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Abstract

Formally verifying properties of software code has been a highly desirable task, especially with
the emergence of LLM-generated code. In the same vein, they provide an interesting avenue for
the exploration of formal verification and mechanistic interpretability. Since the introduction of
code-specific models, despite their successes in generating code in Lean4 and Isabelle, the task
of generalized theorem proving still remains far from being fully solved and will be a benchmark
for reasoning capability in LLMs. In this work, we introduce a framework that generates whole
proofs in a formal language to be used within systems that utilize the power of built-in tactics
and off-the-shelf automated theorem provers. Our framework includes 3 components: generating
natural language statements of the code to be verified, an LLM that generates formal proofs
for the given statement, and a module employing heuristics for building the final proof. To
train the LLM, we employ a 2-stage fine-tuning process, where we first use SFT-based training
to enable the model to generate syntactically correct Isabelle code and then RL-based training
that encourages the model to generate proofs verified by a theorem prover. We validate our
framework using the miniF2F-test benchmark and the Isabelle proof assistant and design a use
case to verify the correctness of the AWS S3 bucket access policy code. We also curate a dataset
based on the FVELER dataset for future training tasks1.

1. Introduction

Recent advances in language models has revolutionized the approach to mathematical reasoning
in artificial intelligence. Language models, and in particular large language models (LLMs), have
made significant advances in the field of general theorem proving (Guo et al., 2025; Azerbayev
et al., 2023). Consequently, formal theorem proving using large language models has recently
garnered renewed attention. Formal theorem proving lies at the intersection of mathematics
and computer science, where mathematical statements modeling the interaction of computer
systems are derived and translated into a formal language which is used to prove the correctness
of programs. While formal theorem proving is effective at producing high quality code that pro-
vides correctness (Bibel, 2013) it is often a laborious process and requires an intimate level of
domain expertise in order to correctly model the computer program into a mathematical state-
ment. Moreover, the costs associated with manual verification can be prohibitively expensive
and potentially yield unwieldy proofs which are far more complex than the code being verified.

There have been a number of approaches leveraging machine learning in automated the-
orem proving which focus on tasks such as premise selection (Irving et al., 2016) and proof
search (Loos et al., 2017). More recently, with advancements in LLMs’ mathematical reasoning
abilities (Azerbayev et al., 2023; Shao et al., 2024), there have been focused efforts on using
LLMs for automated proof synthesis. Two main paradigms towards automated theorem proving
have emerged: one that generates the whole proof and the other that generates only the next
proof step. However, both systems suffer from several shortcomings. Whole proof generators

1. The code, dataset and training scripts are available at: https://github.com/kings-crown/ProofSeek
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are incapable of utilizing previously proved lemmas. On the other hand, proof step generators
are not as scalable during training and inference (Xin et al., 2024).

While there are a number of studies that attempt to address the shortcoming of each of
these paradigms (Wang et al., 2023; Zheng et al., 2023; Dong et al., 2024), they all concentrate
on silos of mathematical processes and build systems to perform better on benchmarks. They
do not look at systems built for purposes beyond the mathematical community.

In this paper, we introduce a framework for generalized theorem proving to bridge the gap
left by existing neural theorem proving approaches which mainly focus on achieving high proof
success rate on standardized benchmarks. Our framework consists of three core modules: the
first generates natural language statements of the code, policy, or statement to be verified; the
second trains an LLM which generates formal proofs from the natural language statement; the
final module employs heuristics from the ProofAug approach (Liu et al., 2025) for building the
final proof which can be checked by the proof assistants such as Isabelle. We employ a two-stage
fine-tuning process to train the LLM, where we leverage SFT-based training to enable the model
to generate syntactically valid Isabelle code, and RL-based training to encourage the model to
generate semantically valid Isabelle code. The main contributions of this work are as follows:

• We introduce a framework for generalized theorem proving that enables the verification of
natural language statements, including code and security policies.

• We curate a dataset to fine-tune language models for formal theorem proving, improving
their reasoning capabilities across diverse domains.

• Our fine-tuned model, ProofSeek, outperforms DeepSeek on an unseen problem domain,
achieving a 3% improvement in proof success rate while demonstrating a 20% reduction in
execution time

• We successfully apply our framework to verify the correctness of AWS S3 bucket policies,
showcasing its potential for automated theorem proving in practical applications.

2. Background and Related Work

Formal mathematics and verification Formal mathematics is the practice of expressing
mathematical statements, proofs, and reasoning in a rigorous language that can be verified
for correctness by a computer (Polu et al., 2022). This approach is fundamental to formal
verification, which ensures the accuracy of both mathematical proofs and complex systems,
including software and hardware (Avigad, 2010). Interactive theorem provers (ITPs) such as
Isabelle, Coq, Lean, and HOL Light assist with formalizations by allowing users to encode
proofs in a formal language and automatically verify their correctness.

Autoformalization Autoformalization is the process of automatically translating from nat-
ural language statements and mathematics to formal specifications and proofs and has gained
significant attention in recent years (Wu et al., 2022). Progress in autoformalization systems
accelerate the development of tools for mathematical reasoning which can be used in machine
learning without the need for associated ground-truths (Wu et al., 2022; Polu et al., 2022).
Large language models (LLMs) have shown promising results in this area, demonstrating the
ability to translate mathematical competition problems into formal specifications in systems
like Isabelle/HOL (Jiang et al., 2022a; Wang et al., 2023; Liu et al., 2025). There are strong
argument that autoformalization is a promising path for systems to learn sophisticated, general
purpose reasoning in all domains of mathematics and computer science (Szegedy, 2020).

Automated theorem proving for proof assistants Tools like Sledgehammer (Böhme and
Nipkow, 2010) automate reasoning within the interactive theorem prover Isabelle by translat-
ing goals into other types of logic, which are then sent to automated theorem provers like
Z3 (De Moura and Bjørner, 2008) and Vampire (Riazanov and Voronkov, 2001). If they find a
proof, Sledgehammer reconstructs it in an applicable format (Zhao et al., 2024). PISA (Portal
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to ISAbelle) (Jiang et al., 2021) supports automated proof search for Isabelle and can be used
to run multiple instances of Isabelle for concurrent checking.

Machine learning for automated theorem proving Recent efforts have integrated large
language models with theorem proving (Jiang et al., 2021, 2022b; Wang et al., 2023). Such
techniques build capable LLMs as black-box distribution generators that suggest proof steps or
whole proofs, which are then verified by an interactive proof system. The first step is to build
a paradigm that captures the task of theorem proving in the context of language modeling
formulated as a triple (A, S, T ) where A ⊂ Σ∗ is the set of proof steps, S is the set of proof
states, T : S × A → S is the state transition function which applies proof steps to states (Liu
et al., 2025). To use LLMs as black boxes or capable proof assistants (Agrawal et al., 2022),
when provided with a theorem statement xf ∈ Σ∗, it needs to provide a valid proof yf ∈ Σ∗

which is valid if applying the proof steps results in a terminal state where sxf
∥ yf .finish = True.

Neural theorem proving Neural theorem provers combine neural language models (LLMs)
with symbolic proof assistants to address formal mathematical tasks. Early implementations
focused on premise selection (Irving et al., 2016) which have been shown to be highly effective in
guiding proof searches (Wang et al., 2017). Proof search strategies (Polu and Sutskever, 2020)
explore the space of possible proofs by generating intermediate steps or tactics. Two primary
methodologies for neural theorem proving have emerged: single-pass methods and proof-step
methods. Single-pass methods such as DSP (Jiang et al., 2022a), LEGO-PROVER (Wang et al.,
2023), and Lyra (Zheng et al., 2023) aim to generate entire proofs at once using prompts enriched
with contextual information. Proof-step methods decompose the proving process into incremen-
tal steps. These methods, such as GPT-f (Polu and Sutskever, 2020) and POETRY (Wang et al.,
2025) utilize LLMs to generate individual tactics or proof steps conditioned on the current state
of the proof environment.

Reinforcement learning for theorem proving Reinforcement Learning (RL) for theorem
proving emphasizes model learning through direct feedback via trial and error. Early approaches
utilizing RL had been unsuccessful due to the infinite action space as well as the absence
of a direct self-play setup (Polu et al., 2022). Recently RL approaches have been met with
success with the introduction of powerful training regimes like Direct Preference Optimization
(DPO) (Rafailov et al., 2023), Proximal Policy Optimization (PPO) (Schulman et al., 2017),
and GRPO (Shao et al., 2024). RL frameworks for theorem proving model interactions between
LLMs and generated proofs as a Markov Decision Process (MDP). The reward function is
typically designed around binary proof completion: assigning a reward of 1 if the proof is
verified as correct and 0 otherwise (Dong et al., 2024). This binary reward system provides
clear feedback for optimizing performance. Other approaches incorporate search algorithms into
RL frameworks, such as Best-First Search (BFS) which guides proof generation by prioritizing
promising paths based on heuristic evaluations (Yang et al., 2023); and Monte Carlo Tree
Search (MCTS) which explores potential proof paths systematically by balancing exploration
and exploitation (Lample et al., 2022). RL-based approaches aim to improve both single-
pass and stepwise proof generation models. In single-pass methods, RL optimizes full-proof
generation by rewarding logical consistency using Chain-of-Thought tokens and verification
success. In stepwise methods, RL enhances tactic prediction by refining intermediate steps based
on feedback from symbolic verifiers. Recent works such as DeepSeekMath (Xin et al., 2024)
demonstrate that reinforcement learning can significantly enhance models’ reasoning abilities
by improving their capacity to generate coherent and verifiable proofs over time.

3. Method

Building on the work of the workflow described in DSP (Jiang et al., 2022a) and the proof
construction method in ProofAug (Liu et al., 2025), in this section we present our framework
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Figure 1: The two core components within the ProofSeek framework: (a) the fine-tuning
language model module, (b) the proof generation and verification module

ProofSeek that leverages the strengths of proof-step and whole-proof generation, as well as the
natural language generation paradigms of LLMs. ProofSeek consists of two core components:
a component for fine-tuning a language model using SFT and RL, and a proof generation and
verification component for generating and building the formal proofs. Both components of
ProofSeek are shown in Figure 1. Our framework is generalizable across domains
where the input is a mathematical statement, policy code, or natural language
statement, and the output is a verified proof state or a failure state. The details of
ProofSeek is shown in Algorithm 1. We first fine-tune a whole-proof generation model using
our two-stage approach. Then, we build a formal statement that represents the provided policy
code or mathematical statement. Finally, we leverage the fine-grained proof structure analysis
method of ProofAug to verify the generated formal statements.

3.1. Fine-Tuning Language Model

We first discuss how we fine-tune both the supervised and reinforcement learning stages of
our approach (Figure 1(a), Algorithm 1 lines 1-2). For our training task, we opt to fine-tune
our model for whole-proof generation, treating the construction of formal proofs as a general
code completion task. The model aims to generate entire proof code based on a theorem in
a single step. This scalable approach has been shown to be effective for both training and
inference deployment (Xin et al., 2024). Several recent efforts have explored training models
specifically for theorem proving, including LLEMMA, which was pretrained using Code Llama
on Proof-Pile-2 and outperformed other open-source models on benchmarks such as MATH and
Minerva (Lewkowycz et al., 2022). Given the availability of more capable open-source models, we
select DeepSeek-Math-7B-rl (Shao et al., 2024) as our base model due to its superior performance
in mathematical reasoning tasks. Our two-stage fine-tuning process consists of Supervised Fine-
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Tuning (SFT) on curated theorem-proof pairs, followed by Reinforcement Learning (RL) Fine-
Tuning using correctness-based reward signals. By integrating formal proof checking into the
reward mechanism, we enhance the model’s ability to generate valid and verifiable proofs.

3.1.1. Dataset construction

For the two separate stages of fine-tuning, we build different datasets for each purpose. To
ensure there are no data leaks during training (i.e., the RL training already sees a particular
statement-proof pair), we filter the dataset using a PISA setup. We start with FVELER, which
includes verification tasks formulated in Isabelle, containing 758 theories, 29,125 lemmas, and
200,646 proof steps in total, with in-depth dependencies (Lin* et al., 2024). This translates to
26,192 statements accompanied by their proofs and proof steps. As noted by Lin* et al. (2024),
the proofs contain complex dependencies. Due to the setup of the RL training environment, the
dataset we need requires “self-contained” proofs or complete proofs that return a verified proof
state without further processing. To accommodate this, we filter FVELER using PISA to retain
only the proofs that return true when iterated through the dataset. The other proofs, while
correct, require additional dependencies. The filtered dataset, containing 1,138 statement-proof
pairs, was used for the RL stage.

Meanwhile, the remaining 25,054 pairs were allocated for the supervised fine-tuning stage.
Due to the nature of our intended application—generalizability for proof generation across
domains—we needed to curate a dataset for instruction tuning that included a natural language
description of the statement to be proved and its corresponding proofs. We processed this
dataset using OpenAI API calls (GPT-4o) to build an SFT dataset in the form (proof, statement,
natural language statement). For this iteration, we selected 2,000 samples from the 25,054
unproven statements for API prompting. After this process, we arrived at 1,981 samples for
the SFT stage and, in a similar fashion, 1,138 samples in the form (natural language statement,
formal proof ) for the RL stage.

3.1.2. Supervised fine-tuning

We first fine-tune a large language model to generate formal proofs in the Isabelle theorem
prover. We leverage Unsloth’s optimized training framework for parameter-efficient fine-tuning
(PEFT). The model is trained using instruction tuning, where each training instance consists
of theorem statements paired with corresponding Isabelle proofs to ensure structured learning.
We use the FastLanguageModel library from Unsloth, which supports high-efficiency fine-tuning
and inference. Instead of fine-tuning the full model, we use Low-Rank Adaptation (LoRA) (Hu
et al., 2022) to fine-tune the relevant portions, significantly reducing computational overhead
while maintaining high performance. We initialize DeepSeek-Math-7B-rl as the base model. We
fine-tune our model using SFTTrainer. After training, the fine-tuned model is published to the
Hugging Face Model Hub for further tuning.

3.1.3. Reinforcement learning

In the second stage of our fine-tuning approach, we employ Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) as our reinforcement learning (RL) algorithm, which has
demonstrated superior effectiveness and efficiency compared to Proximal Policy Optimization
(PPO) (Schulman et al., 2017). Unlike PPO, which updates a policy based on absolute re-
ward values, GRPO optimizes model updates by considering the relative ranking of multiple
generated outputs, making it well-suited for structured text generation tasks.

GRPO operates by sampling multiple candidate proofs for each theorem prompt and opti-
mizing the model based on relative rewards assigned to outputs within the group. This method
improves training stability and encourages the generation of higher-quality proofs by leveraging
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Algorithm 1 ProofSeek

Require: Natural language statement s, fine-tuned whole-proof generation model πθ, proof
verification environment.
Fine-Tune Model: Train a whole-proof generation model πθ using a two-stage approach.

1: πθ = arg maxθ E(x,y)∼D[logPθ(y|x)]
2: where D is the dataset containing natural language statements and their proofs.

Autoformalization: Use a structured workflow to construct a formal statement S from
the provided code or mathematical statement by generating:

3: Datatype definitions D = {Di} capturing entities involved.
4: Record definitions R = {rj} for structured objects (e.g., access policies).
5: Logical function definitions F = {fk : Di → Dj}.
6: The final theorem statement as ∀x ∈ X,P (x)⇒ Q(x).

Proof Construction: Apply ProofAug for verification
7: Model proof generation as a state transition system (A, S, T ):
8: A: Finite set of proof actions (inference steps).
9: S: Finite set of proof states.

10: T : S ×A → S: Transition function under inference rules.
11: Generate proof steps iteratively using πθ
12: a∗ = arg maxa∈A P (a|S), during inference
13: Validate each step a[i] using ATP:
14: error← T (sthis, ⟨ATP ⟩).error
15: If ATP fails, apply ERP correction:
16: y′f ∼ π(p(xi||yi, xf ||yf ))
17: If ERP fails, apply heuristic tactics:
18: y′f ← FailedTactics2ATP(yf )
19: If no valid step exists, backtrack to the last valid proof block:
20: block← InnermostBlock(i, a)
21: Terminate when a valid proof state or failure state ∅ is reached.
22: return Verified proof or failure state.

pairwise ranking rather than relying solely on absolute correctness metrics. The reward function
is designed to interact with PISA to verify the generated proofs.

We implement GRPO using Unsloth’s FastLanguageModel (similar to the SFT stage), for
high-efficiency training with parameter-efficient fine-tuning (PEFT) using Low-Rank Adapta-
tion (LoRA). To enhance proof validity and structure, we employ two reward functions:

1. Correctness Reward: Extracts the Isabelle proof from the model’s response and compares
it to the ground truth proof.

2. Formal Proof Verification via PISA: Utilizes PISA for proof checking. If a generated proof
verifies in Isabelle, it receives a reward of 1; otherwise, 0.

Finally, the trained model is uploaded to the Hugging Face Model Hub for inference2.

3.2. Autoformalization

The first stage of verification in ProofSeek involves the autoformalization content being ver-
ified (Algorithm 1 lines 3-6). We employ semantic parsing to translate a natural language
statement into its logical form. We do this by generating intermediary stages, turning the natu-
ral language statement into an informal statement, then deriving an informal proof and a formal
statement that is a representation of the initial statement in its logical form for the prover.

2. The model can be downloaded from: https://huggingface.co/kings-crown/ProofSeek_v1
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3.2.1. Informal Representation

We start with an informal dataset where N = (sNi )
|N |
i=1 represents natural language statements.

For each sNi , we prompt an LLM (we use GPT-4o) to generate an informal description di to
provide additional interpretability and structure for both the user and the model in the next
steps. Given (sNi , di), the LLM then produces an informal proof pi in the same format through
curated prompts. This informal proof pi is seen as the skeleton for the formal representation.

3.2.2. Formal Proof Representation

To construct a valid Isabelle/HOL proof, the logical form must accurately reflect the original
statement. The transformation from natural language to formal representation follows a struc-
tured pipeline, leveraging incremental representation generations (which Jiang et al. (2022a)
showed to be more efficient than single-shot representation generation). The generated infor-
mal proof pi allows the generated formalization S to be more consistent and faithful. Our
approach ensures that the generated proof includes:

• Datatype Definitions (D = {Di}): Define structured entities present in the statement.
These serve as the foundational building blocks for formal reasoning.

• Record Definitions (R = {rj}): Represent structured objects, such as access policies
or logical relations. Used to define attributes and relationships between entities.

• Logical Function Definitions (F = {fk : Di → Dj}): Encode logical operations and
transformations essential for proof construction. Define predicates and functions that
express constraints and properties.

• Final Theorem Statement (∀x ∈ X,P (x) ⇒ Q(x)): The theorem statement that
encapsulates the key property to be proved. This formally expresses the intended logical
relationship in a structured way.

We employ stepwise prompting to sequentially construct the theorem statement:

1. Natural Language Input (s): The initial informal statement describing what should
be proved.

2. Informal Description (d): A structured interpretation that clarifies the semantics of s.

3. Informal Proof (p): High-level reasoning outlining requirements to guide formalization.

4. Formal Statement (S): A logically rigorous theorem statement, translation of p into
theorem-prover-compatible syntax.

3.3. Proof Construction

Once the formal statement S is generated, we employ an interactive theorem prover (ITP)-based
approach, using prompting inspired by Jiang et al. (2022a), to guide proof-step generation and
construction (Algorithm 1 lines 7-22). We use ProofAug (Liu et al., 2025), an augmentation
strategy that refines proofs by integrating automated theorem proving (ATP), efficient recur-
sive proving (ERP), and heuristic-based tactic generation. The proof construction process in
ProofAug that we use follows a structured pipeline, which we summarize as follows:

1. Proof representation in ITP: Model the proof as a state transition system (A, S, T ).

2. Proof-step generation via language models: A fine-tuned generative language model
πθ predicts valid proof steps a ∈ A conditioned on the proof state:

πθ(x) = arg max
a∈A

P (a|S)
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3. ATP validation: Each generated proof step is validated using ATPs. If a proof step is
not trivially correct and has sorry proofs the system invokes an ATP-based evaluation:

error← T (sthis, ⟨ATP ⟩).error

4. Efficient recursive proving via ERP module: If ATP validation fails, ERP attempts
an alternative inference:

y′f ∼ π(p(xi||yi, xf ||yf ))

where y′f is a corrected proof step. If ERP succeeds, the proof step is updated accordingly.

5. Heuristic-based tactics for failed proofs: When both ATP and ERP modules fail,
heuristic-based fallback strategies are applied via:

y′f ← FailedTactics2ATP(yf )

attempting to construct missing proof steps via structured heuristics.

6. Backtracking and Proof Reorganization: If no valid proof step can be generated, the
algorithm identifies the innermost valid proof block, resets proof state, and re-attempts
construction:

block← InnermostBlock(i, a)

Given a theorem statement xf , the system iteratively applies proof steps a ∈ A until the proof
reaches a valid terminal state, yielding either: a successful proof (P ), where all proof steps
are verified; or a failure state (∅), if the proof cannot be completed.

4. Experiments

To evaluate the utility of our ProofSeek framework and assess any enhancements to the
model’s theorem proving capability, we aim to answer the following research questions:
RQ1: How effective is the ProofSeek framework at autoformalization and generating proofs
in an unseen problem domain?
RQ2: How effective is the fine-tuning approach within ProofSeek in enhancing the theorem
proving capabilities of a language model?

4.1. Experiment Setup

To fine-tune our models and evaluate our framework, we utilize two machines (for running
concurrent processes). We set up a PISA environment (Jiang et al., 2021) to interact with
Isabelle 2022. Our ⟨ATP ⟩ method uses 8 Isabelle proof methods (auto, simp, auto, blast,
fastforce, eval, sos, arith, simp:field simps, simp add:mod simps) as well as Sledgehammer. For
the verification process, we use 4 instances of PISA and similar to Jiang et al. (2022a) we set set
the timeout for any proof step and Sledgehammer as 10 seconds and 40 seconds, respectively.
We run our experiments on: AMD EPYC 7763 64-Core Processor CPU @ 2.49GHz with a
NVIDIA A40-48Q and an AMD Ryzen Threadripper PRO 5975WX 32-Core Processor CPU @
7.00GHz with 2 NVIDIA RTX A6000.

To evaluate our framework, we use two language models for comparison: (1) Deepseek-
Math-7b-base (as the base-case) to reproduce the results of ProofAug (Liu et al., 2025); and (2)
our fine-tuned model (fine-tuned using the ProofSeek framework) to evaluate improvements
we can achieve using their method. We follow an approach similar to Liu et al. (2025) and opt
to use 1-shot prompting. To keep the evaluation consistent, we limit the sample budget across
all the tests to 10, and consistently use a sampling temperature T = 0.6 with top p = 0.95.
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4.1.1. Benchmark on miniF2F-test

We evaluate our approach using the miniF2F-Test dataset(Zheng et al., 2021), which includes
488 formal mathematical problems which encompasses high-school level exercises and compe-
tition problems. The dataset is split into a validation set and a test set, each containing 244
problems (Xin et al., 2024). We use the Isabelle part of the miniF2F-test dataset that contains
an additional informal statement and informal draft for each problem (Jiang et al., 2022a).

4.1.2. Case Study: Verifying Correctness of AWS S3 Bucket Policies

Amazon Web Services (AWS) allows users to create access control policies for managing access
to AWS services. These policies regulate access through declarative statements that specify
whether a given access control request should be allowed or denied. Given an access control
request and an associated policy, access is granted if and only if there exists at least one
statement in the policy that allows the access and no statement that explicitly denies it. Thus,
to verify the correctness of a policy, one must reason about the logic of the policy statements
and determine whether the intended behavior (as expressed in natural language) matches the
formal semantics of the policy. If the intent aligns with the semantics, the policy is considered
correct with respect to that intention. Otherwise it is incorrect. For full details of the AWS
policy language, we refer the reader to Backes et al. (2018).

In this case study, we consider a set of S3 bucket policies along with a set of generated
natural language description of their intended behaviors. We evaluate the effectiveness of our
approach by generating Isabelle proofs that demonstrate the correctness of the policies with
respect to their intended access control intents. We consider two scenarios:
Scenario 1: Evaluation with manually curated dataset For the first phase of our anal-
ysis, we investigate the proving ability of our setup using a small, manually curated dataset
of S3 bucket access policies. We randomly pick 25 policies from the Quacky dataset (Eiers
et al., 2022) and construct formal statements for each policy code in the proof environment. We
extract key components from the policy (Actions, Resources, Effects, Conditions) and convert
them into formal logic types. Then, we finally transform the policy components into formal
entries for Isabelle. The complete evaluation comprises 25 policy-formal statement pairs.
Scenario 2: Evaluation on LLM generated dataset To evaluate the utility of the frame-
work as a whole, we automate the formalization process of a set of AWS S3 Bucket Policies in a
csv file using GPT-4o to generate formal statements to be proved. We use an approach inspired
by DSP (Jiang et al., 2022a) to iteratively prompt the LLM to autoformalize the policy code
as described in our framework. We use some of the manually curated policy-formal statement
pairs as few-shot examples to guide the model along. The final dataset comprises of 243 policies,
and we use the method described in ProofAug with our model to prove the statements.

4.2. Experiment Results

Here we present the results of our experiments on different datasets, including the miniF2F-Test
dataset for mathematical theorem proving and the Quacky dataset for AWS S3 bucket policy
verification3. Our evaluation primarily focuses on the proof success rate, the average number
of attempts required, and the total execution time.

Table 1 reports the results on the miniF2F-Test dataset, comparing our approach, Proof-
Seek, against DeepSeek. We evaluate both models with and without efficient recursive proving
(ERP). ProofSeek achieves a 40.1% success rate without ERP, slightly lower than DeepSeek
(41.8%). The total execution time for ProofSeek (ERP: 38,651.78s, No ERP: 36,557.68s) is
slightly lower than DeepSeek with ERP (53,658.5s).

For manually curated AWS S3 bucket policies from the Quacky dataset, ProofSeek achieves
a 96.0% success rate across all settings. This is unsurprising as the proof formulations were of

3. The generated proof construction jsonl files are attached in the code repository
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Table 1: Experimental Results on Evaluation Datasets

Method Success Rate (%) Avg Attempts Total Exec. Time (h:mm:ss)

MiniF2F Dataset (245 Problems)
ProofSeek (Ours) (ERP) 41.8 5.66 10:44:11
ProofSeek (Ours) (No ERP) 40.1 5.67 10:09:17
DeepSeek (ERP) 42.2 5.59 14:54:18
DeepSeek (No ERP) 41.8 5.54 07:24:12

Curated Quacky Dataset (25 Problems)
ProofSeek (Ours) (ERP) 96.0 0.60 00:06:33
ProofSeek (Ours) (No ERP) 96.0 0.44 00:03:16
DeepSeek (ERP) 96.0 0.64 00:09:33
DeepSeek (No ERP) 96.0 0.84 00:06:15

Generated Quacky Dataset (243 Problems)
ProofSeek (Ours) (ERP) 66.6 1.33 00:20:34
ProofSeek (Ours) (No ERP) 69.1 1.15 00:20:27
DeepSeek (ERP) 63.3 2.05 00:26:52
DeepSeek (No ERP) 66.6 1.95 00:24:36

high quality making it easy for the prover. This is also reflected in the times: ProofSeek (No
ERP) is the fastest, completing in 196.01s, compared to DeepSeek (ERP: 573.84s, No ERP:
375.67s), demonstrating superior efficiency. When evaluating ProofSeek on LLM-generated
policy statements: ProofSeek (No ERP) outperforms all other settings with a 69.1% success
rate, surpassing DeepSeek.

MiniF2F-Test Performance (RQ1): Our framework demonstrates effectiveness in auto-
formalization and proof generation in unseen domains, achieving performance comparable to
DeepSeek while improving computational efficiency.
AWS S3 Policy Verification (RQ2): Our system’s fine-tuning results in highly efficient
and accurate verification of structured policies, confirming enhancements in theorem proving
capabilities. Moreover, ProofSeek proves more effective on LLM-generated formalizations,
demonstrating robustness in handling formalization related tasks in generalized problem do-
mains and maintaining higher success rates over DeepSeek.

5. Discussion and Future Work

Although our framework demonstrated its practical utility for real-world use cases, our results on
benchmark datasets remain behind SOTA approaches. Additionally, we speculate that the fine-
tuning process enhanced the theorem-proving capability of the language model, as evidenced
by the smaller number of proof attempts required to complete proofs. However, due to the
construction of the symbolic methods being used, it did not perform as well on the benchmark
as expected. Moreover, from our initial results, it is clear that further fine-tuning is necessary,
both using supervised and RL-based methods. In this work, we refrained from further training
so as to not overfit. We also look forward to incorporating reasoning-based feedback (Xie et al.,
2025) to build better models for formal verification.

We believe that an important direction for future work is to fully leverage the reliability
aspect of language model-generated proofs across systems. Reliability is a highly desirable
property in inherently probabilistic systems. In the future, we aim to incorporate other forms
of symbolic systems, such as knowledge graphs, to make automated theorem proving with LLMs
more reliable and consistent.
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Appendix A.

LLM generated formalization for access policy code. This is a representative example that
takes the reader through the different stages of the Proof Generation and verification as show
in Figure 1.

Listing 1: Problem Name
1 {
2 "problem_name": "s3_samples_mutations_ec2_exp_single_ec2

_prevent_running_classic_policy_6_0"

3 }

Listing 2: EC2 Access Policy JSON
1 {
2 "policy_json": {
3 "Statement": [

4 {
5 "Effect": "Allow",

6 "Action": "ec2:RunInstances",
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7 "Resource": "arn:aws:ec2:us -east -1:123412341234:*"

8 },
9 {

10 "Effect": "Allow",

11 "Action": "ec2:RunInstances",

12 "Resource": [

13 "arn:aws:ec2:us -east -1::image/ami -*",

14 "arn:aws:ec2:us -east -1:123412341243:instance /*",

15 "arn:aws:ec2:us -east -1:123412341234:volume /*",

16 "arn:aws:ec2:us -east -1:123412341234:network -interface /*",

17 "arn:aws:ec2:us -east -1:123412341234:key -pair /*"

18 ]

19 }
20 ]

21 }
22 }

Listing 3: Informal Statement
1 {
2 "informal_statement": "The text you provided is a policy statement written in

JSON format, which is typically used in cloud computing environments like

Amazon Web Services (AWS) to define permissions. Here ’s a breakdown of

what it means in plain English:\n\n1. General Permission:\n - The policy

allows the action \"ec2:RunInstances .\" This means that the user or

service with this policy can start or launch new EC2 instances .\n - This

applies to any resource within the specified AWS account (123412341234) in

the \"us -east -1\" region .\n\n2. Specific Permissions:\n - Images: use any

AMI in \"us -east -1\".\n - Instances: manage EC2 instances in 123412341243

.\n - Volumes: manage EBS volumes in 123412341234.\n - Network Interfaces

and Key Pairs: full control in 123412341234.\n\nSummary: This policy

allows launching and managing EC2 instances and their dependencies ."

3 }

Listing 4: Informal Proof
1 {
2 "informal_proof": "To provide an informal proof or argument supporting the

interpretation of the JSON policy statement, we break it into structured

observations:\n\n1. JSON uses keys like \" Effect \", \" Action \", and \"

Resource \" to structure permissions .\n2. ’Allow ’ means access is granted;

’ec2:RunInstances ’ lets the user launch EC2s.\n3. ’*’ in the ARN means it

applies to all of that type within the account and region .\n4. Specific

ARNs grant permissions to manage AMIs, Instances, Volumes, Interfaces, and

Key Pairs.\n\nConclusion: These combined statements demonstrate full EC2

launch and management capability ."

3 }

Listing 5: Formal Statement
1 datatype ec2_action = RunInstances

2

3 datatype ec2_resource = AllResources | Images | Instances | Volumes |

NetworkInterfaces | KeyPairs

4

5 datatype principal = Anyone

6

7 record policy_entry =

8 act :: ec2_action

9 res :: ec2_resource

10 prin :: principal

11

14
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12 definition ec2_instance_policy :: policy_entry where

13 "ec2_instance_policy = (|

14 act = RunInstances,

15 res = AllResources,

16 prin = Anyone

17 |)"

18

19 fun policy_allows :: "policy_entry => ec2_action => ec2_resource => bool" where

20 "policy_allows pe a r = (act pe = RunInstances ∧ (res pe = AllResources

res pe = r))"

21

22 theorem ec2_policy_correctness:

23 shows "policy_allows ec2_instance_policy RunInstances AllResources ∧
24 policy_allows ec2_instance_policy RunInstances Images ∧
25 policy_allows ec2_instance_policy RunInstances Instances ∧
26 policy_allows ec2_instance_policy RunInstances Volumes ∧
27 policy_allows ec2_instance_policy RunInstances NetworkInterfaces ∧
28 policy_allows ec2_instance_policy RunInstances KeyPairs"

29 oops

Listing 6: Initial Proof Attempt
1 (* Proof of the theorem *)

2 (*

3 proof -

4 have "policy_allows ec2_instance_policy RunInstances AllResources"

5 by (simp add: ec2_instance_policy_def)

6 moreover have "policy_allows ec2_instance_policy RunInstances Images"

7 by (simp add: ec2_instance_policy_def)

8 moreover have "policy_allows ec2_instance_policy RunInstances Instances"

9 by (simp add: ec2_instance_policy_def)

10 moreover have "policy_allows ec2_instance_policy RunInstances Volumes"

11 by (simp add: ec2_instance_policy_def)

12 moreover have "policy_allows ec2_instance_policy RunInstances

NetworkInterfaces"

13 by (simp add: ec2_instance_policy_def)

14 moreover have "policy_allows ec2_instance_policy RunInstances KeyPairs"

15 by (simp add: ec2_instance_policy_def)

16 ultimately show ?thesis by simp

17 qed

18 *)

Listing 7: Sorry Proof (Commented)
1 (* Proof of the theorem *)

2 (*

3 proof -

4 have "policy_allows ec2_instance_policy RunInstances AllResources"

5 by (simp add: ec2_instance_policy_def)

6 moreover have "policy_allows ec2_instance_policy RunInstances Images"

7 by (simp add: ec2_instance_policy_def)

8 moreover have "policy_allows ec2_instance_policy RunInstances Instances"

9 by (simp add: ec2_instance_policy_def)

10 moreover have "policy_allows ec2_instance_policy RunInstances Volumes"

11 by (simp add: ec2_instance_policy_def)

12 moreover have "policy_allows ec2_instance_policy RunInstances

NetworkInterfaces"

13 by (simp add: ec2_instance_policy_def)

14 moreover have "policy_allows ec2_instance_policy RunInstances KeyPairs"

15 by (simp add: ec2_instance_policy_def)

16 ultimately show ?thesis by simp

17 qed
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18 *)

Listing 8: State Information
1 {
2 "success": true,

3 "i_try": 0,

4 "success_stage": "init_proof",

5 "has_timeout": false,

6 "extra_calls": 0,

7 "has_sc": false

8 }
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