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ABSTRACT

We proposed a technique to reduce the decoder’s number of parameters in a
sequence-to-sequence (seq2seq) architecture for automatic text summarization.
This approach uses a pre-trained autoencoder (AE) trained on top of a pre-trained
encoder’s output to reduce its embedding dimension and allow to significantly re-
duce the summarizer model’s decoder size. The ROUGE score is used to measure
the effectiveness of this method by comparing four different latent space dimen-
sionality reductions: 96%, 66%, 50%, 44%. A few well-known frozen pre-trained
encoders (BART, BERT, and DistilBERT) have been tested, paired with the re-
spective frozen pre-trained AEs to test the reduced dimension latent space’s ability
to train a summarizer model. We also repeated the same experiments on a small
transformer model that has been trained for text summarization. This study shows
an increase of the R-1 score by 5% while reducing the model size by 44% using
the DistilBERT encoder, and competitive scores for all the other models associ-
ated to important size reduction. It is also shown that our approach can be used
in combination with other network size reduction techniques (e.g. Distillation) to
further reduce any encoder-decoder model parameters count.

1 INTRODUCTION

It is safe to say that the combination of Transformer (Vaswani et al., 2017) architecture, and transfer
learning concept dramatically modified the landscape of Natural Language Processing (NLP). Intro-
duction of large-scale pre-trained language models like BERT (Devlin et al., 2018), GPT-2 (Radford
et al., 2019), MegatronLM (Shoeybi et al., 2019), BART (Lewis et al., 2019), and GPT-3 (Brown
et al., 2020) keeps on improving state-of-the-art results by fine-tuning them for downstream tasks
such as Sentiment Analysis, Question Answering, and Summarization. However, the upward trend
of the network size in mentioned models raises serious environmental (Strubell et al., 2019) and
usability issues.

The number of parameters in Transformers-based models is constantly rising. As a result, the hard-
ware requirement for fine-tuning or inference drastically increased in the past couple of years. It
is challenging for both researchers and developers to use these models and build on top of them
without sufficient resources. To put it in perspective, the earliest and smallest BERT had 110M
parameters (Devlin et al., 2018), and the latest and largest Switch Transformer (Fedus et al., 2021)
model was introduced with 1.5 trillion parameters which makes it accessible only using high-end
servers. This issue is even more consequential for tasks such as automatic text summarization and
machine translation that incorporate sequence-to-sequence architecture. This architecture consists
of an encoder (encoding the input sequences) paired with a decoder (generates tokens conditioned
on the encoder’s representation). It means even more parameters will be added to the model for
these tasks which is the min focus of this paper.

It is important to discover techniques to reduce the overall network parameters while maintaining
the quality of the generated text. In this paper, autoencoders’ (AE) (Liu et al., 2019) property of
dimensionality reduction is evaluated in a setting with sequence-to-sequence architecture and pre-
trained encoders. The autoencoder will act as an intermediate model to compress the encoder’s final
representation and decoder will use this compressed latent representation to generate summaries
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with minimal information loss. The idea is to find the ideal trade-off between the compression ratio
and model’s text generation capability.

2 BACKGROUND

Multiple different approaches have already been explored to tackle the problem of neural network
models growing size. Quantization (Gupta et al., 2015) is one of the first experiments which apply
to any deep learning model by using a half-precision (16-bit) floating point to greatly reduce the
network size and memory usage. Micikevicius et al. proposed a mixed precision algorithm in (Mi-
cikevicius et al., 2017) to further close the gap in evaluation results. Recent works experimented the
effect of knowledge distillation (Bucila et al., 2006) method to transfer information from a larger
network to a smaller one without significant loss in accuracy. There are multiple papers that present
different combinations of fine-tuning and distillation on top of BERT. (Chatterjee, 2019; Turc et al.,
2019) However, DistilBERT (Sanh et al., 2019) obtained the best results with training the smaller
student model on BERT and then fine-tuning it for downstream tasks that resulted in a more general-
ized pre-trained model. Their approach led to similar implementations on other classic transformer
models such as DistilGPT2 with 33% less parameters (two times faster) which resulted in 21.1 per-
plexity score comparing to the GPT-2’s 16.3, and a 35% smaller RoBERTa (Liu et al., 2019) model
while maintaining 95% of the accuracy on GLUE, named DistilRoBERTa.1

The pruning (LeCun et al., 1990) method’s influence on transfer learning have recently gained atten-
tion from researchers. It refers to determining the parts in the network that have the weaker effect on
the model accuracy and removing them without compromising the model’s accuracy on downstream
tasks. The main ideas are to either focus on finding the less important weights (Gordon et al., 2020),
or components such as number of self-attention heads (Michel et al., 2019) and layers (Sajjad et al.,
2020). This technique was also used in the Lottery Ticket hypothesis (Frankle & Carbin, 2018;
Prasanna et al., 2020) to uncover subnetworks performing on par with the full model.

The latest research area focuses on rethinking the self-attention mechanism to eliminate its quadratic
memory usage connection with respect to the input sequence length. The goal is to find the best
trade-off between performance and memory usage. Big Bird (Zaheer et al., 2020) and Longformer
(Beltagy et al., 2020) papers experiment on different attention patterns to reduce connections and
result in fewer computations. Wang et al. presented the Linformer (Wang et al., 2020) network that
projects the self-attention vectors to lower dimensions. Reformer (Kitaev et al., 2020) paper studies
the idea of grouping key and query vectors based on the locality sensitive hashing (LSH) to reduce
the computations needed to find similar vectors.

It is worth noting several studies that combined two or more methods to build even smaller models
without significantly compromising the accuracy. Several such experiments are present in the lit-
erature, namely, a combination of distillation with pruning (Hou et al., 2020), or quantization (Sun
et al., 2020). Also, Tabmbe et al. made the EdgeBERT (Tambe et al., 2020) model by leveraging
both pruning and quantization along with other methods. These techniques are not exclusive, and it
is possible to study them independently without testing all possible combinations. This is why we
can focus our study only on one reduction method and only a few important models.

3 PROPOSED METHOD

Our proposed architecture is a sequence-to-sequence Transformer (T ) model that includes a pre-
trained autoencoder (AE) connecting the network’s encoder (Tenc) to its decoder (Tdec). (Fig. 1)
The mentioned approach will result in a smaller Tdec and reduce the overall number of trainable
parameters. The modules are described in the sub-sections.

3.1 TRANSFORMER ENCODER (Tenc)

The encoder (Tenc) part of the proposed architecture is a pre-trained transformer-based model. We
have selected a set of models that include some of the best models for text summarization; BERT,

1The results related to DistilRoBERTa model is available at https://github.com/huggingface/
transformers/tree/master/examples/research_projects/distillation
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Figure 1: The proposed architecture. The red-colored components in the diagram indicates being
both pre-trained, and frozen during training the summarizer model. The green-colored units are
learned from scratch for summarization task.

DistilBERT, BART’s encoder (all base versions), and a custom transformer model. The custom
transformer model is used to evaluate the effectiveness of our approach on a small pre-trained model
with only 6 encoder layers and subsequently its scores are used as baseline and not supposed to
be competitive with the ones of the other approaches. These models are frozen during the training
processes to reduce the number of influential factors.

3.2 AUTOENCODER (AE)

The AE (Fig. 1) purpose is to reduce the Tenc’s output size to a smaller latent space using the
following equation:

X ′AE = AEdec(AEenc(XAE))

Z = AEenc(XAE)

Where XS×D
AE is the input, AEenc indicates the encoder responsible for compressing the input to

latent space ZS×C and a decoder AEdec generating the output X ′S×DAE trying to reconstruct the
input XS×D

AE during the training process. Variables S and D denote the sequence length and in-
put’s embedding dimension respectively. The values are dependent to the chosen pre-trained Tenc

model’s configuration and are set to 512 and 768 in this paper. However, C that represents the
compressed latent space size, will vary to find out the optimal latent space size. A 6-layer linear
AE (3 for encoder and 3 for decoder) was selected after comparing its reconstruction ability to the
same architecture with Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997), or
Convolutional Neural Network (CNN) (LeCun et al., 1998) building blocks.

The final AE architecture with 6 linear layers was independently trained for each selected pre-trained
encoder Tenc. It attempts to reconstruct the output of Tenc using a smaller representation Z. The
frozen AEenc is then used in our summarizer architectures to pass a compressed representation to
the decoder Tdec. (From size D to C) Refer to appendix A.1 for more information about the hidden
layers’ sizes.

3.3 TRANSFORMER DECODER (Tdec)

The decoder component of the architecture (Tenc) is an original transformer decoder with 3-layers
and a linear head on top in all the experiments. It is the only piece of the network that is not frozen
after the AE has been trained. Its embedding dimension ties to the AE’s latent space size (C) that
can drastically alter the architecture overall number of trainable parameters.

3.4 DATASETS

A combination of the CNN/Dailymail (300K samples) (Hermann et al., 2015) and the Newsroom
(1.3M samples) (Grusky et al., 2018) datasets used for training all the summarizer models; and the
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Figure 2: The linear autoencoder architecture with 3 encoder (L1, L2, L3), and decoder (L4, L5, L6)
layers. Tensors X , X ′, and Z are representing the input, output, and the compressed latent repre-
sentation respectively. The autoencoder maintain the same sequence length (S) during compression
and only reduce the embedding size (D).

pre-defined test set of CNN/Dailymail dataset utilized to evaluate them. However, we randomly
selected only 60% of these combinations to train each autoencoder models to hold on unseen data
to evaluate the generalization ability of the summarizer model.

3.5 EXPERIMENTS

We performed several experiments to evaluate the effectiveness of the proposed method. First (AE),
we combined different pre-trained encoders with several autoencoder compressed latent space sizes
paired with a 3-layers decoder component in each instance. Second (AE-S), we used the same
autoencoders (without the pre-training step) and trained them jointly with the decoder from scratch
to measure the effect of the pre-training step on the autoencoder. Third (LL), using a small 1-layer
learnable linear model to lower the encoder’s output dimensionality from D to C. Lastly (PCA), we
used the classical dimensionality reduction algorithm, incremental PCA (Ross et al., 2008) trained
to project the outputs of the encoder to the 458 first principal components to preserve more than
90% of variances and used them as the decoder input.

All these models are trained with fixed hyperparameters to make them comparable. They are trained
using the 1cycle (Smith & Topin, 2019) training policy that increases the learning rate from 2e-5 to
a maximum of 5e-4 while decreasing the momentum beta from 0.95 to 0.85 for faster convergence.
We also used the Adam optimizer and the label smoothing CrossEntropy (Pereyra et al., 2017) loss
function. The decoder’s feedforward layers and the eight attention heads’ inner dimensions are 1024
and 32, respectively, and their input sizes are dependent on the dimensionality reduction rate.

4 RESULTS

Table 1: The comparison of MSE loss be-
tween linear, LSTM, and CNN blocks to
train an autoencoder with a 64 compres-
sion size.

Types
Number of Layers 4 6 8

Linear 0.0813 0.0766 0.0776
LSTM 0.0863 0.0810 0.0849
CNN 0.2666 0.2759 0.2750

The summaries are generated using three different de-
coding strategies. The fastest and easiest method to
develop is picking the most probable output at each
timestep, known as the Greedy algorithm. A more ex-
tensive approach is to use the Beam Search algorithm
that develops K paths in parallel using the top K tokens
with the highest scores. Finally, we used the Weighted
Random Sampling algorithm that randomly chose a to-
ken from the top K probable outputs proportionally to
their respective probabilities. In this paper, we used K
value equals 5 and 2 for the beam search and weighted
random sampling, respectively, based on the previous
experiments.

We experimented with different AE layer types and numbers. Linear, Long Short-Term Memory
(LSTM), and Convolutional Neural Network (CNN) AE architectures were trained with the Mean
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Table 2: Comparing the number of parameters in a 3-layer decoder network with 768 input size
to the number of parameters of the same decoder after applying the AutoEncoder to reduce the
encoder’s output dimension.

Decoder Input Size AE Parameters Count Decoder Parameters Count (by Encoder Type) Network’s Total Number of Parameters (by Encoder Type)
BERT/

Transformer
Reduction

(%) BART Reduction
(%) Transformer BART BERT DistilBERT

C = 768 (Default) - 32,937,018 - 48,119,385 - 70,572,090 188,119,385 142,937,018 98,937,018
C = 512 2,316,288 21,970,746 26.26 32,098,905 28.48 61,922,106 174,415,193 134,287,034 90,649,914
C = 384 1,812,480 16,487,610 44.44 24,088,665 46.18 55,935,162 165,901,145 128,300,090 84,662,970
C = 128 1,120,256 5,521,338 79.84 8,068,185 80.91 44,276,666 149,188,441 116,641,594 75,484,564
C = 32 1,071,104 1,408,986 92.47 2,060,505 93.5 40,115,162 143,131,609 112,480,090 68,842,970

Table 3: The ROUGE score for using a pre-trained autoencoder on top of pre-trained transformer-
based encoders with different compression sizes. Tested each network using greedy, weighted ran-
dom sampling, and beam search methods.

Models
Inference Methods

Greedy Random Beam
R-1 R-2 R-3 R-L R-W R-1 R-2 R-3 R-L R-W R-1 R-2 R-3 R-W R-L

Transformer 0.346 0.143 0.079 0.312 0.121 0.344 0.136 0.071 0.304 0.117 0.259 0.116 0.064 0.261 0.095
+ AE
(C = 512)

0.368
(106%)

0.157
(109%)

0.088
(111%)

0.325
(104%)

0.129
(106%)

0.363
(105%)

0.147
(108%)

0.079
(111%)

0.315
(103%)

0.123
(105%)

0.288
(111%)

0.127
(109%)

0.070
(109%)

0.280
(107%)

0.104
(109%)

+ AE
(C = 384)

0.363
(104%)

0.154
(107%)

0.086
(108%)

0.322
(103%)

0.127
(104%)

0.360
(104%)

0.146
(107%)

0.078
(109%)

0.314
(103%)

0.122
(104%)

0.278
(107%)

0.123
(106%)

0.068
(106%)

0.274
(104%)

0.101
(106%)

+ AE
(C = 128)

0.308
(89%)

0.114
(79%)

0.060
(75%)

0.286
(91%)

0.109
(90%)

0.315
(91%)

0.110
(80%)

0.054
(76%)

0.280
(92%)

0.106
(90%)

0.280
(108%)

0.116
(100%)

0.064
(100%)

0.271
(103%)

0.100
(105%)

+ AE
(C = 32)

0.156
(45%)

0.019
(13%)

0.003
(3%)

0.174
(55%)

0.057
(47%)

0.184
(53%)

0.024
(17%)

0.003
(4%)

0.185
(60%)

0.061
(52%)

0.132
(50%)

0.021
(18%)

0.004
(6%)

0.147
(56%)

0.045
(47%)

BART 0.355 0.142 0.076 0.310 0.121 0.349 0.134 0.069 0.301 0.116 0.304 0.128 0.070 0.283 0.106
+ AE
(C = 512)

0.341
(96%)

0.128
(90%)

0.066
(86%)

0.298
(96%)

0.114
(94%)

0.337
(96%)

0.120
(89%)

0.058
(84%)

0.289
(96%)

0.110
(94%)

0.312
(102%)

0.126
(98%)

0.068
(97%)

0.285
(101%)

0.107
(101%)

+ AE
(C = 384)

0.332
(93%)

0.121
(85%)

0.061
(80%)

0.291
(93%)

0.111
(91%)

0.327
(93%)

0.112
(83%)

0.053
(76%)

0.282
(93%)

0.106
(91%)

0.278
(91%)

0.123
(96%)

0.068
(97%)

0.274
(96%)

0.101
(95%)

+ AE
(C = 128)

0.257
(72%)

0.063
(44%)

0.023
(30%)

0.239
(77%)

0.084
(69%)

0.260
(74%)

0.058
(43%)

0.019
(27%)

0.232
(77%)

0.081
(69%)

0.245
(80%)

0.071
(55%)

0.030
(42%)

0.234
(82%)

0.080
(75%)

+ AE
(C = 32)

0.145
(40%)

0.014
(9%)

0.001
(1%)

0.168
(54%)

0.055
(45%)

0.174
(49%)

0.019
(14%)

0.002
(2%)

0.179
(59%)

0.059
(50%)

0.128
(42%)

0.015
(11%)

0.002
(2%)

0.146
(51%)

0.045
(42%)

BERT 0.349 0.133 0.066 0.306 0.117 0.347 0.124 0.058 0.297 0.112 0.283 0.117 0.060 0.270 0.099
+ AE
(C = 512)

0.339
(97%)

0.123
(92%)

0.058
(87%)

0.298
(97%)

0.114
(97%)

0.339
(97%)

0.116
(93%)

0.051
(87%)

0.289
(97%)

0.108
(96%)

0.291
(102%)

0.117
(100%)

0.059
(98%)

0.275
(101%)

0.100
(101%)

+ AE
(C = 384)

0.332
(95%)

0.119
(89%)

0.056
(84%)

0.294
(96%)

0.110
(94%)

0.333
(95%)

0.112
(90%)

0.048
(82%)

0.286
(96%)

0.106
(94%)

0.272
(96%)

0.107
(91%)

0.053
(88%)

0.263
(97%)

0.094
(94%)

+ AE
(C = 128)

0.278
(79%)

0.074
(55%)

0.025
(37%)

0.256
(83%)

0.090
(76%)

0.288
(82%)

0.072
(58%)

0.022
(37%)

0.252
(84%)

0.088
(78%)

0.242
(85%)

0.076
(64%)

0.029
(48%)

0.237
(87%)

0.080
(80%)

+ AE
(C = 32)

0.168
(48%)

0.021
(15%)

0.003
(4%)

0.187
(61%)

0.062
(52%)

0.197
(56%)

0.026
(20%)

0.003
(5%)

0.194
(65%)

0.064
(57%)

0.140
(49%)

0.020
(17%)

0.003
(5%)

0.153
(56%)

0.047
(47%)

DistilBERT 0.317 0.124 0.064 0.283 0.100 0.316 0.117 0.057 0.275 0.097 0.302 0.123 0.066 0.280 0.099
+ AE
(C = 512)

0.333
(105%)

0.123
(99%)

0.059
(92%)

0.298
(105%)

0.112
(112%)

0.332
(105%)

0.116
(99%)

0.052
(91%)

0.290
(105%)

0.108
(111%)

0.287
(95%)

0.116
(94%)

0.059
(89%)

0.275
(98%)

0.100
(101%)

+ AE
(C = 384)

0.334
(105%)

0.122
(98%)

0.060
(93%)

0.297
(104%)

0.112
(112%)

0.334
(105%)

0.115
(98%)

0.052
(91%)

0.288
(104%)

0.108
(111%)

0.282
(93%)

0.114
(92%)

0.058
(87%)

0.270
(96%)

0.097
(97%)

+ AE
(C = 128)

0.287
(90%)

0.083
(66%)

0.031
(48%)

0.265
(93%)

0.094
(94%)

0.297
(93%)

0.081
(69%)

0.028
(49%)

0.259
(94%)

0.092
(94%)

0.240
(79%)

0.082
(66%)

0.035
(53%)

0.238
(85%)

0.081
(81%)

+ AE
(C = 32)

0.161
(50%)

0.020
(16%)

0.003
(4%)

0.180
(63%)

0.059
(59%)

0.189
(59%)

0.024
(20%)

0.003
(5%)

0.188
(68%)

0.062
(63%)

0.134
(44%)

0.019
(15%)

0.003
(4%)

0.147
(52%)

0.045
(45%)

Square Error (MSE) loss for seven epochs to measure their performance. A latent space represen-
tation of size 64 was selected for this comparison benchmark (Table 1). The linear autoencoder
outperforms both LSTM and CNN in all experiments. (Refer to Appendix A.1, Table 6 for the full
list of all compression rates) Also, the 6-layer design choice results in a better score in all experi-
ments.

The model size comparisons (number of parameters) are presented in Table 2. The first step is to
calculate the decoder’s size without using the dimensionality reduction method. As previously men-
tioned, based on the choice of the pre-trained encoder models, the default encoder’s representation
dimension is 768 which results in a decoder with either 48M (for BART encoder) or 33M (other op-
tions) parameters. We use this value as the reference number to measure the reduction percentage. It
is important to keep in mind that even though there are parameters being added to the model from the
autoencoder that affects the percentage, the number of trainable parameters in all the experiments
is equal to the decoder size since the rest of the components (encoder, and autoencoder) are frozen
during the tests. The reason why we have decoders with different parameter counts while using the
same hyper-parameters is because we use each model’s pre-trained tokenizers which have different
vocabulary size, which affects the decoder’s last layer output dimension. BERT, DistilBERT, and
Transformer models use the BERT’s pre-trained tokenizer, and BART uses its own.
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Table 4: The comparison between using the pre-trained AutoEncoder (AE), training the AutoEn-
coder’s encoder jointly with the network from scratch (AE S), using a simple linear layer model for
the projection (LL), and PCA to do the dimensionality reduction.

Models
Inference Methods

Greedy Random Beam
R-1 R-2 R-3 R-L R-W R-1 R-2 R-3 R-L R-W R-1 R-2 R-3 R-W R-L

BERT 0.349 0.133 0.066 0.306 0.117 0.347 0.124 0.058 0.297 0.112 0.283 0.117 0.060 0.270 0.099
+ AE
(C = 512)

0.339
(97%)

0.123
(92%)

0.058
(87%)

0.298
(97%)

0.114
(97%)

0.339
(97%)

0.116
(93%)

0.051
(87%)

0.289
(97%)

0.108
(96%)

0.291
(102%)

0.117
(100%)

0.059
(98%)

0.275
(101%)

0.100
(101%)

+ AE S
(C = 512)

0.289
(82%)

0.079
(59%)

0.027
(40%)

0.262
(85%)

0.093
(79%)

0.300
(86%)

0.079
(63%)

0.025
(43%)

0.258
(86%)

0.092
(82%)

0.26
(92%)

0.084
(71%)

0.033
(55%)

0.250
(92%)

0.086
(86%)

+ LL
(C = 512)

0.277
(79%)

0.083
(62%)

0.033
(50%)

0.260
(84%)

0.092
(78%)

0.283
(81%)

0.080
(64%)

0.030
(51%)

0.254
(85%)

0.090
(80%)

0.234
(82%)

0.083
(70%)

0.036
(60%)

0.238
(88%)

0.081
(81%)

+ PCA
(C = 458)

0.143
(40%)

0.016
(12%)

0.002
(3%)

0.156
(50%)

0.046
(39%)

0.158
(45%)

0.017
(13%)

0.002
(3%)

0.159
(53%)

0.048
(42%)

0.116
(40%)

0.013
(11%)

0.002
(3%)

0.131
(48%)

0.038
(38%)

Table 5: The comparison of a few vanilla encoder-decoder model generated summaries to the ones
generated by the same model with the addition of AE with a latent space size of 384. Both results
are generated using the greedy decoding method.

Model Vanilla Model Generated Summary (Greedy) +AE Model Generated Summary (Greedy)

Transformer

masked men armed with handguns have robbed three banks
in pittsburgh area . they are believed to have had military
training and are being described as ’ armed and extremely
dangerous ’ . the men are believed to have threatened to
kidnapping those at their targets and shoot police . however ,
the way that the men handle

two men armed with handguns robbed three banks in pittsburgh area so
far this year . the unknown men , who are seen on surveillance footage
pointing their guns at bank employees ’ heads , have threatened to
kidnapping those at their targets and shoot police . however , the way
the men handle their weapons has led

BART

two men are believed to have had military training and are
being described by the fbi as ’armed and extremely
dangerous’. the men are seen holding their finger stretched
along the barrel of his gun, just off of the trigger, a safety
method used by law enforcement. the men, who wear dark

two pennsylvania bank robber are believed to have had military training.
they are believed to have been armed and extremely dangerous. the
men are believed to have been armed with a pair of masked men
armed with handgun. the men are believed to have been from
pittsburgh.

BERT

two pennsylvania bank robbers have robbed three banks in
the pittsburgh area so far this year . the unknown men , who
are seen on surveillance footage , have threatened to
kidnapping those at their targets and shoot police . the two
men , both 5 ’ 5 ’ - 9 ’ and april 10 , are described as

two pennsylvania bank robbers armed with handguns have been
robbed in the pittsburgh area so far this year . they have been seen
jumping over the counter as they take their guns at targets and shoot
them at police . the two men , who are seen on surveillance footage ,
have threatened to kidnapping those at their

DistilBERT

two robbers have been seen in a series of recent heisting
robberies . the men are believed to have had military training
and are being described as ’ armed and extremely dangerous ’
. the men are believed to have been armed and armed . the
men are believed to have been armed and extremely
dangerous .

two masked men armed with handguns have robbed three banks in the
pittsburgh area so far this year . they are believed to have had military
training and are being described by fbi as ’ armed and extremely
dangerous ’ . the men are believed to have had military training and are
being described by the fbi as

The proposed method results on the text summarization task are shown in Table 3 where the classic
ROUGE (R-1, R-2, R-3, R-L, and R-W) metric is reported using the greedy, weighted random
sampling, and beam search decoding strategies. Autoencoders are trained with four (32, 128, 384,
512) different latent space dimensions (C) to analyze the effect of these dimensionality reductions.
The models are also evaluated using the BERTScore (Zhang et al., 2019) metric and the results
follow the same direction. (Refer to Appendix A.4)

Our configurations not only reduce the number of parameters in the network by reducing the decoder
size, but also shows the ability to increase the model’s summarization ability with a higher score
compared to the original setup for the Transformer and DistilBERT models. The experiments show
that adding an AE with C = 512 outperforms the same vanilla encoder-decoder network. Both
BART and BERT experiments with the same AE size outperformed their vanilla model in several
metrics only using the beam search method; however, the rest of the scores with a smaller decoder
are still competitive. An even more surprising result is that a smaller dedicated Transformer with
the proposed method and C = 384 performed better than BART and BERT in all the summarization
benchmarks.

It also worth noting that the greedy inference method constantly results in better scores, with the
weighted random sampling method following closely. The fact that beam search algorithm leans to-
wards shorter sequences (Wu et al., 2016) reduces the ROUGE scores since there are fewer matching
N-grams in the generated and target summaries. It does not mean that the sentences structure/quality
are flawless using greedy/weighted random sampling, or poor using beam search, the results just re-
flect what the ROUGE score is measuring: an N-gram overlap between the generated and the target
sequences.

Our ablation results show (Table 4) the impact of autoencoder pre-training step on the final score. It
surpasses both training the AEenc jointly with the network from scratch (AE S) and using a simple
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learnable linear layer for projecting (LL). Lastly, the PCA dimensionality reduction technique does
not produce desirable results. The results also show that using an autoencoder with a latent space
size of 384 (C = 384) generates ROUGE score close to the vanilla model. It reduces the decoder
size by 46% from 48M to 24M for the BART model and 44% from 33M to 16M parameters for the
other models. The critical point is that the combination of this configuration associated with greedy
decoding algorithm shows no noticeable degrading quality in the generated summary. (Table 5)

5 CONCLUSION

In this paper, we presented a method to use pre-trained encoders models in a sequence-to-sequence
setting while training a small decoder from a compress representation of the decoder’s output for
automatic text summarization task. The proposed architecture is based on an autoencoder pre-trained
to reduce the encoder’s representation size. The resulting compressed latent representation is used
as inputs for a decoder. The main idea is that decreasing the size of the AE latent representation
leads to dramatic decrease in the decoder size. We have shown that by reducing the encoder’s output
dimension from 768 to 384, not only we can reduce the decoder size by 44%, but it will also keep
95% of the R-1 score in the worst case (BERT) or increase it up to 105% with DistilBERT. Moreover,
even with almost 80% reduction in the decoder size we can still keep 90% of the ROUGE score with
our dedicated transformer and DistilBERT architectures.

Our method can be directly used together with other approaches such as distillation, pruning and
quantization to further reduce the network size. One of our future research projects will be to
investigate which of such combination could lead to the best compromise between the size and the
accuracy of the model. It might also be interesting to study the effectiveness of our approach on
other generative tasks like translation and question answering for further future works.
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A APPENDIX

A.1 AUTOENCODER ARCHITECTURE

Table 6 shows the full results of the different autoencoders building blocks and sizes. The linear layer
AE outperforms both LSTM and CNN in almost all the compression sizes. While the only exception
is the LSTM network with the smallest latent space dimension (32) that narrowly achieved better
accuracy, none of the experiments had an acceptable performance in that representation size. Also,
it shows that the CNN architecture resulted in the worst score by a large margin.

Table 7 shows the details of the 6-layer linear architecture that consists of 3 projections in each
encoder and decoder. (Illustrated in Fig. 2) The idea is to keep a gentle decrease in size for large
latent spaces, and to have enough learning capacity with wider networks in smaller compressed
sizes.

Table 6: The MSE loss value of the selected 3 network types (LSTM, linear, CNN) with a different
number of layers.

Type Compression Rate Number of Layers MSE Loss

LSTM

32 6 0.0905

64

2 0.1176
4 0.0863
6 0.0810
8 0.0849

10 0.1043
128 6 0.0670
256 6 0.0543
384 6 0.0462
448 6 0.0427
512 6 0.0400

Linear

32 6 0.0930

64
4 0.0752
6 0.0766
8 0.0775

128 6 0.0637
256 6 0.0453
384 6 0.0278
448 6 0.0239
512 6 0.0200

CNN 64
4 0.2666
6 0.2759
8 0.2750

Table 7: The autoencoder models projections for different compression rates.

First Projection (P1) Second Projection (P2) Third Projection /
Compressed Latent Space Size (C)

640 576 512
608 528 448
576 480 384
640 320 256
512 256 128
512 256 64
512 256 32
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A.2 EXTRA RESULTS FOR BERT MODEL + AE

We did a few more experiments on the BERT model to find the optimal latent space size and ROUGE
score combination. As shown in Table 8, the intermediate C values are also following the same trend
as presented in Table 6.

Table 8: The ROUGE score of more experiments on the optimal latent space size options.

Models
Inference Methods

Greedy Random Beam
R-1 R-2 R-3 R-L R-W R-1 R-2 R-3 R-L R-W R-1 R-2 R-3 R-W R-L

+ AE
(C = 448) 0.337 0.123 0.059 0.297 0.112 0.337 0.115 0.051 0.289 0.108 0.283 0.113 0.057 0.270 0.097

+ AE
(C = 256) 0.323 0.109 0.048 0.285 0.105 0.323 0.101 0.041 0.277 0.101 0.272 0.103 0.048 0.262 0.093

+ AE
(C = 64) 0.250 0.048 0.011 0.226 0.077 0.234 0.047 0.011 0.227 0.077 0.195 0.047 0.013 0.199 0.064

A.3 MORE GENERATED SUMMARIES EXAMPLES

The samples of generated summaries using the weighted random sampling and beam search infer-
ence methods are presented in Tables 9, and 10. Both tables are using an autoencoder with a latent
space size of 384 which showed promising results in our experiments. The generated summaries
maximum length is set to 60 tokens in all experiments. All the generated summaries sound good
and capture the main information of the original texts.

Table 9: Comparing the generated summaries of the vanilla model and the model with a latent space
size of 384 using the weighted random sampling decoding method.

Model Vanilla Model Generated Summary
(Weighted Random Sampling)

+AE Generated Summary
(Weighted Random Sampling)

Transformer

masked men armed with handguns have robbed three banks
in pittsburgh area so far this year . they are believed to be
armed and extremely dangerous . they are thought to have
been armed with handguns and are thought to be from
pittsburgh . the suspects are described as white , 5 ’ 8 ’ to 5

the men , who are seen on surveillance footage pointing guns at bank
employees ’ heads , have threatened to kidnapping those at their targets
and shoot police . however , the way that the two men handle their
weapons has led the fbi to suspect that the thieves are actually former
police officers themselves . they are also

BART

two men have been robbed by the fbi since april 10, according
to surveillance footage. they have been seen holding his finger
stretched along the barrel of his gun. they have been seen
jumping over the counter as they begin their heists. the two
robbers have a gun worn during the robberies

two pennsylvania bank robbery suspects have been seen in a string of
recent heists. the suspects are believed to have been from pittsburgh.
the suspects are believed to be from pittsburgh because of their
attitudes.

BERT

the unknown men , who are seen on surveillance footage ,
have threatened to kidnap those at their targets and shoot
police . the two men , both 5 ’ 5 ’ - 9 ’ and april 10 , have also
been taken to the bank in pittsburgh , pennsylvania . the fbi
believes the two suspects may have

two pennsylvania bank robbers armed as they do a series of recent
robberies . they have been described as ’ armed and extremely
dangerous ’ . they have been seen on surveillance footage showing the
two men . they have been described as ’ armed and extremely
dangerous ’ and dangerous .

DistilBERT

the men , who wear dark sweatpants , are believed to be
armed and extremely violent . the two men are thought to have
been armed and armed . they are believed to be from
pittsburgh , pennsylvania , who have been robbed three banks
. the men are thought to have been wearing the gun and a gun .

two masked men are thought to have robbed three banks in pittsburgh
this year . they are believed to have been armed and extremely
dangerous . they have been described as armed and extremely
dangerous .

Table 10: Comparing the generated summaries of the vanilla model and the model with a latent
space size 384 using the beam search decoding method.

Model Vanilla Model Generated Summary (Beam Search) +AE Generated Summary (Beam Search)

Transformer masked men armed with handguns have robbed three banks
in pittsburgh area so far this year , most recently on april 10

two men armed with handguns robbed three banks in pittsburgh area so
far this year , most recently on april 10

BART

the men, who are seen on surveillance footage pointing their
guns at bank employees’ heads, have threatened to
kidnapping those at their targets and shoot police. the two men
are actually former police officers themselves.

two pennsylvania bank thieves are believed to have had military training
and are being described by the fbi as ’armed and extremely dangerous’.

BERT two pennsylvania bank robbers are believed to have had
military training and are being described by

two pennsylvania bank robbers armed with handguns have been
robbed in the pittsburgh area so far this year , most recently on april 10

DistilBERT

a pair of masked men armed with handguns have robbed
three banks in the pittsburgh area so far this year , most
recently on april 10 . the unknown men , who are seen on
surveillance footage pointing their guns at bank employees ’
heads , have threatened to kidnapping and shoot police .

two masked men armed with handguns have robbed three banks in the
pittsburgh area so far this year , most recently on april 10
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A.4 BERTSCORE RESULTS

The following table (Table 11) demonstrates the evaluation results of the proposed method using the
BERTScore metric. The mentioned metric is also confirming the paper’s discussions on contextual
level.

Table 11: Comparing the vanilla and proposed models generated summaries quality using the
BERTScore metric.

Model Inference Method Vanilla +AE (C = 512) +AE (C = 384) +AE (C = 128) +AE (C = 32)

Transformer
Greedy 0.858 0.861 0.860 0.846 0.801

Random 0.857 0.860 0.859 0.847 0.809
Beam 0.852 0.858 0.857 0.853 0.805

BART
Greedy 0.867 0.865 0.863 0.845 0.814

Random 0.869 0.864 0.862 0.845 0.819
Beam 0.866 0.866 0.865 0.851 0.821

BERT
Greedy 0.858 0.857 0.854 0.854 0.809

Random 0.857 0.856 0.854 0.843 0.815
Beam 0.841 0.854 0.854 0.846 0.814

DistilBERT
Greedy 0.798 0.855 0.855 0.842 0.809

Random 0.836 0.855 0.854 0.844 0.815
Beam 0.802 0.856 0.855 0.846 0.814
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