
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Can Transformers Solve Least Squares to High Precision?

Anonymous Authors1

Abstract

Deep sequence models like Transformers have
achieved remarkable results across language and
vision tasks, but their ability to solve high-
precision numerical problems, crucial in scientific
settings, remains unclear. We explore the capabil-
ities of existing models on the fundamental prob-
lem of least squares, motivated by recent work
suggesting Transformers can implement learning
algorithms on in-context linear regression prob-
lems. Surprisingly, we observe that Transform-
ers struggle to solve least squares to high pre-
cision, even in fully determined settings: their
MSE plateaus at 10−5, 9 orders of magnitude
worse than simple algorithms like gradient de-
scent. Probing for sources of low precision, we
train on basic linear algebra operations and find
that Transformers struggle to precisely learn a
simple element-wise multiplication task. Since
numerical methods rely heavily on linear algebra
primitives, including multiplication, this result
suggests that Transformers struggle to implement
learning algorithms to high precision, in contrast
to prior findings. Our key insight is that gated
convolutional models can exactly implement arith-
metic circuits, including multiplications and poly-
nomials. Using gated convolutions, we instantiate
a weight construction that directly solves least
squares to high precision by explicitly implement-
ing gradient descent. Finally, based on our anal-
ysis, we propose a simple alternative to standard
in-context learning, in which we supervise models
to explicitly learn the gradient update rule and ap-
ply them iteratively during inference. Using this
framework, we achieve 2 orders of magnitude im-
provement over parameter-matched Transformers
trained on standard in-context learning.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the 1st In-context Learning
Workshop at the International Conference on Machine Learning
(ICML). Do not distribute.

1. Introduction
Deep sequence models, especially the prevailing Trans-
former architecture, have demonstrated a remarkable ca-
pacity for generalization and robustness across language
and vision tasks (Touvron et al., 2023; Chowdhery et al.,
2022; Brown et al., 2020). Transferring these benefits to sci-
entific domains is an exciting prospect that has the potential
to unlock new fundamental capabilities across science and
engineering (McCabe et al., 2023; Subramanian et al., 2023;
Yang et al., 2023). Crucially, applications such as fluids and
climate modeling require high precision solutions (Frisch,
1995), and it is not clear whether existing ML methods can
achieve the accuracy of standard numerical methods.

Towards obtaining high-precision solutions with ML, we
focus on the testbed of least squares. A large class of differ-
ential equations problems can be reduced to least squares
problems (Gottlieb & Orszag, 1977; Orszag, 1972; Tre-
fethen, 2000), so it seems crucial for models to be able to
solve them precisely before they can hope to solve broader
problems like PDEs. Furthermore, we are motivated by
a surge of recent work (Garg et al., 2022; Akyürek et al.,
2022; Fu et al., 2023; Ahn et al., 2024; Bai et al., 2024)
that suggest that Transformers can perform optimization
algorithms in-context.

Following prior work (Garg et al., 2022; Von Oswald et al.,
2023), we train Transformers on in-context linear regression
problems, investigating how precision scales with depth.
Surprisingly, we find that they struggle to achieve below
O(10−5) MSE, even on the simple case of noiseless fully-
determined systems (Section 3, Figure 1). This accuracy is
remarkably poor compared to the machine precision solu-
tions (10−14 MSE with single-precision) gradient descent
consistently obtains in this setting (Boyd & Vandenberghe,
2004).

In this work, we make progress towards understanding why
Transformers struggle with learning high-precision algo-
rithms.

Identifying expressivity limitations within Transform-
ers. First, towards identifying mathematical operations
that represent precision bottlenecks for the Transformer
architecture, we examine gradient descent and Newton’s
method, two classical numerical algorithms that are known

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Can Transformers Solve Least Squares to High Precision?

Figure 1. Although Transformers and OLS seem to have comparable performance on underdetermined noiseless linear regression (left),
precision of Transformer solutions saturate 9 orders of magnitude above OLS in the fully-determined regime (right).

to reliably reach machine precision on least squares (Schulz,
1933; Weisberg, 2005). We observe that these optimization
algorithms can be written as a composition of three ba-
sic primitives: arbitrary read/writes, affine transformations,
and element-wise multiplication. Training Transformers
on synthetic formulations of these tasks, we identify high-
precision multiplications as a challenge for attention-based
models: precision on the multiplication task scales surpris-
ingly poorly with increased depth, number of parameters,
and training duration. Since numerical methods rely heav-
ily on high-precision linear algebra primitives, this result
suggests that Transformers would face a fundamental expres-
sivity challenge if trying to directly implement optimization
algorithms like gradient descent.

Closing the gap with gated convolutions. We next in-
vestigate alternatives to softmax attention that may help
improve the precision of our models on least squares. We fo-
cus on gated convolutions, another popular class of sequence
models (Arora et al., 2023; 2024) combining element-wise
multiplications with convolutional filters. Recent work has
shown the ability of gated convolutions to efficiently repre-
sent arithmetic circuits, including multiplications and poly-
nomials (Arora et al., 2023). Using theory and empirical
constructions, we demonstrate that gated convolutions are
expressive enough to solve least squares to high precision by
explicitly implementing gradient descent arithmetic circuits.
For linear regression, we empirically implement a weight
construction for gradient descent using gated convolutions
and demonstrate that it is expressive enough to solve least
squares to 10−14 MSE, a lift of 9 orders of magnitude from
in-context Transformers.

Learning high-precision algorithms. Finally, we in-
vestigate whether gated convolutions can learn the high-

precision numerical algorithms we’ve shown they can im-
plement theoretically. Surprisingly, we observe that despite
our insights about the expressivity of BASECONV, they per-
form 2 orders of magnitude worse than Transformers when
trained naively on in-context least squares (Figure 10).

To tease apart the complexity of learning algorithmic solu-
tions, we propose a simple approach in which we supervise
models to explicitly learn the gradient update rule. During
inference, we then iteratively apply the learned circuit on
least squares problems until convergence. Using this simple
training setup, we observe an improvement of 2 orders of
magnitude over parameter-matched Transformers trained
via standard in-context learning.

2. Background
In this section, we provide background information about
our model architectures, problem framework, and training
setup. For a detailed discussion of related work, please refer
to Appendix A.

2.1. Sequence model architectures

Inspired by language modelling, we study autoregressive
sequence-to-sequence models Tθ : RN×Din → RN×Dout ,
where the sequence length is N , each element of the in-
put sequence lies in RDin , and each element of the output
sequence lies in RDout . Sequence models like Transform-
ers (Vaswani et al., 2017) share a common high-level struc-
ture. First, a linear projection Pin : RDin → RD embeds
each input element to a shared D-dimensional embedding
space, yielding a matrix u ∈ RN×D. Next, u is passed
through a stack of L layers T (ℓ) : RN×D → RN×D. Each
layer consists of a sequence mixer, which mixes information
across the sequence dimension, and a state mixer, which

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Can Transformers Solve Least Squares to High Precision?

mixes information across the model dimension. Finally, a
linear projection Pout : RD → RDout maps to the output
space.

In this work, we focus on two classes of sequence mixers:
attention and gated convolutions.

Attention. Multi-headed softmax attention is the sequence
mixer used within the prototypical Transformer archi-
tecture (Vaswani et al., 2017), which remains dominant
across language and vision tasks. Each head of an atten-
tion layer is parameterized by three projection matrices
WQ,WK ,WV ∈ RD×D. For an input u ∈ RN×D, the
attention operator ATTN(u) is defined as:

H∑
i=1

softmax
((

uW
(i)
Q

)(
uW

(i)
K

)T
)(

uW
(i)
V

)
, (1)

where H is the number of heads per layer.

Gated convolutions. Gated convolutions combine
element-wise multiplications (gating) with long convolu-
tions, where the convolutional filters are of the size of the
sequence length. In this work, we focus on a variant of the
BASECONV operator from (Arora et al., 2023). Given an
input u ∈ RN×D, BASECONV(u) is defined as:

((uWgate + bgate)︸ ︷︷ ︸
Linear Projection

⊙ (h ∗ (uWin + bin) + bconv)︸ ︷︷ ︸
Convolution

)Wout + bout

(2)
where the layer is parameterized by learnable filters h ∈
RN×D, linear projections Win,Wgate,Wout ∈ RD×D ,
and bias matrices bconv, bin, bgate, bout ∈ RN×D. The ⊙
is component-wise product and convolution of two matrices
is computed as convolution of the corresponding columns.

2.2. Least squares and in-context learning

Recent works have investigated the ability of Transformers
to solve least squares problems within an in-context learning
framework (Garg et al., 2022; Akyürek et al., 2022; Bai
et al., 2024). We briefly describe the in-context training
setup from (Garg et al., 2022).

We consider the following parameter estimation problem:
given samples {(xi, yi := f(xi;w

∗))}Ni=1 with given func-
tion f and unknown parameter w∗, our goal is to predict
yq = f(xq;w

∗) given query point xq. For linear regres-
sion, f(xi;w

∗) = xT
i w

∗. Following prior work (Garg
et al., 2022; Akyürek et al., 2022), we define a distribution
of prompts

P = (x1, y1, . . . ,xN , yN) (3)

where the xi’s and w∗’s are sampled from some joint train-
ing distribution Dtrain. We supervise a large sequence

model Tθ to predict the output yq = f(xq;w
∗). The train-

ing objective is to minimize the expected mean squared
error, averaged over each of the n independent least squares
problems per prompt:

min EP

[
1

N

N−1∑
k=0

∣∣∣∣Tθ(P
k)− yk+1

∣∣∣∣2] (4)

where P k = (x1, y1, . . . ,xk, yk,xk+1).

Excitingly, a recent line of work probes the estimators
learned by Transformers on in-context least squares, and
suggests that Transformers learn to mimic iterations of
learning algorithms, like gradient descent and Newton’s
method (Von Oswald et al., 2023; Ahn et al., 2024; Fu et al.,
2023; Giannou et al., 2024). We refer to Appendix A for a
more detailed discussion of related work.

3. Identifying precision as a challenge for
Transformers

In this section, we empirically investigate the claim that
Transformers learn to implement algorithms in-context to
solve linear regression. Crucially, we show that Transform-
ers struggle to obtain high precision solutions, even on noise-
less, fully determined problems (Section 3.1). In contrast,
we know that numerical algorithms for linear regression like
gradient descent robustly converge to machine precision
solutions. To investigate the precision issue on a simplified
setting, we isolate a set of linear algebra operations, which
naturally appear as primitives comprising a general class of
numerical algorithms (Section 3.2). These synthetic tasks
motivate the alternative architectures we analyze theoret-
ically (Section 4) and are a natural testbed for evaluating
high-precision training (Section 5).

3.1. Transformers struggle to precisely solve linear
regression

Experimental setup. Following prior work (Garg et al.,
2022), we train a 12-layer Transformer on noiseless linear
regression problems with D = 5, where the xi’s and w∗’s
are drawn from a standard multivariate Gaussian. We vary
N ∈ {0, . . . , 20} and evaluate the MSE of the model’s
learned estimator. Please refer to Appendix D.2.1 for more
details about the training setup.

In Figure 1, we compare the performance of the Trans-
former models to the Bayes-optimal estimator, Ordinary
Least Squares (OLS). We note that the precision gap be-
tween the Transformer and the Bayes-optimal estimator
drastically increases when N ≥ D:

• For underdetermined regression problems, i.e. when
N < D, there exists an entire hyperplane of possible

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Can Transformers Solve Least Squares to High Precision?

w’s that perfectly match the provided data, so the opti-
mal estimator will have non-zero MSE. In this setting,
our results match the observations from prior works
(Garg et al., 2022; Akyürek et al., 2022), which note
that Transformers seem to approximate Bayes-optimal
estimators (i.e. OLS for dense w’s.)

• For fully determined regression problems, i.e. when
N ≥ D, there exists a unique w∗ that solves the prob-
lem. In theory, the OLS estimator recovers w∗ exactly
and thus should have an MSE of 0. In practice, we
observe that when computed using floating-point arith-
metic, OLS accrues some numerical error on the order
of machine epsilon: for single-precision, O(10−14).
In contrast, the Transformer struggles to reach below
10−5: this is a difference of 9 orders of magnitude.

Scaling studies. We thus focus on the fully determined
case, and investigate whether precision improves with larger
models. Note that if Transformers are able to implement
iterative algorithms to solve linear regression, the depth of
the model should correspond to the number of iterations of
the algorithm. Algorithms like gradient descent converge to
the exact solution with enough iterations: do Transformers
have the same property?

In Figure 2, we consider a simplified training setting with
fixed N > D, where the model is evaluated only on the final
prediction yN . We train Transformers on this task, up to
L = 64 layers, and we compare their precision scaling to the
convergence rate of full-batch gradient descent. For more
details about the training setup, refer to Appendix D.2.2.

We observe that Transformer precision scaling exceeds the
convergence rate of gradient descent at first, but the preci-
sion gains for Transformers rapidly diminish, such that we
observe very little difference in precision between L = 32
and L = 64 layers. For our deepest Transformer models,
we achieve an MSE around O(10−7). In contrast, gradient
descent converges linearly to machine precision, about 7
orders of magnitude more precise.

The diminishing returns of the Transformer precision scaling
law imply that the story of in-context learning as gradient
descent is incomplete. These results indicate there exists
a large gap between the high-precision algorithms Trans-
formers can theoretically express (Bai et al., 2024) and their
empirical performance when trained in-context.

3.2. Synthetic: investigating primitives from numerical
methods

To better understand the precision issue with Transform-
ers, we start by looking into primitives that comprise opti-
mization algorithms such as gradient descent and Newton’s
method. Since these algorithms are so fundamental to the

Figure 2. While precision saturates for Transformers trained on
(fixed N) fully-determined least squares (O(10−7)), gradient de-
scent converges to machine precision (O(10−14)): this is a differ-
ence of 7 orders of magnitude.

field of numerics, they represent a natural starting place for
discovering simple operations that Transformers struggle to
precisely express.

We observe that these algorithms can be expressed as com-
positions of three simple linear algebra operations mapping
from inputs u ∈ RN×din to outputs y ∈ RN×dout :

• Sequence-wise read/write:

READ(i, j, a, b)(u) =

{
u[k, a : b] k ̸= j

u[i, a : b] k = j
(5)

where din = dout.

• Affine transformations:

AFFINE(H)(u) = uH (6)

where H : Rdin → Rdout is an affine linear map.

• Element-wise multiplications:

MULTIPLY(a, b, dout)(u) = u[:, a : a+dout]⊙u[:, b : b+dout]
(7)

In Appendix B, we describe how gradient descent and New-
ton’s method iterates can be expressed as a composition of
these primitives. Intuitively, READ is used to transfer infor-
mation across the sequence dimension, AFFINE to transfer
information across the hidden dimension, and MULTIPLY
to compute high-degree interaction terms (like dot products
or element-wise squaring).

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Can Transformers Solve Least Squares to High Precision?

Figure 3. Precision vs. Transformer depth, with and without LayerNorm (LN), on synthetic tasks. While shallow Transformers are able to
learn the READ and AFFINE tasks to high precision (< 10−8 with 2-layer models), precision on the MULTIPLY task scales poorly with
depth (O(10−6) with 8-layer models).

Empirical analysis. We train Transformers on these syn-
thetic tasks to investigate how precision scales with model
size. Details about our training setup are in Appendix D.2.3.

In Figure 3, we show that even 2-layer Transformers are able
to achieve high precision (O(10−8) MSE) on the READ and
AFFINE tasks. However, we find that Transformers struggle
with the MULTIPLY task. In Figure 4, we show that precision
scales surprisingly poorly with model size.

Theoretical analysis. Towards understanding the preci-
sion limitations of Transformers on the MULTIPLY primi-
tive, in Appendix B.3, we provide a proof that single-layer
linear attention is unable to exactly represent the simple
element-wise squaring function

SQUARE(u)[i, j] = u[i, j]2. (8)

Crucially, we note that SQUARE represents a special case of
MULTIPLY:

SQUARE = MULTIPLY(0, 0, D) (9)

so this result implies that single-layer linear attention is not
expressive enough to exactly implement MULTIPLY.

4. Gated convolutions can precisely solve least
squares

Motivated by the finding that Transformers struggle to pre-
cisely implement linear algebra operations (Section 3.2),
we investigate whether an alternative architecture might im-
prove the precision of our models. We focus on BASECONV,
a gated convolutional model, as a natural choice since recent
work has shown they can exactly and efficiently implement
arithmetic circuits (Arora et al., 2023; 2024). In Section 4.1,
we recap the equivalence of gated convolutions and arith-
metic circuits, and consider the more general problem of

approximating smooth functions in Section 4.2. Our key ob-
servation is that gated convolutions can exactly implement
polynomial activation functions (Theorem 4.2). We use this
fact, plus results from approximation theory, to argue that
BASECONV can efficiently approximate smooth multivari-
ate functions in our main theoretical result (Theorem 4.4).
In Section 4.3, we provide explicit weight constructions to
argue that gated convolutions are expressive enough to solve
least squares problems to high precision by directly imple-
menting gradient descent. For the special case of linear
regression, we validate our weight constructions empirically
and demonstrate that gated convolutions can obtain machine
precision solutions in practice.

4.1. Equivalence of gated convolutions and arithmetic
circuits

We start by recounting prior work proving the equiva-
lence between gated convolutions and arithmetic circuits.
Throughout the paper, we focus on the BASECONV archi-
tecture (Arora et al., 2023), parameterized as in Equation 2.
Since BASECONV is asymptotically equivalent to general
gated convolutional models, our theoretical results directly
apply to this wider class of architectures as well.

Theorem 4.1 (Theorem H.21 from (Arora et al., 2023)).
Any depth-∆ and width-w arithmetic circuit C, and input
uN×D can be implemented by a BASECONV model with
O(∆ logw) layers and O(wD) parameters per layer.

In particular, we note that the linear algebra primitives we
specify in Section 3.2 (READ, AFFINE, and MULTIPLY) are
each arithmetic circuits with depth ∆ = O(1) and width
w = O(D). Thus, Theorem 4.1 implies there exist efficient
BASECONV implementations for all three primitives. In
Appendix C.1, we provide explicit constructions of single-
layer BASECONV models that exactly implement the READ,

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Can Transformers Solve Least Squares to High Precision?

Figure 4. Precision of (2-layer) Transformers on MULTIPLY task scales poorly with attention dimension (left), number of heads (middle),
and MLP width (right, where MLP hidden dimension = width × attention dimension).

AFFINE, and MULTIPLY primitives.

4.2. Approximating general smooth functions using
BASECONV

In this section, we broaden our scope beyond arithmetic
circuits and theoretically investigate the ability of gated
convolutions to approximate the general class of smooth
functions. Our key theoretical result is Theorem 4.4, which
provides upper bounds on the number of layers and param-
eters required to ϵ-approximate any multivariate smooth
function f : [−1, 1]N×D → RN×D.

We start by noting that gated convolutions are expressive
enough to represent polynomials, one of the key elements
of modern approximation theory.

Theorem 4.2. Given any degree-d polynomial P (X) and
u ∈ [−1, 1]N×D, there exists a BASECONV model with
O(d) layers and O(ND) parameters per layer that exactly
implements P (u), where P is applied element-wise.

The ability to efficiently represent polynomials is crucial
because polynomials form a natural and well-studied func-
tion basis. It is well known that polynomials are dense
in the space of continuous functions on bounded inter-
vals (De Branges, 1959). Modern approximation theory
provides precise theoretical results about the difficulty of
approximating smooth functions using polynomials:

Theorem 4.3 (Jackson’s Theorem (Pleśniak, 2009)). Any
r-times differentiable function f(x) : [−1, 1] → R satis-
fying || d

r

dxr f(x)||∞ ≤ L is ϵ-approximable by a d-degree

polynomial, where d = O
((

L
ϵ

)1/r
+ r
)

.

Combining these two results, we can show that gated con-
volutions are able to approximate any univariate smooth
function (Theorem F.35). Intuitively, we first approximate
the function using a polynomial expansion, then use BASEC-

ONV to efficiently implement the polynomial.

Our main theoretical result, detailed in Proposition F.41,
generalizes to the case of multivariate smooth functions:

Theorem 4.4. Let f : [−1, 1]N×D → RN×D be a k-times
differentiable multivariate function. Then for all ϵ > 0,
there exists a BASECONV model with O(d log(ND)) layers
and O((ND)d) parameters that ϵ-approximates f , where

d = Ok(
k

√
NDL

ϵ).

Please see Appendix F.2 for proofs and further discussion.

4.3. Weight constructions: BASECONV can implement
gradient descent for linear regression

For the special case of linear regression, we observe that
an iteration of gradient descent can be expressed exactly
as an arithmetic circuit. Thus, Theorem 4.1 implies that
there exists a BASECONV model that exactly implements a
gradient descent iteration on linear regression.

Concretely, we provide two O(1)-layer weight constructions
for gradient descent using BASECONV in Appendix C.2.
One requires a O(D) state size using a non-causal model
(i.e. each entry can access any other entry of the sequence)
and one requires a O(D2) state size using a causal model
(i.e. entries cannot access later entries of the sequence).
In Appendix C.2.3, we prove that both constructions are
asymptotically optimal with respect to state size.

Empirical implementation. To investigate the feasibil-
ity and numerical properties of our weight constructions
in practice, we implement gradient descent with BASEC-
ONV as detailed in Appendix C.2. In Figure 5, we evaluate
how precision scales with the effective number of layers and
compare to a manual implementation of gradient descent.

We confirm empirically that BASECONV is expressive

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Can Transformers Solve Least Squares to High Precision?

Figure 5. Implementation of the BASECONV weight construction
for gradient descent on linear regression (Appendix C.2). BASEC-
ONV is expressive enough to solve least squares to high precision.

enough to algorithmically solve linear regression, matching
the gradient descent iterates to high precision. Our con-
structed BASECONV achieves an MSE of 10−14, a lift of 9
orders of magnitude from the error saturation threshold of
trained Transformers.

5. Towards learning high-precision algorithms
Having shown that gated convolutions theoretically close
the expressivity gap on numerical algorithms in Section 4, in
this section we investigate learning high-precision solutions.

We observe that despite our insights about the expressivity
of BASECONV, they perform 2 orders of magnitude worse
than Transformers when trained naively on in-context least
squares (Figures 6, 10) and 10 orders of magnitude worse
than our weight construction.

To tease apart the complexity of learning algorithmic solu-
tions, we investigate two simplified in-context least squares
training setups (Section 5.1). In both settings, we show
promising results towards learning general high-precision
algorithms, including precision lifts of 2-3 orders of magni-
tude on in-context linear regression. However, we identify
the optimizer as a key bottleneck in high-precision regimes.
In Section 5.2, we empirically investigate the expressivity-
learnability gap for BASECONV, using our linear algebra
primitives from Section 3.2 as a natural testbed.

5.1. Investigations on simplified in-context least squares

To better probe bottlenecks to learning high-precision algo-
rithms, we define two simplified variants of the in-context
least squares problem.

Figure 6. Transformers vs. BASECONV on in-context linear re-
gression. Adding features from causal gradient descent construc-
tion (Appendix C.2.2) boosts precision by 2 orders of magnitude,
though neither model has linear convergence like gradient descent.

5.1.1. IN-CONTEXT LEAST SQUARES WITH FEATURE
INITIALIZATION

In this experiment, we append additional features to the
inputs of the models. We define three variants of the in-
context least squares task, {LSk

init}2k=0. In the k-th variant,
the extra features we append to the inputs correspond to the
outputs of the first k layers of the causal gradient descent
construction of Appendix C.2.2. Specifically, for the k-th
variant, the i-th in-context example, as inputted into the
model, is:

• k = 0 (standard in-context least squares): {(xi, yi)}.

• k = 1:
{(

xi, yi, yixi,xix
T
i

)}
.

• k = 2:
{(

xi, yi,
(∑N

i=1 yixi

)
,
(∑N

i=1 xix
T
i

))}
.

During training, we supervise the models in-context to pre-
dict w∗. We note that for the variants k ∈ {1, 2}, each
iteration of gradient descent can be implemented exactly
using sequence-wise and element-wise sums alone (via Ap-
pendix C.2.2). Since we know that both Transformers and
BASECONVs can express the READ and AFFINE primitives
to high precision, we expect both classes of models should
be able to implement gradient descent explicitly to solve
least squares precisely. Please refer to Appendix D.2.4 for
more training details.

In Figure 6, we evaluate the performance of BASECONVs
and Transformers on the three tasks {LSk

init}2k=0. We ob-
serve that providing additional features (k = 1, 2) boosts
precision of both classes of models by 2 orders of magni-
tude, compared to the standard in-context least squares task

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Can Transformers Solve Least Squares to High Precision?

Figure 7. Left: Training explicitly to learn gradient descent iterates, precision of BASECONV without LayerNorms outscales Transformers.
Right: Using predicted iterates to manually implement gradient descent, BASECONV saturates 2 orders of magnitude higher precision
than Transformers (though neither reach machine precision). Interestingly, even BASECONV with a single hardcoded layer (red) achieves
an MSE of O(10−13).

(k = 0). However, we note that the convergence rate still
saturates more than 7 orders of magnitude above machine
precision, and neither learned model matches the linear
convergence rate of gradient descent. This gap between
expressivity and learnability suggests the optimizer remains
a key bottleneck for learning high-precision algorithms.

5.1.2. EXPLICITLY LEARNING GRADIENT UPDATES

In this experiment, we explicitly supervise Transformers
and BASECONVs to predict the gradient of the least squares
objective, Equation 12:

{(x1, y1), . . . , (xN , yN),w0} → ∇L(w0). (10)

During inference, we apply our models iteratively, using
our model predictions to explicitly perform gradient descent.
Starting from a random guess w0, we repeatedly compute:

Tθ ({(x1, y1), . . . , (xN , yN),wi}) := ∆i (11)

and define wi+1 := wi − η∆i. until approximate conver-
gence to a fixed point w∞. We compare to the true w∗.
Refer to Appendix D.2.5 for more details.

We evaluate the performance of our setup in Figure 7. In-
creasing the model depth, we find that BASECONVs without
LayerNorms outperform Transformers on predicting the gra-
dient (a gap of 2 orders of magnitude for our largest models.)
We then train 3-layer Transformers and BASECONVs and
evaluate the performance of the iterative models. Excitingly,
we find that the learned models are robust enough that it-
erates continue to converge even after 40+ iterations. As
with the gradient, we observe that the BASECONV model
outperforms the parameter-matched Transformer by 2 or-
ders of magnitude. However, its precision (O(10−6)) is still
8 orders of magnitude worse than our weight construction
(Appendix C.2.2). As a baseline, we compare to 3-layer

BASECONVs whose first k ∈ {1, 2} layers are frozen and
initialized to the weight construction. We observe a 6 or-
ders of magnitude expressivity-learnability gap between the
partially frozen and fully trained BASECONVs.

5.2. Investigating the expressivity-learning gap with
MULTIPLY

To further probe the precision bottlenecks introduced by
the optimizer, we train BASECONV models on the simple
MULTIPLY task from Section 3.2. In Figure 8, we scale
BASECONV’s size, demonstrating that although BASEC-
ONVs train to O(10−9) on this task, they struggle to achieve
machine precision solutions. In Figure 9, we increase train-
ing time, demonstrating that BASECONV precision on the
MULTIPLY task improves steadily but precision gains dimin-
ish exponentially. We highlight the difficulty of reaching
machine precision solutions even on the simplest expressible
tasks, and leave this challenge to future work.

6. Conclusion
In this work, we explore the capabilities of Transformers
to solve high-precision numerical problems. Surprisingly,
we demonstrate that Transformers struggle to solve least
squares to high precision even on noiseless fully-determined
problems. We investigate gated convolutions as one way
of getting to high-precision algorithms, showing that these
models can precisely solve least squares by explicitly im-
plementing gradient descent. We propose a simple training
setup for explicitly learning gradient descent, with which
we demonstrate an improvement of 2 orders of magnitude
upon in-context Transformers. However, we highlight the
optimizer as a key bottleneck in high-precision regimes,
which we leave for future work.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Can Transformers Solve Least Squares to High Precision?

References
Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-

formers learn to implement preconditioned gradient de-
scent for in-context learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Ahuja, K., Panwar, M., and Goyal, N. In-context
learning through the bayesian prism. arXiv preprint
arXiv:2306.04891, 2023.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-context
language learning: Arhitectures and algorithms. arXiv
preprint arXiv:2401.12973, 2024.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli, M.,
Zou, J., Rudra, A., and Ré, C. Zoology: Measuring and
Improving Recall in Efficient Language Models, 2023.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti,
S., Zinsley, D., Zou, J., Rudra, A., and Ré, C. Sim-
ple linear attention language models balance the recall-
throughput tradeoff, 2024.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. Advances in neural infor-
mation processing systems, 36, 2024.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, W., Song, J., Ren, P., Subramanian, S., Morozov, D.,
and Mahoney, M. W. Data-efficient operator learning via
unsupervised pretraining and in-context learning. arXiv
preprint arXiv:2402.15734, 2024.

Chiang, D., Cholak, P., and Pillay, A. Tighter bounds on
the expressivity of transformer encoders. In Interna-
tional Conference on Machine Learning, pp. 5544–5562.
PMLR, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,

Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. Palm: Scaling language
modeling with pathways, 2022.

D. Jackson. The theory of approximation. Amer. Math. Soc.
Colloq. Publ., vol. 11, Amer. Math. Soc, Providence, R.
I., 1930.

Dao, T., Sohoni, N. S., Gu, A., Eichhorn, M., Blonder, A.,
Leszczynski, M., Rudra, A., and Ré, C. Kaleidoscope:
An efficient, learnable representation for all structured
linear maps. arXiv preprint arXiv:2012.14966, 2020.

Dasgupta, I., Lampinen, A. K., Chan, S. C., Creswell, A.,
Kumaran, D., McClelland, J. L., and Hill, F. Language
models show human-like content effects on reasoning.
arXiv preprint arXiv:2207.07051, 2022.

De Branges, L. The stone-weierstrass theorem. Proceedings
of the American Mathematical Society, 10(5):822–824,
1959.

Frisch, U. Turbulence: the legacy of AN Kolmogorov. Cam-
bridge university press, 1995.

Fu, D., Chen, T.-Q., Jia, R., and Sharan, V. Transformers
learn higher-order optimization methods for in-context
learning: A study with linear models. arXiv preprint
arXiv:2310.17086, 2023.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. In International Conference on
Machine Learning, pp. 11398–11442. PMLR, 2023.

Giannou, A., Yang, L., Wang, T., Papailiopoulos, D., and
Lee, J. D. How well can transformers emulate in-context
newton’s method? arXiv preprint arXiv:2403.03183,
2024.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Can Transformers Solve Least Squares to High Precision?

Gottlieb, D. and Orszag, S. A. Numerical analysis of spec-
tral methods: theory and applications. SIAM, 1977.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.

Heideman, M. T. and Burrus, C. S. Multiplicative complex-
ity, convolution, and the DFT. Springer, 1988.

Huang, Y., Cheng, Y., and Liang, Y. In-context convergence
of transformers. arXiv preprint arXiv:2310.05249, 2023.

Liu, J. W., Erichson, N. B., Bhatia, K., Mahoney, M. W.,
and Re, C. Does in-context operator learning generalize
to domain-shifted settings? In The Symbiosis of Deep
Learning and Differential Equations III, 2023.

Mahankali, A., Hashimoto, T. B., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

McCabe, M., Blancard, B. R.-S., Parker, L. H., Ohana,
R., Cranmer, M., Bietti, A., Eickenberg, M., Golkar, S.,
Krawezik, G., Lanusse, F., Pettee, M., Tesileanu, T., Cho,
K., and Ho, S. Multiple physics pretraining for physical
surrogate models, 2023.

Merrill, W. and Sabharwal, A. A logic for expressing log-
precision transformers. Advances in Neural Information
Processing Systems, 36, 2024.

Merrill, W. and Sabharwals, A. The parallelism tradeoff:
Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11:531–
545, 2023. doi: 10.1162/tacl_a_00562. URL https:
//aclanthology.org/2023.tacl-1.31.

Orszag, S. A. Comparison of pseudospectral and spectral
approximation. Studies in Applied Mathematics, 51(3):
253–259, 1972.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Cao, H., Cheng, X., Chung, M., Grella, M., GV, K. K.,
et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

Peter Bürgisser and Michael Clausen and M. Amin Shokrol-
lah. Algebraic Complexity Theory. Springer, 1997.

Petersdorff, T. V. Polynomial approximation and in-
terpolation. 2015. Numerical Analysis Class Notes.
https://www.math.umd.edu/~petersd/
666/amsc666notes02.pdf.

Pleśniak, W. Multivariate jackson inequality. Jour-
nal of Computational and Applied Mathemat-
ics, 233(3):815–820, 2009. ISSN 0377-0427.
doi: https://doi.org/10.1016/j.cam.2009.02.095.
URL https://www.sciencedirect.com/
science/article/pii/S0377042709001307.
9th OPSFA Conference.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
In International Conference on Machine Learning, pp.
28043–28078. PMLR, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raventós, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian
in-context learning for regression. Advances in Neural
Information Processing Systems, 36, 2024.

Schulz, G. Iterative berechung der reziproken matrix.
ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift für Angewandte Mathematik und Mechanik,
13(1):57–59, 1933.

Smoothness. Smoothness — Wikipedia, the free encyclope-
dia, 2006. https://en.wikipedia.org/wiki/
Smoothness.

Strang, G. Linear algebra and its applications. 2012.

Subramanian, S., Harrington, P., Keutzer, K., Bhimji, W.,
Morozov, D., Mahoney, M. W., and Gholami, A. Towards
foundation models for scientific machine learning: Char-
acterizing scaling and transfer behavior. arXiv preprint
arXiv:2306.00258, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., and
Bhosale, S. Llama 2: Open foundation and fine-tuned
chat models. arXiv:2307.09288, 2023.

Trefethen, L. N. Spectral methods in MATLAB. SIAM,
2000.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

10

https://aclanthology.org/2023.tacl-1.31
https://aclanthology.org/2023.tacl-1.31
https://www.math.umd.edu/~petersd/666/amsc666notes02.pdf
https://www.math.umd.edu/~petersd/666/amsc666notes02.pdf
https://www.sciencedirect.com/science/article/pii/S0377042709001307
https://www.sciencedirect.com/science/article/pii/S0377042709001307
https://en.wikipedia.org/wiki/Smoothness
https://en.wikipedia.org/wiki/Smoothness

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Can Transformers Solve Least Squares to High Precision?

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Weisberg, S. Applied linear regression, volume 528. John
Wiley & Sons, 2005.

Yadlowsky, S., Doshi, L., and Tripuraneni, N. Pretraining
data mixtures enable narrow model selection capabilities
in transformer models. arXiv preprint arXiv:2311.00871,
2023.

Yang, L., Liu, S., Meng, T., and Osher, S. J. In-context op-
erator learning for differential equation problems. arXiv
preprint arXiv:2304.07993, 2023.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J., and
Kumar, S. Are transformers universal approximators of
sequence-to-sequence functions?, 2020a.

Yun, C., Chang, Y.-W., Bhojanapalli, S., Rawat, A. S.,
Reddi, S., and Kumar, S. O (n) connections are expressive
enough: Universal approximability of sparse transform-
ers. Advances in Neural Information Processing Systems,
33:13783–13794, 2020b.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Can Transformers Solve Least Squares to High Precision?

A. Extended background
A.1. Linear regression

Linear regression, where f(x;w) = wTx, is an important class of least squares problems. Linear regression is well-
understood theoretically, and we know of simple numerical algorithms for solving linear regression to high precision (Weis-
berg, 2005; Boyd & Vandenberghe, 2004). We focus on two algorithms: gradient descent and Newton’s iteration.

Gradient descent Given a guess for w∗, we minimize the least squares loss

L(w) =
1

2N

N∑
i=1

(f(xi;w)− yi)
2 (12)

via gradient descent on w:

∇wLN =
1

N

N∑
i=1

(wTxi − yi)xi (13)

wt+1 = wt − η∇LN (wt) (14)

Ordinary Least Squares and Newton’s iteration In the noiseless, full determined regime, the Bayes-optimal estimator is
ordinary least squares (OLS) (Weisberg, 2005):

wOLS = (XTX)−1XTy, (15)

where

X =

← x1 →
...

← xN →

 , y =

 y1
...
yN

 (16)

Note that this estimator requires a matrix inverse, which is expensive to compute exactly. An alternative is to use Newton’s
method to approximate the matrix inverse term (Schulz, 1933). To estimate (XTX)−1, we can perform the following
iterative algorithm:

At+1 = At(2I − (XTX)At) (17)

where At converges to (XTX)−1.

A.2. Related work

In this section, we detail prior work on in-context learning, Transformer expressivity, and gated convolutional architectures.

In-context learning. The capability of Transformers to perform in-context learning on language and pattern matching tasks
has been well-documented (Brown et al., 2020; Dasgupta et al., 2022; Wei et al., 2022). More recently, a flurry of work has
investigated in-context learning for regression-style tasks. (Garg et al., 2022) first formulated the mathematical framework
to analyze the estimators Transformers implement in-context, focusing on linear regression and other least squares problems.
A number of works further observed empirically that Transformers seem to approximate Bayes-optimal estimators on
distributional problems. For example, based on the task distribution, the performance of in-context Transformers mimics
optimally-tuned LASSO on sparse linear regression, ridge regression on noisy dense linear regression, and Bayes-optimal
priors for task mixtures (Akyürek et al., 2024; Raventós et al., 2024; Yadlowsky et al., 2023; Ahuja et al., 2023; Bai et al.,
2024). Beyond standard least squares problems, other works have investigated the ability of Transformers to in-context
solve broader problems of scientific interest like differential equations (Yang et al., 2023; Chen et al., 2024; Liu et al., 2023).

Towards explaining these observations, recent works have focused on understanding the expressivity and optimziation
landscapes of Transformer variants (typically non-causal linear attention) on linear regression. Linear attention has been
shown to be expressive enough to implement numerical algorithms for solving linear regression, including gradient
descent (Akyürek et al., 2022; Von Oswald et al., 2023) and Newton’s method (Fu et al., 2023; Giannou et al., 2024). Recent
work has begun to investigate the optimization dynamics for linear attention on least squares. (Ahn et al., 2024; Mahankali
et al., 2023) prove that the global minimizer of the in-context learning loss for linear regression using linear attention is

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Can Transformers Solve Least Squares to High Precision?

equivalent to a step of preconditioned gradient descent. Additionally, (Zhang et al., 2023) provides suitable conditions under
which gradient flow provably converges to this global minimizer.

Transformers with non-linear attention are less well-understood theoretically. (Bai et al., 2024) provides constructions
implementing optimization algorithms for a variety of least squares problems, including sparse linear and logistic regression,
using RELU-activation attention. On the optimization front, we are aware of (Huang et al., 2023), which provides
convergence guarantees for single-layer softmax attention under a structured data model.

Unlike prior work, we investigate the in-context learning capabilities of standard (multi-layer softmax-attention) Trans-
formers, focusing on exploring their capability to perform high-precision optimization algorithms. Noting a gap between
empirical performance and theoretical claims regarding in-context least squares as gradient descent, we further investigate
alternative architectures to softmax attention.

Expressivity and approximation ability of Transformers. Although Transformers were initially designed for discrete
tasks like language modeling, recent works have investigated the ability of the Transformer architecture to express general
continuous-valued sequence-to-sequence maps. We briefly mention three classes of prior work:

• Constructive arguments. We highlight (Giannou et al., 2023), which proposes a looped-Transformer weight con-
struction that implements a basic mathematical instruction set. Using compositions of these instructions, the authors
demonstrate that Transformers are expressive enough to implement numerical algorithms, including matrix inversion
and SGD on linear models.

• Universal approximation results. Several works, such as (Yun et al., 2020a;b), provide bounds on the number of
parameters and layers required to approximate smooth sequence-to-sequence functions to arbitrary precision using
Transformers.

• Complexity theory results. Recent works (Chiang et al., 2023; Merrill & Sabharwals, 2023; Merrill & Sabharwal,
2024) prove that log-precision Transformers lie in TC0, a limited complexity class of circuits.

Gated convolutions. Gated convolutional models are a class of architectures that serve as an efficient alternative to
attention. These models, consisting of gating (element-wise multiplication) and long convolutions (filter size equal to
sequence length), stem from earlier work (Gu et al., 2021) inspired by the signal processing literature. In this work we focus
on the BASECONV model from (Arora et al., 2023), but a recent surge of interest in efficient attention replacements has led
to a flood of gated convolutional architectures (Poli et al., 2023; Peng et al., 2023; Gu & Dao, 2023).

Recent architectural innovations within the class of gated convolutional models have been largely motivated by language
modeling tasks (Fu et al., 2022; Arora et al., 2023). Unlike these prior works, which focus on matching attention’s
performance on discrete tasks, we observe that the connection between gated convolutions and arithmetic circuits implies
they are able to exactly express a range of important numerical algorithms for continuous-valued tasks. We further investigate
their ability to learn these algorithms in-context.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Can Transformers Solve Least Squares to High Precision?

B. Learning algorithms and primitives
First, in Appendix B.1 and B.2, we briefly sketch how the three primitives READ, AFFINE, and MULTIPLY can be used in
composition to exactly express gradient descent and Newton’s method iterations on linear regression (see Appendix A).
Then, in Appendix B.3, we provide a proof that linear attention cannot exactly represent the entry-wise squaring function.
As a corollary, since entry-wise square is a special case of MULTIPLY, this implies that linear attention cannot exactly
express the MULTIPLY task for all arguments.

B.1. Gradient descent

We assume our input is of the form

u =

(
x1 . . . xN w0

y1 . . . yN 0

)
.

Our goal is to compute the gradient update

w1 := w0 −
η

N

N∑
i=1

(wT
0 xi − yi)xi. (18)

Intuitively, our argument proceeds similarly to the causal gradient descent construction from Appendix C.2.2:

• First, we repeatedly apply READ and AFFINE to move the information {xi, yi} ∀i into e.g. the final entry of the
sequence. Without loss of generality, we omit the rest of the sequence, and assume we have access to a large enough
embedding dimension that we can make use of arbitrary amounts of memory.

After this phase, our u is of the form

. . .
(
w0 0 x1 . . . xN y1 . . . yN . . .

)T
.

• Next, we use MULTIPLY and AFFINE to compute and store {wT
0 xi} for all i. We will end up with

u = . . .
(
w0 0 {xi}i {yi}i {wT

0 xi}i . . .
)
.

• We use AFFINE to compute and store {wT
0 xi − yi} for all i:

u = . . .
(
w0 0 {xi}i {yi}i {wT

0 xi}i {wT
0 xi − yi}i . . .

)
.

• We use MULTIPLY and AFFINE to compute and store {(wT
0 xi − yi)xi} for all i:

u = . . .
(
w0 0 {xi}i {yi}i {wT

0 xi}i {(wT
0 xi − yi)xi}i . . .

)
.

• Finally, we can use AFFINE to compute the gradient update:

u = . . .
(
w0 − η

N

∑N
i=1(w

T
0 xi − yi)xi 0 {xi}i {yi}i {wT

0 xi}i {(wT
0 xi − yi)xi}i . . .

)
.

B.2. Newton’s method

We assume our input is of the form

u =

(
x1 . . . xN A0[1] . . . A0[D]
y1 . . . yN 0 . . . 0

)
.

Our goal is to compute the Newton’s iterate:

A1 := A0(2I − (XTX)A0), (19)

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Can Transformers Solve Least Squares to High Precision?

where

X =

← x1 →
...

← xN →

 , y =

 y1
...
yN

 . (20)

For any matrix M ∈ Rn×p, let flt denote the flatten operation, so that flt(M) represent a vectorized version of M :
flt(M) ∈ Rnp.

We proceed similarly to the argument from Appendix B.1.

• First, we repeatedly apply READ and AFFINE to move all information {xi}i ∀i and flt(A) to e.g. the final entry of
the sequence. We omit the rest of the sequence for notational ease, and we assume we have access to a large enough
embedding dimension that we can make use of arbitrary amounts of memory.

After this phase, we have
u = . . .

(
flt(A0) {xi}i . . .

)
.

• Using AFFINE, we can copy and rearrange the xi’s to construct copies of flt(X) and flt(XT):

u = . . .
(
flt(A0) {xi}i flt(XT) flt(X) . . .

)
.

• Now, note that we can represent the matrix multiplication XTX as a linear combination of the entries of the element-
wise multiplication flt(XT) ⊙ flt(X). This means that we can obtain flt(XTX) using a single application of
MULTIPLY and AFFINE:

u = . . .
(
flt(A0) {xi}i flt(XT) flt(X) flt(XTX) . . .

)
.

• By the same argument, we can obtain flt((XTX)A0) using another application of MULTIPLY and AFFINE:

u = . . .
(
flt(A0) {xi}i flt(XT) flt(X) flt((XTX)A0) . . .

)
.

• Finally, we have that flt(A1) := 2flt(A0)− flt((XTX)A0) can be obtained using AFFINE once more:

u = . . .
(
flt(A1) {xi}i flt(XT) flt(X) flt((XTX)A0) . . .

)
.

B.3. Attention can’t implement element-wise squaring.

In this section, we consider the following parameterization of linear attention:

LinearAttn(u) = (uWQ)(uWK)T (uWV +B), (21)

where u ∈ RN×D, WQ,WK ,WV ,B ∈ RD×D.

Theorem B.1. One-layer linear attention cannot exactly represent the entry-wise squaring function SQUARE : RN×D →
RN×D s.t.

SQUARE(u)ij = u2
ij

for all u ∈ RN×D.

Proof. We proceed by contradiction. Let’s assume there exists WQ,WK ,WV ,B ∈ RD×D such that ∀u ∈ RN×D,

(uWQ)(uWK)T (uWV +B) = SQUARE(u). (22)

Consider the set of inputs u ∈ RN×D with two non-zero entries, defined as

uij =

{
uij (i, j) ∈ {(a, c), (b, d)}
0 else

(23)

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Can Transformers Solve Least Squares to High Precision?

for an arbitrary choice of a, b ∈ [N], c, d ∈ [D]. Then:

Q := uWQ =



0

...

0

uacWQ[c]

0

...

0

ubdWQ[d]

0

...

0



(24)

where Q’s rows are all 0 except for the a-th and b-th, which are uacWQ[c] and ubdWQ[d] respectively.

Similarly:

K := uWK =



0

...

0

uacWK [c]

0

...

0

ubdWK [d]

0

...

0



(25)

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Can Transformers Solve Least Squares to High Precision?

and

V := uWV =



0

...

0

uacWV [c]

0

...

0

ubdWV [d]

0

...

0



(26)

Then the attention matrix, A = QKT , satisfies

Aij =



u2
ac(WQW T

K)cc (i, j) = (a, a)

uacubd(WQW T
K)cd (i, j) = (a, b)

uacubd(WQW T
K)dc (i, j) = (b, a)

u2
bd(WQW T

K)dd (i, j) = (b, b)

0 else

. (27)

Now let’s consider the output of linear attention:

O = (QKT)(V +B) (28)

such that O = SQUARE(u).

Case 1: B = 0. We have

O[a] = u3
ac(WQW T

K)ccWV [c] + uacu
2
bd(WQW T

K)cdWV [d] (29)

and
O[b] = u2

acubd(WQW T
K)dcWV [c] + u3

bd(WQW T
K)ddWV [d] (30)

Note that each term of the output is a cubic polynomial of the inputs uac and ubd, whereas our target SQUARE(u) consists
of quadratic polynomials, so these cannot be exactly equivalent.

Case 2: B ̸= 0. In this case,

O[a] = u3
ac(WQW T

K)ccWV [c]+u2
ac(WQW T

K)ccB[a]+uacu
2
bd(WQW T

K)cdWV [d]+uacubd(WQW T
K)cdB[b] (31)

and

O[b] = u2
acubd(WQW T

K)dcWV [c]+uacubd(WQW T
K)dcB[a]+u3

bd(WQW T
K)ddWV [d]+u2

bd(WQWK)ddB[b] (32)

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Can Transformers Solve Least Squares to High Precision?

In order for O = SQUARE(u), we need

O[a] = u2
ace

D
c , O[b] = u2

bde
D
d (33)

Then, setting the quadratic terms of Equation 33 and Equations 31, 32 equal, we must have

(WQW T
K)cc = (WQW T

K)dd = 1 (34)

and
B[a] = eDa , B[b] = eDb (35)

The cubic terms in Equations 31, 32 must also vanish, which implies

WV [c] = WV [d] = 0D. (36)

The uacubd terms must also vanish, which implies

(WQW T
K)cd = (WQW T

K)dc = 0. (37)

Finally, note that the above must hold for all choices of a, b ∈ [N] and c, d ∈ [D]. This implies that we have:

V = 0D×D, ,B = ID×D, WQW T
K = ID×D (38)

In other words, the set of constraints from our arguments above fully specify the weights of linear attention. However, we
can verify that these weights fail to express SQUARE by evaluating the linear attention:

(WQW T
K)(V +B) = (uWQW T

KuT)(uV +B) = (uuT)(0D×D + ID×D) = uuT (39)

However, it is easy to check that uuT ̸= SQUARE(u), which completes the proof by contradiction.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Can Transformers Solve Least Squares to High Precision?

C. BASECONV weight constructions
In this section, we detail our explicit BASECONV (Arora et al., 2023) weight constructions as discussed in Section 4.

• First, in Appendix C.1, we first implement the three primitives from Section 3.2, each using a single BASECONV layer:
READ (Appendix C.1.1), AFFINE (Appendix C.1.2), and MULTIPLY (Appendix C.1.3).

• We then provide two explicit constructions for implementing iterations gradient descent on linear regression: one for
non-causal BASECONV (Appendix C.2.1) requiring O(1) layers and O(D) state size, and one for causal BASEC-
ONV (Appendix C.2.2) requiring O(1) layers and O(D2) state size.

• Finally, in Appendix C.2.3, we discuss lower bounds for our gradient descent task, proving that our constructions are
asymptotically optimal with respect to layers and state size.

BASECONV parameterization We recount the parameterization of BASECONV from Equation 2:

y :=

(u ·Wgate + bgate)︸ ︷︷ ︸
Linear Projection

⊙ (h ∗ (u ·Win + bin) + bconv)︸ ︷︷ ︸
Convolution

 ·Wout + bout

:= Wout(Wgate(u)⊙ Conv(Win(u)))

(40)

where Win,Wgate,Wout are linear projections RD → RD.

C.1. 1-layer BASECONV can implement linear algebra primitives

Below, we recount the definitions of our linear algebra primitives from Section 3.2 and describe our BASECONV weight
constructions.

C.1.1. READ

The READ operator is:

READ(i, j, a, b)(u) =

{
u[k, a : b] k ̸= j

u[i, a : b] k = j
. (41)

Our implementation requires the use of the positional encodings and residual connections within the BASECONV architecture.
Concretely, consider the input

uin =

(
e1 e2 . . . eN
u[1] u[2] . . . u[N]

)
,

where the basis vector ek represents the positional encoding for the k-th entry of the sequence. Define the output of the
BASECONV layer with residual connection:

y := Wout(Wgate(u)⊙ Conv(Win(u)) + u).

Then the following weight construction is equivalent to READ(i, j, a, b):

• Wgate(u[k]) := u[k, j]1

• Conv(Win(u))[k] := u[k + i− j]− u[k]

• Wout := proj(a : b).

In particular, Wgate is defined such that

Wgate(u[k]) =

{
1 k = j

0 k ̸= j
.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Can Transformers Solve Least Squares to High Precision?

Thus

Wgate(u)⊙ Conv(Win(u)) =

{
u[k + i− j]− u[k] = u[i]− u[j] k = j

0 k ̸= j
.

Finally,

Wgate(u)⊙ Conv(Win(u)) + u =

{
u[i] k = j

u[k] k ̸= j

so the final output of this layer will be exactly equivalent to READ(i, j, a, b).

C.1.2. AFFINE TRANSFORMATION

The AFFINE operator is:
AFFINE(H)(u) = uH (42)

Define Conv(Win(u)) = 1D, Wgate = I , and Wout = H . Then

Wgate(u)⊙ Conv(Win(u)) = u

so
Wout(Wgate(u)⊙ Conv(Win(u))) = uH.

Thus the output of this layer is exactly equivalent to AFFINE(H).

C.1.3. ELEMENT-WISE MULTIPLY

The MULTIPLY operator is:

MULTIPLY(a, b, dout)(u) = u[:, a : a+ dout]⊙ u[:, b : b+ dout] (43)

Define Conv = Identity, Win = proj(a : a+ dout), Wgate = proj(b : b+ dout), and Wout = I .

Then
Wgate(u)⊙ Conv(Win(u)) = u[:, a : a+ dout]⊙ u[:, b : b+ dout].

Since Wout = I , the output of this layer will be equivalent to MULTIPLY(a, b, dout).

C.2. BASECONV can implement gradient descent for linear regression

In this section, we provide weight constructions for exactly implementing gradient descent on linear regression. Recall:

LN =
1

2N

N∑
i=1

(wTxi − yi)
2 (44)

so

∇wLN =
1

N

N∑
i=1

(wTxi − yi)xi (45)

=
1

N

(
N∑
i=1

yixi −

(
N∑
i=1

xix
T
i

)
w

)
(46)

C.2.1. NON-CAUSAL BASECONV

This weight construction uses Equation 45 to compute the gradient descent update.

We note that non-causal constructions for in-context linear regression are standard in the literature: e.g. (Von Oswald et al.,
2023; Ahn et al., 2024).

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Can Transformers Solve Least Squares to High Precision?

We start with input:

y ≡

x1 . . . xN xq

y1 . . . yN 0



We define the initial embedding:



x1 . . . xN 0D

y1 . . . yN 0

w0 . . . w0 w0

0D . . . 0D 0D

0D . . . 0D 0D

0D . . . 0D xq

0 . . . 0 0



We drop the bottom two rows of the block matrix representation for now and show how to perform the gradient descent
update with the rest of the embedding.

Layer 1:



← xi →

← yi →

← w0 →

← xi →

← 0D →


︸ ︷︷ ︸
conv(in_proj(·))

⊙



← 1D →

← 1→

← 1D →

← w0 →

← 0D →


︸ ︷︷ ︸
gate_proj(·)

=



← xi →

← yi →

← w0 →

← xi ⊙w0 →

← 0D →





← xi →

← yi →

← w0 →

← xi ⊙w0 →

← 0D →


→︸︷︷︸

out_proj(·)



← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)1D →


21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Can Transformers Solve Least Squares to High Precision?

Layer 2: 

← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)1D →


︸ ︷︷ ︸

conv(in_proj(·))

⊙



← 1D →

← 1→

← 1D →

← 1D →

← xi →


︸ ︷︷ ︸
gate_proj(·)

=



← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)xi →





← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)xi →


→︸︷︷︸

out_proj(·)=Identity



← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)xi →


Layer 3: 

← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)xi →


→︸︷︷︸

conv(in_proj(·))



← xi →

← yi →

← w0 →

← xi ⊙w0 →

←
∑N

i=1(w
T
0 xi − yi)xi →




← xi →

← yi →

← w0 →

← xi ⊙w0 →

←
N∑
i=1

(wT
0 xi − yi)xi︸ ︷︷ ︸

=∇wL(w0)

→



→︸︷︷︸
out_proj(·)



← xi →

← yi →

← w0 − η∇wL(w0)→

← 0D →

← 0D →



After performing arbitrarily many gradient updates, a final BASECONV layer can be used to compute ŵTxq .

C.2.2. CAUSAL BASECONV

This weight construction uses Equation 46 to compute the gradient descent update.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Can Transformers Solve Least Squares to High Precision?

We start with input:

y ≡


x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0



We use two BASECONV layers to construct an initial embedding, after which each gradient descent update step will only
require a single BASECONV layer.

In the following construction, we use flt to denote the flatten operation, which maps an M ×N matrix to a MN -entry
vector with the same elements.

Layer 1:



x1 . . . xN 0D

y1 . . . yN 0D

0D . . . 0D w0

x1 . . . xN 0D

flt(x11
T
D) . . . f lt(xN1T

D) flt(0D0T
D)


︸ ︷︷ ︸

conv(in_proj(·))

⊙



← 1D →

← 1→

← 1D →

y11D . . . yN1D 0D

flt(1DxT
1) . . . f lt(1DxT

N) flt(0D0T
D)


︸ ︷︷ ︸

gate_proj(·)

=



x1 . . . xN 0D

y1 . . . yN 0D

0D . . . 0D w0

y1x1 . . . y1xN 0D

flt(x1x
T
1) . . . f lt(xNxT

N) flt(0D0T
D)


→︸︷︷︸

out_proj=Identity



x1 . . . xN 0D

y1 . . . yN 0D

0D . . . 0D w0

y1x1 . . . y1xN 0D

flt(x1x
T
1) . . . f lt(xNxT

N) flt(0D0T
D)



Layer 2:



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→


︸ ︷︷ ︸

conv(in_proj(·))

⊙



← 1D →

← 1→

← 1D →

← 1D →

← 1D2 →


︸ ︷︷ ︸

gate_proj(·)

=



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→



23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Can Transformers Solve Least Squares to High Precision?

x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→


→︸︷︷︸

out_proj=Identity



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→



Now, we use a single BASECONV layer to implement a gradient descent update.



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

0D . . . 0D 1D

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→


︸ ︷︷ ︸

conv(in_proj(·))

⊙



1D

1

1D

1D

1D

1D2

0D . . . 0D 1D

0D2 . . . 0D2 flt(1DwT
0)


︸ ︷︷ ︸

gate_proj(·)

=



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

0D . . . 0D 1D

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→

0D . . . 0D

∑N
i=1 yixi

0D2 . . . 0D2

∑N
i=1 flt(xi(xi ⊙w0)

T)



Note that the gradient

∇wL(w0) =
1

N

(
N∑
i=1

yixi −

(
N∑
i=1

xix
T
i

)
w0

)

can be written as a linear combination of the vector

 ∑N
i=1 yixi∑N

i=1 flt(xi(xi ⊙w0)
T)


24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Can Transformers Solve Least Squares to High Precision?

so we can write a weight construction for out_proj that updates w0 → w0 − η∇wL(w0):

x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

0D . . . 0D 1D

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→

0D . . . 0D

∑N
i=1 yixi

0D2 . . . 0D2

∑N
i=1 flt(xi(xi ⊙w0)

T)



→︸︷︷︸
out_proj



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0 − η∇wL(w0)

0D . . . 0D 1D

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→

0D . . . 0D

∑N
i=1 yixi

0D2 . . . 0D2

∑N
i=1 flt(xi(xi ⊙w0)

T)


C.2.3. BASECONV CONSTRUCTIONS ARE ASYMPTOTICALLY OPTIMAL

Note that the non-causal weight construction in Appendix C.2.1 requires O(1) layers and O(D) state size, while the causal
weight construction in Appendix C.2.2 requires O(1) layers and O(D2) state size. Clearly the O(D) state size requirement
for non-causal models is tight, since one needs to store the gradient∇wL ∈ RD. In this section, we prove that the O(D2)
state size requirement for causal models is also asymptotically tight.

Theorem C.1. Any single-pass (causal) algorithm computing the gradient

∇wL =
1

N

 N∑
j=1

yjxj −

 N∑
j=1

xjx
T
j

w


given inputs {(x1, y1), . . . , (xN , yN); w}, with (xi, yi) ∈ R(D+1)N) and w ∈ RD, requires Ω(D2) state size in the worst
case, where yj ∈ R and xj ,w ∈ RD.

Proof. For simplicity, we pick N = D for large enough D.

Since we can compute 1
N

∑D
j=1 yjxj in O(D) space, we focus on computing the expensive

(∑N
j=1 xjx

T
j

)
w term. Assume

there exists a single-pass algorithm A that computes
(∑N

j=1 xjx
T
j

)
w exactly for all choices of x1, . . . ,xD,w ∈ RD.

Now consider the following two claims:

1. Define sD to be the state of the algorithm after seeing x1, . . . ,xD. Then we claim that sD must have enough
information to exactly reconstruct MD :=

∑D
j=1 xjx

T
j .

This follows since the algorithm must be correct for any value w ∈ RD takes on. In particular, setting w = ei for
i ∈ [D], we observe that the algorithm must be able to exactly recover MDei = MD[:, i], i ∈ [D].

2. The space of matrices 
D∑

j=1

xjx
T
j


over all choices of xj ∈ RD, j ∈ [d] contains the set of all real symmetric matrices in RD×D.

This holds since for any real symmetric matrix A, we can obtain a set of possible xj’s via its eigendecomposition (Strang,
2012):

A = QΛQT =

D∑
j=1

xjx
T
j

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Can Transformers Solve Least Squares to High Precision?

where xj =
√

λjQ[:, j].

From the first claim, we conclude that sD must contain enough information to be able to recover MD for any possible value
MD can take on (over all choices of x1, . . . ,xD ∈ RD). From the second claim, we have that the space of possible values
of MD includes the set of all possible real symmetric matrices. Since we know that this set requires (D)(D+1)

2 parameters
to represent, we can conclude that |sD| ≥ (D)(D+1)

2 ≥ Ω(D2).

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Can Transformers Solve Least Squares to High Precision?

D. Experimental setup
Here, we provide additional details about our experimental setup.

D.1. Model architecture

We base our Transformer and BASECONV models off the GPT2 family (Radford et al., 2019). Unless otherwise specified,
we use the following default settings:

Config Setting
Embedding size 64

Number of layers 12
Number of heads 1

MLPs True
MLP hidden size 4x embedding size
MLP activation ReLU

Batch size 256
Optimizer Adam

Learning rate 10−3

Scheduler StepLR
Training iterations 106

Step rate 104

Decay rate 0.9
Problem dim 5

Sequence length 20

D.2. Tasks

Each of our in-context learning tasks can be viewed as a sequence-to-sequence map

M : RNin×Din → RNout×Dout

In this subsection, we provide details about task implementations, specifying the input/output formats for each of the
synthetic tasks and in-context least squares variants we implement.

D.2.1. IN-CONTEXT LINEAR REGRESSION, N PARALLEL TASKS.

In Figure 1, we use the in-context linear regression setup from (Garg et al., 2022),MLS_parallel : R(2N+1)×D → R(N+1)×1,
where the inputs are formatted as

uin :=
[
x1 y1e1 . . . xN yNe1 xquery

]
and the expected outputs are

Tθ(uin)[0::2, :1] :=
[
y1 . . . yN yquery

]
.

D.2.2. IN-CONTEXT LINEAR REGRESSION, FULLY-DETERMINED, FIXED N.

In Figure 2, we simplify the linear regression setup from (Garg et al., 2022) by supervising only on the final prediction
yquery. Concretely, we considerMLS_fixed_N : R(N+1)×(D+1) → R, where as above the inputs are formatted as

uin :=

[
x1 . . . xN xquery

y1 . . . yN 0

]
and the expected output is

Tθ(uin)[-1:, -1:] := yquery.

We note that causal softmax Transformers achieve higher precision on this “fixed length” variant (compare Figure 2 to
Figure 1).

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Can Transformers Solve Least Squares to High Precision?

D.2.3. PRIMITIVES.

For each of the primitives (Figures 3, 4, 8, 9), we increase the task size, setting D = 20 and N = 40.

• READ is defined asMRead : RN×D → RN×D, where the inputs are formatted as

uin ∈ RN×D :=
[
x1 . . . xN

]
and the expected outputs are Tθ(uin) ∈ RN×D such that

Tθ(uin)[k, :] :=

{
uin[i, :] k = j

uin[k, :] k ̸= j

for task parameters i ̸= j ∈ [N].

• AFFINE is defined asMAffine : RN×D → RN×1, where the inputs are formatted as

uin ∈ RN×D :=
[
x1 . . . xN

]
and the expected outputs are

Tθ(uin) :=
[
xT
1 h . . . xT

Nh
]

where h ∈ RD is a task parameter.

• MULTIPLY is defined asMMultiply : RN×D → RN×D/2, where the inputs are formatted as

uin ∈ RN×D :=
[
x1 . . . xN

]
and the expected outputs are

Tθ(uin) :=
(
x1[: D/2]⊙ x1[D/2 :] . . . xN [: D/2]⊙ xN [D/2 :]

)
.

D.2.4. FEATURE INITIALIZATION LINEAR REGRESSION.

In Figure 6, we use a simplified linear regression setup, in which additional features are provided to the model, toward
encouraging the model to explicitly implement gradient descent in-context. We proceed to define the taskMLS_feature :

RN×(D2+2D+1) → RD.

There are three variants of the task, k ∈ {0, 1, 2}, which indicates that the appended features are the outputs of the k-th
layer of the causal gradient descent construction from Appendix C.2.2. See Section 5.1.1 for more details.

For k = 0, the inputs are

uin :=


x1 . . . xN

y1 . . . yN
0 . . . 0
0 . . . 0

 .

For k = 1, the inputs are

uin :=


x1 . . . xN

y1 . . . yN
y1x1 . . . yNxN

flt(x1x
T
1) . . . f lt(xNxT

N)

 .

For k = 2, the inputs are

uin :=


x1 . . . xN

y1 . . . yN
←
∑N

i=1 yixi →
←
∑N

i=1 flt(xix
T
i)→


where flt denotes the flatten operation.

In all cases, the expected outputs are
Tθ(uin)[-1:, :D] := w∗.

For this task, we use an embedding size of 256.

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Can Transformers Solve Least Squares to High Precision?

D.2.5. EXPLICIT GRADIENT UPDATES.

In Figure 7, we investigate a simple training setting, in which the model is explicitly trained to predict the gradient of the
least squares loss. We proceed to define the taskMgradient : R(N+1)×(D2+2D+1) → RD.

As in the feature initialization linear regression task, we consider three variants of the task, k ∈ {0, 1, 2}. The inputs are
similar to the previous task:

For k = 0, the inputs are

uin :=


x1 . . . xN w0

y1 . . . yN 0
0 . . . 0 0
0 . . . 0 0

 .

For k = 1, the inputs are

uin :=


x1 . . . xN w0

y1 . . . yN 0
y1x1 . . . yNxN 0

flt(x1x
T
1) . . . f lt(xNxT

N) 0

 .

For k = 2, the inputs are

uin :=


x1 . . . xN w0

y1 . . . yN 0

←
∑N

i=1 yixi →
←
∑N

i=1 flt(xix
T
i)→


where flt denotes the flatten operation.

In all cases, the expected outputs are
Tθ(uin)[-1:, :D] := ∇wL(w0).

For this task, we use an embedding size of 256.

D.3. Data generation

At each training step, we produce a random training prompt uin by sampling each variable randomly: from the isotropic
Gaussian distribution N(0, I) for continuous-valued parameters, and from the uniform distribution for discrete parameters.
Concretely:

• For the in-context linear regression tasks, input vectors x1, . . . ,xN are sampled from N(0D, ID), and the unknown
linear function is determined by w∗, also drawn from N(0D, ID).

• For the synthetic tasks READ, AFFINE, MULTIPLY (Section 3.2), each column of the inputs uin ∈ RN×D is sampled
from the isotropic Gaussian distribution N(0D, ID). The tasks READ and AFFINE require specifying additional
parameters as follows:

– For READ, at each iteration, i ̸= j ∈ [N] are sampled uniformly.
– For AFFINE, at each iteration, the affine transformation h is sampled from N(0D, 3ID).

• For the explicit gradient task, the random initialization w0 is also drawn from N(0D, ID).

The model is trained to minimize the in-context training loss (Equation 4), equivalent to minimizing mean squared error
over the distribution of prompts.

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Can Transformers Solve Least Squares to High Precision?

E. Additional experimental results
E.1. Primitives: Transformer vs. BASECONV

In Figure 8, we train Transformers and BASECONVs, with and without LayerNorms (LN), on the READ, AFFINE, and
MULTIPLY primitives from Section 3.2. We vary the model depth L ∈ {1, 2, 4, 8} and investigate how precision scales with
number of layers.

We show that Transformers and BASECONVs both achieve high precision (< O(10−9)) on the READ and AFFINE tasks.
However, the Transformers struggle to implement MULTIPLY to high precision, and performance scales poorly with model
depth.

We observe that BASECONV without LayerNorm generally performs the best across all three primitives, consistently
outperforming BASECONV with LayerNorm by 2-4 orders of magnitude. Interestingly, we also find that none of the models
reach machine precision (O(10−15) for single-precision training) on these tasks. This suggests that optimizing to machine
precision, even on simple tasks with no expressivity gap, remains a challenge.

Figure 8. Attention vs. BASECONV on synthetic tasks. Precision consistently scales better with depth for BASECONV models than for
Transformers. READ and AFFINE tasks to high precision, precision scales poorly for the MULTIPLY task.

E.2. Scaling model training duration

In Figure 9, we train 1-layer Transformers and BASECONVs (with LayerNorms) on the MULTIPLY primitive (Section 3.2).
We vary the number of iterations for which the model is trained. Recall that since new data is sampled at each iteration, we
also effectively scale the dataset size proportionally. To keep the learning rates consistent across runs, we scale back the
scheduler step size accordingly:

num_iters ∈ {105, 106, 107, 108}
step_size ∈ {103, 104, 105, 106}

We observe a power law, particularly clearly for BASECONV, as we scale from 105 to 108 iterations. Both models achieve a
2-3 order of magnitude improvement in precision as we increase training duration by 3 orders of magnitude. We leave it to
future work to investigate whether it is possible to scale precision more efficiently using more refined optimization methods.

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Can Transformers Solve Least Squares to High Precision?

Figure 9. Scaling number of training iterations for 1-layer Transformer vs. BASECONV on the MULTIPLY task. Both models improve
precision by 2-3 orders of magnitude as training duration increases by 3 orders of magnitude.

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Can Transformers Solve Least Squares to High Precision?

Figure 10. Transformers vs. BASECONVs trained on (fixed N) fully-determined least squares. Despite empirical constructions demonstrat-
ing that BASECONVs can solve least squares to high precision by implementing gradient descent, learned BASECONV models scale
worse than learned Transformers: a difference of 2 orders of magnitude for the largest models.

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Can Transformers Solve Least Squares to High Precision?

F. Missing details from Section 4.2
In this section, we provide the missing theoretical details from Section 4.2.

F.1. Notation

We heavily borrow notation from Appendix H of (Arora et al., 2023), which we recollect below. We denote the all 1 row
vector of size k, given by

[
1 1 . . . 1 1

]
, and the all 0 row vector of size k, given by

[
0 0 . . . 0 0

]
, as 1k and

0k, respectively. We also construe the standard basis vector ei as a column vector in this appendix, and adhere to the
following matrix indexing convention: M[i, j] is the entry in the ith row and the jth column, M[i, :] ∈ F1×n denotes the ith
row, and M[:, j] ∈ Fm×1 denotes the jth column of M ∈ Fm×n, where F is a field (the reader can assume that F is the
field of real numbers i.e. F = R). We then use 1m×n,0m×n ∈ Fm×n to denote the matrix of all 1s and 0s, respectively. We
note that some notation differs from those used in earlier sections.

Next, we denote the Hadamard product of vectors u,v ∈ Fn as u ⊙ v; the operation can be extended to matrices by
applying the Hadamard product column-wise across the matrices. This is commonly referred to as (element-wise) gating.
For vectors u,v ∈ Fn, we also denote their linear (or acyclic) convolution as u ∗ v and cyclic convolution as u⊛ v.

Polynomial Notation. Since convolution is equivalent to operations on polynomials, it is convenient to use them to discuss
the inputs and outputs of gated convolution models. Let us define maps poly : Fn → F[X]/(Xn) such that

poly(u) =

n−1∑
i=0

u[i]Xi.

This allows us to map between vectors and polynomial. Accordingly, we also define coeff : F[X]/(Xn+1)→ Fn as the
map converting polynomials back to vectors: coeff(u(X)) = u with u[i] defined as the coefficient in u(X) at degree i.

These operations allow us to interpret the convolution of vectors in terms of polynomial multiplication (Heideman & Burrus,
1988). More specifically, we have

u ∗ v = coeff (u(X) · v(X) mod Xn)

The following notation for a polynomial will be used in this section:

Definition F.1. A polynomial P (X) with degree d and some coefficients c ∈ Rd+1 is defined as,

P (X) =

d∑
i=0

ciX
i.

Further, the degree of P (X) will be denoted as deg(P).

Function Approximation. In this part, we collect notation and known results about function approximation. We will
reference some definitions from (Pleśniak, 2009; Petersdorff, 2015; Smoothness, 2006).

The following notation is to denote the kth derivative of a function:

Definition F.2. For some function f : R→ R, f (k) := dk

dxk f(x) is the kth derivative of f .

Define a set of univariate functions with a notion of continuity:

Definition F.3. We denote Ck[a, b] for k = 1, 2, . . . the space of univariate functions f : [a, b]→ R, which have derivatives
f (1), . . . , f (k) that are continuous on the closed interval [a, b].

Next we define a set of multivariate functions with a notion of continuity:

33

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

Can Transformers Solve Least Squares to High Precision?

Definition F.4. A function f : [a, b]n → R is in Ck[a, b]n for k = 1, 2, . . . if all partial derivatives

∂α

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

f(y1, y2, . . . , yn)

exist and are continuous, for every α1, α2, . . . , αn ∈ Z≥0, such that α1+α2+ · · ·+αn ≤ k and every (y1, . . . yn) ∈ [a, b]n.

We use the following notation for the set of all univariate polynomials:

Definition F.5. For any integer d ≥ 0, we define

Pd(X) = {c0 + c1X + · · ·+ cdX
d|ck ∈ R}.

In other words, Pd(X) is the space of univariate polynomials of degree less or equal to d.

We use the following notation for multivariate polynomials:

Definition F.6. For any integers n, d ≥ 0 , we define

Pn
d (X1, . . . , Xn) =

{ ∑
α=(α1,...,αn)∈Zn

≥0

cαX
α1
1 Xα2

2 · · ·Xαn
n

∣∣∣∣∣cα ∈ R,
n∑

i=0

αi ≤ d

}
.

Then Pn
d (X1, . . . Xn) is the space of n-variate polynomials of degree less or equal to d.

The following notation is for considering the pointwise absolute value of a matrix:

Definition F.7. For M ∈ RN×D define,
∥M∥∞ =

max
0≤i<N
0≤j<D

|M [i, j]| .

Now lets define the corresponding∞−norm for functions:

Definition F.8. For g : [−1, 1]N×D → RN×D, define

∥g∥∞ =
max

x∈[−1,1]N×D |g(x)| .

We will use the following version of Jackson’s theorem for univariate inputs:

Theorem F.9 ((D. Jackson, 1930) Jackson’s Theorem for Ck[−1, 1].). Let d, k be integers with d + 1 ≥ k ≥ 0 and
f ∈ Ck[−1, 1]. Then

inf
P∈Pd

∥f − P∥∞ ≤
(π
2

)k 1

(d+ 1)d · · · (d− k + 2)

∥∥∥f (k)
∥∥∥
∞
. (47)

We will use the following version of Jackson’s theorem for multivariate inputs:

Theorem F.10 ((Pleśniak, 2009) Jackson’s Theorem for Ck[−1, 1]n). Let d, k be integers with d + 1 ≥ k ≥ 0 and
f ∈ Ck[−1, 1]n. Then

inf
P∈Pn

d
∥f − P∥∞ ≤

ck
dk

n∑
j=1

∥∥∥∥∥ ∂k+1

∂xk+1
j

f(x)

∥∥∥∥∥
∞

(48)

where ck is a positive constant.

We will use the following definition of univariate smooth functions:

Definition F.11. We call a k times differentiable function f : [−1, 1]→ R to be (k, L)-smooth if
∥∥f (k)

∥∥
∞ ≤ L.

Next, we observe that given a univariate smooth function, there’s a univariate bounded degree polynomial that approximates
it to some error, ϵ:

34

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

Can Transformers Solve Least Squares to High Precision?

Corollary F.12. For some (k, L)-smooth univariate function f (as in Definition F.11), then there exists a polynomial Pf (x)
with

deg(Pf) ≤ O

(
k

√
L

ϵ

)
+ k

such that for all x ∈ [−1, 1]
|f(x)− Pf (x)| ≤ ϵ.

Proof. We will be a bit more specific on an upper bound of deg(Pf). We pick:

deg(Pf) =

⌈
π

2

(
L

ϵ

) 1
k

+ k

⌉
. (49)

Let d = deg(Pf) where Pf is the polynomial that achieves the left hand side of Equation (47). Then we have error at most(π
2

)k 1

(d+ 1)d · · · (d− k + 2)

∥∥∥f (k)
∥∥∥
∞
.

Using the definition of a (k, L)-smooth univariate function in Definition F.11 we get the error at most(π
2

)k L

(d+ 1)d · · · (d− k + 2)
≤
(π
2

)k L

(d− k)k

where the inequality follows since each d+ 1, d, . . . , d− k + 2 ≥ (d− k).

Plugging in Equation (49) for d we get the error is at most:(π
2

)k L(
π
2

)k (k

√
L
ϵ

)k = ϵ,

as desired.

We will use the following definition of multivariate smooth functions that map to a single value:

Definition F.13. We call a k times differentiable f : [−1, 1]n → R to be (k, L)-smooth if
∥∥∥ ∂k

∂xk
m
f(x)

∥∥∥
∞
≤ L for all

1 ≤ m ≤ n.

Now we show the corresponding observation for multivariate functions and polynomials:

Corollary F.14. Let deg(Pf) = d. For some (k, L)-smooth multivariate function f (as in Definition F.13), then there exists
a polynomial Pf (x) with

deg(Pf) ≤ Ok

(
k

√
nL

ϵ

)
such that for all x ∈ [−1, 1]n

|f(x)− Pf (x)| ≤ ϵ.

Proof. Let Pf be the polynomial we get from the left hand side of Equation (48). We want to upper bound the error as

ck
dk

n∑
j=1

∥∥∥∥∥ ∂k+1

∂xk+1
j

f(x)

∥∥∥∥∥
∞

≤ ϵ,

which follows if
ck
dk

n∑
j=1

L ≤ ϵ

35

1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

Can Transformers Solve Least Squares to High Precision?

since f is (k, L)-smooth. The above is the same as

cknL

dk
≤ ϵ,

or equivalently
k

√
cknL

ϵ
≤ d.

Picking d =

⌈
k

√
cknL

ϵ

⌉
suffices.

Arithmetic Circuit Notation. We briefly recall arithmetic circuits (Peter Bürgisser and Michael Clausen and M. Amin
Shokrollah, 1997). An arithmetic circuit C with variables X ≜ {x1, x2, . . . , xn} over a field F is interpreted as a directed
acyclic graph, where the input nodes are labelled by either the variables from X or constants from F and the internal nodes
are labelled by + or × with the output being the polynomial computed at the output node.

We shall also refer to the size1 of the circuit C as the number of wires (or edges in C), the depth of the circuit as the length of
the longest path between an input node and the output node, and the width of the circuit as the number of wires that will
be intersected by a horizontal ‘cut’ through the circuit. Moreover, the degree of a circuit is defined as the degree of the
polynomial computed by the circuit. We summarize this with the following definition:

Definition F.15. An arithmetic circuit C is an (n, s,∆, w)-circuit if C is an n-variate arithmetic circuit of size s, depth at
most ∆, and width w.

BASECONV Architecture. In the following definitions we formally define the BASECONV model (Arora et al., 2023).
To formally define BASECONV, we will need the Kaleidoscope hierarchy (Dao et al., 2020) as well.

To start, we define butterfly factors:

Definition F.16. A butterfly factor of size k ≥ 2 (denoted as Bk) is a matrix of the form Bk =

[
D1 D2

D3 D4

]
where each

Di is a k
2 ×

k
2 diagonal matrix. We restrict k to be a power of 2.

The following definition is for a butterfly factor matrix, which is made up of the above butterfly factors:

Definition F.17. A butterfly factor matrix of size n with block size k (denoted as B
(n)

k) is a block diagonal matrix of n
k

(possibly different) butterfly factors of size k:

B
(n)

k = diag
([

Bk

]
1
,
[
Bk

]
2
, . . . ,

[
Bk

]
n
k

)
Now lets define a butterfly matrix:

Definition F.18. A butterfly matrix of size n (denoted as B
(n)

) is a matrix that can be expressed as a product of butterfly
factor matrices: B

(n)
= B

(n)

n B
(n)
n
2

. . .B
(n)

2 . Equivalently, we may define B
(n)

recursively as a matrix that can be expressed
in the following form:

B
(n)

= B
(n)

n

[
[B

(n
2)
]1 0

0 [B
(n
2)
]2

]

(Note that [B
(n
2)
]1 and [B

(n
2)
]2 may be different.)

Using these butterfly matrices, lets define the Kaleidoscope Hierarchy:

Definition F.19 (The Kaleidoscope Hierarchy (Dao et al., 2020)).
1Note that if all the gates of an arithmetic circuit have bounded arity then the number of wires and gates are asymptotically the same

but in this appendix we will consider gates with unbounded arity.

36

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

Can Transformers Solve Least Squares to High Precision?

• Define B as the set of all matrices that can be expressed in the form B
(n)

(for some n).

• Define (BB∗) as the set of matrices M of the form M = M1M
∗
2 for some M1,M2 ∈ B.

• Define (BB∗)
w as the set of matrices M that can be expressed as M = Mw . . .M2M1, with each Mi ∈ (BB∗) (1 ≤

i ≤ w). (The notation w represents width.)

• Define (BB∗)
w
e as the set of n × n matrices M that can be expressed as M = SES⊤ for some en × en matrix

E ∈ (BB∗)
w, where S ∈ Fn×en =

[
In 0 . . . 0

]
] (i.e. M is the upper-left corner of E). (The notation e represents

expansion relative to n.)

Here we now formally define a BASECONV layer:

Definition F.20 (BASECONV (Arora et al., 2023)). Given an input sequence u ∈ RN×D, where N is the sequence length and
D is the model dimension, a learned weight matrix W ∈ RD×D and biases B1,B2 ∈ RN×D and a matrix of convolution
filters H ∈ RN×D, a BASECONV layer computes the following:

yBASECONV := (uW +B1)⊙ (H ∗ u+B2) ∈ RN×D, (50)

where the jth column of H ∗ u ∈ RN×D is defined as H[:, j] ∗ u[:, j].

The corresponding pseudocode for a BASECONV layer is as follows:

Algorithm 1 BASECONV(u,W ,B1,H,B2)

Require: Input sequence u ∈ RN×D, linear map W ∈ RD×D, convolution filter H ∈ RN×D, and bias matrices
B1,B2 ∈ RN×D.

1: In parallel for 0 ≤ n < N : x[n, :] = u[n, :] ·W
2: In parallel for 0 ≤ t < D : z[:, t] = H[:, t] ∗ u[:, t]

3: In parallel for 0 ≤ t < D : y[:, t]← (x[:, t] +B1[:, t])⊙ (z[:, t] +B2[:, t]). ▷ See eq. (50)
4: return y

Remark F.21. The definition of a BaseConv layer in Equation (40) has the input go through a linear layer before the
convolution operation. For this section we will assume the linear layer is the identity matrix, as it is not needed for the
results in this section.

Assumption F.22. Moving forward we assume the weight matrix W ∈ RD×D in Definition F.20 also has the property
W ∈ (BB∗)poly- logD

poly- logD. Consequently, each matrix W has Õ(D) parameters and runtime for matrix vector multiplication
(Dao et al., 2020).

In this section, we will establish some additional basic primitives that we expect need to implement via a BASECONV layer:
shift and remember. We specify them below:

Definition F.23. shift(y, r, t, f)
Shift an sequential input of length N up or down by s entries:
INPUT: y ∈ RN×D, s ≥ 0.
OUTPUT: z ∈ RN×D where z+ = shift_down(y, s) and z− = shift_up(y, s)

37

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089

Can Transformers Solve Least Squares to High Precision?

y ≡



← y0 →

...

← yi−1 →

← yi →

...

← yN−1 →



z+ ≡



← 0→

...

← 0→

← y0 →

...

← yN−1−s →



z− ≡



← ys →

...

← yN−1 →

← 0→

...

← 0→


The following proposition is defining the convolution Kernel that computes the shift_down

(
·, ⌊N2 ⌋

)
primitive:

Proposition F.24. Define H ∈ R2N×D as

H[k, :] =

{
1D if k = N

0 otherwise
.

For any u ∈ R2N×D, H ∗ u will result in

H ∗
(
u1

u2

)
→
(
0N×D

u1

)
,

where u1,u2 ∈ RN×D.

Proof. The convolution operation: H ∗
(
u1

u2

)
where each column of H is convolved with each column of u can be restated

as a polynomial multiplication. For column i, 0 ≤ i < 2N ,

H[:, i] ∗
(
u1

u2

)
[:, i] = coeff((XN · u[:, i](X)) mod X2N).

Note that the columns of H are all eN basis vectors and poly(eN) = XN .

When we multiply the term through the input polynomial we get,

coeff
(
XN ·

(
u[0][i] + u[1][i]X + · · ·+ u[2N − 1][i]X2N−1

)
mod X2N

)
= coeff(u[0][i]XN + u[1][i]XN+1 + · · ·+ u[2N − 1][i]X3N−1 mod X2N).

With the lower order terms all becoming zeros, the above is same as

coeff((0 + 0X + · · · 0XN−1

+ u[0][i]XN + u[1][i]XN+1 + · · ·+ u[2N − 1][i]X3N−1) mod X2N).

After we take the mod X2N we get

coeff(0 + 0X + · · ·+ 0XN−1 + u[0][i]XN + · · ·+ u[N − 1][i]X2N−1),

which implies that H ∗
(
u1

u2

)
is (

0N×D

u1

)
,

as desired.

38

2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

Can Transformers Solve Least Squares to High Precision?

We also define the following primitive:

Definition F.25. remember(y, r, t, f)
INPUT: y ∈ RN ′×d′

, r ∈ Z, t ∈ Z, f : Rt−r → Rt−r+s,v1 ∈ Rr,x ∈ Rt−r, where y is defined as below.
OUTPUT: z ∈ RN ′×d′

, which is defined as follows:

y ≡



← v1 →

← x→

0s×d′

← v2 →

0

...

0



z ≡



← v1 →

← f(x)→

← v2 →

0

...

0


We will need the following BASECONV implementation of remember:

Proposition F.26 ((Arora et al., 2024), The Remembering Primitive). For any x ∈ Rn×d′
,v1 ∈ Rr×d′

,v2 ∈ Rm−r where
n = t − r contained in some y ∈ RN ′×d′

such that v1 is in the first r rows, x is in the next n rows, 0s fill up the next
s rows, and v2 are in the next m − r rows, for some 3n + 3m + 2s + 2t ≤ N ′ so that for h ∈ Rn×d and W ∈ Rd′×d′

with x ∗ h ∈ R(n+s)×d′
and v ∗ h ∈ R(m+t)×d′

, where v ∈ Rm×d′
is defined as v2+shift_down(v1,m− r), there

exists a (N ′, 8, d′, N ′, d′)− BASECONV that computes remember(y, r, t, f), where f can be implemented in 1 layer of
BASECONV through the parameters W ∈ Rd′×d′

,h ∈ RN ′×d′
, b1 ∈ RN ′×d′

, b2 ∈ RN ′×d′
as defined below:

f(u) =

((
uW

0s×d′

)
+

(
b1

1s×d′

))
⊙
(
u ∗ h+

(
b2

0s×d′

))
We will also need the following generalization of the above result:

Corollary F.27 ((Arora et al., 2023)). Let y be as in Proposition F.26 but now let f be implemented with
BASECONV(N,L,D,N,D). Then remember(y, r, t, f) where t − r = n can be implemented with BASECONV via
(N,O(L), D,N,D)− BASECONV.

The rest of Appendix F will use this 5−tuple notation for BASECONV:

Definition F.28. Lets define a 5-tuple notation for a BASECONV layer as (N, ℓ,D,N ′, D′)− BASECONV with ℓ layers
such that:

1. Input and output are N ×D matrices.

2. Each layer is defined by Definition F.20 where N and D are replaced by N ′ and D′. I.e. each layer takes in N ′ ×D′

matrices and output N ′ ×D′ matrices. We refer to the tuple (N ′, D′) as the inner dimension of the model.

3. The matrices are projected from (N,D)→ (N ′, D′) (and vice-versa) via a linear projection.

We state the following bounds on parameters and runtime for a single BASECONV layer:

Proposition F.29 ((Arora et al., 2023)). An (N, 1, D,N,D)− BASECONV requires Õ(ND) parameters and runtime.

We state the following result that says arithmetic circuit can be represented as a BASECONV model:

Theorem F.30 ((Arora et al., 2023), Theorem H.21). For any (ND, s,∆, w)-arithmetic circuit C, there exists an equivalent
(N,∆′, D,N ′, D′)− BASECONV with ∆′ = O(∆ logw), N ′ = O(w), D′ = D that simulates C.

39

2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

Can Transformers Solve Least Squares to High Precision?

F.2. BaseConv and Jackson’s Theorem

In this section we prove BASECONV’s ability to approximate arbitrary univariate and multivariate smooth functions.

We start with a special case of smooth functions that apply entry-wise univariate smooth functions:

Definition F.31. Let f : [−1, 1]→ R be a (k, L)-smooth univariate function. Then define

f : [−1, 1]N×D → RN×D

as follows. For all 0 ≤ i < N , 0 ≤ j < D, and u ∈ [−1, 1]N×D:

(f(u))[i, j] = f(u[i, j]).

Now we will state a simple observation on BASECONV’s ability to approximate these functions.

Lemma F.32. For any smooth function f as defined in Definition F.31, let g(x) = Pf̄ (x) with Pf̄ being the polynomial
from Corollary F.12. Then for all x ∈ [−1, 1]N×D,

∥g(x)− f(x)∥∞ ≤ ϵ.

Proof. Follows from Definitions F.7 and F.31 and Corollary F.12.

Next we will state a construction of an arithmetic circuit for a function that applies a univariate polynomial to all entries in
[−1, 1]N×D:

Lemma F.33. Let P(X) be a degree d univariate polynomial. Then there is a (ND,O(ND), O(d), ND)-circuit to compute
P (u) where P (u) is defined as follows. For an input u ∈ [−1, 1]N×D,

P (u)[i, j] = P (u[i, j]).

Proof. Let the univariate polynomial be

P (X) =

d∑
i=0

ciX
i

where coefficients ci ∈ R.

Next we state the natural arithmetic circuit to compute P (x) for x ∈ R in Algorithm 2:

Algorithm 2 circuit CP (x):
1: s0 ← c0
2: m0 ← 1
3: for j = 1, 2, . . . , d do
4: mj ← mj−1 · x ▷ Multiplication gate
5: tj ← cj ·mj ▷ Multiplication gate
6: sj ← sj−1 + tj ▷ Addition gate
7: return sd ▷ sd is the output gate

Next we apply the above circuit in parallel to form the circuit that computes P (u) in Algorithm 3:

Algorithm 3 Circuit for P (u):

1: for i = 0, 1, . . . , N − 1 do
2: for j = 0, 1, . . . , D − 1 do
3: z[i, j] = CP (u[i, j]) ▷ Do this in parallel
4: return z ▷ z is the output matrix

40

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

Can Transformers Solve Least Squares to High Precision?

Looking at Algorithm 2, the depth of the circuit is 3d, or O(d), since that is the bound on iterations of the for loop, and each
iteration we compute 3 sequential operations. Therefore it’s a (1, O(d), O(d,O(1))-circuit.

For Algorithm 3, The width is O(ND), since we have our input of size N ×D, which goes through the circuit in parallel,
as stated in Algorithm 3. Therefore we have an (ND,O(ND), O(d), O(ND))-circuit that computes P (u).

Since BASECONV has the ability to represent any arithmetic circuit, we get the following:

Corollary F.34. We can implement P (u) (where P (u) is as defined in Lemma F.33) when deg(P) = d with a
(N,O(d log(ND)), D,O(ND), D)− BASECONV.

Proof. Follows from Lemma F.33 giving us the (ND,O(ND), O(d), O(ND))-circuit for an arbitrary polynomial and
Theorem F.30 gives us the BASECONV model to implement the circuit.

We will prove a tighter bound showing we can represent P (u) using a constant number of BASECONV layers (for constant
deg(P)):

Theorem F.35. We can implement P (u) when deg(P) = d with an (O(N), O(d), D,O(N), D)− BASECONV model.

Proof. We will convert the steps done in Algorithm 2 to layers of BASECONV. Since Algorithm 3 is essentially running
Algorithm 2 in parallel over all entries of input u ∈ [−1, 1]N×D, the latter happens automatically in our BASECONV
implementation.

For this proof, define
Pj(X) = Xj

and let Ci be the matrix of size N ×D and all the entries are ci.

We expand the input to our BASECONV layers as follows,

u =

(
u′

03N×D

)
.

This means that the size of the internal dimension of our BASECONV layers will be (4N,D).

To begin iterations of the for loop we need to store initial values into the extra space in u. Taking us from

u =


u′

0N×D

0N×D

0N×D

→


u
1N×D

1N×D

C0

 =: u0

We do this via BASECONV(u′, ID×D,

(
0N×D

1N×D

1N×D

C0

)
,04N×D,14N×D) which computes




u
0N×D

0N×D

0N×D

 ID×D +


0N×D

1N×D

1N×D

C0


⊙

04N×D ∗


u

0N×D

0N×D

0N×D

+ 14N×D

 .

The above simplifies to 


u
0N×D

0N×D

0N×D

+


0N×D

1N×D

1N×D

C0


⊙ (14N×D

)
,

41

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

Can Transformers Solve Least Squares to High Precision?

which gives us 
u

1N×D

1N×D

C0

 =: u0,

as desired

This was done with a (4N, 1, D, 4N,D)− BASECONV layer.

Our goal is, at the end of iteration j to compute uj ∈ R4N×D such that,

uj =


u

Pj(u)
Cj ⊙ Pj(u)

C0 +C1 ⊙ P1(u) + · · ·+Cj ⊙ Pj(u)

 .

We will view the above matrix in terms of the variables in the Algorithm 2 as follows
u

Pj(u)
Cj ⊙ Pj(u)

C0 +C1 ⊙ P1(u) + · · ·+Cj ⊙ uj

 =:


u
mj

tj
sj

 .

The for loop runs for values of 1 ≤ j ≤ d which the remainder of this proof will replicate. There are three lines in the for
loop in Algorithm 2 which we will cover how these operations happen in constant number of BASECONV layers.

In line 4, the first line in the for loop computes

uj−1 =


u

mj−1

tj−1

sj−1

→


u
mj

tj−1

sj−1

 =: u
(1)
j .

Note that mj = mj−1 ⊙ u.

We use the remember primitive to compute u
(1)
j from uj−1. Define f : R2N×D → R2N×D as follows

f

(
u

mj−1

)
=

(
u

mj−1 ⊙ u

)
.

If we can compute f with BASECONV layers then we can compute u(1)
j for uj−1 by calling remember(uj , 0, 2N − 1, f).

We show BASECONV

((
u
mj

)
, ID×D,02N×D,H,

(
1N×D

0N×D

))
maps

(
u

mj−1

)
→
(

u
mj

)
,

where H is defined as in Proposition F.24. We plug the matrices into the BASECONV layer as follows:((
u

mj−1

)
· ID×D + 02N×D

)
⊙
(
H ∗

(
u

mj−1

)
+
(
1N×D

0N×D

))
.

We know from Proposition F.24 that this convolution operation is a shift down by N rows. Therefore the above simplifies to((
u

mj−1

)
· ID×D + 02N×D

)
⊙
((

0N×D

u

)
+
(
1N×D

0N×D

))
,

42

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364

Can Transformers Solve Least Squares to High Precision?

which simplifies to (
u

mj−1

)
⊙
(
1N×D

u

)
=

(
u

mj−1 ⊙ u

)
= f

(
u
mj

)
,

as desired. Therefore by Proposition F.26, line 4 can be computed by (4N, 8, D, 4N,D)− BASECONV.

For line 5 of the for loop we need to compute

u
(1)
j =


u
mj

tj−1

sj−1

→


u
mj

tj
sj−1

 =: u
(2)
j .

Note that tj = Cj ⊙mj .

To do this we will use three BASECONV layers. We use the remember primitive to compute u
(2)
j from u

(1)
j . Define

g : R2N×D → R2N×D as follows,

g

(
mj

tj−1

)
=

(
mj

Cj ⊙mj

)
.

If we can compute g with BASECONV layers then we can compute u(2)
j for uj−1 by calling remember(u(1)

j , N, 3N−1, g).

Indeed, we show the g can be computed by first computing BASECONV
((mj

tj−1

)
, ID×D,02N×D,02N×D,

(
1N×D

0N×D

))
:((

mj

tj−1

)
· ID×D + 02N×D

)
⊙
(
02N×D ∗

(
mj

tj−1

)
+

(
1N×D

0N×D

))
,

which simplifies to ((
mj

tj−1

))
⊙
((

1N×D

0N×D

))
.

This results in (
mj

0N×D

)
.

We pass into the next layer, BASECONV
((mj

0N×D

)
, ID×D,

(
0N×D

1N×D

)
,H,

(
1N×D

0N×D

))
where H is defined as in Proposi-

tion F.24: ((
mj

0N×D

)
· ID×D +

(
0N×D

1N×D

))
⊙
(
H ∗

(
mj

0N×D

)
+

(
1N×D

0N×D

))
.

Since the kernel H is as in Proposition F.24, this simplifies to((
mj

1N×D

)
⊙
((

0N×D

mj

)
+

(
1N×D

0N×D

)))
.

The above simplifies further to (
mj

1N×D

)
⊙
(
1N×D

mj

)
,

which results in: (
mj

mj

)
.

We pass the above to BASECONV
((mj

mj

)
, ID×D,02N×D,02N×D,

(
1N×D

Cj

))
:((

mj

mj

)
· ID×D + 02N×D

)
⊙
(
02N×D ∗

(
mj

mj

)
+

(
1N×D

Cj

))
43

2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419

Can Transformers Solve Least Squares to High Precision?

which simplifies to (
mj

mj

)
⊙
(
1N×D

Cj

)
.

The above results in (
mj

Cj ⊙mj

)
= g

(
mj

tj−1

)
,

as desired.

Therefore by Corollary F.27, line 5 was computed by (4N,O(1), D, 4N,D)− BASECONV.

For line 6, the final line of the for loop, we want

u
(2)
j =


u
mj

tj
sj−1

→


u
mj

tj
sj

 =: uj .

Note that sj = sj−1 + tj

Define function h : R2N×D → R2N×D as follows,

h

(
tj

sj−1

)
=

(
tj

sj−1 + tj

)
.

If we can compute h with BASECONV layers then we can compute uj for uj−1 by calling remember(u(2)
j , 2N, 4N−1, h).

Indeed we show that h can be computed by computing BASECONV

((
tj

sj−1

)
,0D×D,12N×D,H,02N×D

)
, where kernel

H ∈ R2N×D is defined as:

H[k, :] ≡

{
1D if k ∈ {0, N}
0D otherwise.

.

This layer computes ((
tj

sj−1

)
· 02N×D + 12N×D

)
⊙
(
H ∗

(
tj

sj−1

)
+ 02N×D

)
.

This simplifies to (
12N×D

)
⊙
(
H ∗

(
tj

sj−1

))
=

(
H ∗

(
tj

sj−1

))
.

Now we compute this convolution for column i, 0 ≤ i < 2N . For notational convenience, let
(

tj
sj−1

)
be noted as matrix

V. Then we have:
H[:, i] ∗V[:, i] = coeff

(
(1 +XN)V[:, i](X) mod X2N

)
,

where (1 +XN) is the polynomial representation of the columns of H (since there’s a one in the 0th index and a one in the
N th index of each column).

The expression simplifies to
coeffV[:, i](X) +V[:, i](X)XN mod X2N ,

which can be broken down to

coeff
((
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1

)
mod X2N

)
+ coeff

((
V[0][i]XN +V[1][i]XN+1 + · · ·+V[2N − 1][i]X3N−1

)
mod X2N

)
44

2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474

Can Transformers Solve Least Squares to High Precision?

with the lower order terms in the second coefficient vector being zeros,

coeff
((
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1

)
mod X2N

)
+ coeff

((
0 + 0X + · · ·+ 0XN−1 +V[0][i]XN + · · ·+V[2N − 1][i]X3N−1

)
mod X2N

)
After taking mod X2N we get

coeff
(
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1

)
+ coeff

(
0 + 0X + · · · 0XN−1V[0][i]XN + · · ·V[N − 1][i]X2N−1

)
The first set of coefficients is the input matrix as is. And the second one is the input matrix shifted down as seen in
Proposition F.24. Therefore when we add these vectors we are doing(

tj
sj−1

)
+

(
0N×D

tj

)
= h

(
tj

sj−1

)
,

as desired. Therefore by Proposition F.26, line 6 is computed with by (4N, 1, D, 4N,D)− BASECONV.

The sd matrix gives us C0 +C1 ⊙m1 + · · ·+Cd ⊙md. Recalling that

C0 +C1 ⊙m1 + · · ·+Cd ⊙md ≡
d∑

j=0

Cj ⊙ uj = P (u),

and hence sd is our desired output.

We have d layers, each consisting of O(1) BASECONV layers. Giving us O(d) many layers to implement Algorithm 2.

Therefore, via the ability to stack BASECONV layers to do function composition, the for loop was computed by a
(4N,O(d), D, 4N,D)− BASECONV , as desired.

The following states BASECONV’s ability to approximate a univariate smooth function:

Proposition F.36. Let f be the (k, L) -smooth function defined in Definition F.31. Then there is a(
N,O

(
k

√
L
ϵ

)
+ k,D, (ND), D

)
− BASECONV model that approximates f within error ϵ.

Proof. Follows from Corollary F.12, Lemma F.32, and Theorem F.35.

F.3. Multivariate function approximation

We begin by defining more multivariate notation.

We consider the following multivariate functions:

Definition F.37. For 0 ≤ 1 < N, 0 ≤ j < D, let f̄i,j : [−1, 1]N×D → R be a (k, L)-smooth multivariate function. Then
define

f(x) : [−1, 1]N×D → RN×D

as follows. For all 0 ≤ i < N , 0 ≤ j < D, u ∈ [−1, 1]N×D define

f(u)[i, j] := f̄i,j(u).

Lemma F.38. For any smooth function f as defined in Definition F.37, let g(X1, . . . , XN×D) = Pf̄ (X1, . . . , XN×D) be
the polynomial from Corollary F.14. Then for all x ∈ [−1, 1]N×D,

∥g(x)− f(x)∥∞ ≤ ϵ.

Proof. Follows from Definitions F.7 and F.37 and Corollary F.14.

45

2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529

Can Transformers Solve Least Squares to High Precision?

Next we will state a construction for an arithmetic circuit for a function that takes a [−1, 1]N×D variable input:

Lemma F.39. Let P (X) be a degree d multivariate polynomial. Then there is a
(
n,O(d · nd), O(d log(n)), O(nd)

)
-circuit

to compute P (u) on any input u ∈ [−1, 1]n.

Proof. Let the multivariate polynomial be as defined in Definition F.6. We build the circuit to compute this in Algorithm 4,

Algorithm 4 circuit CP (x):
1: for α = (α1, . . . , αn) ∈ Zn

≥0 such that
∑n

i=1 αi ≤ d do
2: mα ← 1
3: for i = 1, 2, . . . , n do ▷ Done in parallel
4: if αi ̸= 0 then
5: mα ← mα · xαi

i

6: tα ← cα ·mα

7: for α = (α1, . . . , αn) ∈ Zn
≥0 such that

∑n
i=1 αi ≤ d do

8: s←
∑

tα ▷ Done in parallel
9: return s

We compute the for loop starting on line 3 by making multiplications in parallel. Therefore obtaining a depth of O(log(d)).
We also have the for loop starting on line 7, making pairwise addition operations, resulting in a depth of O(d log(n)).

We again use the result that BASECONV can represent any arithmetic circuit to get:

Corollary F.40. We can implement P (u) (where P (u) is as defined in Lemma F.39) when deg(P (X1, . . . , XND)) = d
with a

(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV where u ∈ [−1, 1]N×D.

Proof. Lemma F.39 gives us the arithetmic circuit that computes this polynomial. Then via Theorem F.30 we get a(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV model to implement the circuit.

Finally we state BASECONV’s ability to approximate multivariate smooth functions:

Proposition F.41. Let f be the function defined in Definition F.37. Then there is a
(
N,O(d log(ND)), D,O((ND)d), D

)
−

BASECONV model that approximates f to within error ϵ, with d = Ok(
k

√
NDL

ϵ).

Proof. We get the existence of a polynomial that approximates f for some ϵ from Corollary F.14. Then via Corollary F.40
we get that we can represent any polynomial, implying

(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV represents

any polynomial that approximates the multivariate smooth function f .

46

