for the weaker model, as the weaker model might not consistently interpret1160

them accurately. Conversely, with its superior text comprehension capabilities, the stronger model can1161

generalize tasks more effectively even when working with less expressive guidelines, as learned by the1162

weaker model.1163

B.3 LongGuide Can Be Compared & Combined With Automatic Prompt Optimization1164

Algorithms1165

The metric and output constraint guidelines (MG and OCG) learned by LongGuide may not be fully1166

optimized for LLMs. Hence, it’s intuitive to suggest that LLMs could achieve even greater performance1167

by adopting optimal guidelines. In this section, we illustrate that the guidelines learned by LongGuide1168

can be further refined through discrete prompt optimization algorithms. This capability is advantageous1169

for LongGuide, enabling its concurrent development and integration with automatic prompt optimization1170

algorithms.1171

Experimental setups. We employ two strong prompt optimizers, APO (Pryzant et al., 2023) and adv-ICL1172

(Do et al., 2024), in our experiments. Here is our methodology: we integrated the guidelines generated by1173

LongGuide into the prompt, including the input instruction and demonstrations. Subsequently, we applied1174

the prompt optimizers to refine the input instruction, demonstrations, and guidelines. Our experiments1175

were conducted using Mistral on datasets including CNN, IWSLT 2017 en-ja, and CommonGen-Challenge.1176

Based on our findings detailed in Tab. 3. Following our findings in Tab. 3, the guideline used for CNN1177

and IWSLT 2017 en-ja is OCG, while for CommonGen-Challenge it is MG-OCG.1178

Main results. Our results are detailed in Tab. 7. In summary, when further optimizing the OCG using1179

APO and adv-ICL for CNN and IWSLT 2017, we observed a slight improvement. This could be attributed1180

to the OCG already being concise and straightforward, making it easier for models to grasp. However,1181

for the CommonGen-Challenge dataset, which utilizes the MG-OCG guideline with more detail, APO1182

and adv-ICL have a greater amount of material to optimize within the prompts. This led to a substantial1183

improvement in performance compared to the other datasets.1184
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Methods CNN (3.0.0) IWSLT17 CommGen-Chall.

Zero-shot (ZS) 7.60±0.58 2.99±0.83 10.96±0.36

ZS w/ OCG 6.60±0.74↓ 3.70±0.29↑ 10.12±0.56↓
ZS w/ MG 9.04±1.02↑ 5.39±0.93↑ 8.55±0.74↓
ZS w/ MG-OCG 8.38±0.91↑ 4.59±0.97↑ 7.99±0.70↓

ZS w/ LongGuide 9.04±1.02↑ 5.39±0.93↑ 10.96±0.36

Few-shot (FS) 3.14±0.32 3.44±0.83 4.67±0.33

FS w/ OCG 2.24±0.21↓ 3.86±0.61↑ 8.11±0.63↑
FS w/ MG 3.24±0.26↑ 6.65±0.97↑ 10.71±0.80↑
FS w/ MG-OCG 2.99±0.29↓ 7.88±0.91↑ 9.39±0.89↑

FS w/ LongGuide 2.24±0.21↓ 7.88±0.91↑ 10.71±0.80↑

Table 8: Performance of Mistral-7B-v0.1 using LongGuide learned by Mistral-7B-Instruct-v0.2. We observe that LongGuide
improves more than half of the experiments, showing its potential effectiveness in enhancing even non-instruct models, especially
for the translation task.

B.4 LongGuide Can Improve Non-instruct Models 1185

Using guidelines learned by LongGuide, we add more instructions to models. Therefore, we aim to 1186

examine whether non-instruct models can benefit from these guidelines. Our final conclusion is yes, 1187

LongGuide has strong potential to enhance non-instruct models. 1188

Specifically, since non-instruct models might struggle to follow our instructions to generate the guide- 1189

lines §7, we utilize the guidelines learned by an instruct model instead. We run our experiments with 1190

Mistral-7B-v0.11(Jiang et al., 2023) using the guidelines learned by Mistral-7B-Instruct-v0.2. The results 1191

are provided in Tab. 8. We observe that LongGuide improves more than half of the experiments, showing 1192

its potential effectiveness in enhancing even non-instruct models, especially for the translation task. 1193

1https://huggingface.co/mistralai/Mistral-7B-v0.1
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Figure 3: Evaluation results of Mistral on 100 SAMSum samples using ChatGPT-judge (with SC) across 7 metrics. We
employed 5 demos having a score of 5 on metrics (1)-(6) and 17 tokens (mode of #tokens) on (7).

C Extra Results & Discussion1194

C.1 Empirical Illustrations of Thm.-2.21195

Here, we demonstrate the empirical evidence of Thm.-2.2 on the dialogue summarization task.1196

Metrics. We follow Fu et al. (2023) to consider 6 metrics measuring the linguistic properties of1197

the demonstrative answers and model responses for summarization: (1) Semantic Coverage (COV); (2)1198

Factuality (FAC); (3) Consistency (CON); (4) Informativeness (INF); (5) Coherence (COH); (6) Relevance1199

(REL). We use ChatGPT (OpenAI, 2022), an effective NLG evaluator (Wang et al., 2023a), to score these1200

metrics on a scale of 1− 5. Since ChatGPT’s evaluation can be unstable, we use Self-consistency (SC)1201

(Wang et al., 2022a) with 3 sampling paths to obtain the score. We are also interested in measuring (7)1202

Number of Tokens (NT) and (8) Number of Sentences (NS) in each response (we use NLTK lib.) since1203

the lengthiness of the answers can significantly affect the models’ performance (Fan et al., 2018a).1204

Methodology. Our main idea is that, for a given metric, we select the demonstrations having the same1205

score and evaluate whether the generated responses maintain that score. We randomly select 100 samples1206

from SAMSum (Gliwa et al., 2019) validation set for our evaluation. Due to the limited window size,1207

we use {3, 5, 10} samples from SAMSum training set as demonstrations. On each metric (1)-(6), all1208

demonstrations selected have a perfect score of 5. For measurement (7) and (8), we select demonstrations1209

having 17 output tokens for (7) NT and 2 sentences for (8) NS. We use Mistral-7B-it-v.02 (Jiang et al.,1210

2023), one of the strongest open-source LLMs as the baseline.1211

We further add a simple guideline for each metric “The output must be highly {property}.”, and we are1212

curious whether a simple guideline, which strongly captures the distribution of the demonstrative property1213

that we are interested in measuring, could help in maintaining that property better.1214

Main findings. From the results in Fig. 3, we observe several interesting findings. Firstly, on metrics1215

(1)-(6), the model surprisingly maintains a perfect 5 score for every answer on none of them. Secondly,1216

despite all demonstrations having 17 output tokens (the right-most chart), less than 5% the answers achieve1217

this property. Fig. 4 also shows that, by adding a simple guideline, the percentages of answers maintaining1218

the metrics are mostly improved and the variance of the number of output tokens is significantly reduced,1219

verifying that adding guidelines is indeed helpful for models to maintain the properties better. Finally,1220

more demonstrations do not significantly help, as different numbers of demonstrations yield similar trends1221

across all metrics. As illustrated in Fig. 4, in the (1) COV case, a 5-demo setup improves performance,1222

but increasing to a 10-demo setup drops performance to even below 3-demo case. In (2) FAC, (4) INF,1223

and (6) REL, the 3-demo setup yields the best performance among the three cases. The 10-demo setup1224

only shows a slight but insignificant improvement in (2) FAC and (5) COH. In summary, providing1225

more demonstrations do not make significant differences. This indicates the necessity of enhancing the1226

instructions rather than simply increasing the number of demonstrations, empirically proving Thm.-2.2.1227

C.2 LongGuide: Collected Metrics In Step 11228

Tab. 9 presents our 27 metrics collected for LongGuide’s Step 1. We first construct our pool of linguistic1229

evaluation metrics S widely used for text generation tasks. S consists of 27 distinct metrics from 4 main1230

sources (see Tab. 9 for details). Specifically, we collect 3 metrics from ABC’s of Communication (Wagner,1231
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Figure 4: Evaluation results of Mistral on 100 SAMSum samples using ChatGPT-judge (with SC) across 8 metrics. We
employed 3, 5, and 10 demos having a score of 5 on metrics (1)-(6) and 17 tokens (mode of #tokens) on (7) and 2 sentences
(mode of #sentences) on (8). The result shows that different numbers of demonstrations would follow the same trends in results.

Source Metrics #

The ABC’s of Communication (Wagner, 1963) Accuracy, Brevity, Clarity 3

BARTScore (Yuan et al., 2021) Relevance, Coherence 2

GPTScore (Fu et al., 2023) Semantic Coverage, Factuality, Fluency, Informativeness, 10
Consistency, Engagement, Specificity, Correctness, Understandability, Diversity

We propose Completeness, Conciseness, Neutrality, Naturalness, Readability, Creativity, 12
Rationalness, Truthfulness, Respect of Chronology, Non-repetitiveness, Indicativeness, Resolution

Total 27 27

Table 9: Evaluation metrics collected.

1963) evaluating clear communication. We then follow previous works (Yuan et al., 2021; Fu et al., 2023) 1232

to select 12 more metrics evaluating the dialogue response generation, text summarization, data-to-text 1233

generation, and machine translation. Finally, we propose 12 additional metrics found to be crucial for 1234

strong performance. We do not collect the metrics’ definitions as they may differ across tasks. 1235

C.3 Tab. 1: A Report Of JS Divergence Across All Metrics For SAMSum 1236

Fig. 5 presents density plots of MG and OCG metrics selected by Mistral under the few-shot (FS) setting, 1237

measured on ground-truth, FS, and FS w/ LongGuide answers. For Jensen–Shannon divergence, the lower 1238

is better. 1239

C.4 Tab. 2: CD-MG Selection Results of LongGuide 1240

The numerical MG-OCG selection results on Dtrain are presented in Tab. 10, as also noted in Tab. 3. 1241

Overall, the performance of LongGuide on Dtrain closely mirrors its performance on the testing tasks in 1242

Tab. 3. The only discrepancy is for the IWSLT17 en-ja task with ChatGPT using few-shot prompting: the 1243

optimal guideline combination on Dtrain is MG-OCG (see Tab. 10), whereas the best on the testing set is 1244

MG (see Tab. 3). 1245

C.5 LongGuide Can Generalize From Demonstrations: Numerical Results 1246

Tab. 11 presents the numerical results of Tab. 4 in §5.1. Even with only 3-5 exemplars as demonstrations, 1247

LongGuide effectively derives MG and OCG guidelines, benefiting the model. In this case, Dtrain is the 1248

set of demonstrations, and the rest of LongGuide’s steps remain unchanged. 1249
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Summarization Simplification Translation Dialogue Generation Table2Text

Models Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Synthetic Persona CommGen-Chall.

#shots (random) 3 3 5 3 5 5 5

M
is

tr
al

-7
B

-i
t

Zero-shot (ZS) 21.25 18.96 8.88 36.21 14.05 12.93 9.12
ZS w/ OCG 27.43 21.92 14.22 31.19 16.93 12.99 20.67
ZS w/ MG 27.68 18.02 10.26 36.74 11.06 13.74 19.98
ZS w/ MG-OCG 28.34 21.63 13.90 35.12 15.49 14.14 20.87
MG-OCG selection MG-OCG OCG OCG MG OCG MG-OCG MG-OCG

Few-shot (FS) 25.55 17.30 9.85 39.29 13.52 6.19 4.01
FS w/ OCG 27.31 16.45 12.47 29.85 17.58 6.45 20.50
FS w/ MG 27.88 18.47 12.01 41.07 14.09 6.47 11.16
FS w/ MG-OCG 30.01 19.87 14.89 39.40 17.02 8.06 5.18
MG-OCG selection MG-OCG MG-OCG MG-OCG MG OCG MG-OCG OCG

C
ha

tG
PT

Zero-shot (ZS) 24.21 19.54 10.78 45.11 36.22 19.68 24.23
ZS w/ OCG 28.81 21.88 20.66 37.58 38.45 23.09 35.04
ZS w/ MG 25.12 20.02 10.42 45.09 37.72 19.81 18.50
ZS w/ MG-OCG 29.79 21.99 19.91 42.72 41.50 20.82 30.09
MG-OCG selection MG-OCG MG-OCG OCG ZS MG-OCG MG-OCG OCG

Few-shot (FS) 27.44 13.77 12.11 33.30 28.76 17.12 24.12
FS w/ OCG 29.98 17.55 19.26 16.22 35.73 21.50 36.51
FS w/ MG 28.89 14.03 12.75 19.14 36.09 19.12 21.99
FS w/ MG-OCG 30.65 13.12 18.64 37.24 36.22 18.99 38.33
MG-OCG selection MG-OCG OCG OCG MG-OCG MG-OCG OCG MG-OCG

Table 10: MG-OCG selection results on Dtrain set for the main experiments in Tab. 2.

Methods CNN (3.0.0) IWSLT17 en-ja CommGen-Chall.

Zero-shot (ZS) 19.23±0.34 13.12±1.39 10.12±0.02

ZS w/ CD trained on Dtrain 22.46±0.64 16.53±0.59 24.16±0.11

ZS w/ MG trained on Dtrain 18.35±0.60 8.71±0.53 21.54±7.50

ZS w/ CD-MG trained on Dtrain 22.05±0.84 15.76±1.85 25.20±1.89

ZS w/ LongGuide trained on Dtrain 22.46±0.64 16.53±0.59 25.20±1.89

ZS w/ CD trained on Demos 20.46±0.10 17.27±1.83 23.97±0.47

ZS w/ MG trained on Demos 18.33±0.25 8.63±1.08 18.98±0.52

ZS w/ CD-MG trained on Demos 19.16±0.37 14.00±3.42 24.46±2.43

ZS w/ LongGuide trained on Demos 20.46±0.10 14.00±2.42 24.46±2.43

Few-shot (FS) 17.56±0.63 12.69±1.82 3.98±0.17

FS w/ CD trained on Dtrain 19.17±1.27 19.86±2.93 27.23±0.58

FS w/ MG trained on Dtrain 17.18±2.01 12.82±0.15 21.79±5.20

FS w/ CD-MG trained on Dtrain 21.18±1.07 18.70±0.73 25.43±5.28

FS w/ LongGuide trained on Dtrain 21.18±1.07 19.86±2.93 27.23±0.58

FS w/ CD trained on Demos 16.88±1.44 19.40±1.39 28.28±0.69

FS w/ MG trained on Demos 15.59±0.59 12.07±2.68 23.99±4.66

FS w/ MG-CD trained on Demos 19.89±0.39 17.78±3.23 27.41±0.87

FS w/ LongGuide trained on Demos 19.89±0.39 17.78±18.43 23.99±4.66

Table 11: LongGuide learns the guidelines from only demonstrations with Mistral.
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Figure 5: Density plots of MG and OCG metrics selected by Mistral under the few-shot (FS) setting, measured on ground-truth,
FS, and FS w/ LongGuide answers. For Jensen–Shannon divergence, lower is better.

Task Model Selected Metrics

SAMSum Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Relevance’, ’Understandability’]
ChatGPT [’Accuracy’, ’Brevity’, ’Clarity’, ’Relevance’, ’Understandability’]

CNN Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Engagement’, ’Readability’, ’Relevance’, ’Truthfulness’, ’Understandability’]
ChatGPT [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Conciseness’, ’Engagement’, ’Neutrality’, ’Readability’, ’Relevance’, ’Specificity’]

XLSum Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Consistency’, ’Correctness’, ’Diversity’, ’Engagement’, ’Factuality’, ’Fluency’, ’Indicative’,
’Informativeness’, ’Neutrality’, ’Non-repetitiveness’, ’Relevance’, ’Resolution’, ’Respect of Chronology’, ’Semantic Coverage’, ’Specificity’, ’Understandability’]

ChatGPT [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Consistency’, ’Correctness’, ’Diversity’, ’Engagement’, ’Factuality’, ’Fluency’, ’Indicative’,
’Informativeness’, ’Neutrality’, ’Non-repetitiveness’, ’Rationalness’, ’Relevance’, ’Resolution’, ’Respect of Chronology’, ’Semantic Coverage’, ’Specificity’, ’Understandability’]

SWiPE Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Relevance’, ’Understandability’]
ChatGPT [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Conciseness’, ’Consistency’, ’Correctness’, ’Readability’, ’Understandability’]

IWSLT17 en-ja Mistral [’Accuracy’, ’Clarity’, ’Coherence’, ’Consistency’, ’Correctness’, ’Factuality’, ’Fluency’, ’Relevance’, ’Understandability’]
ChatGPT [’Accuracy’, ’Clarity’, ’Coherence’, ’Consistency’, ’Correctness’, ’Factuality’, ’Fluency’, ’Relevance’, ’Understandability’]

Synthetic Persona Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Consistency’, ’Correctness’, ’Diversity’, ’Engagement’, ’Factuality’, ’Fluency’, ’Indicative’,
’Informativeness’, ’Neutrality’, ’Non-repetitiveness’, ’Relevance’, ’Resolution’, ’Respect of Chronology’, ’Semantic Coverage’, ’Specificity’, ’Understandability’]

ChatGPT [’Accuracy’, ’Clarity’, ’Coherence’, ’Consistency’, ’Correctness’, ’Diversity’, ’Engagement’, ’Fluency’, ’Indicative’, ’Informativeness’,
’Neutrality’, ’Non-repetitiveness’, ’Relevance’, ’Resolution’, ’Respect of Chronology’, ’Specificity’, ’Understandability’]

CommGen-Chall. Mistral [’Coherence’, ’Conciseness’, ’Fluency’, ’Relevance’, ’Understandability’]
ChatGPT [’Clarity’, ’Coherence’, ’Completeness’, ’Conciseness’, ’Consistency’, ’Creativity’, ’Engagement’, ’Fluency’, ’Naturalness’, ’Relevance’]

Table 12: Selected metrics by tasks by Mistral and ChatGPT.

C.6 Understanding MG and OCG: Which Metrics Were Selected The Most For MG? 1250

To understand better how models select metrics, we provide the specific metrics selected by tasks in 1251

Appx.-Tab. 12. Additionally, we plot Appx.-Fig. 6 showing the frequency distribution of metrics selected 1252

over 7 tasks. Among the 27 metrics collected in LongGuide’s Step 1, it is evident that “Clarity” and 1253

“Relevance” are consistently prioritized highlighting their important roles in capturing linguistic properties 1254

of answers. Conversely, metrics like “Naturalness” and “Creativity” are less frequently selected, likely 1255

due to their lesser impact on task performance. Examining metric scores (Appx.-Fig. 7), we find that 1256

common linguistic metrics receive predominantly high scores, as expected. However, task-specific metrics 1257

such as “Informativeness” exhibit varied scores across tasks, reflecting their nuanced relevance. 1258

C.7 Ablation Study: Without OCG’s Token Or Sentence Information 1259

Since OCG’s token information and sentence information are the two types of information emphasized in 1260

OCG, we further investigate the importance of each type of information. The empirical experiments are 1261

conducted with Mistral (Jiang et al., 2023) on CNN, IWSLT-2017 en-ja, and CommonGen-Challenge. We 1262

present the results in Tab. 13. We observe that skipping OCG’s token information or sentence information 1263

would hurt the performance. Specifically, the results drop more significantly when sentence information is 1264

omitted, and even fall below the Zero-shot score in CNN Few-shot with LongGuide and IWSLT17 en-ja 1265

Few-shot with LongGuide. The performance drops significantly in the CommonGen-Challenge Few-shot 1266

case, with a fall of 55.20%. Due to the volatility of the token count in a sentence, it is hard to estimate the 1267

other information with only one type of information given. Therefore, both types of information should 1268

be provided to better capture the text distribution. 1269
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(a) Frequency of metrics selected by Mistral across datasets.

(b) Frequency of metrics selected by ChatGPT across datasets.

Figure 6: Frequency of metrics selected as the metric guideline.

(a) Average scores of metrics by Mistral across datasets.

(b) Average scores of metrics by ChatGPT across datasets.

Figure 7: Average scores of metrics as the metric guideline.
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Methods CNN (3.0.0) IWSLT17 en-ja CommGen-Chall.

Zero-shot (ZS) 19.23±0.34 13.12±1.39 10.12±0.02

ZS w/ LongGuide 22.46±0.64 16.53±0.59 25.20±1.89

ZS w/ LongGuide w/o Token Constraint 21.54±0.52↓ 14.09±1.07↓ 21.49±2.15↓
ZS w/ LongGuide w/o Sentence Constraint 20.92±0.23↓ 10.02±4.17↓ 13.32±0.73↓

Few-shot (FS) 17.56±0.63 12.69±1.82 3.98±0.17

FS w/ LongGuide 21.18±1.07 19.86±2.93 27.23±0.58

FS w/ LongGuide w/o Token Constraint 20.30±1.46↓ 19.75±1.47↓ 20.30±1.46↓
FS w/ LongGuide w/o Sentence Constraint 15.89±2.26↓ 12.57±2.99↓ 12.20±3.91↓

Table 13: Mistral results when omitting OCG’s Token or Sentence Information, showing the importance of OCG’s Token and
Sentence information

C.8 Generalizability & Customization of LongGuide 1270

LongGuide can be generalized in many ways. For example, one can always customize the metrics selected 1271

by MG and extend more constraints for OCG to suit downstream tasks. For instance, in summarization 1272

tasks, we can limit the pool of metrics selected by MG to those commonly used for evaluating summaries. 1273

Additionally, we can introduce more constraints for OCG, such as specifying keywords, the number of 1274

verbs, nouns, and so on (Fan et al., 2018a; Lakew et al., 2019; Martin et al., 2020). These customizations 1275

can make LongGuide more adept at handling downstream tasks. Additionally, the metric guideline (MG) 1276

and output constraint guideline (OCG) learned by LongGuide might not be optimal for LLMs, particularly 1277

the MG as discussed in Appx.-B.3. Further optimization methods for these guidelines can be implemented 1278

to better align them with the capabilities of specific LLMs, enhancing their performance. 1279
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D Implementation Details1280

Task benchmark preprocessing. We chose the newest versions of the above datasets. For each dataset1281

except Synthetic-Persona-Chat, we sample 200 samples from the test set for our evaluation, following1282

Bai et al. (2023), and 50 random samples from the train set for Dtrain. For Synthetic-Persona-Chat, we1283

randomly sample 25 dialogues from its test set for our evaluation (678 utterances in total) and 3 dialogues1284

from its train set where 50 random utterances are selected for Dtrain.1285

Prompting baselines’ hyperparameters. We present the implementation and hyperparameters’ details1286

for our proposed LongGuide as well as prompting baselines below.1287

• LongGuide. We set the batch size is 5 and number of iterations is also 5 for LongGuide’s step 1. For1288

steps 2, 3, and 4, no hyperparameter involves. For the evaluations by Self-consistency (Wang et al.,1289

2022a), we sample 3 results.1290

• APO (Pryzant et al., 2023). We set the number of optimization iterations is 5. We use 1 sample1291

with the lowest ROUGE-L score as the error sample for generating gradients, following (Do et al.,1292

2024). At each iteration, 5 textual gradients are generated, and 5 new prompts are sampled from1293

textual gradients. Finally, 1 paraphrase of the input prompt is sampled at each optimization iteration.1294

• adv-ICL (Do et al., 2024). We use 3 iterations with a batch size of 5 as suggested by (Do et al.,1295

2024). At each iteration, the number of new prompts sampled is 5.1296

Models’ hyperparameters. The models’ hyperparameters are presented below.1297

• ChatGPT. We use gpt-3.5-turbo-1106 for our experiments. We use a window size of 1500 and1298

Nucleus Sampling (Holtzman et al., 2019) as our decoding strategy with a p value of 1. We use the1299

system role as “You are a helpful assistant!”.1300

• Mistral-7B-it-v0.2. We use a window size of 1500, and Sampling decoding strategy (Holtzman1301

et al., 2019) (do_sampling = True). We load the model from Huggingface Transformers library1302

(Wolf et al., 2020) with the model id is “mistralai/Mistral-7B-Instruct-v0.2”. We do not set any1303

explicit system role.1304
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Summarization Simplification Translation Dialogue Generation Table2Text

Models Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Synthetic Persona CommGen-Chall.

#shots (random) 3 3 5 3 5 5 5

M
is

tr
al #tokens consumed 642 1110 811 1020 915 855 939

US$ consumed 0 0 0 0 0 0 0
C

ha
tG

PT

#tokens consumed 1866 7683 4863 2380 1370 1344 1272
US$ consumed insignificant insignificant insignificant insignificant insignificant insignificant insignificant

Table 14: Total number of tokens consumed and US$ consumed for models to learn the metric guideline (MG) and output
constraint guideline (OCG).

E Prompt Templates & Analysis 1305

Prompting templates for LongGuide. Let Q,C, I,Df be the input query, context, instruction, and 1306

demonstration token sequence respectively (§1, §2), and Gbest is the learned guideline(s), the prompt for 1307

M is formatted: “{I}\n{Df}\n{C}\n{Q}\n{Gbest}”. 1308

Prompting costs. Tab. 14 presents the total number of tokens consumed for models to learn the metric 1309

guidelines and output constraint guideline (OCG) for both models with the hyperparameters of LongGuide 1310

specified in Appx.-D. We observe that the number of tokens needed to learn the guidelines is insignificant, 1311

demonstrating that LongGuide is a cost-effective solution and potentially beneficial for a wide range of 1312

applications. 1313

Prompt for step 1, metric selection. Below is the prompt we use for step 1 selecting metrics for a given 1314

task. 1315

Select top-5 metrics that are the most important from the list below to evaluate
a special way of {TASK_NAME}. {str(PRE_DEFINED_ASSESSMEN_METRICS)}.
Here are some demonstrations of the task {TASK_NAME}: {DEMONSTRATION_STRING}.
Output your list of metrics in Python list format without any explanation:
[...].

1316

Prompt for step 2, metric score collection. Below is the prompt we use for step 2 for evaluating 1317

selected metrics on the task. 1318

You are given an input and an output of a {TASK_NAME} task.
Input: {input}
Output: {output}
Your task is to evaluate the following criteria on a scale of 1-5, with 1 being
worst and 5 being best.
{EVALUATION_FORMAT}
The definitions of the criteria are: {METRICS_DEFINITIONS}
Your output must be in Python dictionary format without explanation.

1319

Prompt for step 2, collecting METRICS_DEFINITIONS. Below is the prompt we use for step 2 1320

collecting METRICS_DEFINITIONS for step 2. 1321

Define the list of following metrics in details as the quality of the translation
expected for the {TASK_NAME} task.
{metrics}
Give me the list in bullet points.

1322

25



Prompt for step 3, generating metric guideline (MG). Below is the prompt we use for step 3,1323

generating the metric guideline (MG).1324

Now you are given the following metrics: {metrics_string} for the {TASK_NAME}
task.
Based on these scores on a scale of 5 for the quality of the summary:
{str(metrics_collected_scores)}, define the expected quality of the translation
for each metric in natural language. Give me the list in bullet points.

1325

F Examples1326
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Input (Dialogue)
Rob: Are we meeting up 2morrow?
Eve: How about Sunday
Eve: stores are open so we can go then
Rob: Ok I just don't know what time they close
Eve: we have ot go in the moring 
Eve: I have some stuff to do around 3
Rob: ok

Ground-truth Answer (Summary)
Rob and Eve will meet on Sunday morning to go to the shops. Eve has something to do at about 3.

Zero-shot (ROUGE-L = 30.77)
Output: Rob and Eve discuss meeting up, with Eve suggesting they go on Sunday since stores are open.
Rob agrees but is concerned about store closing times. Eve suggests going in the morning as she has plans
in the afternoon. Rob agrees to the plan.

Zero-shot + OCG  (ROUGE-L = 36.73)
Guidelines: The summary must have from 1 to 4 sentences and from 5 to 51 words with an average of 22
words and 1 sentences.
Output: Rob and Eve plan to meet on Sunday when stores are open, but Rob is unsure about the closing
time, so they decide to go in the morning.

Zero-shot + MG  (ROUGE-L = 36.07)
Guidelines: The summary effectively captures the main points while being highly concise...
Output: Rob and Eve discuss meeting up, considering Sunday due to stores being open. They plan to go in
the morning as Eve has plans later. Rob expresses un-certainty about store closing times, to which Eve
suggests going in the morning.

Zero-shot + MG-OCG  (ROUGE-L = 44.00)
Guidelines: The summary must have from 1 to 4 sentences and from 5 to 51 words with an average of 22
words and 1 sentences. The summary effectively captures the main points while being highly concise...
Output: Rob and Eve plan to meet on Sunday to take advantage of store hours; they aim to go in the
morning, allowing Eve time for personal activities around 3.

Figure 8: A sample from SAMSum dataset where MG and OCG supplement each other and are not interchangeable to increase
the performance in final answer.
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Ground truth answer (s_content)
Dr. Yehuda Nir (31 March 1930 – 19 July 2014) was an Polish-born Israeli-American psychiatrist. He was known
for surviving the holocaust. Nir served as a chief of child psychiatry at Memorial Sloan-Kettering Cancer Center
from 1979 to 1986. He was born in Lvov, Poland. Nir died in Manhattan, New York, aged 84. (53 tokens)

Zero-shot answer (ROUGE-L = 21.43)
Yehuda Nir, born as Juliusz Gruenfeld in Lvov, Poland (now Ukraine) in 1930, survived the Holocaust by posing as
a Roman Catholic and learning Latin. He later changed his name to "Nir" as a reference to plowed fields in
Hebrew. Nir became a psychiatrist, focusing on treating post-traumatic stress disorder and severely ill children. He
moved to the U.S. in 1959 to finish medical residencies in New York City and Philadelphia. Nir served as the head
of child psychiatry at Memorial Sloan-Kettering Cancer Center from 1979 to 1986.
Nir published a memoir of his Holocaust experiences, titled "The Lost Childhood," in 1989. The book has been
included in high school curriculums in the U.S. since then, and a second edition was published by Scholastic Press
in 2002. In addition, he authored four self-help books about relationships, such as "Not Quite Paradise: Making
Marriage Work" and "Loving Men for All the Right Reasons."
Nir passed away on July 19, 2014, at the age of 84, in his Manhattan home. His funeral took place at Riverside
Memorial Chapel on the Upper West Side, while he was buried on the Mount of Olives in Jerusalem. (192 tokens)

Only OCG (ROUGE-L = 15.79)
Yehuda Nir, born Juliusz Gruenfeld in Poland in 1930, survived the Holocaust
by posing as a Roman Catholic and learned Latin. He later became a
psychiatrist, focusing on PTSD and severely ill children in the US. Nir
published "The Lost Childhood" about his experiences and self-help books on
relationships. He died in 2014, with a funeral in New York and burial in
Jerusalem.
Born in Lvov, Poland, in 1930 as Juliusz Gruenfeld, Yehuda Nir posed as a
Catholic during the Holocaust and used his knowledge of Latin to hide. After
immigration to the US in 1959, he specialized in child psychiatry and PTSD
treatment.
Nir published his memoir, "The Lost Childhood," in 1989 and it is now used in
US high schools. Additionally, he wrote four self-help books, including "Not
Quite Paradise" and "Loving Men for All the Right Reasons."
Yehuda Nir, aged 84, passed away in Manhattan, New York, in 2014. His
funeral was held at Riverside Memorial Chapel and he was buried on the
Mount of Olives in Jerusalem. (171 tokens)

Only MG (ROUGE-L = 16.09)
 Yehuda Nir, born Juliusz Gruenfeld in Poland in 1930, changed his name after
World War II to the Hebrew term "Nir" meaning "plowed fields." Escaping Nazi
persecution as a Roman Catholic with learned Latin, Nir became a psychiatrist
specializing in PTSD and severely ill children. He immigrated to the US in
1959 for medical residencies in New York and Philadelphia.
Nir published a memoir of his Holocaust experiences, "The Lost Childhood," in
1989 and a second edition in 2002. Now used in US high schools, this memoir
highlights his harrowing journey. Additionally, he wrote self-help books on
relationships, including "Not Quite Paradise" and "Loving Men." Nir died at 84
in Manhattan in 2014 and was interred in Jerusalem. (118 tokens)

LongGuide (ROUGE-L = 27.82)
Dr. Yehuda Nir, born Juliusz Gruenfeld in 1930 in Lvov, Poland, survived the Holocaust by posing as a Catholic. He
moved to the U.S. in 1959, becoming a psychiatrist specializing in PTSD and child psychiatry. His memoir, The
Lost Childhood, published in 1989, is used in high schools. Nir died in Manhattan in 2014, with his burial in
Jerusalem.  (59 tokens)

Output constraint guideline
(OCG)

The summary must have from
1 to 17 sentences and from
16 to 426 words with an
average of 80 words and 4
sentences.

Metric guideline (MG)

- The simplified text retains
the original meaning and
information fully and without
error.
- The simplified text is
succinct and shorter than the
original text, but not
excessively so as to lose
essential meaning or
clarity.....

Input (r_content)
Yehuda Nir (March 31, 1930 – July 19, 2014) was a Polish-born American Holocaust survivor, psychiatrist and
author of The Lost Childhood. Nir posed as a Roman Catholic and learned Latin to escape Nazi persecution in
Poland during World War II. Nir's ordeal led him to a career as a psychiatrist, specializing in the treatment of post-
traumatic stress disorder and severely ill children. He immigrated to the United in 1959 to complete medical
residencies in New York City and Philadelphia. He served as the chief of child psychiatry of Memorial Sloan-
Kettering Cancer Center from 1979 until 1986.
Nir was born Juliusz Gruenfeld in Lvov, Poland, (present-day Ukraine) on March 31, 1930. He later changed his
name to "Nir" after World War II since "Gruenfeld" has German origins. Nir means plowed fields in Hebrew.
Nir released a memoir of his experience during the Holocaust, "The Lost Childhood" in 1989. A second edition was
reprinted by Scholastic Press in 2002. The Lost Childhood is now used as part of the high school curriculum
throughout the United States. He also published four self-help books focusing on relationships, including "Not
Quite Paradise: Making Marriage Work" and "Loving Men for All the Right Reasons."
Yehuda Nir died at his home in Manhattan, New York City, on July 19, 2014, at the age of 84. His funeral was held
at Riverside Memorial Chapel on the Upper West Side with burial on the Mount of Olives in Jerusalem.

Figure 9: An example of SWiPE (Laban et al., 2023) where the record contains fewer tokens than the expected average. This
reduces the effectiveness of OCG and MG individually, but their combination could enhance performance.
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Ground truth
 (Commonsense description)
The lady takes the wash out of

the washer and hangs them
out the buildings window to dry.

Metric guideline
scores

Consiseness: 4
Informativeness: 5

...

Answer

InformativenessConciseness

Ground truth
(Commonsense description)

So there I am at the party,
standing on the second floor

looking at John, so I hit the ball
against his face, then I turn

around and pretend it isn't me
and take a leap of faith that
John won't suspect of me.

Metric guideline
scores

Consiseness: 5
Informativeness: 3

...

Answer
The ball was hit, and then it was taken by the player's turn.

Conciseness Informativeness

Input (Concepts)
['ball', 'hit', 'take', 'turn']

Input (Concepts)
['building', 'hang', 'wash', 

'washer', 'window']

When it comes to maintaining a clean building, having a hang
washer can be incredibly useful. This tool makes it easier to
wash and clean windows, particularly in high-rise structures
where traditional methods may not be feasible. The hang
washer allows for efficient cleaning and maintenance,
ensuring that the windows are kept spotless and the building
maintains a pristine appearance. By using a hang washer,
building maintenance can be both effective and safe,
providing a reliable solution for keeping windows clean and
ensuring the overall upkeep of the structure.

Figure 10: A CommonGen-Challenge example (Lin et al., 2020), where output with high Conciseness score could have low
Informativeness score and vice versa
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Zero-shot answer (ROUGE-L = 16.22)
George attempts to make arrangements to meet Donna to discuss a personal matter, but she is skeptical
and makes a joke about the topic being AIDS. George finds her humor inappropriate and denies it. Donna
presses for information on the discussion topic, and George suggests they meet at his place that night since
a coffee shop may not be an appropriate setting.

LongGuide Without Step 2 (ROUGE-L = 17.24)
George asked Donna to discuss a delicate matter with him, initially
suggesting a coffee shop. However, Donna pointed out that a
coffee shop might not be the best place for such a conversation,
leading George to reconsider and propose coming to his place that
night instead.

LongGuide (ROUGE-L = 21.62)
George proposed discussing a private matter with Donna,
suggesting a coffee shop but later acknowledging its unsuitability;
he then invited her to his place instead.

Metric guideline scores w/ step 2
Accuracy: 5, Brevity: 5, Clarity: 4, 

Correctness: 5, Relevance: 5, 
Understandability: 5,
Informativeness: 4

Metric guideline scores w/o step 2
Accuracy: 5, Brevity: 5, Clarity: 5, 

Correctness: 5, Relevance: 5, 
Understandability:

5, Informativeness: 5

Input (Dialogue)
George: Hi Donna. I've been trying to catch you.
Donna: What about?
George: A rather delicate matter.
Donna: Did you catch AIDS?
George: Very funny!
Donna: It is, isn't it?
George: I don't think so.
Donna: Too bad. So what do you want?
George: Could we meet and discuss it somewhere?
Donna: Like where?
George: Like in a coffee shop or somewhere.
Donna: You sure a coffee shop is better to discuss delicate matters.
George: Come to think of it, you are right. It's not.
Donna: See? So what's up?
George: Couldn't you come to my place tonight?

Ground truth answer (Summary)
Donna will pay George a visit tonight to discuss a personal matter.

Figure 11: A SAMSum example, where skipping step 2 worsens the performance due to lack of clarity in metrics
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