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Abstract
How can an artificial agent learn to solve a wide
range of tasks in a complex visual environment
in the absence of external supervision? We
decompose this question into two problems,
global exploration of the environment and
learning to reliably reach situations found during
exploration. We introduce the Explore Achieve
Network (ExaNet), a unified solution to these by
learning a world model from the high-dimensional
images and using it to train an explorer and
an achiever policy from imagined trajectories.
Unlike prior methods that explore by reaching
previously visited states, our explorer plans
to discover unseen surprising states through
foresight, which are then used as diverse targets
for the achiever. After the unsupervised phase,
ExaNet solves tasks specified by goal images
without any additional learning. We introduce
a challenging benchmark spanning across four
standard robotic manipulation and locomotion
domains with a total of over 40 test tasks.
Our agent substantially outperforms previous
approaches to unsupervised goal reaching and
achieves goals that require interacting with
multiple objects in sequence. Finally, to
demonstrate the scalability and generality of
our approach, we train a single general agent
across four distinct environments. For videos,
see https://sites.google.com/view/
exanet/home.

1 Introduction
This paper tackles the question of how to build an au-
tonomous agent that can achieve a diverse set of tasks speci-
fied by a user at test time, such as a legged robot standing
in certain pose, a robotic arm rearranging blocks between
bins, or performing chores in a kitchen. Such a general
system would be difficult to realize within the traditional re-
inforcement learning (RL) paradigm, where a user specifies
task rewards that the agent finds by sampling its environ-
ment. Designing task rewards requires domain knowledge,
is time-consuming, and prone to human errors. Moreover,
traditional RL would have to explore and retrain for every
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Figure 1: ExaNet learns a world model without any supervi-
sion, and uses it to train two policies in imagination. The
explorer finds new images and the achiever learns to reach
them. Once trained, the achiever reaches user-specified
goals zero-shot without further training at test time.

new task. Instead, the problem of solving diverse tasks is of-
ten studied under the paradigm of unsupervised RL, where
an agent learns skills without any supervision, which enable
solving human-specified goals with no further training.

Two challenges Building a capable unsupervised agent
for reaching arbitrary goals presents two major challenges.
First, the user-specified goals are often diverse and rare
situations, hence the agent needs to globally explore its en-
vironment. Second, the agent then needs to learn to reliably
achieve the diverse intrinsic goals it found during explo-
ration to prepare itself for user-specified goals at test time.
We propose a unified approach that learns a world model
together with an explorer policy and a goal achiever policy
in a fully unsupervised manner to address both challenges.

Goal exploration Prior methods for unsupervised goal
reaching approach the exploration problem by relabeling tra-
jectories with previously visited states as goals (Andrychow-
icz et al., 2017; Warde-Farley et al., 2018) or by sampling
goals from a density model of previous inputs (Nair et al.,

https://sites.google.com/view/exanet/home
https://sites.google.com/view/exanet/home
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Figure 2: We benchmark our method across four visual control tasks of varying difficulty: RoboYoga (Walker, Quadruped),
RoboBins, and RoboKitchen. A representative sample of the test-time goals is shown here. RoboYoga benchmark features
complex locomotion and precise control of high-dimensional agents, RoboBins features manipulation with multiple objects,
and RoboKitchen features a variety of diverse tasks that require complex control strategies such as opening a cabinet.

2018). The goals can be sampled uniformly (Nair et al.,
2018), or rarely visited goals can be oversampled (Ecoffet
et al., 2019; Pong et al., 2019; Zhang et al., 2020). These
approaches have in common that they explore by visiting
goals that either have been reached before or are interpola-
tions of previously reached states. They do not explore far
beyond the frontier and suffer from a chicken and egg prob-
lem: the policy does not yet know how to reach interesting
goals and thus repeats already known behaviors. We ob-
serve that this leads to poor exploration performance in such
methods. To rectify this issue, we leverage a learned world
model to train an explorer policy in imagination. Instead of
“generating” a goal, explorer “discovers” goals by execut-
ing a sequence of actions optimized in imagination to find
novel states with high information gain (Sekar et al., 2020;
Shyam et al., 2018). These states can be several steps away
from the frontier unlocking diverse data for goal reaching
in environments where exploration is nontrivial.

Goal reaching The diverse experience collected by the
explorer provides start and goal states for training the goal
achiever policy. Because ExaNet does not rely on goal
relabeling (Andrychowicz et al., 2017), we are free to train
the achiever using on-policy trajectories generated by the
world model (Hafner et al., 2019; 2020; Kaiser et al., 2019;
Sutton, 1991). This requires measuring the distance between
an the states along an imagined trajectory and the goal,
a non-trivial problem when inputs are high-dimensional
images. We empirically analyze two choices for the distance
measures, namely the cosine distance in latent space and a
learned temporal distance and provide recommendations on
which distance function is appropriate for different settings.

Contributions The introduce the Explore Achieve Net-
work (ExaNet), an unsupervised goal reaching agent that

trains an explorer and an achiever within a shared world
model. At test time, the achiever solves challenging loco-
motion and manipulation tasks provided as user-specified
goal images. For a thorough evaluation, we introduce a new
challenging goal reaching benchmark by defining a total
of 40 diverse goal images across 4 different robot environ-
ments. In contrast to common RL benchmarks such as Atari
(Bellemare et al., 2013) that require training over 50 differ-
ent agents and thus enormous computational resources, our
unsupervised RL benchmark only requires training 4 agents,
which are then evaluated across many tasks, allowing for
faster iteration time and making the research more acces-
sible. Using this benchmark, we experimentally study the
following scientific questions:

• Does the separation into explorer and achiever poli-
cies enable reaching more challenging goals than were
previously possible and outperform state-of-the-art ap-
proaches?

• How does forward-looking exploration of goals compare
to previous goal exploration strategies?

• How does the distance function affect the ability to reach
goals in different types of environments?

• Can we train one general MaxNet to control different
robots across visually distinct environments?

2 Explore Achieve Network (ExaNet)
Our aim is to build an agent that can achieve arbitrary user-
specified goals after learning in the environment without
any supervision. This problem presents two challenges,
collecting trajectories that contain diverse goals and learning
to reach these goals when specified as a goal image. We
introduce a simple solution based on a world model and
imagination training that addresses both challenges. The
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Algorithm 1 Explore Achieve Network (ExaNet)

1: initialize: World modelM, Replay buffer D, Explorer
πe(at | zt), Achiever πg(at | zt, g)

2: while exploring do
3: TrainM on D
4: Train πe in imagination of M to maximize explo-

ration rewards
∑
t r

e
t .

5: Train πg in imagination of M to maximize∑
t r

g
t (zt, g) for images g ∼ D.

6: (Optional) Train d(zi, zj) to predict distances j − i
on the imagination data from last step.

7: Deploy πe in the environment to explore and growD.

8: Deploy πg in the environment to achieve a goal image
g ∼ D to grow D.

9: end while
10: while evaluating do
11: given: Evaluation goal g
12: Deploy πg in the world to reach g.
13: end while

world model represents the agent’s current knowledge about
the environment and is used for training two policies, the
explorer and the achiever. To explore novel situations, we
construct an estimate of which states the world model is
still uncertain about. To reach goals, we train the goal-
conditioned achiever in imagination, using the images found
so far as unsupervised goals. At test time, the agent reaches
user-specified goals by deploying the achiever. A summary
of the training procedure is given in Algorithm 1.

2.1 World Model
To efficiently predict potential outcomes of future actions
in environments with high-dimensional image inputs, we
leverage a Recurrent State Space Model (RSSM) (Hafner
et al., 2018) that learns to predict forward using compact
model states that facilitate planning (Buesing et al., 2018;
Watter et al., 2015a). In contrast to predicting forward in
image space, the model states enables efficient parallel plan-
ning with a large batch size and can reduce accumulating
errors (Saxena et al., 2021). The world model consists of
the following components:

Encoder: et = encφ(xt)

Posterior: qφ(st | st−1, at−1, et)
Dynamics: pφ(st | st−1, at−1)
Image decoder: pφ(xt | st)
Reward predictor: pφ(rt | st)

(1)

The model states st contain a deterministic component ht
and a stochastic component zt with diagonal Gaussian dis-
tribution. The deterministic component is implemented as
the recurrent state of a Gated Recurrent Unit (GRU) (Cho
et al., 2014). The encoder and decoder are convolutional

neural networks (CNNs) and the remaining components are
multi-layer perceptrons (MLPs). The world model is trained
with the evidence lower bound (ELBO) and stochastic back-
propagation (Kingma and Welling, 2013; Rezende et al.,
2014) with the Adam optimizer (Kingma and Ba, 2014).

2.2 Explorer
To efficiently explore, we seek out surprising states imag-
ined by the world model (Schmidhuber, 1991; Sekar et al.,
2020; Shyam et al., 2018; Sun et al., 2011), as opposed
to retrospectively exploring by revisiting previously novel
states (Bellemare et al., 2016; Beyer et al., 2019; Burda et al.,
2018; Pathak et al., 2017). As the world model can predict
model states that correspond to unseen situations in the envi-
ronment, the imagined trajectories contain more novel goals,
compared to model-free exploration that is limited to the
replay buffer. To collect informative novel trajectories in
the environment, we train an exploration policy πe from
the model states st in imagination of the world model to
maximize an exploration reward:

Explorer: πe(at | st)
Explorer Value: ve(st)

(2)

To explore the most informative states, we estimate the
epistemic uncertainty as a disagreement of an ensemble of
transition functions. We train an ensemble of 1-step models
to predict the next model state from the current model state.
The ensemble model is trained alongside the world model
on model states produced by the encoder qφ. Because the
ensemble models are initialized at random, they will differ,
especially for inputs that they have not been trained on
(Lakshminarayanan et al., 2016; Pathak et al., 2019):

Ensemble: f(st, θ
k) = ẑkt+1 for k = 1..K (3)

The exploration reward is the variance of the ensemble
predictions, which approximates the expected information
gain (Ball et al., 2020; Sekar et al., 2020):

ret (st)
.
=

1

N

∑
n

Var{k}
[
f(st, θk)

]
n (4)

The explorer πe maximizes the sum of future exploration re-
wards ret using the Dreamer algorithm (Hafner et al., 2019),
which considers long-term rewards into the future by maxi-
mizing λ-returns under a learned value function. As a result,
the explorer is trained to seek out situations are as infor-
mative as possible from imagined latent trajectories of the
world model, and is periodically deployed in the environ-
ment to add novel trajectories to the replay buffer, so the
world model and goal achiever policy can improve.

2.3 Achiever
To leverage exploration for learning to reach goals, we train
a goal achiever policy πg that receives a model state and a
goal as input. Our aim is to train a general policy that is
capable of reaching many diverse goals. To achieve this in
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Figure 3: Explore Achieve Networks learn a single general world model that is used to train an explorer and a goal
achiever policy. The explorer (πe, left) is trained on imagined latent state rollouts of the world model st:T to maximize
the disagreement objective ret = LD(st). The goal achiever (πg, right) is conditioned on a goal g and is also trained on
imagined rollouts to minimize a distance function d(st+1, eg). Goals are sampled randomly from replay buffer images. For
training a temporal distance function, we use the imagined rollouts of the achiever and predict the number of time steps
between each two states. By combining forward-looking exploration and data-efficient training of the goal achiever in
imagination, Explore Achieve Network provides a simple and powerful solution for unsupervised reinforcement learning.

a data-efficient way, it is crucial that environment trajecto-
ries that were collected with one goal in mind are reused
to also learn how to reach other goals. While prior work
addressed this by goal relabeling which makes off-policy
policy optimization a necessity (Andrychowicz et al., 2017),
we instead reuse and amplify past trajectories via the world
model that is trained on past trajectories lets us generate an
unlimited amount of new imagined trajectories for training
the goal achiever on-policy in imagination. This simplifies
policy optimization and can improve stability, while still
sharing all collected experience across many goals.

Achiever: πg(at | st, eg)
Achiever Value: vg(st, eg)

(5)

To train the achiever, we sample a goal image xg from the re-
play buffer and compute its embedding eg = encφ(xg). The
achiever aims to maximize an unsupervised goal-reaching
reward rg(st, eg). We discuss different choices for this re-
ward in Section 2.4. We again use the Dreamer algorithm
(Hafner et al., 2019) for training, where now the value func-
tion also receives the goal embedding as input.

In addition to imagination training, we found it important to
perform practice trials with the achiever in the true environ-
ment, so that any model inaccuracies along the goal reaching
trajectories may be corrected. To perform practice trials,
we sample a goal from the replay buffer and execute the
goal achiever policy for that goal in the environment. These
trials are interleaved with exploration episodes collected by
the exploration policy in equal proportion. We note that
the goal achiever learning is entirely unsupervised because
the practice goals are simply images the agent encountered
through exploration or during previous practice trails.

2.4 Latent Distances
Training the achiever policy requires us to define a goal
achievement reward rg(st, eg) that measures how close the
latent state st should be considered to the goal eg. One
simple measure is the cosine distance in the latent space
obtained by inputting image observations into the world-
model. However, such a distance function brings “visually”
similar states together even if they could be farther apart in
“temporal” manner as measured by actions needed to reach
from one to other. This bias makes this suitable only to sce-
narios where most of pixels in the observations are directly
controllable, e.g., trying to arrange robot’s body in certain
shape, such as RoboYoga poses in Figure 2. However, many
environments contain agent as well as the world, such as
manipulation involves interacting with objects that are not
directly controllable. The cosine distance would try match-
ing the entire goal image, and thus places a large weight on
both matching the robot and object positions with the de-
sired goal. Since the robot position is directly controllable it
is much easier to match, but this metric overly focuses on it,
yielding poor policies that ignore objects. We address this is
by using the number of timesteps it takes to move from one
image to another as a distance measure (Hartikainen et al.,
2020; Kaelbling, 1993). This ignores large changes in robot
position, since these can be completed in very few steps, and
will instead focus more on the objects. This temporal cost
function can be learned purely in imagination rollouts from
our world model allowing as much data as needed without
taking any steps in the real world.
Cosine Distance To use cosine distance with ExaNets, for
a latent state st, and a goal embedding eg , we use the latent
inference network q to infer sg , and define the reward as the
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cosine similarity:

rgt (st, eg)
.
=
∑
i

stisgi

where st = st/‖st‖2, sg = sg/‖sg‖2
(6)

This metric is the cosine of the angle between the two vec-
tors st, sg in the N−dimensional latent space. Using this
simple metric in our Explore-Achieve framework, we obtain
an effective agent for unsupervised goal reaching, especially
for environments with a single controllable agent.

Temporal Distance To use temporal distances with Ex-
aNets, we train a neural network d to predict the number of
time steps between two image predicted embeddings of an
imagination trajectory. We sample a trajectory containing si
by running the current goal-reaching policy in imagination
using a random initial and goal images sampled from the
replay buffer. We select the second state sj to be a random
state later in the same trajectory and regress towards the
ground truth number of time steps between two states. We
implement the temporal distance in terms of predicted image
embeddings êt+k to remove extra recurrent information:

Predicted CNN embedding: emb(st) = êt ≈ et
Temporal distance: dω(êt, êt+k) ≈ k/H,

(7)

where H is the maximum distance equal to the imagination
horizon. Training distance function only on imagination
data from the same trajectory would cause it to predict poor
distance to far away states coming from other trajectories,
such as images that are impossible to reach during one
episode. To incorporate learning signal from such far-away
goals, we include them by sampling images from a different
trajectory. We annotate these negative samples with the
maximum possible distance, so that the agent always prefers
images that were seen in the same trajectory.

rgt (st, eg) = −dω(êt, eg)
where êt = emb(st), eg = encφ(xg)

(8)

We note this learned distance function depends on the train-
ing data policy. However, as the policy becomes more com-
petent, the distance estimates will be closer to the optimal
number of time steps to reach a particular goal (Hartikainen
et al., 2020). In our method, we always use the data from
the latest policy to train the distance function via the imagi-
nation training, ensuring that the convergence is fast.

3 Experiments
We compare ExaNet to several goal reaching approaches to
evaluate its performance and understand the contributions
of the individual components. As few prior methods have
shown reaching diverse goals from image inputs, we per-
form a fair comparison by implementing the baselines with
the same model and policy optimization as our method:

• DDL Dynamic Distance Learning Hartikainen et al.
(2020) trains a temporal distance function similar to our
method. Following the original algorithm, DDL uses
greedy exploration and trains the distance function on
the replay buffer instead of in imagination.

• DIAYN Diversity is All You Need (Eysenbach et al.,
2018) learns a latent skill space using mutual information
between skills and reached states. We augment DIAYN
with our explorer policy and use the skill predictor to
obtain a skill for a given test image (Choi et al., 2020).

• GCSL Goal-Conditioned Supervised Learning
(Ghosh et al., 2019) trains the goal policy on replay
buffer goals and mimics the actions that previously led
to the goal. We also augment GCSL with our explorer
policy, as we found no learning success without it.

• SkewFit SkewFit (Pong et al., 2019) uses model-free
hindsight experience replay and explores by sampling
goals from the latent space of a VAE (Kingma and
Welling, 2013; Rezende et al., 2014). Being a state-
of-the-art agent, we use the original implementation.

We introduce three benchmarks for unsupervised goal reach-
ing by defining goal images for a diverse set of four existing
environments, shown in Figure 2:

• RoboYoga constists of the walker and quadruped do-
mains of the DeepMind Control Suite (Tassa et al., 2018),
with 12 goal images each that correspond to different
body poses for each of the two environments, such as
lying down, standing up, and balancing.

• RoboBins Based on MetaWorld (Yu et al., 2020), we
create a scene with a Sawyer robotic arm, two bins, and
two blocks of different colors. The goal images specify
tasks that include reaching, manipulating only one block,
and manipulating both blocks.

• RoboKitchen is the challenging environment from
(Gupta et al., 2019), where a franka robot can interact
with various objects such as a burner, light switch, sliding
cabinet, hinge cabinet, microwave, or kettle. Our goal
images describe tasks that require interacting with only
one object, as well as interacting with two objects.

3.1 RoboYoga Benchmark
RoboYoga environments are directly controllable, since they
only contain the robot and no other objects. We recall that
for such settings we expect the cosine distance to be an
effective metric, since success requires exactly matching
the goal image. Training is thus faster compared to using
temporal distances, where the metric is learned from scratch.
From Figure 4 we see that this is indeed the case, and Ex-
aNet with the cosine metric outperforms all prior approaches
on both RoboYoga environments. Furthermore with tem-
poral distances ExaNet makes better progress compared to
prior work on a much larger number of goals as can be seen
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Figure 4: RoboYoga Quadruped Benchmark. Left: success rates averaged across all 12 tasks. Right: final performance
on each specific task, ranging from light green (0) to dark blue (100%). We observe that the simple latent cosine distance
function works well on this task, substantially outperforming other competing agents. In the heatmap, most agents can solve
the easy tasks, but only ExaNet makes progress on solving a majority of the tasks and achieves good performance.

from the per-task performance, even though average success
over goals looks similar to DDL. We found similar results
on the Walker environment, included in the appendix.

3.2 RoboBins Benchmark

RoboBins involves interaction with blocks, which are not
directly controllable, and so we expect ExaNets to perform
better with the temporal distance metric. ExaNets beats all
prior approaches, and is able to make progress on many
different goals. From the per-task performance in Figure 5
we see that the main difference in performance between
using temporal distance and cosine is on the tasks involving
two blocks, which are the most complex tasks in this envi-
ronment (the last 3 columns of the per-task plot). The best
performing prior method is DDL which solves reaching,
but struggles on other tasks. This is because DLL sees a
lot less data relevant to the harder tasks owing to poorer
exploration since it doesn’t have the disagreement objective.
We see that while skewfit make some progress on reaching,
it completely fails on harder tasks involving manipulation.

3.3 RoboKitchen Benchmark

This benchmark involves a diverse set of objects, that require
different manipulation behavior. We see from Figure 6 that
our approach with temporal distances is able to achieve mul-
tiple goals, some of which require sequentially completing
2 tasks in the environment. All prior methods barely make
progress due to the challenging nature of this benchmark,
and furthermore using the cosine distance function makes
very limited progress. The gap in performance between
using the two distance functions is much larger in this envi-
ronment compared to RoboBins since there are many more
objects and they are not as clearly visible as the blocks.

3.4 Single Agent Across All Environments

In the previous sections we have shown that our approach
can reach diverse goals in different environments. However,
we trained a new agent for every new environment, which
doesn’t scale well to large numbers of environments. Thus
we investigate if we can train a train a single agent across
all the environments in the benchmark (i.e RoboKitchen,
RoboBins, Walker and Quadruped). From Figure 8 we see
that our approach with learned temporal distance is able
to make progress on tasks from RoboKitchen, RoboBins
Reaching, RoboBins Pick & Place and Walker, while the
best prior method on the single-environment tasks (DDL)
mainly solves walker tasks and reaching from RoboBin.

3.5 Ablation Study

Ablation of different components We ran ablations of
our approach on the RoboBins environment, where we ex-
amined the effect of removing negative sampling while
training the distance function, removing disagreement for
the exploration policy, and training the distance function
with real world data from the replay buffer instead of imag-
ination data. From the plots in Figure 7 we see that using
a separate explorer policy is the most critical component,
and without the explore the agent does not collect good
data from which to learn from. Without negative sampling
the agent learns slower, and this is probably because the
distance function doesn’t produce reasonable outputs when
queried on images that are more than horizon length apart,
since it is never trained on such data. Training the distance
function with real data converges to slightly lower success
than using imagination data, since real data is sampled in an
off-policy manner due to its limited quantity.
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Figure 5: RoboBin Goal Benchmark. Left: success rates averaged across all 8 tasks. Right: final performance on each
specific task. While the simple latent cosine distance function works on simple goals, temporal distances outperform it on
the harder tasks requiring manipulations of several blocks (last three heatmap columns), as this distance metric is able to
focus on the part of the environment that’s hardest to manipulate. We further observe that other competing agents perform
poorly and only solve the easiest reaching tasks, struggling either with exploration or learning the downstream policy.
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Figure 6: RoboKitchen Benchmark. Left: success rates averaged across all 12 tasks. Right: final performance on each
specific task. This enviroment presents both extremely challenging exploration and downstream control, with most prior
agents never solving any tasks. ExaNet is able to learn both an effective explorer and achiever policy. Temporal distances
help ExaNet focus on small parts such as the light switch, necessary to solve these tasks. ExaNet makes progress on four out
of six base tasks, and is even able to achieve goal images requiring interacting with two objects.

4 Related Work

Learning to Achieve Goals Learning to reach many dif-
ferent goals has been commonly addressed with model-
free methods that learn a single goal-conditioned policy
(Andrychowicz et al., 2017; Kaelbling, 1993; Schaul et al.,
2015). Recent work has combined these approaches with
various ways to generate training goals, such as asymmetric
self-play (OpenAI et al., 2021; Sukhbaatar et al., 2017) or
by sampling goals of intermediate difficulty (Ecoffet et al.,
2019; Florensa et al., 2018). These approaches can achieve
remarkable performance in simulated robotic domains, how-
ever, they focus on the settings where the agent can directly

perceive the low-dimensional environment state.

A few works have attempted to scale these model-free meth-
ods to visual goals by using contrastive (Warde-Farley et al.,
2018) or reconstructive (Nair et al., 2018; Pong et al., 2019)
representation learning. However, these approaches strug-
gle to perform meaningful exploration problem as no clear
reward signal is available to guide the agent toward solving
interesting tasks. Chebotar et al. (2021); Tian et al. (2020)
avoid this challenge by using a large dataset of interesting
behaviors. Pong et al. (2019); Zhang et al. (2020) explore
by generating goals similar to those that have already been
seen, but do not try to explore truly novel states.
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Figure 7: Ablations Testing different components of ExaNets with temporal distances on the RoboBins benchmark. We
observe that training a separate exploration policy is crucial for solving most tasks, as the agent never discovers them in the
no explorer version. Training temporal distance on negative samplies significantly speeds up learning, and both negative
sampling and training in imagination as opposed to real data is important for performance on the hardest tasks.

Figure 8: Single agent trained across Kitchen, RoboBin,
Walker, with final performance on each specific task. Ex-
aNet with temporal distance is able to make progress on
tasks from all environments, while ExaNet+cosine and DDL
don’t make progress on the kitchen tasks.

Particularly relevant approaches used model-based methods
to learn to reach goals via explicit planning (Ebert et al.,
2018; Finn and Levine, 2017) or learning model-regularized
policies (Pathak et al., 2018). However, these approaches
are limited by short planning horizons. In contrast, we learn
long-horizon goal-conditioned value functions which allows
us to solve more challenging tasks. More generally, most of
the above approaches are limited by simplistic exploration,
while our method leverages model imagination to search for
novel states, which significantly improves exploration and
in turn the downstream capabilities of the agent.

Learning Distance Functions A crucial challenge in vi-
sual goal-reaching settings is the choice of the reward or
the cost function for the goal achieving policy. Several ap-
proaches use representation learning to create a distance
in the feature space (Nair et al., 2018; Warde-Farley et al.,
2018; Watter et al., 2015b). However, this naive distance
function may not be most reflective of how hard a particular

goal is to reach. One line of research has proposed using
the mutual information between the current state and the
goal as the distance metric (Achiam et al., 2018; Choi et al.,
2020; Eysenbach et al., 2018; Gregor et al., 2016), however,
it remains to be seen whether this approach can scale to
more complex tasks.

Other works proposed temporal distances that measure the
amount of time it takes to reach the goal. One approach is to
learn the distance with approximate dynamic programming
using Q-learning methods (Eysenbach et al., 2019; Florensa
et al., 2019; Kaelbling, 1993). Our approach is most similar
to Hartikainen et al. (2020), who learn a temporal distance
with simple supervised learning on recent policy experience.
In contrast to (Hartikainen et al., 2020), we always train this
distance function on the most recent policy data in imagi-
nation, and we further leverage world models and powerful
exploration strategies to scale to significantly harder tasks.

5 Conclusion

We presented Explorer Achiever Network (ExaNet), a uni-
fied agent for unsupervised RL that explores its environment,
learns to reach the discovered goals, and solves image-based
tasks at test time in zero-shot way. By searching for nov-
elty in imagination, ExaNet explores better than prior ap-
proaches and discovers meaningful behaviors in more di-
verse environments than considered by prior work. Further,
ExaNet is able to solve challenging downstream tasks spec-
ified as images, even being able to train a single policy in
several different environments together. By proposing a
challenging benchmark and the first agent to achieve mean-
ingful performance on these tasks, we hope to stimulate
future research on unsupervised agents, which we believe
are fundamentally more scalable than traditional agents that
require a human to design the tasks and rewards for learning.
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A Additional results
Videos and Code We provide additional qualitative
results of ExaNet task executions in a video provided both
as zip file in supplementary as well as on the project website
(https://sites.google.com/view/exanet/).
We invite the reviewers to look at the supplemental videos
to better put our quantitative results in context. We also
provide our source code for reproducibility.

Results We are providing the remaining results we did not
have space for in the main paper. These include results on
the walker environment in Figure 11. We further provide co-
incidental success rates during exploration in Figure 9. We
also show all the goals for all the environments in Figure 10.

B Additional experimental details
Environments The episode length is 150 for RoboBin
and RoboKitchen and 1000 for RoboYoga. We show all
goals in Figure 10 For both Walker and Quadruped, the
success criterion is based on the largest violation across all
joints. The global rotation of the Quadruped is expressed as
the three independent Euler angles. Global position is not
taken into account for the success computation. RoboBin.
The success criterion is based on placing all objects in the
correct position within 10 cm. For reaching task, the success
is based on placing the arm in the correct position within 10
cm. RoboKitchen uses 6 degrees of freedom end effector
control implemented with simulation-based inverse kine-
matics. The success criterion is based on placing all objects
in the correct position with a threshold manually determined
by visual inspection. Note that this is a strict criterion: the
robot needs to place the object in the correct position, while
not perturbing any other objects.

Evaluation details We reported success percentage at
the final step of the episode. All experiments were ran
3 seeds. Plots were produced by binning every 3e5 samples.
Heatmap shows performance at the best timestep. Each
model was trained on a single high-end GPU provided by ei-
ther an internal cluster or a cloud provider. The training took
2 to 5 days. The final experiments required approximately
100 training runs, totalling approximately 200 GPU-days of
used resources.

Implementation details We base our agent on the
Dreamer implementation. For sampling goals to train the
achiever, we sample a batch of replay buffer trajectories
and sample both the initial and the goal state from the same
batch, therefore creating a mix of easy and hard goals. To
collect data in the real environment with the achiever, we
sample the goal uniformly from the replay buffer. We in-
clude code in the supplementary material. The code to
reproduce all experiments will be made public upon the
paper release under an open license.
Hyperparameters ExaNets hyperparameters follow
Dreamer V2 hyperparameters for DM control (which
we use for all our environments). For the explorer, we
use the default hyperparameters from the Dreamer V2
codebase (Hafner et al., 2020). We use action repeat of 2
following Dreamer. ExaNets includes only one additional
hyperparameter, the proportion of negative sampled goals
for training the distance function. It is specified in Table 1.
The hyperparameters were chosen by manual tuning due to
limited compute resources. The base hyperparameters are
shared across all methods for fairness.
Baselines implementation details
• DIAYN. We found that this baseline performs best when

the reverse predictor is conditioned on the single image
embedding e rather than latent state s. We use a skill
space dimension of 16 with uniform prior and Gaussian
reverse predictor with constant variance. For training, we
produce the embedding using the embedding prediction
network from Section 2.4. We observed that DIAYN
can successfully achieve simple reaching goals using the
skill obtained by running the reverse predictor on the
goal image. However, it struggles with more complex
tasks such as pushing, where it only matches the robot
arm.

• GCSL. We found that this baseline performs best when
the policy is conditioned on the single image embedding
e rather than latent state s. This baseline is trained on
the replay buffer images and only uses imagined rollouts
to train an explorer policy. For training, we sample a
random image from a trajectory and sample the goal
image from the uniform distribution over the images
later in the trajectory following (Ghosh et al., 2019). We
similarly observe that this baseline can perform simple
reaching goals, but struggles with more complex goals.

https://sites.google.com/view/exanet/
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Hyperparameter Value Considered values

Action repeat (all environments) 2 2
Proportion of negative samples 0.1 0, 0.1, 0.5, 1
Proportion of explorer:achiever data collected in real environment 0.5:0.5 0.5:0.5
Proportion of explorer:achiever training imagination rollouts 0.5:0.5 0.5:0.5

Table 1: Hyperparameters for ExaNets
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Figure 9: Coincidental success rate on RoboBins

Figure 10: All goals for the four environments.
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Figure 11: RoboYoga Walker Benchmark
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