
Iterative Decoding for Compositional Generalization in Transformers

Anonymous ACL submission

Abstract

Deep learning models generalize well to in-001
distribution data but struggle to generalize002
compositionally, i.e., to combine a set of003
learned primitives to solve more complex004
tasks. In sequence-to-sequence (seq2seq)005
learning, transformers are often unable to pre-006
dict correct outputs for longer examples than007
those seen at training. This paper introduces it-008
erative decoding, an alternative to seq2seq that009
(i) improves transformer compositional gen-010
eralization in the PCFG and Cartesian prod-011
uct datasets and (ii) evidences that, in these012
datasets, seq2seq transformers do not learn it-013
erations that are not unrolled. In iterative de-014
coding, training examples are broken down015
into a sequence of intermediate steps that the016
transformer learns iteratively. At inference017
time, the intermediate outputs are fed back to018
the transformer as intermediate inputs until an019
end-of-iteration token is predicted. We con-020
clude by illustrating some limitations of iter-021
ative decoding in the CFQ dataset.022

1 Introduction023

Deep learning architectures achieve state-of-the-art024

(SOTA) results in a wide array of machine learning025

problems, where their impressive performance is026

attributed to their ability to generalize (Goodfellow027

et al., 2016; LeCun et al., 2015). However, this abil-028

ity is typically limited to generalization under the029

statistical learning paradigm, i.e., in-distribution030

generalization, and does not encompass general-031

izing compositionally. Compositional generaliza-032

tion is the ability of a model to combine a set of033

learned primitives to execute more complex tasks.034

For instance, for a ground robot whose motion plan-035

ner has learned to execute the instructions “walk”,036

“jump”, and “jump right”, generalizing composi-037

tionally would be to be able to execute the instruc-038

tion “walk right” (Lake and Baroni, 2018).039

In machine learning, compositional generaliza-040

tion is desirable for two reasons. First, because it041

is a crucial aspect of intelligence observed in both 042

humans and classical artificial intelligence. In hu- 043

mans, a prevailing example is the way children can 044

solve complicated mathematical expressions after 045

being taught basic arithmetics. Second, because 046

it can increase a model’s data efficiency. By en- 047

dowing models with the ability to extrapolate to 048

unseen examples involving compositions of prim- 049

itives not seen during training, compositionality 050

acts as a mechanism for data augmentation. 051

In this paper, our goal is to increase composi- 052

tional generalization in transformers with particular 053

focus on natural language-like tasks, where com- 054

positionality is key. Understanding that for models 055

to execute composite tasks they need to be taught 056

how to compose, we introduce iterative decoding, 057

an alternative to sequence-to-sequence (seq2seq) 058

learning that decomposes the process of mapping 059

the inputs to the outputs of each example into a se- 060

quence of intermediate steps which the transformer 061

learns to perform iteratively. During training, each 062

input-output pair is converted into a sequence of 063

“intermediate input-intermediate output” pairs. Dur- 064

ing prediction, the predicted intermediate outputs 065

are adapted into the subsequent intermediate in- 066

puts, which are fed back to the transformer until an 067

end-of-iteration (EOI) token is produced. 068

Our main contributions are (i) showing that it- 069

erative decoding, especially when combined with 070

architectural modifications such as relative atten- 071

tion (Shaw et al., 2018) and copy decoding (Gu 072

et al., 2016), improves compositional generaliza- 073

tion in transformers trained on PCFG (top left of 074

Fig. 1) (Hupkes et al., 2020) and Cartesian product 075

(bottom left of Fig. 1), and (ii) evidencing that, in 076

these datasets, seq2seq transformers cannot learn 077

iterations unless they are unrolled. PCFG is a string 078

editting dataset in which we consider two composi- 079

tionally hard splits. In Cartesian product, the goal 080

is to generalize to longer input vectors than those 081

on which the model is trained. We also present 082

1



Figure 1: Examples of input-output pairs in the PCFG, Cartesian product, and CFQ datasets.

numerical results on CFQ (Keysers et al., 2019), a083

semantic parsing dataset consisting of natural lan-084

guage questions and SPARQL queries (right of Fig.085

1). The results obtained on CFQ evidence a limita-086

tion of iterative decoding, which can be sensitive087

to the ordering of the intermediate steps.088

We believe that iterative decoding can potentially089

improve transformer performance in other compo-090

sitionally hard problems in NLP. Nevertheless, the091

definition of the intermediate steps for these tasks is092

dataset-specific and is out of the scope of this work.093

Our goal is not to propose iterative decoding as a094

“one-size-fits-all” solution, but rather to show that,095

when a heuristic is available (as is the case of the096

datasets we consider), iterative decoding can im-097

prove the ability of transformers to generalize com-098

positionally [cf. Remark 1]. In the case of PCFG,099

Cartesian and CFQ, the specific construction of the100

intermediate steps is detailed in the experimental101

results section (Secs. 4.1 through 4.3).102

2 Background103

In this section, we introduce some background and104

related work on compositional generalization and105

transformer architectures.106

2.1 Compositional generalization107

Compositional generalization (or compositional-108

ity (Fodor, 2001)) refers to the ability of a109

model/agent that has learned to perform a set of ba-110

sic operations—primitives—to generalize to more111

complex operations, i.e., operations consisting of112

compositions of the learned primitives (Lake and113

Baroni, 2018). Examples of operations requiring114

compositionality are shown in Fig. 1 for three115

datasets. For instance, the top-left corner shows116

an example from the PCFG (Hupkes et al., 2020)117

dataset. In some versions of this dataset, the model118

is trained to solve several atomic string editing oper-119

ations (such as copy and swap_first_last),120

and how to compose them. The test data contains 121

longer sequences with more operations than seen 122

during training. Hence, the model’s performance 123

relies on compositional generalization. This string 124

editing example can be seen as an instance of pro- 125

ductivity, one of the five types of compositional 126

generalization identified by Hupkes et al. (2020) 127

which involves generalizing to longer examples. 128

Another type of compositional generalization is 129

systematicity, which is the ability to recombine 130

known parts and rules in ways different than those 131

seen during training. 132

Early works on compositionality have explored 133

the limitations of machine learning models in gener- 134

alizing compositionally. Liška et al. (2018) showed 135

that, while it is theoretically possible for a recurrent 136

neural network (RNN) to generalize in this way, 137

only a small fraction of the models they trained 138

behaved compositionally. Lake and Baroni (2018) 139

proposed SCAN, a dataset consisting of navigation 140

commands to be mapped to action sequences, and 141

observed that while RNNs trained on it generalized 142

well when the differences between the training and 143

test sets were small, they failed when more sys- 144

tematic compositional skills were required. Other 145

datasets created to measure compositionality in- 146

clude ListOps (Nangia and Bowman, 2018), where 147

latent tree models perform worse than purely se- 148

quential RNNs, and PCFG (Hupkes et al., 2020) 149

and CFQ (Keysers et al., 2019), where neither long- 150

short term memory (LSTM) nor transformer-based 151

architectures perform well. 152

More recently, a popular research direction is 153

to try to endow these machine learning models 154

with a “compositional generalization bias”. Kim 155

et al. (2021) saw benefits in converting CFQ into a 156

classification task and using structural annotations 157

(e.g., entity links) as attention masks in transform- 158

ers. Ontañón et al. (2021) were able to improve 159

transformer compositional generalization on a va- 160

2



Figure 2: Examples of intermediate input-output pairs in the PCFG and Cartesian product datasets.

riety of compositionally hard datasets by making161

architectural modifications such as relative atten-162

tion, copy decoders, and weight sharing. Taking a163

similar approach, Csordás et al. (2021) observed164

performance improvements from relative position165

encodings and scaled embeddings. Other strategies166

to improve compositional generalization include167

increased pretraining (Furrer et al., 2020), data aug-168

mentation (Andreas, 2019) and differentiable neu-169

rocomputers (Graves et al., 2016).170

Closely related to our work, PonderNet (Banino171

et al., 2021) trains a model that iterates internally172

to achieve a better compromise between training173

accuracy and generalization. It predicts both an174

output and a halting probability at each step, oper-175

ating recurrently. Iterative decoding also operates176

recurrently, but with two important differences: (i)177

the intermediate steps are supervised, and (ii) the178

model is trained to produce a special token to indi-179

cate the end of the iteration rather than predicting180

a halting probability at each step.181

2.2 Transformer model182

In this paper we focus on transformer models.183

Despite struggling to generalize compositionally,184

transformer-based architectures such as BERT (De-185

vlin et al., 2018) and T5 (Raffel et al., 2019) were186

popularized by their remarkable performance in187

machine translation (Zhu et al., 2020), question188

answering (Ainslie et al., 2020), summarization189

(Zhang et al., 2019) and other natural language190

processing (NLP) tasks.191

Introduced by Vaswani et al. (2017), the basic 192

transformer model is composed of an encoder and a 193

decoder. The encoder is made up of layers consist- 194

ing of a self-attention sublayer and a feedforward 195

sublayer. The decoder has the same structure, but 196

with an additional attention sublayer to compute 197

the decoder-to-encoder attention. The input to the 198

transformer is a sequence of token embeddings. 199

Since these embeddings do not carry information 200

about the position of each token in the sequence, 201

a position encoding is typically added to the input 202

embeddings. These are then fed to the encoder, 203

which encodes all tokens at once and forwards the 204

result to the decoder. From the encoded input and 205

the decoded output tokens generated so far, the de- 206

coder generates the distribution of the next output 207

token, one token at a time. 208

We experiment with two extensions of the origi- 209

nal transformer architecture: relative position en- 210

codings (Shaw et al., 2018) and copy decoding 211

(Gu et al., 2016). We chose these techniques be- 212

cause they have been shown to improve composi- 213

tionality in seq2seq learning (Ontañón et al., 2021) 214

and require less parameters than larger transformer 215

models. To each pair of tokens in the input, relative 216

position encodings assign a label that equal to the 217

minimum between their relative distance and a rel- 218

ative attention radius. Relative position encodings 219

are thus position invariant, which means that two 220

tokens that are k positions apart will attend to each 221

other in the same way regardless of their absolute 222

positions in the sequence. This also makes them in- 223

3



variant to length of the sequence which, intuitively,224

should improve compositional generalization.225

Copy decoding involves adding a learnable pa-226

rameter that allows to switch between the decoder227

and a copy decoder which produces an indepen-228

dent embedding that can be interpreted as a “copy”229

from the input sequence. This helps with compo-230

sitional generalization because many tasks, e.g.,231

PCFG, have a type of input-output symmetry that232

requires producing parts of the input at the output.233

Copy decoding can also be seen as “pointing” to234

tokens in the input sequence. This pointing mecha-235

nism was proposed in (Gulcehre et al., 2016), and236

Oriol et al. (2015) showed that it allows models to237

generalize beyond the lengths they are trained on.238

3 Iterative Decoding239

To improve compositional generalization in trans-240

formers, we introduce iterative decoding. As illus-241

trated on the right hand side of Fig. 3, iterative242

decoding consists of predicting a series of interme-243

diate outputs y1, y2, y3, . . . from an input x = x0,244

and then adapting these outputs into intermediate245

inputs xi = yi, i > 0, that are fed back to the model246

until the final output yN = y is predicted. This247

can be visualized by considering the PCFG exam-248

ple x = “swap_first_last repeat copy249

J4 A9 N7 V8” on the left hand side of Fig. 2. A250

seq2seq transformer trained on the PCFG dataset is251

expected to output y = “V8 A9 N7 V8 J4 A9252

N7 J4 [END]” in one forward pass (i.e, to go253

from top to bottom in the Fig.). However, in itera-254

tive decoding, the transformer’s output to the input255

x0 = x would be y1 = “swap_first_last256

repeat J4 A9 N7 V8”, which is the first in-257

termediate output of iterative decoding (the sec-258

ond string from the top), and corresponds to259

just executing one of the operations in the in-260

put, copy. Setting x1 = y1 and feeding261

this instruction back to the transformer, we ob-262

tain y2= “swap_first_last J4 A9 N7 V8263

J4 A9 N7 V8” (the third string from the top).264

The intermediate output y2 then becomes the inter-265

mediate input x2, which the transformer processes266

to produce the final output y3 = “V8 A9 N7 V8267

J4 A9 N7 J4 [END]”.268

The main motivation for iterative decoding269

comes from the very idea of compositional general-270

ization: by decomposing complex instructions into271

intermediate steps, iterative decoding essentially272

teaches models how to compose. Another motiva-273

Figure 3: Prediction routines for the seq2seq trans-
former (left) and iterative decoding transformer (right).

tion, related to the first, is that iterative decoding 274

mimics how humans are taught how to perform 275

many compositional tasks. For example, when 276

teaching how to solve the arithmetic expression 277

2× (1 + 1), first we demonstrate how to solve the 278

inner sum, then how to eliminate the parentheses, 279

and finally how to compute the product. A third 280

motivation for iterative decoding is that learning 281

step by step can potentially prevent the model from 282

learning shortcuts, i.e., from overfitting to specific 283

examples instead of learning compositional sym- 284

metries applicable to examples requiring the same 285

type of compositional generalization to be solved. 286

3.1 Implementation 287

To implement iterative decoding, we modify both 288

how models are trained and how they predict. 289

Training. Instead of being trained on the original 290

inputs and outputs, iterative decoding transformers 291

are trained on the “intermediate input-intermediate 292

output” pairs (xi−1, yi) for 1 ≤ i ≤ N . These in- 293

puts and outputs are pre-generated, and their form 294

is specific to each task (see Sec. 4 for examples for 295

PCFG, Cartesian product, and CFQ). Naturally, the 296

addition of the “intermediate input-intermediate 297

output” pairs to the training data increases the num- 298

ber of training samples, which leads to an increase 299

of the computational cost per epoch proportional 300

to the average number of intermediate steps. In our 301

experiments, we avoid this by training the iterative 302

decoding and the seq2seq transformer not for the 303

same number of epochs, but for the same number 304

of steps. Another difference with seq2seq training 305

is that in iterative decoding an EOI token has to 306

be added to the training outputs so that the model 307

learns when to stop. Intuitively, the intermediate 308

outputs correspond to providing supervision on the 309

steps that the transformer should execute to solve 310

the task. This is analogous to how, rather than 311

learning to solve arithmetic expressions by look- 312

ing at input-output mappings, humans are taught to 313

solve the intermediate steps involved in their com- 314

putation. Further note that there is no recurrence 315

4



Table 1: Sentence accuracy on the training and test sets for the random, productivity and systematicity splits of the
PCFG dataset, for seq2seq and iterative decoding.

Model Random Productivity Systematicity
train test train test train test

Seq2seq 87.2% 85.9% 90.6% 34.2% 89.5% 64.8%
+ Relative attention 98.1% 97.4% 98.8% 65.1% 98.2% 85.7%
+ Copy decoder 97.7% 97.0% 98.3% 63.9% 98.2% 85.1%
Iterative decoding 96.5% 93.2% 96.6% 45.7% 94.6% 82.9%
+ Relative attention 99.8% 99.2% 100% 91.9% 99.7% 97.0%
+ Copy decoder 99.7% 99.4% 100% 93.3% 99.8% 97.8%

involved in the training of the iterative decoding316

transformer. An intermediate output produced by317

the model during training does not need to be fed318

back to the model as an intermediate input, be-319

cause the subsequent intermediate input is already320

an input sample of the training set. Moreover, “in-321

termediate input-intermediate output pairs” corre-322

sponding to the same example do not need to be323

presented to the transformer in any particular order,324

and can be shuffled at random in the training set.325

Prediction. Depending on the number of inter-326

mediate steps necessary to iteratively decode an327

example, the prediction requires multiple forward328

passes of the transformer. Hence, it is implemented329

as a while loop where the stopping condition is330

finding the EOI token. This is illustrated on Fig. 3,331

which compares seq2seq (left) with iterative de-332

coding predictions (right). After each intermediate333

prediction, a data processing step may be needed334

to adapt the intermediate outputs into the following335

intermediate inputs in some datasets. As we could336

see from the example above, this is not necessary in337

PCFG, because it has a built-in recursive structure.338

But it is necessary in Cartesian product and CFQ as339

we detail in Sec. 4. While ideally this processing340

step should be learned, in this paper we provide it341

manually to develop a preliminary understanding342

of the advantages of iterative decoding.343

Remark 1 (Construction of intermediate steps.)344

The construction of the intermediate steps is345

dataset-specific. In PCFG, Cartesian and CFQ,346

this construction is detailed in Secs. 4.1 through347

4.3. While in principle the intermediate steps do348

not have to fit any specific requirements, their def-349

inition will typically rely on a heuristic method350

to decompose the input into “intermediate input-351

intermediate output” pairs, which push the model352

to learn the basic primitives operations in a dataset,353

which can then be composed to perform more com-354

plex operations. In some datasets, e.g., PCFG, this355

is straightforward. In others, e.g., Cartesian, there356

are multiple admissible options to decompose the 357

input into intermediate steps. In more complex 358

problems such as CFQ and other semantic pars- 359

ing tasks, this decomposition is less obvious and 360

requires some engineering. The definition of heuris- 361

tics for different datasets is out of the scope of this 362

paper as our goal is not to propose iterative decod- 363

ing as a “one-size-fits-all” solution, but rather to 364

show that, when a heuristic is available, iterative 365

decoding can improve the ability of transformers 366

to generalize in a compositional way. 367

4 Results and Discussion 368

In this section we describe the iterative decod- 369

ing schemes for PCFG, Cartesian product and 370

CFQ, and present and discuss numerical results 371

obtained for seq2seq and iterative decoding trans- 372

formers on these datasets. All transformers have 373

` = 6 encoder/decoder layers, embedding dimen- 374

sion d = 64, feedforward dimension f = 256 375

and h = 4 attention heads. For each dataset, the 376

seq2seq and the iterative decoding transformer are 377

trained for the same number of training steps and 378

each experiment is repeated 3 times. Implementa- 379

tion details can be found in Appendix B. 380

4.1 PCFG 381

PCFG is an artificial translation dataset proposed 382

by Hupkes et al. (2020) and generated by a prob- 383

abilistic context free grammar. A more detailed 384

description can be found in Appendix A, and an ex- 385

ample of input-output pair is shown on the top left 386

corner of Fig. 1. There are six training-test splits 387

of PCFG. The first is a random split which we use 388

as a baseline. The other five are compositionally 389

hard splits used to measure the five different types 390

compositional generalization. We focus on two of 391

them: productivity and systematicity. In the pro- 392

ductivity split, the training samples have up to 8 393

string operations, while the test samples have 9 or 394

more. In the systematicity split, the operations in 395

5



the test set they are combined in different ways396

than in the training set.397

We apply iterative decoding to PCFG by break-398

ing down each example into a number of interme-399

diate steps equal to the number of string editing400

operations present in the original input. Each in-401

termediate step solves the rightmost instruction in402

the current intermediate input. Up until the last403

step, all of the intermediate outputs are themselves404

string editing instructions. Hence, the intermedi-405

ate outputs do not need to be adapted and serve as406

the intermediate inputs to the next step. Hence, the407

only additional processing of the dataset needed for408

iterative decoding is the addition of the EOI token409

[END] at the end of the final output. An iterative410

decoding PCFG example with three intermediate411

steps is shown on the left hand side of Fig. 2.412

To compare iterative decoding with seq2seq, we413

start with a basic transformer model with absolute414

position encodings as in the original architecture415

by Vaswani et al. (2017). This is so we can observe416

the advantages of iterative decoding in the absence417

of other compositional generalization biases. The418

results are reported in Table 1, where we see that419

in the random split of the data, the test accuracy of420

the seq2seq model is close to its training accuracy.421

This indicates that the model generalizes well to422

in-distribution samples. In contrast, in the produc-423

tivity and systematicity splits there is a dramatic424

drop in test accuracy. Hence, the basic seq2seq425

transformer struggles to generalize composition-426

ally. In the fourth row of Table 1, we see that for427

the iterative decoding transformer the gap between428

training and test accuracy is much smaller. This in-429

dicates that iterative decoding increases the ability430

of transformers to generalize compositionally.431

Although iterative decoding helps with compo-432

sitionality, the iterative decoding test accuracy is433

still low compared to their training accuracy. This434

implies that composing individual operations into435

complex instructions is only one facet of composi-436

tionality, which makes sense as decomposing com-437

plex instructions into individual operations only438

helps if the model can execute each operation cor-439

rectly (see Appendix C for more details). There-440

fore, we repeat our experiments with transformers441

including modifications shown to increase composi-442

tional generalization in seq2seq learning (Ontañón443

et al., 2021): relative attention (Shaw et al., 2018)444

and copy decoding (Gu et al., 2016).445

The results for seq2seq and iterative decoding446

with relative attention are shown in the second and 447

fifth rows of Table 1. The relative attention radius 448

is r = 8. As expected, relative attention helps both 449

models with compositionality, particularly in the 450

productivity split. Moreover, iterative decoding 451

achieves a much better test accuracy, of over 90%, 452

on both the productivity and systematicity splits. 453

Results for transformers with relative attention and 454

copy decoders are shown in the third and sixth rows 455

of Table 1. Additionally, examples of errors made 456

by both transformers can be found in Appendix 457

D. While adding a copy decoder does not improve 458

compositional generalization in the seq2seq trans- 459

former, it helps in iterative decoding, nearly closing 460

the gap between training and test accuracy on the 461

systematicity split, and leading to a 2% increase 462

in test accuracy on the productivity split—which 463

can be attributed to the ability to copy the longer 464

strings in this split. 465

4.2 Cartesian product 466

In the Cartesian product dataset (Ontañón et al., 467

2021), the inputs are two vectors and the outputs 468

are their Cartesian product. A more detailed de- 469

scription of this dataset can be found in Appendix 470

A and an example of input-output pair is shown 471

on the bottom left corner of Fig. 1. We consider 472

four train-test splits. In the first split, both the train- 473

ing and test set consists of samples with up to five 474

numbers and letters drawn i.i.d and split at random. 475

This is the “easy split”. In the other splits, the 476

training set is the same as in the first split, but the 477

test set consists of examples with either more num- 478

ber, more letters, or both. These are “hard splits”, 479

which we use to measure productivity. 480

To iteratively decode a Cartesian product, we 481

first need to define what are going to be the itera- 482

tive decoding intermediate steps. We consider two 483

options as illustrated on the right corner of Fig. 2. 484

The first is decoding one row at a time., which en- 485

tails decoding the Cartesian product between one 486

element from the first vector and all elements of 487

the second vector at each intermediate step. The 488

second is decoding one token pair at a time, which 489

entails decoding only the product between one el- 490

ement of the first vector and one element of the 491

second vector at each intermediate step. If the 492

lengths of the input vectors are `1 and `2 respec- 493

tively, decoding row by row requires `1 and token 494

by token `1 × `2 intermediate steps. 495

When decoding rows, the intermediate output 496

6



Table 2: Sentence accuracy achieved by the seq2seq and iterative decoding transformers with relative attention
(r = 8) on the training set and on multiple test sets of the Cartesian product dataset.

Iterative decoding
Split Seq2seq short inputs long inputs

row token row token
Train (up to 5 numbers/letters) 100% 100% 100% 100% 100%
Test (up to 5 numbers/letters) 97.8% 100% 100% 100% 100%
Test (6 numbers, 5 letters) 14.3% 89.2% 100% 100% 100%
Test (5 numbers, 6 letters) 12.2% 0% 99.5% 0% 100%
Test (6 numbers/letters) 1.1% 0% 98.7% 0% 100%

at a given step is the current row. When decoding497

token pairs, the intermediate outputs are the current498

token pairs. Since these intermediate outputs do499

not carry any information about the next row or500

pair of tokens, they cannot be used as intermediate501

inputs. To construct intermediate inputs, we con-502

catenate a copy of the original input—the two vec-503

tors separated by the [SEP] token—with a second504

separation token [SEP2] followed by either (i) the505

last intermediate output, or (ii) all the intermediate506

outputs so far. Scenario (i), which is illustrated on507

the right hand side of Fig. 2, yields short inter-508

mediate inputs where the last intermediate output509

acts as a “pointer” to where the decoding process510

stopped in the previous step. Scenario (ii) produces511

long intermediate inputs. While in both scenarios512

the intermediate outputs need to be concatenated513

to produce the final prediction, their prediction rou-514

tines are different because scenario (i) only needs515

to append the current intermediate output to the516

input vectors to produce the next intermediate out-517

put, but scenario (ii) needs to append the current518

intermediate output to the last intermediate input519

to produce the next intermediate input.520

To analyze the compositional generalization of521

seq2seq and iterative decoding transformers on522

the Cartesian product dataset, we consider the fol-523

lowing experimental setup. Both transformers are524

trained on samples with up to five numbers and525

letters. Then, they are tested on the four different526

test sets described above: up to five numbers and527

letters; six numbers and five letters; five numbers528

and six letters; and six numbers and letters. The529

second, third and fourth test sets can be seen pro-530

ductivity tests. Additionally, we only report results531

for transformers with relative attention (relative532

radius r = 8) as they were the best performing533

architecture in our experiments.534

The average training and test accuracies535

achieved by the seq2seq model, as well as by the536

iterative decoding model in the short/long interme-537

diate input and row/token scenarios, are reported in 538

Table 2. The seq2seq model (first column) achieves 539

100% accuracy on the training set and close to that 540

on the “easy” test set with up to five numbers and 541

letters. However, it pretty much fails in all of the 542

“hard” test sets, implying that it cannot general- 543

ize compositionally when even one extra token is 544

added to the input. The models that decode one row 545

at a time (second and fourth columns) do slightly 546

better as they achieve accuracy closer to the train- 547

ing accuracy in the test set with six numbers and 548

five letters. However, they still fail at the test sets 549

with six letters, which means that the iterative de- 550

coding transformer trained to decode one row at 551

a time only generalizes well to calculating Carte- 552

sian products with a larger number of numbers or, 553

equivalently, of rows. 554

In contrast, the iterative decoding models that 555

decode one pair of tokens at a time (third and fifth 556

columns) achieve close to 100% accuracy in all 557

compositionally hard splits. This means that the 558

iterative decoding transformer can only generalize 559

to longer iterations when these iterations are the 560

ones that were unrolled during training via iterative 561

decoding. If we take a transformer that has been 562

trained to decode rows, and add one more letter 563

to the input—resulting in one more pair of tokens 564

in each row—it will not be able to predict the ex- 565

tra pair because it has learned how to unroll more 566

rows through iterative decoding but not more token 567

pairs within a row. We thus conclude that in the 568

Cartesian product dataset transformers struggle to 569

learn iteration by themselves, i.e., without the help 570

of iterative decoding. This is an important result 571

because, despite being universal function approx- 572

imators in theory (Yun et al., 2019), it sheds light 573

onto what transformers can actually learn in prac- 574

tice. Finally, the difference between long and short 575

inputs is not substantial, but longer inputs seem to 576

be better, probably because they provide the trans- 577

former with more memory (i.e., more information 578

7



Table 3: Sentence accuracy achieved by the seq2seq
and iterative decoding transformers with relative atten-
tion (r = 8) on the training and test sets of the MCD1
split of the CFQ dataset.

Split Seq2seq It. decoding
Train 99.8% 99.7%
Test 37.1% 32.5%

about the previous intermediate steps).579

4.3 CFQ580

Introduced by Keysers et al. (2019), the CFQ581

dataset consists of natural language questions and582

their corresponding SPARQL queries against the583

Freebase knowledge base. Keysers et al. (2019)584

introduces a number of compositionally hard splits585

of the CFQ dataset. In this paper, we focus on the586

MCD1 split. Additional details are described in587

Appendix A and an example of question and query588

are shown on the right hand side of Fig. 1.589

Both PCFG and Cartesian product were well590

adapted for iterative decoding because, in PCFG,591

the recursive structure of the inputs makes it easy592

to define the intermediate steps, and in Cartesian593

product we have the flexibility to choose their gran-594

ularity. On the CFQ dataset, defining the interme-595

diate steps is less obvious. The natural choice is to596

define each intermediate output as a clause of the597

query as illustrated in Fig. 2. However, unlike in598

PCFG—where the order of the intermediate steps599

was defined by the recursion—and in Cartesian600

product—where the order of the tokens in the in-601

put determines the order of the intermediate steps—602

this ordering of the intermediate steps is not very603

“natural” because it is alphabetic. Hence, on CFQ604

transformers also have to learn how to sort.605

To make learning this ordering easier for the606

transformer, we define long intermediate inputs for607

the intermediate steps. These intermediate inputs608

are constructed by concatenating the question with609

all of the previous intermediate outputs so far. As610

such, on CFQ the iterative decoding prediction rou-611

tine is the same as for Cartesian product with long612

inputs: we append the current intermediate output613

to the previous intermediate input to obtain the next614

intermediate input, and, once the EOI token is pre-615

dicted, concatenate all of the intermediate outputs616

to obtain the query prediction.617

The average training and test accuracies are618

shown in Table 3, where we only report results619

for the best performing model in our experiments—620

relative attention with relative radius r = 8. While 621

the accuracies achieved by our models are lower 622

than the SOTA results reported in (Furrer et al., 623

2020) with pretraining, note that our goal is not 624

to achieve the best possible performance for CFQ, 625

but rather to compare transformers with the same 626

architecture trained via seq2seq and iterative decod- 627

ing. Both the seq2seq and the iterative decoding 628

transformer exhibit low compositionality, however, 629

iterative decoding performs worse than seq2seq. 630

This reinforces the limitations of iterative decoding 631

that we observed in Cartesian product, namely, that 632

iterative decoding performance is largely depen- 633

dent on how we define the intermediate steps. 634

In CFQ specifically, we also hypothesize that 635

the worse performance of iterative decoding is tied 636

to the alphabetical ordering of the clauses, as it 637

does not follow naturally from the grammatical 638

structure of the input. Even though sorting these 639

clauses is something that both the seq2seq and the 640

iterative decoding transformer have to learn how 641

to do, in iterative decoding the transformer has to 642

sort at all intermediate steps, so there are more 643

opportunities to make mistakes. In other words, 644

the error probability is larger in iterative decoding, 645

because it compounds with each intermediate step. 646

5 Conclusions 647

This paper introduces iterative decoding as an al- 648

ternative to seq2seq learning. Through numerical 649

experiments on PCFG and Cartesian product, we 650

demonstrate that, in general, seq2seq transform- 651

ers do not learn iterations that are not unrolled. 652

By unrolling them, iterative decoding improves 653

transformer compositional generalization. How- 654

ever, iterative decoding has a limitation, which is 655

that it depends on how the intermediate steps are 656

defined. We hypothesize that their ordering is the 657

reason why the seq2seq transformer outperforms 658

iterative decoding on CFQ, as unnatural orderings 659

require transformers to learn how to sort and itera- 660

tive decoding may increase the overall sorting error 661

probability. In our future work, we aim to apply 662

iterative decoding strategies to more datasets and 663

understand whether the number of iterative steps 664

can be traded for transformer depth. We will fur- 665

ther use iterative decoding to investigate the aspects 666

of compositional generalization that transformers 667

can and cannot learn. A next step is understanding 668

the effect of the order of the intermediate steps and 669

what that says about transformers’ ability to sort. 670

8



References671

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-672
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh673
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.674
2020. Etc: Encoding long and structured inputs in675
transformers. arXiv preprint arXiv:2004.08483.676

Jacob Andreas. 2019. Good-enough composi-677
tional data augmentation. arXiv preprint678
arXiv:1904.09545.679

Andrea Banino, Jan Balaguer, and Charles Blundell.680
2021. Pondernet: Learning to ponder. arXiv681
preprint arXiv:2107.05407.682

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhu-683
ber. 2021. The devil is in the detail: Simple tricks684
improve systematic generalization of transformers.685
arXiv preprint arXiv:2108.12284.686

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and687
Kristina Toutanova. 2018. Bert: Pre-training of deep688
bidirectional transformers for language understand-689
ing. arXiv preprint arXiv:1810.04805.690

Jerry Fodor. 2001. Language, thought and composi-691
tionality. Royal Institute of Philosophy Supplements,692
48:227–242.693

Daniel Furrer, Marc van Zee, Nathan Scales, and694
Nathanael Schärli. 2020. Compositional generaliza-695
tion in semantic parsing: Pre-training vs. specialized696
architectures. arXiv preprint arXiv:2007.08970.697

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.698
2016. Deep learning. MIT press.699

Alex Graves, Greg Wayne, Malcolm Reynolds,700
Tim Harley, Ivo Danihelka, Agnieszka Grabska-701
Barwińska, Sergio Gómez Colmenarejo, Edward702
Grefenstette, Tiago Ramalho, John Agapiou, et al.703
2016. Hybrid computing using a neural net-704
work with dynamic external memory. Nature,705
538(7626):471–476.706

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK707
Li. 2016. Incorporating copying mechanism in708
sequence-to-sequence learning. arXiv preprint709
arXiv:1603.06393.710

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-711
ati, Bowen Zhou, and Yoshua Bengio. 2016.712
Pointing the unknown words. arXiv preprint713
arXiv:1603.08148.714

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and715
Elia Bruni. 2020. Compositionality decomposed:716
how do neural networks generalise? Journal of Arti-717
ficial Intelligence Research, 67:757–795.718

Daniel Keysers, Nathanael Schärli, Nathan Scales,719
Hylke Buisman, Daniel Furrer, Sergii Kashubin,720
Nikola Momchev, Danila Sinopalnikov, Lukasz721
Stafiniak, Tibor Tihon, et al. 2019. Measuring com-722
positional generalization: A comprehensive method723
on realistic data. arXiv preprint arXiv:1912.09713.724

Juyong Kim, Pradeep Ravikumar, Joshua Ainslie, and 725
Santiago Ontañón. 2021. Improving compositional 726
generalization in classification tasks via structure an- 727
notations. arXiv preprint arXiv:2106.10434. 728

Brenden Lake and Marco Baroni. 2018. Generalization 729
without systematicity: On the compositional skills 730
of sequence-to-sequence recurrent networks. In In- 731
ternational conference on machine learning, pages 732
2873–2882. PMLR. 733

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 734
2015. Deep learning. nature, 521(7553):436–444. 735

Adam Liška, Germán Kruszewski, and Marco Baroni. 736
2018. Memorize or generalize? searching for a 737
compositional rnn in a haystack. arXiv preprint 738
arXiv:1802.06467. 739

Nikita Nangia and Samuel R Bowman. 2018. Listops: 740
A diagnostic dataset for latent tree learning. arXiv 741
preprint arXiv:1804.06028. 742

Benjamin Newman, John Hewitt, Percy Liang, and 743
Christopher D Manning. 2020. The eos deci- 744
sion and length extrapolation. arXiv preprint 745
arXiv:2010.07174. 746

Santiago Ontañón, Joshua Ainslie, Vaclav Cvicek, 747
and Zachary Fisher. 2021. Making transform- 748
ers solve compositional tasks. arXiv preprint 749
arXiv:2108.04378. 750

Vinyals Oriol, Fortunato Meire, Jaitly Navdeep, 751
C Cortes, ND Lawrence, DD Lee, M Sugiyama, 752
and R Garnett. 2015. Pointer networks. Advances 753
in neural information processing systems, 28:2692– 754
2700. 755

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 756
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 757
Wei Li, and Peter J Liu. 2019. Exploring the limits 758
of transfer learning with a unified text-to-text trans- 759
former. arXiv preprint arXiv:1910.10683. 760

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 761
2018. Self-attention with relative position represen- 762
tations. arXiv preprint arXiv:1803.02155. 763

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 764
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 765
Kaiser, and Illia Polosukhin. 2017. Attention is all 766
you need. In Advances in neural information pro- 767
cessing systems, pages 5998–6008. 768

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh 769
Rawat, Sashank J Reddi, and Sanjiv Kumar. 770
2019. Are transformers universal approximators of 771
sequence-to-sequence functions? arXiv preprint 772
arXiv:1912.10077. 773

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. Hi- 774
bert: Document level pre-training of hierarchical 775
bidirectional transformers for document summariza- 776
tion. arXiv preprint arXiv:1905.06566. 777

9



Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,778
Wengang Zhou, Houqiang Li, and Tie-Yan Liu.779
2020. Incorporating bert into neural machine trans-780
lation. arXiv preprint arXiv:2002.06823.781

A Dataset Details782

A.1 PCFG783

In all splits of the PCFG dataset, the input data con-784

sists of string editing instructions with four types of785

tokens: unary operation tokens (e.g., reverse),786

binary operation tokens (e.g., append), a string787

separation token “,” (to separate arguments of bi-788

nary operations), and string elements (e.g., B10,789

D2). The output data consists of the strings result-790

ing from the application of the operations; see the791

top left corner of Fig. 1 for an example.792

The main challenge of the PCFG dataset is that793

it requires learning ten string editing operations,794

some of which are very similar. The unary oper-795

ation echo, for instance, only differs from copy796

by repeating the last element of the string. While797

transformers generally achieve good performance798

in the random split of the PCFG dataset, the produc-799

tivity and systematicity splits are harder because800

transformers tend to learn mappings which do not801

exploit compositional symmetries. In particular, a802

key difficulty of the productivity split is that the803

model needs to learn to do "recursion" and apply804

an arbitrary number of operations when input ex-805

amples grow in length. In some cases, the strings to806

modify can also be very long, which places an addi-807

tional capacity burden on transformers by requiring808

them to learn how to copy strings.809

A.2 Cartesian Product810

In the Cartesian product dataset, the input consists811

of two vectors. The first is a vector of numbers.812

The second is a vector of letters, separated from813

the numbers by the special token [SEP]. Both814

numbers and letters are picked at random, without815

repetition, from the decimal digits and the first ten816

letters of the alphabet respectively. The output is817

then the Cartesian product between the first and818

second input vectors. An example of input-output819

pair is shown on the bottom left corner of Fig. 1.820

The productivity splits of the Cartesian prod-821

uct dataset are remarkably hard; even transformers822

with some compositional generalization ability in823

other mathematical datasets have been seen to fail824

(Ontañón et al., 2021). This is due to the fact that,825

in order to solve Cartesian products, models need826

to learn to execute two nested loops. Moreover, 827

the output is quadratic on the size of the inputs. 828

For models that have to learn to predict an end-of- 829

sequence token, extrapolating to longer sequences 830

than those seen during training has been shown to 831

be difficult (Newman et al., 2020). 832

A.3 CFQ 833

Introduced by Keysers et al. (2019), the CFQ 834

dataset consists of natural language questions and 835

their corresponding SPARQL queries against the 836

Freebase knowledge base. Hence, it can be used to 837

perform semantic parsing by taking the questions 838

as the inputs and the queries as the outputs. One of 839

the difficulties of CFQ is that some of its examples 840

require solving Cartesian products. As such, in 841

CFQ transformers may face similar challenges to 842

the ones faced in Cartesian product. Another dif- 843

ficulty relates to the ordering of the clauses in the 844

SPARQL query, which are ordered alphabetically 845

by convention. Not only is this ordering different 846

than the one implied by the order of the tokens in 847

the question, it also requires transformers to learn 848

how to sort. 849

B Implementation Details 850

Across all experiments, the transformer parameters 851

were the same as in the original implementation in 852

(Vaswani et al., 2017), including the learning rate 853

schedule. All experiments were run on machines 854

with a single CPU and four Tesla V100 GPUs with 855

batch size 64 per device. 856

For each dataset, and for both the seq2seq and it- 857

erative decoding splits, the vocabulary size, the size 858

of the training and test sets, and the total number 859

of training steps is shown in Table 4. The itera- 860

tive decoding vocabularies are larger due to the 861

addition of special start, end and separation tokens. 862

The number of training samples is larger for the 863

iterative decoding splits because they include all 864

intermediate steps. To make for a fair comparison, 865

the number of training steps is the same for iterative 866

decoding and seq2seq. 867

C Additional Iterative Decoding Results 868

for PCFG 869

To assess the advantages of iterative decoding un- 870

der no other sources of compositional generaliza- 871

tion, we consider the base transformer (i.e., without 872

relative attention and copy decoder) and analyze its 873

performance on PCFG per number of string editing 874

10



Figure 4: Number of correct predictions versus number of string operations in the input for seq2seq (orange) and
iterative decoding (blue), on the productivity (left) and systematicity (right) splits of PCFG.

Table 4: Vocabulary size, training and test samples, and number of training steps for all seq2seq and iterative
decoding datasets.

Seq2seq Iterative decoding
vocabulary train test vocabulary train test steps

PCFG-i.i.d. 534 82662 9721 535 426558 9721 33325
PCFG-prod. 534 81010 11333 535 346222 11333 27049
PCFG-syst. 534 82168 10175 535 403808 10175 31458

Cartesian-row 26 200000 1024 28 600036 1024 4688
Cartesian-token 26 200000 1024 28 1801869 1024 14077

CFQ 181 95743 11968 186 682470 11968 53318

operations. Namely, in Fig. 4 we plot the number875

of correct predictions achieved by seq2seq (orange)876

and iterative decoding (blue) on the productivity877

and systematicity splits of PCFG. We observe that,878

in the productivity split, the performance improve-879

ment comes mostly from samples with a small num-880

ber of string editing instructions. Consistent with881

Table 1, without any other form of compositional882

generalization bias iterative decoding is more help-883

ful with systematicity.884

We draw a similar conclusion from Fig. 5,885

which plots the error per intermediate step886

((test error)1/N , where N is the number of oper-887

ations) versus the number of operations in the input888

for both splits. The error per intermediate step can889

be seen as the probability of making a mistake at890

any given intermediate step. On the left, this error891

approaches one for a smaller number of operations892

than on the right, indicating that errors compound893

faster in the productivity split. Interestingly, this894

Fig. also corroborates our claim from Sec. 4.1 that895

decomposing complex instructions into individual896

operations only helps if the model can execute each897

operation correctly. In other words, composing in-898

dividual operations into complex instructions is899

only one facet of compositionality, but one with900

which iterative decoding helps.901

D Error Examples for PCFG 902

Tables 5 and 6 show examples of wrong predictions 903

made by the seq2seq and iterative decoding trans- 904

formers with relative attention and copy decoding. 905

11



Figure 5: Error per intermediate step versus number of string operations in the input for the iterative decoding
transformer on the productivity (left) and systematicity (right) splits of PCFG.

Table 5: Productivity error examples for seq2seq and iterative decoding.

Seq2seq
Input shift repeat prepend append Z6 A8 C12 U1 T5 , repeat repeat prepend N8

K15 , S18 B4 , repeat reverse shift echo I2 V2 F5
True output F5 F5 V2 I2 F5 F5 V2 Z6 A8 C12 U1 T5 S18 B4 N8 K15 S18 B4 N8 K15 S18 B4

N8 K15 S18 B4 N8 K15 I2 F5 F5 V2 I2 F5 F5 V2 Z6 A8 C12 U1 T5 S18 B4 N8
K15 S18 B4 N8 K15 S18 B4 N8 K15 S18 B4 N8 K15 I2

Prediction F5 F5 V2 I2 F5 F5 V2 I2 F5 F5 V2 Z6 A8 C12 U1 T5 S18 B4 N8 K15 S18 B4 I2
F5 V2 I2 F5 F5 V2 S18 B4 N8 K15 S18 B4 I2 F5 V2 I2 F5 F5 V2 Z6 A8 C12 U1
T5 S18 B4 N8 K15 S18 B4

Iterative decoding
Input remove_first repeat repeat swap_first_last swap_first_last R9 Q20 N10 ,

shift repeat echo repeat V17 V14 E4 A7
True output V14 E4 A7 V17 V14 E4 A7 A7 V17 V14 E4 A7 V17 V14 E4 A7 A7 V17 END
Prediction V14 E4 A7 V17 V14 E4 A7 A7 V17 V14 E4 A7 V17 V14 E4 E4 A7 V17 END

Table 6: Systematicity error examples for seq2seq and iterative decoding.

Seq2seq
Input swap_first_last remove_first F10 E6 T18 , echo append reverse J18 H10

K12 X11 , swap_first_last repeat remove_second copy U4 E15 I2 , X11 C6
W3

True output U4 K12 H10 J18 I2 E15 I2 U4 E15 U4 X11
Prediction U4 K12 H10 J18 I2 E15 I2 U4 E15 U4 U4 E15 X11

Iterative decoding
Input repeat remove_second repeat prepend echo reverse echo prepend Q7

C15 I14 H13 , P9 O5 A12 K19 , remove_second copy copy G4 W3 U10 S4 ,
swap_first_last echo repeat shift swap_first_last I7 S5 Z16 K13 Q9 ,
copy T16 X18 E15

True output G4 W3 U10 S4 H13 H13 I14 C15 Q7 K19 A12 O5 P9 P9 G4 W3 U10 S4 H13 H13
I14 C15 Q7 K19 A12 O5 P9 P9 G4 W3 U10 S4 H13 H13 I14 C15 Q7 K19 A12 O5
P9 P9 G4 W3 U10 S4 H13 H13 I14 C15 Q7 K19 A12 O5 P9 P9 END

Prediction G4 W3 U10 S4 H13 H13 I14 C15 Q7 K19 A12 O5 P9 P9 G4 W3 U10 S4 H13 H13
I14 C15 Q7 K19 A12 O5 P9 P9 G4 W3 U10 S4 H13 H13 I14 C15 Q7 K19 A12 O5
P9 P9 G4 W3 U10 S4 H13 H13 I14 C15 Q7 K19 A12 O5 P9 K19 END

12


