
Can Transformers Solve Least Squares to High Precision?

Jerry Liu 1 Jessica Grogan 2 Owen Dugan 3 4 Simran Arora 1 Atri Rudra 2 Christopher Re 1

Abstract

Deep sequence models like Transformers have
achieved remarkable results across language and
vision tasks, but their ability to solve high-
precision numerical problems, crucial in scientific
settings, remains unclear. We explore the capabil-
ities of existing models on the fundamental prob-
lem of least squares, motivated by recent work
suggesting Transformers can implement learning
algorithms on in-context linear regression prob-
lems. Surprisingly, we observe that Transform-
ers struggle to solve least squares to high pre-
cision, even in fully determined settings: their
MSE plateaus at 10−5, 9 orders of magnitude
worse than simple algorithms like gradient de-
scent. Probing for sources of low precision, we
train on basic linear algebra operations and find
that Transformers struggle to precisely learn a
simple element-wise multiplication task. Since
numerical methods rely heavily on linear algebra
primitives, including multiplication, this result
suggests that Transformers struggle to implement
learning algorithms to high precision, in contrast
to prior findings. Our key insight is that gated
convolutional models can exactly implement arith-
metic circuits, including multiplications and poly-
nomials. Using gated convolutions, we instantiate
a weight construction that directly solves least
squares to high precision by explicitly implement-
ing gradient descent. Finally, based on our anal-
ysis, we propose a simple alternative to standard
in-context learning, in which we supervise models
to explicitly learn the gradient update rule and ap-
ply them iteratively during inference. Using this
framework, we achieve 2 orders of magnitude im-
provement over parameter-matched Transformers
trained on standard in-context learning.

1Stanford University 2University at Buffalo 3MIT 4NSF AI
Institute for Artificial Intelligence and Fundamental Interactions.
Correspondence to: Jerry Liu <jwl50@stanford.edu>.

Proceedings of the 1 st Workshop on In-Context Learning at the
41 st International Conference on Machine Learning, Vienna, Aus-
tria. 2024. Copyright 2024 by the author(s).

1. Introduction
Deep sequence models, especially the prevailing Trans-
former architecture, have demonstrated a remarkable ca-
pacity for generalization and robustness across language
and vision tasks (Touvron et al., 2023; Chowdhery et al.,
2022; Brown et al., 2020). Transferring these benefits to sci-
entific domains is an exciting prospect that has the potential
to unlock new fundamental capabilities across science and
engineering (McCabe et al., 2023; Subramanian et al., 2023;
Yang et al., 2023). Crucially, applications such as fluids and
climate modeling require high precision solutions (Frisch,
1995), and it is not clear whether existing ML methods can
achieve the accuracy of standard numerical methods.

Towards obtaining high-precision solutions with ML, we
focus on the testbed of least squares. A large class of differ-
ential equations problems can be reduced to least squares
problems (Gottlieb & Orszag, 1977; Orszag, 1972; Tre-
fethen, 2000), so it seems crucial for models to be able to
solve them precisely before they can hope to solve broader
problems like PDEs. Furthermore, we are motivated by
a surge of recent work (Garg et al., 2022; Akyürek et al.,
2022; Fu et al., 2023; Ahn et al., 2024; Bai et al., 2024)
that suggest that Transformers can perform optimization
algorithms in-context.

Following prior work (Garg et al., 2022; Von Oswald et al.,
2023), we train Transformers on in-context linear regression
problems, investigating how precision scales with depth.
Surprisingly, we find that they struggle to achieve below
O(10−5) MSE, even on the simple case of noiseless fully-
determined systems (Section 3, Figure 1). This accuracy is
remarkably poor compared to the machine precision solu-
tions (10−14 MSE with single-precision) gradient descent
consistently obtains in this setting (Boyd & Vandenberghe,
2004).

In this work, we make progress towards understanding why
Transformers struggle with learning high-precision algo-
rithms.

Identifying expressivity limitations within Transform-
ers. First, towards identifying mathematical operations
that represent precision bottlenecks for the Transformer
architecture, we examine gradient descent and Newton’s
method, two classical numerical algorithms that are known

1

Can Transformers Solve Least Squares to High Precision?

Figure 1. Although Transformers and OLS seem to have comparable performance on underdetermined noiseless linear regression (left),
precision of Transformer solutions saturate 9 orders of magnitude above OLS in the fully-determined regime (right).

to reliably reach machine precision on least squares (Schulz,
1933; Weisberg, 2005). We observe that these optimization
algorithms can be written as a composition of three ba-
sic primitives: arbitrary read/writes, affine transformations,
and element-wise multiplication. Training Transformers
on synthetic formulations of these tasks, we identify high-
precision multiplications as a challenge for attention-based
models: precision on the multiplication task scales surpris-
ingly poorly with increased depth, number of parameters,
and training duration. Since numerical methods rely heav-
ily on high-precision linear algebra primitives, this result
suggests that Transformers would face a fundamental expres-
sivity challenge if trying to directly implement optimization
algorithms like gradient descent.

Closing the gap with gated convolutions. We next in-
vestigate alternatives to softmax attention that may help
improve the precision of our models on least squares. We fo-
cus on gated convolutions, another popular class of sequence
models (Arora et al., 2023; 2024) combining element-wise
multiplications with convolutional filters. Recent work has
shown the ability of gated convolutions to efficiently repre-
sent arithmetic circuits, including multiplications and poly-
nomials (Arora et al., 2023). Using theory and empirical
constructions, we demonstrate that gated convolutions are
expressive enough to solve least squares to high precision by
explicitly implementing gradient descent arithmetic circuits.
For linear regression, we empirically implement a weight
construction for gradient descent using gated convolutions
and demonstrate that it is expressive enough to solve least
squares to 10−14 MSE, a lift of 9 orders of magnitude from
in-context Transformers.

Learning high-precision algorithms. Finally, we in-
vestigate whether gated convolutions can learn the high-
precision numerical algorithms we’ve shown they can im-
plement theoretically. Surprisingly, we observe that despite
our insights about the expressivity of BASECONV, they per-
form 2 orders of magnitude worse than Transformers when
trained naively on in-context least squares (Figure 10).

To tease apart the complexity of learning algorithmic solu-
tions, we propose a simple approach in which we supervise
models to explicitly learn the gradient update rule. During
inference, we then iteratively apply the learned circuit on
least squares problems until convergence. Using this simple
training setup, we observe an improvement of 2 orders of
magnitude over parameter-matched Transformers trained
via standard in-context learning.

2. Background
In this section, we provide background information about
our model architectures, problem framework, and training
setup. For a detailed discussion of related work, please refer
to Appendix A.

2.1. Sequence model architectures

Inspired by language modeling, we study autoregressive
sequence-to-sequence models Tθ : RN×Din → RN×Dout ,
where the sequence length is N , each element of the in-
put sequence lies in RDin , and each element of the output
sequence lies in RDout . Sequence models like Transform-
ers (Vaswani et al., 2017) share a common high-level struc-
ture. First, a linear projection Pin : RDin → RD embeds
each input element to a shared D-dimensional embedding

2

Can Transformers Solve Least Squares to High Precision?

space, yielding a matrix u ∈ RN×D. Next, u is passed
through a stack of L layers T (ℓ) : RN×D → RN×D. Each
layer consists of a sequence mixer, which mixes information
across the sequence dimension, and a state mixer, which
mixes information across the model dimension. Finally, a
linear projection Pout : RD → RDout maps to the output
space.

In this work, we focus on two classes of sequence mixers:
attention and gated convolutions.

Attention. Multi-headed softmax attention is the sequence
mixer used within the prototypical Transformer archi-
tecture (Vaswani et al., 2017), which remains dominant
across language and vision tasks. Each head of an atten-
tion layer is parameterized by three projection matrices
WQ,WK ,WV ∈ RD×D. For an input u ∈ RN×D, the
attention operator ATTN(u) is defined as:

H∑
i=1

softmax
((

uW
(i)
Q

)(
uW

(i)
K

)T
)(

uW
(i)
V

)
(1)

where H is the number of heads per layer.

Gated convolutions. Gated convolutions combine
element-wise multiplications (gating) with long convolu-
tions, where the convolutional filters are of the size of the
sequence length. In this work, we focus on a variant of the
BASECONV operator from (Arora et al., 2023). Given an
input u ∈ RN×D, BASECONV(u) is defined as:

((uWgate + bgate)︸ ︷︷ ︸
Linear Projection

⊙ (h ∗ (uWin + bin) + bconv)︸ ︷︷ ︸
Convolution

)Wout + bout

(2)
where the layer is parameterized by learnable filters h ∈
RN×D, linear projections Win,Wgate,Wout ∈ RD×D ,
and bias matrices bconv, bin, bgate, bout ∈ RN×D. The ⊙
is component-wise product and convolution of two matrices
is computed as convolution of the corresponding columns.

2.2. Least squares and in-context learning

Recent works have investigated the ability of Transformers
to solve least squares problems within an in-context learning
framework (Garg et al., 2022; Akyürek et al., 2022; Bai
et al., 2024). We briefly describe the in-context training
setup from (Garg et al., 2022).

We consider the following parameter estimation problem:
given samples {(xi, yi := f(xi;w

∗))}Ni=1 with given func-
tion f and unknown parameter w∗, our goal is to predict
yq = f(xq;w

∗) given query point xq. For linear regres-
sion, f(xi;w

∗) = xT
i w

∗. Following prior work (Garg
et al., 2022; Akyürek et al., 2022), we define a distribution

of prompts
P = (x1, y1, . . . ,xN , yN) (3)

where the xi’s and w∗’s are sampled from some joint train-
ing distribution Dtrain. We supervise a large sequence
model Tθ to predict the output yq = f(xq;w

∗). The train-
ing objective is to minimize the expected mean squared
error, averaged over each of the n independent least squares
problems per prompt:

min EP

[
1

N

N−1∑
k=0

∣∣∣∣Tθ(P
k)− yk+1

∣∣∣∣2] (4)

where P k = (x1, y1, . . . ,xk, yk,xk+1).

Excitingly, a recent line of work probes the estimators
learned by Transformers on in-context least squares, and
suggests that Transformers learn to mimic iterations of
learning algorithms, like gradient descent and Newton’s
method (Von Oswald et al., 2023; Ahn et al., 2024; Fu et al.,
2023; Giannou et al., 2024). We refer to Appendix A for a
more detailed discussion of related work.

3. Identifying precision as a challenge for
Transformers

In this section, we empirically investigate the claim that
Transformers learn to implement algorithms in-context to
solve linear regression. Crucially, we show that Transform-
ers struggle to obtain high precision solutions, even on noise-
less, fully determined problems (Section 3.1). In contrast,
we know that numerical algorithms for linear regression like
gradient descent robustly converge to machine precision
solutions. To investigate the precision issue on a simplified
setting, we isolate a set of linear algebra operations, which
naturally appear as primitives comprising a general class of
numerical algorithms (Section 3.2). These synthetic tasks
motivate the alternative architectures we analyze theoret-
ically (Section 4) and are a natural testbed for evaluating
high-precision training (Section 5).

3.1. Transformers struggle to precisely solve linear
regression

Experimental setup. Following prior work (Garg et al.,
2022), we train a 12-layer Transformer on noiseless linear
regression problems with D = 5, where the xi’s and w∗’s
are drawn from a standard multivariate Gaussian. We vary
N ∈ {0, . . . , 20} and evaluate the MSE of the model’s
learned estimator. Please refer to Appendix B.2.1 for more
details about the training setup.

In Figure 1, we compare the performance of the Trans-
former models to the Bayes-optimal estimator, Ordinary
Least Squares (OLS). We note that the precision gap be-
tween the Transformer and the Bayes-optimal estimator

3

Can Transformers Solve Least Squares to High Precision?

drastically increases when N ≥ D:

• For underdetermined regression problems, i.e. when
N < D, there exists an entire hyperplane of possible
w’s that perfectly match the provided data, so the opti-
mal estimator will have non-zero MSE. In this setting,
our results match the observations from prior works
(Garg et al., 2022; Akyürek et al., 2022), which note
that Transformers seem to approximate Bayes-optimal
estimators (i.e. OLS for dense w’s.)

• For fully determined regression problems, i.e. when
N ≥ D, there exists a unique w∗ that solves the prob-
lem. In theory, the OLS estimator recovers w∗ exactly
and thus should have an MSE of 0. In practice, we
observe that when computed using floating-point arith-
metic, OLS accrues some numerical error on the order
of machine epsilon: for single-precision, O(10−14).
In contrast, the Transformer struggles to reach below
10−5: this is a difference of 9 orders of magnitude.

Figure 2. While precision saturates for Transformers trained on
(fixed N) fully-determined least squares (O(10−7)), gradient de-
scent converges to machine precision (O(10−14)): this is a differ-
ence of 7 orders of magnitude.

Scaling studies. We thus focus on the fully determined
case, and investigate whether precision improves with larger
models. Note that if Transformers are able to implement
iterative algorithms to solve linear regression, the depth of
the model should correspond to the number of iterations of
the algorithm. Algorithms like gradient descent converge to
the exact solution with enough iterations: do Transformers
have the same property?

In Figure 2, we consider a simplified training setting with
fixed N > D, where the model is evaluated only on the final
prediction yN . We train Transformers on this task, up to
L = 64 layers, and we compare their precision scaling to the
convergence rate of full-batch gradient descent. For more
details about the training setup, refer to Appendix B.2.2.

We observe that Transformer precision scaling exceeds the
convergence rate of gradient descent at first, but the preci-
sion gains for Transformers rapidly diminish, such that we
observe very little difference in precision between L = 32
and L = 64 layers. For our deepest Transformer models,
we achieve an MSE around O(10−7). In contrast, gradient
descent converges linearly to machine precision, about 7
orders of magnitude more precise.

The diminishing returns of the Transformer precision scaling
law imply that the story of in-context learning as gradient
descent is incomplete. These results indicate there exists
a large gap between the high-precision algorithms Trans-
formers can theoretically express (Bai et al., 2024) and their
empirical performance when trained in-context.

3.2. Synthetic: investigating primitives from numerical
methods

To better understand the precision issue with Transform-
ers, we start by looking into primitives that comprise opti-
mization algorithms such as gradient descent and Newton’s
method. Since these algorithms are so fundamental to the
field of numerics, they represent a natural starting place for
discovering simple operations that Transformers struggle to
precisely express.

We observe that these algorithms can be expressed as com-
positions of three simple linear algebra operations mapping
from inputs u ∈ RN×din to outputs y ∈ RN×dout :

• Sequence-wise read/write:

READ(i, j, a, b)(u) =

{
u[k, a : b] k ̸= j

u[i, a : b] k = j
(5)

where din = dout.

• Affine transformations:

AFFINE(H)(u) = uH (6)

where H : Rdin → Rdout is an affine linear map.

• Element-wise multiplications:

MULTIPLY(a, b, dout)(u) = u[:, a : a+dout]⊙u[:, b : b+dout]
(7)

In Appendix D.2, we describe how gradient descent and
Newton’s method iterates can be expressed as a composi-
tion of these primitives. Intuitively, READ is used to transfer

4

Can Transformers Solve Least Squares to High Precision?

Figure 3. Precision vs. Transformer depth, with and without LayerNorm (LN), on synthetic tasks. While shallow Transformers are able to
learn the READ and AFFINE tasks to high precision (< 10−8 with 2-layer models), precision on the MULTIPLY task scales poorly with
depth (O(10−6) with 8-layer models).

information across the sequence dimension, AFFINE to trans-
fer information across the hidden dimension, and MULTIPLY
to compute high-degree interaction terms (like dot products
or element-wise squaring).

Empirical analysis. We train Transformers on these syn-
thetic tasks to investigate how precision scales with model
size. Details about our training setup are in Appendix B.2.3.

In Figure 3, we show that even 2-layer Transformers are able
to achieve high precision (O(10−8) MSE) on the READ and
AFFINE tasks. However, we find that Transformers struggle
with the MULTIPLY task. In Figure 4, we show that precision
scales surprisingly poorly with model size.

Theoretical analysis. Towards understanding the preci-
sion limitations of Transformers on the MULTIPLY primi-
tive, in Appendix D.2.4, we provide a proof that single-layer
linear attention is unable to exactly represent the simple
element-wise squaring function

SQUARE(u)[i, j] = u[i, j]2. (8)

Crucially, we note that SQUARE represents a special case of
MULTIPLY:

SQUARE = MULTIPLY(0, 0, D) (9)

so this result implies that single-layer linear attention is not
expressive enough to exactly implement MULTIPLY.

4. Gated convolutions can precisely solve least
squares

Motivated by the finding that Transformers struggle to pre-
cisely implement linear algebra operations (Section 3.2),
we investigate whether an alternative architecture might im-
prove the precision of our models. We focus on BASECONV,

a gated convolutional model, as a natural choice since recent
work has shown they can exactly and efficiently implement
arithmetic circuits (Arora et al., 2023; 2024). In Section 4.1,
we recap the equivalence of gated convolutions and arith-
metic circuits, and consider the more general problem of
approximating smooth functions in Section 4.2. Our key ob-
servation is that gated convolutions can exactly implement
polynomial activation functions (Theorem 4.2). We use this
fact, plus results from approximation theory, to argue that
BASECONV can efficiently approximate smooth multivari-
ate functions in our main theoretical result (Theorem 4.4).
In Section 4.3, we provide explicit weight constructions to
argue that gated convolutions are expressive enough to solve
least squares problems to high precision by directly imple-
menting gradient descent. For the special case of linear
regression, we validate our weight constructions empirically
and demonstrate that gated convolutions can obtain machine
precision solutions in practice.

4.1. Equivalence of gated convolutions and arithmetic
circuits

We start by recounting prior work proving the equiva-
lence between gated convolutions and arithmetic circuits.
Throughout the paper, we focus on the BASECONV archi-
tecture (Arora et al., 2023), parameterized as in Equation 2.
Since BASECONV is asymptotically equivalent to general
gated convolutional models, our theoretical results directly
apply to this wider class of architectures as well.

Theorem 4.1 (Theorem H.21 from (Arora et al., 2023)).
Any depth-∆ and width-w arithmetic circuit C, and input
uN×D can be implemented by a BASECONV model with
O(∆ logw) layers and O(wD) parameters per layer.

In particular, we note that the linear algebra primitives we
specify in Section 3.2 (READ, AFFINE, and MULTIPLY) are

5

Can Transformers Solve Least Squares to High Precision?

Figure 4. Precision of (2-layer) Transformers on MULTIPLY task scales poorly with attention dimension (left), number of heads (middle),
and MLP width (right, where MLP hidden dimension = width × attention dimension).

each arithmetic circuits with depth ∆ = O(1) and width
w = O(D). Thus, Theorem 4.1 implies there exist efficient
BASECONV implementations for all three primitives. In
Appendix D.2.1, we provide explicit constructions of single-
layer BASECONV models that exactly implement the READ,
AFFINE, and MULTIPLY primitives.

4.2. Approximating general smooth functions using
BASECONV

In this section, we broaden our scope beyond arithmetic
circuits and theoretically investigate the ability of gated
convolutions to approximate the general class of smooth
functions. Our key theoretical result is Theorem 4.4, which
provides upper bounds on the number of layers and param-
eters required to ϵ-approximate any multivariate smooth
function f : [−1, 1]N×D → RN×D.

We start by noting that gated convolutions are expressive
enough to represent polynomials, one of the key elements
of modern approximation theory.

Theorem 4.2. Given any degree-d polynomial P (X) and
u ∈ [−1, 1]N×D, there exists a BASECONV model with
O(d) layers and O(ND) parameters per layer that exactly
implements P (u), where P is applied element-wise.

The ability to efficiently represent polynomials is crucial
because polynomials form a natural and well-studied func-
tion basis. It is well known that polynomials are dense
in the space of continuous functions on bounded inter-
vals (De Branges, 1959). Modern approximation theory
provides precise theoretical results about the difficulty of
approximating smooth functions using polynomials:

Theorem 4.3 (Jackson’s Theorem (Pleśniak, 2009)). Any
r-times differentiable function f(x) : [−1, 1] → R satis-
fying || d

r

dxr f(x)||∞ ≤ L is ϵ-approximable by a d-degree

polynomial, where d = O
((

L
ϵ

)1/r
+ r
)

.

Combining these two results, we can show that gated con-
volutions are able to approximate any univariate smooth
function (Theorem D.37). Intuitively, we first approximate
the function using a polynomial expansion, then use BASEC-
ONV to efficiently implement the polynomial.

Our main theoretical result, detailed in Proposition D.43,
generalizes to the case of multivariate smooth functions:

Theorem 4.4. Let f : [−1, 1]N×D → RN×D be a k-times
differentiable multivariate function. Then for all ϵ > 0,
there exists a BASECONV model with O(d log(ND)) layers
and O((ND)d) parameters that ϵ-approximates f , where

d = Ok(
k

√
NDL

ϵ).

Please see Appendix D.4 for proofs and further discussion.

4.3. Weight constructions: BASECONV can implement
gradient descent for linear regression

For the special case of linear regression, we observe that
an iteration of gradient descent can be expressed exactly
as an arithmetic circuit. Thus, Theorem 4.1 implies that
there exists a BASECONV model that exactly implements a
gradient descent iteration on linear regression.

Concretely, we provide two O(1)-layer weight constructions
for gradient descent using BASECONV in Appendix D.3.1.
One requires a O(D) state size using a non-causal model
(i.e. each entry can access any other entry of the sequence)
and one requires a O(D2) state size using a causal model
(i.e. entries cannot access later entries of the sequence).
In Appendix D.3.2, we prove that both constructions are
asymptotically optimal with respect to state size.

Empirical implementation. To investigate the feasibil-
ity and numerical properties of our weight constructions
in practice, we implement gradient descent with BASEC-
ONV as detailed in Appendix D.3.1. In Figure 5, we evaluate

6

Can Transformers Solve Least Squares to High Precision?

Figure 5. Implementation of the BASECONV weight construc-
tion for gradient descent on linear regression (Appendix D.3.1).
BASECONV is expressive enough to solve least squares to high
precision.

how precision scales with the effective number of layers and
compare to a manual implementation of gradient descent.

We confirm empirically that BASECONV is expressive
enough to algorithmically solve linear regression, matching
the gradient descent iterates to high precision. Our con-
structed BASECONV achieves an MSE of 10−14, a lift of 9
orders of magnitude from the error saturation threshold of
trained Transformers.

5. Towards learning high-precision algorithms
Having shown that gated convolutions theoretically close
the expressivity gap on numerical algorithms in Section 4, in
this section we investigate learning high-precision solutions.

We observe that despite our insights about the expressivity
of BASECONV, they perform 2 orders of magnitude worse
than Transformers when trained naively on in-context least
squares (Figures 6, 10) and 10 orders of magnitude worse
than our weight construction.

To tease apart the complexity of learning algorithmic solu-
tions, we investigate two simplified in-context least squares
training setups (Section 5.1). In both settings, we show
promising results towards learning general high-precision
algorithms, including precision lifts of 2-3 orders of magni-
tude on in-context linear regression. However, we identify
the optimizer as a key bottleneck in high-precision regimes.
In Section 5.2, we empirically investigate the expressivity-

learnability gap for BASECONV, using our linear algebra
primitives from Section 3.2 as a natural testbed.

Figure 6. Transformers vs. BASECONV on in-context linear re-
gression. Adding features from causal gradient descent construc-
tion (Appendix D.3.1) boosts precision by 2 orders of magnitude,
though neither model has linear convergence like gradient descent.

5.1. Investigations on simplified in-context least squares

To better probe bottlenecks to learning high-precision algo-
rithms, we define two simplified variants of the in-context
least squares problem:

1. We append additional features to the inputs of the mod-
els, based on our causal gradient descent construction
from Appendix D.3.1.

2. We explicitly supervise the models on gradient descent
iterates. During inference, we apply our models iter-
atively, starting from a random initial guess w0, until
approximate convergence to a fixed point winf .

5.1.1. IN-CONTEXT LEAST SQUARES WITH FEATURE
INITIALIZATION

Experiment setup. In this experiment, we append addi-
tional features to the inputs of the models. We define three
variants of the in-context least squares task, {LSk

init}2k=0.
In the k-th variant, the extra features we append to the inputs
correspond to the outputs of the first k layers of the causal
gradient descent construction of Appendix D.3.1. Specif-
ically, for the k-th variant, the i-th in-context example, as
inputted into the model, is:

• k = 0 (standard in-context least squares): {(xi, yi)}.

7

Can Transformers Solve Least Squares to High Precision?

Figure 7. Left: Training explicitly to learn gradient descent iterates, precision of BASECONV without LayerNorms outscales Transformers.
Right: Using predicted iterates to manually implement gradient descent, BASECONV saturates 2 orders of magnitude higher precision
than Transformers (though neither reach machine precision). Interestingly, even BASECONV with a single hardcoded layer (red) achieves
an MSE of O(10−13).

• k = 1:
{(

xi, yi, yixi,xix
T
i

)}
.

• k = 2:
{(

xi, yi,
(∑N

i=1 yixi

)
,
(∑N

i=1 xix
T
i

))}
.

During training, we supervise the models in-context to pre-
dict w∗. We note that for the variants k ∈ {1, 2}, each
iteration of gradient descent can be implemented exactly
using sequence-wise and element-wise sums alone (via Ap-
pendix D.3.1). Since we know that both Transformers and
BASECONVs can express the READ and AFFINE primitives
to high precision, we expect both classes of models should
be able to implement gradient descent explicitly to solve
least squares precisely. Please refer to Appendix B.2.4 for
more training details.

Evaluation. In Figure 6, we evaluate the performance
of BASECONVs and Transformers on the three tasks
{LSk

init}2k=0. We observe that providing additional fea-
tures (k = 1, 2) boosts precision of both classes of models
by 2 orders of magnitude, compared to the standard in-
context least squares task (k = 0). However, we note that
the convergence rate still saturates more than 7 orders of
magnitude above machine precision, and neither learned
model matches the linear convergence rate of gradient de-
scent. This gap between expressivity and learnability sug-
gests the optimizer remains a key bottleneck for learning
high-precision algorithms.

5.1.2. EXPLICITLY LEARNING GRADIENT UPDATES

Experiment setup. In this experiment, we explicitly su-
pervise Transformers and BASECONVs to predict the gradi-

ent of the least squares objective, Equation 12:

{(x1, y1), . . . , (xN , yN),w0} → ∇L(w0). (10)

During inference, we apply our models iteratively, using
our model predictions to explicitly perform gradient descent.
Starting from a random guess w0, we repeatedly compute:

Tθ ({(x1, y1), . . . , (xN , yN),wi}) := ∆i (11)

and define wi+1 := wi − η∆i. until approximate conver-
gence to a fixed point w∞. We compare to the true w∗.
Refer to Appendix B.2.5 for more details.

Evaluation. We evaluate the performance of our setup in
Figure 7. Increasing the model depth, we find that BASEC-
ONVs without LayerNorms outperform Transformers on
learning the explicit gradient descent circuit (a gap of 2
orders of magnitude for our largest models.)

Next, we train 3-layer Transformers and BASECONVs and
evaluate the performance of the models applied as iterative
algorithms. Excitingly, we find that the learned models are
robust enough that iterates continue to converge even af-
ter 40+ iterations. As with the gradient, we observe that
the BASECONV model outperforms the parameter-matched
Transformer by 2 orders of magnitude. However, its pre-
cision (O(10−6)) is still 8 orders of magnitude worse than
our weight construction (Appendix D.3.1).

Explicit gradient descent with feature initialization. Fi-
nally, we compare to 3-layer BASECONVs whose first
k ∈ {1, 2} layers are frozen and initialized to the weight con-
struction. Note that this is equivalent to applying the feature

8

Can Transformers Solve Least Squares to High Precision?

initialization technique from Section 5.1.1. We observe a 6
orders of magnitude expressivity-learnability gap between
the partially frozen and fully trained BASECONVs. Notably,
the BASECONV models with feature initialization reach
near machine precision, closely matching the performance
of true gradient descent on this problem. These findings
show that even learning the 3-layer arithmetic circuit rep-
resenting an iterate of gradient descent to high precision
remains challenging.

5.2. Investigating the expressivity-learning gap with
MULTIPLY

To further probe the precision bottlenecks introduced by
the optimizer, we train BASECONV models on the simple
MULTIPLY task from Section 3.2. In Figure 8, we scale
BASECONV’s size, demonstrating that although BASEC-
ONVs train to O(10−9) on this task, they struggle to achieve
machine precision solutions. In Figure 9, we increase train-
ing time, demonstrating that BASECONV precision on the
MULTIPLY task improves steadily but precision gains dimin-
ish exponentially. We highlight the difficulty of reaching
machine precision solutions even on the simplest expressible
tasks, and leave this challenge to future work.

6. Conclusion
In this work, we explore the capabilities of Transformers
to solve high-precision numerical problems. Surprisingly,
we demonstrate that Transformers struggle to solve least
squares to high precision even on noiseless fully-determined
problems. We investigate gated convolutions as one way
of getting to high-precision algorithms, showing that these
models can precisely solve least squares by explicitly im-
plementing gradient descent. We propose a simple training
setup for explicitly learning gradient descent, with which
we demonstrate an improvement of 2 orders of magnitude
upon in-context Transformers. However, we highlight the
optimizer as a key bottleneck in high-precision regimes,
which we leave for future work.

Acknowledgements
We thank Yasa Baig, Aman Timalsina, Sabri Eyuboglu,
Michael Zhang, Dylan Zinsley, and Benjamin Spector for
their helpful feedback and discussion during this work.

We gratefully acknowledge the support of NIH un-
der No. U54EB020405 (Mobilize), NSF under Nos.
CCF2247015 (Hardware-Aware), CCF1763315 (Beyond
Sparsity), CCF1563078 (Volume to Velocity), 1937301
(RTML), and PHY-2019786 (The NSF AI Institute
for Artificial Intelligence and Fundamental Interac-
tions, http://iaifi.org/); US DEVCOM ARL under Nos.
W911NF-23-2-0184 (Long-context) and W911NF-21-2-
0251 (Interactive Human-AI Teaming); ONR under Nos.
N000142312633 (Deep Signal Processing); Stanford HAI
under No. 247183; U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research,
Department of Energy Computational Science Graduate
Fellowship under Award Number DE-SC0023112; NXP,
Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba,
TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qual-
comm, Analog Devices, Google Cloud, Salesforce, Total,
the HAI-GCP Cloud Credits for Research program, the Stan-
ford Data Science Initiative (SDSI), and members of the
Stanford DAWN project: Meta, Google, and VMWare. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views,
policies, or endorsements, either expressed or implied, of
NIH, ONR, or the U.S. Government. JG and AR’s research
is supported by NSF grant CCF#2247014.

References
Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-

formers learn to implement preconditioned gradient de-
scent for in-context learning. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Ahuja, K., Panwar, M., and Goyal, N. In-context
learning through the bayesian prism. arXiv preprint
arXiv:2306.04891, 2023.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-context
language learning: Arhitectures and algorithms. arXiv
preprint arXiv:2401.12973, 2024.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli, M.,

9

Can Transformers Solve Least Squares to High Precision?

Zou, J., Rudra, A., and Ré, C. Zoology: Measuring and
Improving Recall in Efficient Language Models, 2023.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti,
S., Zinsley, D., Zou, J., Rudra, A., and Ré, C. Sim-
ple linear attention language models balance the recall-
throughput tradeoff, 2024.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. Advances in neural infor-
mation processing systems, 36, 2024.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, W., Song, J., Ren, P., Subramanian, S., Morozov, D.,
and Mahoney, M. W. Data-efficient operator learning via
unsupervised pretraining and in-context learning. arXiv
preprint arXiv:2402.15734, 2024.

Chiang, D., Cholak, P., and Pillay, A. Tighter bounds on
the expressivity of transformer encoders. In Interna-
tional Conference on Machine Learning, pp. 5544–5562.
PMLR, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari, G.,
Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S.,
Michalewski, H., Garcia, X., Misra, V., Robinson, K., Fe-
dus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph,
B., Spiridonov, A., Sepassi, R., Dohan, D., Agrawal,
S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee,
K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat, O.,
Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean,
J., Petrov, S., and Fiedel, N. Palm: Scaling language
modeling with pathways, 2022.

D. Jackson. The theory of approximation. Amer. Math. Soc.
Colloq. Publ., vol. 11, Amer. Math. Soc, Providence, R.
I., 1930.

Dao, T., Sohoni, N. S., Gu, A., Eichhorn, M., Blonder, A.,
Leszczynski, M., Rudra, A., and Ré, C. Kaleidoscope:
An efficient, learnable representation for all structured
linear maps. arXiv preprint arXiv:2012.14966, 2020.

Dasgupta, I., Lampinen, A. K., Chan, S. C., Creswell, A.,
Kumaran, D., McClelland, J. L., and Hill, F. Language
models show human-like content effects on reasoning.
arXiv preprint arXiv:2207.07051, 2022.

De Branges, L. The stone-weierstrass theorem. Proceedings
of the American Mathematical Society, 10(5):822–824,
1959.

Frisch, U. Turbulence: the legacy of AN Kolmogorov. Cam-
bridge university press, 1995.

Fu, D., Chen, T.-Q., Jia, R., and Sharan, V. Transformers
learn higher-order optimization methods for in-context
learning: A study with linear models. arXiv preprint
arXiv:2310.17086, 2023.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. In International Conference on
Machine Learning, pp. 11398–11442. PMLR, 2023.

Giannou, A., Yang, L., Wang, T., Papailiopoulos, D., and
Lee, J. D. How well can transformers emulate in-context
newton’s method? arXiv preprint arXiv:2403.03183,
2024.

Gottlieb, D. and Orszag, S. A. Numerical analysis of spec-
tral methods: theory and applications. SIAM, 1977.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.

Heideman, M. T. and Burrus, C. S. Multiplicative complex-
ity, convolution, and the DFT. Springer, 1988.

Huang, Y., Cheng, Y., and Liang, Y. In-context convergence
of transformers. arXiv preprint arXiv:2310.05249, 2023.

Liu, J. W., Erichson, N. B., Bhatia, K., Mahoney, M. W.,
and Re, C. Does in-context operator learning generalize
to domain-shifted settings? In The Symbiosis of Deep
Learning and Differential Equations III, 2023.

10

Can Transformers Solve Least Squares to High Precision?

Mahankali, A., Hashimoto, T. B., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

McCabe, M., Blancard, B. R.-S., Parker, L. H., Ohana,
R., Cranmer, M., Bietti, A., Eickenberg, M., Golkar, S.,
Krawezik, G., Lanusse, F., Pettee, M., Tesileanu, T., Cho,
K., and Ho, S. Multiple physics pretraining for physical
surrogate models, 2023.

Merrill, W. and Sabharwal, A. A logic for expressing log-
precision transformers. Advances in Neural Information
Processing Systems, 36, 2024.

Merrill, W. and Sabharwals, A. The parallelism tradeoff:
Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11:531–
545, 2023. doi: 10.1162/tacl_a_00562. URL https:
//aclanthology.org/2023.tacl-1.31.

Orszag, S. A. Comparison of pseudospectral and spectral
approximation. Studies in Applied Mathematics, 51(3):
253–259, 1972.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Cao, H., Cheng, X., Chung, M., Grella, M., GV, K. K.,
et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

Peter Bürgisser and Michael Clausen and M. Amin Shokrol-
lah. Algebraic Complexity Theory. Springer, 1997.

Petersdorff, T. V. Polynomial approximation and in-
terpolation. 2015. Numerical Analysis Class Notes.
https://www.math.umd.edu/~petersd/
666/amsc666notes02.pdf.

Pleśniak, W. Multivariate jackson inequality. Jour-
nal of Computational and Applied Mathemat-
ics, 233(3):815–820, 2009. ISSN 0377-0427.
doi: https://doi.org/10.1016/j.cam.2009.02.095.
URL https://www.sciencedirect.com/
science/article/pii/S0377042709001307.
9th OPSFA Conference.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
In International Conference on Machine Learning, pp.
28043–28078. PMLR, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raventós, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian

in-context learning for regression. Advances in Neural
Information Processing Systems, 36, 2024.

Schulz, G. Iterative berechung der reziproken matrix.
ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift für Angewandte Mathematik und Mechanik,
13(1):57–59, 1933.

Smoothness. Smoothness — Wikipedia, the free encyclope-
dia, 2006. https://en.wikipedia.org/wiki/
Smoothness.

Strang, G. Linear algebra and its applications. 2012.

Subramanian, S., Harrington, P., Keutzer, K., Bhimji, W.,
Morozov, D., Mahoney, M. W., and Gholami, A. Towards
foundation models for scientific machine learning: Char-
acterizing scaling and transfer behavior. arXiv preprint
arXiv:2306.00258, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A.,
Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., and
Bhosale, S. Llama 2: Open foundation and fine-tuned
chat models. arXiv:2307.09288, 2023.

Trefethen, L. N. Spectral methods in MATLAB. SIAM,
2000.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Weisberg, S. Applied linear regression, volume 528. John
Wiley & Sons, 2005.

Yadlowsky, S., Doshi, L., and Tripuraneni, N. Pretraining
data mixtures enable narrow model selection capabilities
in transformer models. arXiv preprint arXiv:2311.00871,
2023.

Yang, L., Liu, S., Meng, T., and Osher, S. J. In-context op-
erator learning for differential equation problems. arXiv
preprint arXiv:2304.07993, 2023.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J., and
Kumar, S. Are transformers universal approximators of
sequence-to-sequence functions?, 2020a.

11

https://aclanthology.org/2023.tacl-1.31
https://aclanthology.org/2023.tacl-1.31
https://www.math.umd.edu/~petersd/666/amsc666notes02.pdf
https://www.math.umd.edu/~petersd/666/amsc666notes02.pdf
https://www.sciencedirect.com/science/article/pii/S0377042709001307
https://www.sciencedirect.com/science/article/pii/S0377042709001307
https://en.wikipedia.org/wiki/Smoothness
https://en.wikipedia.org/wiki/Smoothness

Can Transformers Solve Least Squares to High Precision?

Yun, C., Chang, Y.-W., Bhojanapalli, S., Rawat, A. S.,
Reddi, S., and Kumar, S. O (n) connections are expressive
enough: Universal approximability of sparse transform-
ers. Advances in Neural Information Processing Systems,
33:13783–13794, 2020b.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023.

12

Can Transformers Solve Least Squares to High Precision?

Appendix
The appendix is organized as follows:

• Appendix A provides a more detailed overview of related work.

• Appendix B provides details about our experimental setup.

• Appendix C provides additional ablation studies.

• Appendix D provides details about our main theoretical results.

13

Can Transformers Solve Least Squares to High Precision?

A. Extended background
A.1. Linear regression

Linear regression, where f(x;w) = wTx, is an important class of least squares problems. Linear regression is well-
understood theoretically, and we know of simple numerical algorithms for solving linear regression to high precision (Weis-
berg, 2005; Boyd & Vandenberghe, 2004). We focus on two algorithms: gradient descent and Newton’s iteration.

Gradient descent Given a guess for w∗, we minimize the least squares loss

L(w) =
1

2N

N∑
i=1

(f(xi;w)− yi)
2 (12)

via gradient descent on w:

∇wLN =
1

N

N∑
i=1

(wTxi − yi)xi (13)

wt+1 = wt − η∇LN (wt) (14)

Ordinary Least Squares and Newton’s iteration In the noiseless, full determined regime, the Bayes-optimal estimator is
ordinary least squares (OLS) (Weisberg, 2005):

wOLS = (XTX)−1XTy, (15)

where

X =

← x1 →
...

← xN →

 , y =

 y1
...
yN

 (16)

Note that this estimator requires a matrix inverse, which is expensive to compute exactly. An alternative is to use Newton’s
method to approximate the matrix inverse term (Schulz, 1933). To estimate (XTX)−1, we can perform the following
iterative algorithm:

At+1 = At(2I − (XTX)At) (17)

where At converges to (XTX)−1.

A.2. Related work

In this section, we detail prior work on in-context learning, Transformer expressivity, and gated convolutional architectures.

In-context learning. The capability of Transformers to perform in-context learning on language and pattern matching tasks
has been well-documented (Brown et al., 2020; Dasgupta et al., 2022; Wei et al., 2022). More recently, a flurry of work has
investigated in-context learning for regression-style tasks. (Garg et al., 2022) first formulated the mathematical framework
to analyze the estimators Transformers implement in-context, focusing on linear regression and other least squares problems.
A number of works further observed empirically that Transformers seem to approximate Bayes-optimal estimators on
distributional problems. For example, based on the task distribution, the performance of in-context Transformers mimics
optimally-tuned LASSO on sparse linear regression, ridge regression on noisy dense linear regression, and Bayes-optimal
priors for task mixtures (Akyürek et al., 2024; Raventós et al., 2024; Yadlowsky et al., 2023; Ahuja et al., 2023; Bai et al.,
2024). Beyond standard least squares problems, other works have investigated the ability of Transformers to in-context
solve broader problems of scientific interest like differential equations (Yang et al., 2023; Chen et al., 2024; Liu et al., 2023).

Towards explaining these observations, recent works have focused on understanding the expressivity and optimziation
landscapes of Transformer variants (typically non-causal linear attention) on linear regression. Linear attention has been
shown to be expressive enough to implement numerical algorithms for solving linear regression, including gradient
descent (Akyürek et al., 2022; Von Oswald et al., 2023) and Newton’s method (Fu et al., 2023; Giannou et al., 2024). Recent
work has begun to investigate the optimization dynamics for linear attention on least squares. (Ahn et al., 2024; Mahankali
et al., 2023) prove that the global minimizer of the in-context learning loss for linear regression using linear attention is

14

Can Transformers Solve Least Squares to High Precision?

equivalent to a step of preconditioned gradient descent. Additionally, (Zhang et al., 2023) provides suitable conditions under
which gradient flow provably converges to this global minimizer.

Transformers with non-linear attention are less well-understood theoretically. (Bai et al., 2024) provides constructions
implementing optimization algorithms for a variety of least squares problems, including sparse linear and logistic regression,
using RELU-activation attention. On the optimization front, we are aware of (Huang et al., 2023), which provides
convergence guarantees for single-layer softmax attention under a structured data model.

Unlike prior work, we investigate the in-context learning capabilities of standard (multi-layer softmax-attention) Trans-
formers, focusing on exploring their capability to perform high-precision optimization algorithms. Noting a gap between
empirical performance and theoretical claims regarding in-context least squares as gradient descent, we further investigate
alternative architectures to softmax attention.

Expressivity and approximation ability of Transformers. Although Transformers were initially designed for discrete
tasks like language modeling, recent works have investigated the ability of the Transformer architecture to express general
continuous-valued sequence-to-sequence maps. We briefly mention three classes of prior work:

• Constructive arguments. We highlight (Giannou et al., 2023), which proposes a looped-Transformer weight con-
struction that implements a basic mathematical instruction set. Using compositions of these instructions, the authors
demonstrate that Transformers are expressive enough to implement numerical algorithms, including matrix inversion
and SGD on linear models.

• Universal approximation results. Several works, such as (Yun et al., 2020a;b), provide bounds on the number of
parameters and layers required to approximate smooth sequence-to-sequence functions to arbitrary precision using
Transformers.

• Complexity theory results. Recent works (Chiang et al., 2023; Merrill & Sabharwals, 2023; Merrill & Sabharwal,
2024) prove that log-precision Transformers lie in TC0, a limited complexity class of circuits.

Gated convolutions. Gated convolutional models are a class of architectures that serve as an efficient alternative to
attention. These models, consisting of gating (element-wise multiplication) and long convolutions (filter size equal to
sequence length), stem from earlier work (Gu et al., 2021) inspired by the signal processing literature. In this work we focus
on the BASECONV model from (Arora et al., 2023), but a recent surge of interest in efficient attention replacements has led
to a flood of gated convolutional architectures (Poli et al., 2023; Peng et al., 2023; Gu & Dao, 2023).

Recent architectural innovations within the class of gated convolutional models have been largely motivated by language
modeling tasks (Fu et al., 2022; Arora et al., 2023). Unlike these prior works, which focus on matching attention’s
performance on discrete tasks, we observe that the connection between gated convolutions and arithmetic circuits implies
they are able to exactly express a range of important numerical algorithms for continuous-valued tasks. We further investigate
their ability to learn these algorithms in-context.

15

Can Transformers Solve Least Squares to High Precision?

B. Experimental setup
Here, we provide additional details about our experimental setup.

B.1. Model architecture

We base our Transformer and BASECONV models off the GPT2 family (Radford et al., 2019). Unless otherwise specified,
we use the following default settings:

Config Setting
Embedding size 64

Number of layers 12
Number of heads 1

MLPs True
MLP hidden size 4x embedding size
MLP activation ReLU

Batch size 256
Optimizer Adam

Learning rate 10−3

Scheduler StepLR
Training iterations 106

Step rate 104

Decay rate 0.9
Problem dim 5

Sequence length 20

B.2. Tasks

Each of our in-context learning tasks can be viewed as a sequence-to-sequence map

M : RNin×Din → RNout×Dout

In this subsection, we provide details about task implementations, specifying the input/output formats for each of the
synthetic tasks and in-context least squares variants we implement.

B.2.1. IN-CONTEXT LINEAR REGRESSION, N PARALLEL TASKS.

In Figure 1, we use the in-context linear regression setup from (Garg et al., 2022),MLS_parallel : R(2N+1)×D → R(N+1)×1,
where the inputs are formatted as

uin :=
[
x1 y1e1 . . . xN yNe1 xquery

]
and the expected outputs are

Tθ(uin)[0::2, :1] :=
[
y1 . . . yN yquery

]
.

B.2.2. IN-CONTEXT LINEAR REGRESSION, FULLY-DETERMINED, FIXED N.

In Figure 2, we simplify the linear regression setup from (Garg et al., 2022) by supervising only on the final prediction
yquery. Concretely, we considerMLS_fixed_N : R(N+1)×(D+1) → R, where as above the inputs are formatted as

uin :=

[
x1 . . . xN xquery

y1 . . . yN 0

]
and the expected output is

Tθ(uin)[-1:, -1:] := yquery.

We note that causal softmax Transformers achieve higher precision on this “fixed length” variant (compare Figure 2 to
Figure 1).

16

Can Transformers Solve Least Squares to High Precision?

B.2.3. PRIMITIVES.

For each of the primitives (Figures 3, 4, 8, 9), we increase the task size, setting D = 20 and N = 40.

• READ is defined asMRead : RN×D → RN×D, where the inputs are formatted as

uin ∈ RN×D :=
[
x1 . . . xN

]
and the expected outputs are Tθ(uin) ∈ RN×D such that

Tθ(uin)[k, :] :=

{
uin[i, :] k = j

uin[k, :] k ̸= j

for task parameters i ̸= j ∈ [N].

• AFFINE is defined asMAffine : RN×D → RN×1, where the inputs are formatted as

uin ∈ RN×D :=
[
x1 . . . xN

]
and the expected outputs are

Tθ(uin) :=
[
xT
1 h . . . xT

Nh
]

where h ∈ RD is a task parameter.

• MULTIPLY is defined asMMultiply : RN×D → RN×D/2, where the inputs are formatted as

uin ∈ RN×D :=
[
x1 . . . xN

]
and the expected outputs are

Tθ(uin) :=
(
x1[:, : D/2]⊙ x1[:, D/2 :] . . . xN [:, : D/2]⊙ xN [:, D/2 :]

)
.

B.2.4. FEATURE INITIALIZATION LINEAR REGRESSION.

In Figure 6, we use a simplified linear regression setup, in which additional features are provided to the model, toward
encouraging the model to explicitly implement gradient descent in-context. We proceed to define the taskMLS_feature :

RN×(D2+2D+1) → RD.

There are three variants of the task, k ∈ {0, 1, 2}, which indicates that the appended features are the outputs of the k-th
layer of the causal gradient descent construction from Appendix D.3.1. See Section 5.1.1 for more details.

For k = 0, the inputs are

uin :=


x1 . . . xN

y1 . . . yN
0 . . . 0
0 . . . 0

 .

For k = 1, the inputs are

uin :=


x1 . . . xN

y1 . . . yN
y1x1 . . . yNxN

flt(x1x
T
1) . . . f lt(xNxT

N)

 .

For k = 2, the inputs are

uin :=


x1 . . . xN

y1 . . . yN
←
∑N

i=1 yixi →
←
∑N

i=1 flt(xix
T
i)→


where flt denotes the flatten operation.

In all cases, the expected outputs are
Tθ(uin)[-1:, :D] := w∗.

For this task, we use an embedding size of 256.

17

Can Transformers Solve Least Squares to High Precision?

B.2.5. EXPLICIT GRADIENT UPDATES.

In Figure 7, we investigate a simple training setting, in which the model is explicitly trained to predict the gradient of the
least squares loss. We proceed to define the taskMgradient : R(N+1)×(D2+2D+1) → RD.

As in the feature initialization linear regression task, we consider three variants of the task, k ∈ {0, 1, 2}. The inputs are
similar to the previous task:

For k = 0, the inputs are

uin :=


x1 . . . xN w0

y1 . . . yN 0
0 . . . 0 0
0 . . . 0 0

 .

For k = 1, the inputs are

uin :=


x1 . . . xN w0

y1 . . . yN 0
y1x1 . . . yNxN 0

flt(x1x
T
1) . . . f lt(xNxT

N) 0

 .

For k = 2, the inputs are

uin :=


x1 . . . xN w0

y1 . . . yN 0

←
∑N

i=1 yixi →
←
∑N

i=1 flt(xix
T
i)→


where flt denotes the flatten operation.

In all cases, the expected outputs are
Tθ(uin)[-1:, :D] := ∇wL(w0).

For this task, we use an embedding size of 256.

B.3. Data generation

At each training step, we produce a random training prompt uin by sampling each variable randomly: from the isotropic
Gaussian distribution N(0, I) for continuous-valued parameters, and from the uniform distribution for discrete parameters.
Concretely:

• For the in-context linear regression tasks, input vectors x1, . . . ,xN are sampled from N(0D, ID), and the unknown
linear function is determined by w∗, also drawn from N(0D, ID).

• For the synthetic tasks READ, AFFINE, MULTIPLY (Section 3.2), each column of the inputs uin ∈ RN×D is sampled
from the isotropic Gaussian distribution N(0D, ID). The tasks READ and AFFINE require specifying additional
parameters as follows:

– For READ, at each iteration, i ̸= j ∈ [N] are sampled uniformly.
– For AFFINE, at each iteration, the affine transformation h is sampled from N(0D, 3ID).

• For the explicit gradient task, the random initialization w0 is also drawn from N(0D, ID).

The model is trained to minimize the in-context training loss (Equation 4), equivalent to minimizing mean squared error
over the distribution of prompts.

18

Can Transformers Solve Least Squares to High Precision?

C. Additional experimental results
C.1. Primitives: Transformer vs. BASECONV

In Figure 8, we train Transformers and BASECONVs, with and without LayerNorms (LN), on the READ, AFFINE, and
MULTIPLY primitives from Section 3.2. We vary the model depth L ∈ {1, 2, 4, 8} and investigate how precision scales with
number of layers.

We show that Transformers and BASECONVs both achieve high precision (< O(10−9)) on the READ and AFFINE tasks.
However, the Transformers struggle to implement MULTIPLY to high precision, and performance scales poorly with model
depth.

We observe that BASECONV without LayerNorm generally performs the best across all three primitives, consistently
outperforming BASECONV with LayerNorm by 2-4 orders of magnitude. Interestingly, we also find that none of the models
reach machine precision (O(10−15) for single-precision training) on these tasks. This suggests that optimizing to machine
precision, even on simple tasks with no expressivity gap, remains a challenge.

Figure 8. Attention vs. BASECONV on synthetic tasks. Precision consistently scales better with depth for BASECONV models than for
Transformers. READ and AFFINE tasks to high precision, precision scales poorly for the MULTIPLY task.

C.2. Scaling model training duration

In Figure 9, we train 1-layer Transformers and BASECONVs (with LayerNorms) on the MULTIPLY primitive (Section 3.2).
We vary the number of iterations for which the model is trained. Recall that since new data is sampled at each iteration, we
also effectively scale the dataset size proportionally. To keep the learning rates consistent across runs, we scale back the
scheduler step size accordingly:

num_iters ∈ {105, 106, 107, 108}
step_size ∈ {103, 104, 105, 106}

We observe a power law, particularly clearly for BASECONV, as we scale from 105 to 108 iterations. Both models achieve a
2-3 order of magnitude improvement in precision as we increase training duration by 3 orders of magnitude. We leave it to
future work to investigate whether it is possible to scale precision more efficiently using more refined optimization methods.

19

Can Transformers Solve Least Squares to High Precision?

Figure 9. Scaling number of training iterations for 1-layer Transformer vs. BASECONV on the MULTIPLY task. Both models improve
precision by 2-3 orders of magnitude as training duration increases by 3 orders of magnitude.

20

Can Transformers Solve Least Squares to High Precision?

Figure 10. Transformers vs. BASECONVs trained on (fixed N) fully-determined least squares. Despite empirical constructions demonstrat-
ing that BASECONVs can solve least squares to high precision by implementing gradient descent, learned BASECONV models scale
worse than learned Transformers: a difference of 2 orders of magnitude for the largest models.

21

Can Transformers Solve Least Squares to High Precision?

D. Theoretical results
This section is organized as follows:

• We detail notation and definitions in Appendix D.1.

• In Appendix D.2, we include theoretical results regarding the primitives from Section 3.2: expressivity results with
BASECONV and attention, and iterative algorithms as compositions of primitives.

• In Appendix D.3, we discuss upper and lower bounds for implementing gradient descent on least squares using
BASECONV, supplementing Section 4.1.

• In Appendix D.4, we provide missing theoretical details from Section 4.2 regarding BASECONV and polynomials.

D.1. Notation

We heavily borrow notation from Appendix H of (Arora et al., 2023), which we recollect below. We denote the all 1 row
vector of size k, given by

[
1 1 . . . 1 1

]
, and the all 0 row vector of size k, given by

[
0 0 . . . 0 0

]
, as 1k and

0k, respectively. We also construe the standard basis vector ei as a column vector in this appendix, and adhere to the
following matrix indexing convention: M[i, j] is the entry in the ith row and the jth column, M[i, :] ∈ F1×n denotes the ith
row, and M[:, j] ∈ Fm×1 denotes the jth column of M ∈ Fm×n, where F is a field (the reader can assume that F is the
field of real numbers i.e. F = R). We then use 1m×n,0m×n ∈ Fm×n to denote the matrix of all 1s and 0s, respectively. We
note that some notation differs from those used in earlier sections.

Next, we denote the Hadamard product of vectors u,v ∈ Fn as u ⊙ v; the operation can be extended to matrices by
applying the Hadamard product column-wise across the matrices. This is commonly referred to as (element-wise) gating.
For vectors u,v ∈ Fn, we also denote their linear (or acyclic) convolution as u ∗ v and cyclic convolution as u⊛ v.

Polynomial Notation. Since convolution is equivalent to operations on polynomials, it is convenient to use them to discuss
the inputs and outputs of gated convolution models. Let us define maps poly : Fn → F[X]/(Xn) such that

poly(u) =

n−1∑
i=0

u[i]Xi.

This allows us to map between vectors and polynomial. Accordingly, we also define coeff : F[X]/(Xn+1)→ Fn as the
map converting polynomials back to vectors: coeff(u(X)) = u with u[i] defined as the coefficient in u(X) at degree i.

These operations allow us to interpret the convolution of vectors in terms of polynomial multiplication (Heideman & Burrus,
1988). More specifically, we have

u ∗ v = coeff (u(X) · v(X) mod Xn)

The following notation for a polynomial will be used in this section:

Definition D.1. A polynomial P (X) with degree d and some coefficients c ∈ Rd+1 is defined as,

P (X) =

d∑
i=0

ciX
i.

Further, the degree of P (X) will be denoted as deg(P).

Function Approximation. In this part, we collect notation and known results about function approximation. We will
reference some definitions from (Pleśniak, 2009; Petersdorff, 2015; Smoothness, 2006).

The following notation is to denote the kth derivative of a function:

Definition D.2. For some function f : R→ R, f (k) := dk

dxk f(x) is the kth derivative of f .

Define a set of univariate functions with a notion of continuity:

22

Can Transformers Solve Least Squares to High Precision?

Definition D.3. We denote Ck[a, b] for k = 1, 2, . . . the space of univariate functions f : [a, b]→ R, which have derivatives
f (1), . . . , f (k) that are continuous on the closed interval [a, b].

Next we define a set of multivariate functions with a notion of continuity:

Definition D.4. A function f : [a, b]n → R is in Ck[a, b]n for k = 1, 2, . . . if all partial derivatives

∂α

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n

f(y1, y2, . . . , yn)

exist and are continuous, for every α1, α2, . . . , αn ∈ Z≥0, such that α1+α2+ · · ·+αn ≤ k and every (y1, . . . yn) ∈ [a, b]n.

We use the following notation for the set of all univariate polynomials:

Definition D.5. For any integer d ≥ 0, we define

Pd(X) = {c0 + c1X + · · ·+ cdX
d|ck ∈ R}.

In other words, Pd(X) is the space of univariate polynomials of degree less or equal to d.

We use the following notation for multivariate polynomials:

Definition D.6. For any integers n, d ≥ 0 , we define

Pn
d (X1, . . . , Xn) =

{ ∑
α=(α1,...,αn)∈Zn

≥0

cαX
α1
1 Xα2

2 · · ·Xαn
n

∣∣∣∣∣cα ∈ R,
n∑

i=0

αi ≤ d

}
.

Then Pn
d (X1, . . . Xn) is the space of n-variate polynomials of degree less or equal to d.

The following notation is for considering the pointwise absolute value of a matrix:

Definition D.7. For M ∈ RN×D define,
∥M∥∞ =

max
0≤i<N
0≤j<D

|M [i, j]| .

Now lets define the corresponding∞−norm for functions:

Definition D.8. For g : [−1, 1]N×D → RN×D, define

∥g∥∞ =
max

x∈[−1,1]N×D |g(x)| .

We will use the following version of Jackson’s theorem for univariate inputs:

Theorem D.9 ((D. Jackson, 1930) Jackson’s Theorem for Ck[−1, 1].). Let d, k be integers with d + 1 ≥ k ≥ 0 and
f ∈ Ck[−1, 1]. Then

inf
P∈Pd

∥f − P∥∞ ≤
(π
2

)k 1

(d+ 1)d · · · (d− k + 2)

∥∥∥f (k)
∥∥∥
∞
. (18)

We will use the following version of Jackson’s theorem for multivariate inputs:

Theorem D.10 ((Pleśniak, 2009) Jackson’s Theorem for Ck[−1, 1]n). Let d, k be integers with d + 1 ≥ k ≥ 0 and
f ∈ Ck[−1, 1]n. Then

inf
P∈Pn

d
∥f − P∥∞ ≤

ck
dk

n∑
j=1

∥∥∥∥∥ ∂k+1

∂xk+1
j

f(x)

∥∥∥∥∥
∞

(19)

where ck is a positive constant.

We will use the following definition of univariate smooth functions:

Definition D.11. We call a k times differentiable function f : [−1, 1]→ R to be (k, L)-smooth if
∥∥f (k)

∥∥
∞ ≤ L.

23

Can Transformers Solve Least Squares to High Precision?

Next, we observe that given a univariate smooth function, there’s a univariate bounded degree polynomial that approximates
it to some error, ϵ:

Corollary D.12. For some (k, L)-smooth univariate function f (as in Definition D.11), then there exists a polynomial Pf (x)
with

deg(Pf) ≤ O

(
k

√
L

ϵ

)
+ k

such that for all x ∈ [−1, 1]
|f(x)− Pf (x)| ≤ ϵ.

Proof. We will be a bit more specific on an upper bound of deg(Pf). We pick:

deg(Pf) =

⌈
π

2

(
L

ϵ

) 1
k

+ k

⌉
. (20)

Let d = deg(Pf) where Pf is the polynomial that achieves the left hand side of Equation (18). Then we have error at most(π
2

)k 1

(d+ 1)d · · · (d− k + 2)

∥∥∥f (k)
∥∥∥
∞
.

Using the definition of a (k, L)-smooth univariate function in Definition D.11 we get the error at most(π
2

)k L

(d+ 1)d · · · (d− k + 2)
≤
(π
2

)k L

(d− k)k

where the inequality follows since each d+ 1, d, . . . , d− k + 2 ≥ (d− k).

Plugging in Equation (20) for d we get the error is at most:(π
2

)k L(
π
2

)k (k

√
L
ϵ

)k = ϵ,

as desired.

We will use the following definition of multivariate smooth functions that map to a single value:

Definition D.13. We call a k times differentiable f : [−1, 1]n → R to be (k, L)-smooth if
∥∥∥ ∂k

∂xk
m
f(x)

∥∥∥
∞
≤ L for all

1 ≤ m ≤ n.

Now we show the corresponding observation for multivariate functions and polynomials:

Corollary D.14. Let deg(Pf) = d. For some (k, L)-smooth multivariate function f (as in Definition D.13), then there
exists a polynomial Pf (x) with

deg(Pf) ≤ Ok

(
k

√
nL

ϵ

)
such that for all x ∈ [−1, 1]n

|f(x)− Pf (x)| ≤ ϵ.

Proof. Let Pf be the polynomial we get from the left hand side of Equation (19). We want to upper bound the error as

ck
dk

n∑
j=1

∥∥∥∥∥ ∂k+1

∂xk+1
j

f(x)

∥∥∥∥∥
∞

≤ ϵ,

24

Can Transformers Solve Least Squares to High Precision?

which follows if
ck
dk

n∑
j=1

L ≤ ϵ

since f is (k, L)-smooth. The above is the same as

cknL

dk
≤ ϵ,

or equivalently
k

√
cknL

ϵ
≤ d.

Picking d =

⌈
k

√
cknL

ϵ

⌉
suffices.

Arithmetic Circuit Notation. We briefly recall arithmetic circuits (Peter Bürgisser and Michael Clausen and M. Amin
Shokrollah, 1997). An arithmetic circuit C with variables X ≜ {x1, x2, . . . , xn} over a field F is interpreted as a directed
acyclic graph, where the input nodes are labelled by either the variables from X or constants from F and the internal nodes
are labelled by + or × with the output being the polynomial computed at the output node.

We shall also refer to the size1 of the circuit C as the number of wires (or edges in C), the depth of the circuit as the length of
the longest path between an input node and the output node, and the width of the circuit as the number of wires that will
be intersected by a horizontal ‘cut’ through the circuit. Moreover, the degree of a circuit is defined as the degree of the
polynomial computed by the circuit. We summarize this with the following definition:

Definition D.15. An arithmetic circuit C is an (n, s,∆, w)-circuit if C is an n-variate arithmetic circuit of size s, depth at
most ∆, and width w.

BASECONV Architecture. In the following definitions we formally define the BASECONV model (Arora et al., 2023).
To formally define BASECONV, we will need the Kaleidoscope hierarchy (Dao et al., 2020) as well.

To start, we define butterfly factors:

Definition D.16. A butterfly factor of size k ≥ 2 (denoted as Bk) is a matrix of the form Bk =

[
D1 D2

D3 D4

]
where each

Di is a k
2 ×

k
2 diagonal matrix. We restrict k to be a power of 2.

The following definition is for a butterfly factor matrix, which is made up of the above butterfly factors:

Definition D.17. A butterfly factor matrix of size n with block size k (denoted as B
(n)

k) is a block diagonal matrix of n
k

(possibly different) butterfly factors of size k:

B
(n)

k = diag
([

Bk

]
1
,
[
Bk

]
2
, . . . ,

[
Bk

]
n
k

)
Now lets define a butterfly matrix:

Definition D.18. A butterfly matrix of size n (denoted as B
(n)

) is a matrix that can be expressed as a product of butterfly
factor matrices: B

(n)
= B

(n)

n B
(n)
n
2

. . .B
(n)

2 . Equivalently, we may define B
(n)

recursively as a matrix that can be expressed
in the following form:

B
(n)

= B
(n)

n

[
[B

(n
2)
]1 0

0 [B
(n
2)
]2

]

(Note that [B
(n
2)
]1 and [B

(n
2)
]2 may be different.)

Using these butterfly matrices, lets define the Kaleidoscope Hierarchy:

1Note that if all the gates of an arithmetic circuit have bounded arity then the number of wires and gates are asymptotically the same
but in this appendix we will consider gates with unbounded arity.

25

Can Transformers Solve Least Squares to High Precision?

Definition D.19 (The Kaleidoscope Hierarchy (Dao et al., 2020)).

• Define B as the set of all matrices that can be expressed in the form B
(n)

(for some n).

• Define (BB∗) as the set of matrices M of the form M = M1M
∗
2 for some M1,M2 ∈ B.

• Define (BB∗)
w as the set of matrices M that can be expressed as M = Mw . . .M2M1, with each Mi ∈ (BB∗) (1 ≤

i ≤ w). (The notation w represents width.)

• Define (BB∗)
w
e as the set of n × n matrices M that can be expressed as M = SES⊤ for some en × en matrix

E ∈ (BB∗)
w, where S ∈ Fn×en =

[
In 0 . . . 0

]
] (i.e. M is the upper-left corner of E). (The notation e represents

expansion relative to n.)

Here we now formally define a BASECONV layer:

Definition D.20 (BASECONV (Arora et al., 2023)). Given an input sequence u ∈ RN×D, where N is the sequence
length and D is the model dimension, a learned weight matrix W ∈ RD×D and biases B1,B2 ∈ RN×D and a matrix of
convolution filters H ∈ RN×D, a BASECONV layer computes the following:

yBASECONV := (uW +B1)⊙ (H ∗ u+B2) ∈ RN×D, (21)

where the jth column of H ∗ u ∈ RN×D is defined as H[:, j] ∗ u[:, j].

The corresponding pseudocode for a BASECONV layer is as follows:

Algorithm 1 BASECONV(u,W ,B1,H,B2)

Require: Input sequence u ∈ RN×D, linear map W ∈ RD×D, convolution filter H ∈ RN×D, and bias matrices
B1,B2 ∈ RN×D.

1: In parallel for 0 ≤ n < N : x[n, :] = u[n, :] ·W
2: In parallel for 0 ≤ t < D : z[:, t] = H[:, t] ∗ u[:, t]

3: In parallel for 0 ≤ t < D : y[:, t]← (x[:, t] +B1[:, t])⊙ (z[:, t] +B2[:, t]). ▷ See eq. (21)
4: return y

Remark D.21. The definition of a BASECONV layer in Equation (22) has the input go through a linear layer before the
convolution operation. For this section we will assume the linear layer is the identity matrix, as it is not needed for the
results in this section.

Assumption D.22. Moving forward we assume the weight matrix W ∈ RD×D in Definition D.20 also has the property
W ∈ (BB∗)poly- logD

poly- logD. Consequently, each matrix W has Õ(D) parameters and runtime for matrix vector multiplication
(Dao et al., 2020).

In this section, we will establish some additional basic primitives that we expect need to implement via a BASECONV layer:
shift and remember. We specify them below:

Definition D.23. shift(y, r, t, f)
Shift an sequential input of length N up or down by s entries:
INPUT: y ∈ RN×D, s ≥ 0.
OUTPUT: z ∈ RN×D where z+ = shift_down(y, s) and z− = shift_up(y, s)

26

Can Transformers Solve Least Squares to High Precision?

y ≡



← y0 →

...

← yi−1 →

← yi →

...

← yN−1 →



z+ ≡



← 0→

...

← 0→

← y0 →

...

← yN−1−s →



z− ≡



← ys →

...

← yN−1 →

← 0→

...

← 0→


The following proposition is defining the convolution Kernel that computes the shift_down

(
·, ⌊N2 ⌋

)
primitive:

Proposition D.24. Define H ∈ R2N×D as

H[k, :] =

{
1D if k = N

0 otherwise
.

For any u ∈ R2N×D, H ∗ u will result in

H ∗
(
u1

u2

)
→
(
0N×D

u1

)
,

where u1,u2 ∈ RN×D.

Proof. The convolution operation: H ∗
(
u1

u2

)
where each column of H is convolved with each column of u can be restated

as a polynomial multiplication. For column i, 0 ≤ i < 2N ,

H[:, i] ∗
(
u1

u2

)
[:, i] = coeff((XN · u[:, i](X)) mod X2N).

Note that the columns of H are all eN basis vectors and poly(eN) = XN .

When we multiply the term through the input polynomial we get,

coeff
(
XN ·

(
u[0][i] + u[1][i]X + · · ·+ u[2N − 1][i]X2N−1

)
mod X2N

)
= coeff(u[0][i]XN + u[1][i]XN+1 + · · ·+ u[2N − 1][i]X3N−1 mod X2N).

With the lower order terms all becoming zeros, the above is same as

coeff((0 + 0X + · · · 0XN−1

+ u[0][i]XN + u[1][i]XN+1 + · · ·+ u[2N − 1][i]X3N−1) mod X2N).

After we take the mod X2N we get

coeff(0 + 0X + · · ·+ 0XN−1 + u[0][i]XN + · · ·+ u[N − 1][i]X2N−1),

which implies that H ∗
(
u1

u2

)
is (

0N×D

u1

)
,

as desired.

27

Can Transformers Solve Least Squares to High Precision?

We also define the following primitive:

Definition D.25. remember(y, r, t, f)
INPUT: y ∈ RN ′×d′

, r ∈ Z, t ∈ Z, f : Rt−r → Rt−r+s,v1 ∈ Rr,x ∈ Rt−r, where y is defined as below.
OUTPUT: z ∈ RN ′×d′

, which is defined as follows:

y ≡



← v1 →

← x→

0s×d′

← v2 →

0

...

0



z ≡



← v1 →

← f(x)→

← v2 →

0

...

0


We will need the following BASECONV implementation of remember:

Proposition D.26 ((Arora et al., 2024), The Remembering Primitive). For any x ∈ Rn×d′
,v1 ∈ Rr×d′

,v2 ∈ Rm−r where
n = t − r contained in some y ∈ RN ′×d′

such that v1 is in the first r rows, x is in the next n rows, 0s fill up the next
s rows, and v2 are in the next m − r rows, for some 3n + 3m + 2s + 2t ≤ N ′ so that for h ∈ Rn×d and W ∈ Rd′×d′

with x ∗ h ∈ R(n+s)×d′
and v ∗ h ∈ R(m+t)×d′

, where v ∈ Rm×d′
is defined as v2+shift_down(v1,m− r), there

exists a (N ′, 8, d′, N ′, d′)− BASECONV that computes remember(y, r, t, f), where f can be implemented in 1 layer of
BASECONV through the parameters W ∈ Rd′×d′

,h ∈ RN ′×d′
, b1 ∈ RN ′×d′

, b2 ∈ RN ′×d′
as defined below:

f(u) =

((
uW

0s×d′

)
+

(
b1

1s×d′

))
⊙
(
u ∗ h+

(
b2

0s×d′

))

We will also need the following generalization of the above result:

Corollary D.27 ((Arora et al., 2023)). Let y be as in Proposition D.26 but now let f be implemented with
BASECONV(N,L,D,N,D). Then remember(y, r, t, f) where t − r = n can be implemented with BASECONV via
(N,O(L), D,N,D)− BASECONV.

The rest of Appendix D will use this 5−tuple notation for BASECONV:

Definition D.28. Lets define a 5-tuple notation for a BASECONV layer as (N, ℓ,D,N ′, D′)− BASECONV with ℓ layers
such that:

1. Input and output are N ×D matrices.

2. Each layer is defined by Definition D.20 where N and D are replaced by N ′ and D′. I.e. each layer takes in N ′ ×D′

matrices and output N ′ ×D′ matrices. We refer to the tuple (N ′, D′) as the inner dimension of the model.

3. The matrices are projected from (N,D)→ (N ′, D′) (and vice-versa) via a linear projection.

We state the following bounds on parameters and runtime for a single BASECONV layer:

Proposition D.29 ((Arora et al., 2023)). An (N, 1, D,N,D)− BASECONV requires Õ(ND) parameters and runtime.

We state the following result that says arithmetic circuit can be represented as a BASECONV model:

Theorem D.30 ((Arora et al., 2023), Theorem H.21). For any (ND, s,∆, w)-arithmetic circuit C, there exists an equivalent
(N,∆′, D,N ′, D′)− BASECONV with ∆′ = O(∆ logw), N ′ = O(w), D′ = D that simulates C.

28

Can Transformers Solve Least Squares to High Precision?

D.2. Primitives

In this section, we provide theoretical results about primitives.

• In Appendix D.2.1, we implement the three primitives (READ, AFFINE, and MULTIPLY) from Section 3.2 using
BASECONV, each using a single layer.

• Next, in Appendix D.2.2 and D.2.3, we briefly sketch how the three primitives READ, AFFINE, and MULTIPLY can
be used in composition to exactly express gradient descent and Newton’s method iterations on linear regression (see
Appendix A).

• Finally, in Appendix D.2.4, we provide a proof that linear attention cannot exactly represent the entry-wise squaring
function. As a corollary, since entry-wise square is a special case of MULTIPLY, this implies that linear attention cannot
exactly express the MULTIPLY task for all arguments.

BASECONV parameterization We recount the parameterization of BASECONV from Equation 2:

y :=

(u ·Wgate + bgate)︸ ︷︷ ︸
Linear Projection

⊙ (h ∗ (u ·Win + bin) + bconv)︸ ︷︷ ︸
Convolution

 ·Wout + bout

:= Wout(Wgate(u)⊙ Conv(Win(u)))

(22)

where Win,Wgate,Wout are linear projections RD → RD.

D.2.1. 1-LAYER BASECONV CAN IMPLEMENT LINEAR ALGEBRA PRIMITIVES

Below, we recount the definitions of our linear algebra primitives from Section 3.2 and describe our BASECONV weight
constructions.

Read The READ operator is:

READ(i, j, a, b)(u) =

{
u[k, a : b] k ̸= j

u[i, a : b] k = j
. (23)

Our implementation requires the use of the positional encodings and residual connections within the BASECONV architecture.
Concretely, consider the input

uin =

(
e1 e2 . . . eN

u[1, :] u[2, :] . . . u[N, :]

)
,

where the basis vector ek represents the positional encoding for the k-th entry of the sequence. Define the output of the
BASECONV layer with residual connection:

y := Wout(Wgate(u)⊙ Conv(Win(u)) + u).

Then the following weight construction is equivalent to READ(i, j, a, b):

• Wgate(u[k, :]) := u[k, j]1D

• Conv(Win(u))[k, :] := u[k + i− j, :]− u[k, :]

• Wout := proj(a : b).

In particular, Wgate is defined such that

Wgate(u[k, :]) =

{
1D k = j

0D k ̸= j
.

29

Can Transformers Solve Least Squares to High Precision?

Thus

Wgate(u)⊙ Conv(Win(u)) =

{
u[k + i− j, :]− u[k, :] = u[i, :]− u[j, :] k = j

0D k ̸= j
.

Finally,

Wgate(u)⊙ Conv(Win(u)) + u =

{
u[i, :] k = j

u[k, :] k ̸= j

so the final output of this layer will be exactly equivalent to READ(i, j, a, b).

Affine transformation The AFFINE operator is:

AFFINE(H)(u) = uH (24)

Define Conv(Win(u)) = 1D, Wgate = I , and Wout = H . Then

Wgate(u)⊙ Conv(Win(u)) = u

so
Wout(Wgate(u)⊙ Conv(Win(u))) = uH.

Thus the output of this layer is exactly equivalent to AFFINE(H).

Element-wise multiply The MULTIPLY operator is:

MULTIPLY(a, b, dout)(u) = u[:, a : a+ dout]⊙ u[:, b : b+ dout] (25)

Define Conv = Identity, Win = proj(a : a+ dout), Wgate = proj(b : b+ dout), and Wout = I .

Then
Wgate(u)⊙ Conv(Win(u)) = u[:, a : a+ dout]⊙ u[:, b : b+ dout].

Since Wout = I , the output of this layer will be equivalent to MULTIPLY(a, b, dout).

D.2.2. GRADIENT DESCENT

We assume our input is of the form

u =

(
x1 . . . xN w0

y1 . . . yN 0

)
.

Our goal is to compute the gradient update

w1 := w0 −
η

N

N∑
i=1

(wT
0 xi − yi)xi. (26)

Intuitively, our argument proceeds similarly to the causal gradient descent construction from Appendix D.3.1:

• First, we repeatedly apply READ and AFFINE to move the information {xi, yi} ∀i into e.g. the final entry of the
sequence. Without loss of generality, we omit the rest of the sequence, and assume we have access to a large enough
embedding dimension that we can make use of arbitrary amounts of memory.

After this phase, our u is of the form

. . .
(
w0 0 x1 . . . xN y1 . . . yN . . .

)T
.

• Next, we use MULTIPLY and AFFINE to compute and store {wT
0 xi} for all i. We will end up with

u = . . .
(
w0 0 {xi}i {yi}i {wT

0 xi}i . . .
)
.

30

Can Transformers Solve Least Squares to High Precision?

• We use AFFINE to compute and store {wT
0 xi − yi} for all i:

u = . . .
(
w0 0 {xi}i {yi}i {wT

0 xi}i {wT
0 xi − yi}i . . .

)
.

• We use MULTIPLY and AFFINE to compute and store {(wT
0 xi − yi)xi} for all i:

u = . . .
(
w0 0 {xi}i {yi}i {wT

0 xi}i {(wT
0 xi − yi)xi}i . . .

)
.

• Finally, we can use AFFINE to compute the gradient update:

u = . . .
(
w0 − η

N

∑N
i=1(w

T
0 xi − yi)xi 0 {xi}i {yi}i {wT

0 xi}i {(wT
0 xi − yi)xi}i . . .

)
.

D.2.3. NEWTON’S METHOD

We assume our input is of the form

u =

(
x1 . . . xN A0[1, :] . . . A0[D, :]
y1 . . . yN 0 . . . 0

)
.

Our goal is to compute the Newton’s iterate:

A1 := A0(2I − (XTX)A0), (27)

where

X =

← x1 →
...

← xN →

 , y =

 y1
...
yN

 . (28)

For any matrix M ∈ Rn×p, let flt denote the flatten operation, so that flt(M) represent a vectorized version of M :
flt(M) ∈ Rnp.

We proceed similarly to the argument from Appendix D.2.2.

• First, we repeatedly apply READ and AFFINE to move all information {xi}i ∀i and flt(A) to e.g. the final entry of
the sequence. We omit the rest of the sequence for notational ease, and we assume we have access to a large enough
embedding dimension that we can make use of arbitrary amounts of memory.

After this phase, we have
u = . . .

(
flt(A0) {xi}i . . .

)
.

• Using AFFINE, we can copy and rearrange the xi’s to construct copies of flt(X) and flt(XT):

u = . . .
(
flt(A0) {xi}i flt(XT) flt(X) . . .

)
.

• Now, note that we can represent the matrix multiplication XTX as a linear combination of the entries of the element-
wise multiplication flt(XT) ⊙ flt(X). This means that we can obtain flt(XTX) using a single application of
MULTIPLY and AFFINE:

u = . . .
(
flt(A0) {xi}i flt(XT) flt(X) flt(XTX) . . .

)
.

• By the same argument, we can obtain flt((XTX)A0) using another application of MULTIPLY and AFFINE:

u = . . .
(
flt(A0) {xi}i flt(XT) flt(X) flt((XTX)A0) . . .

)
.

• Finally, we have that flt(A1) := 2flt(A0)− flt((XTX)A0) can be obtained using AFFINE once more:

u = . . .
(
flt(A1) {xi}i flt(XT) flt(X) flt((XTX)A0) . . .

)
.

31

Can Transformers Solve Least Squares to High Precision?

D.2.4. ATTENTION CAN’T IMPLEMENT ELEMENT-WISE SQUARING.

In this section, we consider the following parameterization of linear attention:

LinearAttn(u) = (uWQ)(uWK)T (uWV +B), (29)

where u ∈ RN×D, WQ,WK ,WV ,B ∈ RD×D.

Theorem D.31. One-layer linear attention cannot exactly represent the entry-wise squaring function SQUARE : RN×D →
RN×D s.t.

SQUARE(u)ij = u2
ij

for all u ∈ RN×D.

Proof. We proceed by contradiction. Let’s assume there exists WQ,WK ,WV ,B ∈ RD×D such that ∀u ∈ RN×D,

(uWQ)(uWK)T (uWV +B) = SQUARE(u). (30)

Consider the set of inputs u ∈ RN×D with two non-zero entries, defined as

uij =

{
uij (i, j) ∈ {(a, c), (b, d)}
0 else

(31)

for an arbitrary choice of a, b ∈ [N], c, d ∈ [D]. Then:

Q := uWQ =



0N

...

0N

uacWQ[c, :]

0N

...

0N

ubdWQ[d, :]

0N

...

0N



(32)

where Q’s rows are all 0 except for the a-th and b-th, which are uacWQ[c, :] and ubdWQ[d, :] respectively.

32

Can Transformers Solve Least Squares to High Precision?

Similarly:

K := uWK =



0N

...

0N

uacWK [c, :]

0N

...

0N

ubdWK [d, :]

0N

...

0N



(33)

and

V := uWV =



0N

...

0N

uacWV [c, :]

0N

...

0N

ubdWV [d, :]

0N

...

0N



(34)

33

Can Transformers Solve Least Squares to High Precision?

Then the attention matrix, A = QKT , satisfies

Aij =



u2
ac(WQW T

K)cc (i, j) = (a, a)

uacubd(WQW T
K)cd (i, j) = (a, b)

uacubd(WQW T
K)dc (i, j) = (b, a)

u2
bd(WQW T

K)dd (i, j) = (b, b)

0 else

. (35)

Now let’s consider the output of linear attention:

O = (QKT)(V +B) (36)

such that O = SQUARE(u).

Case 1: B = 0. We have

O[a, :] = u3
ac(WQW T

K)ccWV [c, :] + uacu
2
bd(WQW T

K)cdWV [d, :] (37)

and
O[b, :] = u2

acubd(WQW T
K)dcWV [c, :] + u3

bd(WQW T
K)ddWV [d, :] (38)

Note that each term of the output is a cubic polynomial of the inputs uac and ubd, whereas our target SQUARE(u) consists
of quadratic polynomials, so these cannot be exactly equivalent.

Case 2: B ̸= 0. In this case,

O[a, :] = u3
ac(WQW T

K)ccWV [c, :]+u2
ac(WQW T

K)ccB[a, :]+uacu
2
bd(WQW T

K)cdWV [d, :]+uacubd(WQW T
K)cdB[b, :]

(39)
and

O[b, :] = u2
acubd(WQW T

K)dcWV [c, :]+uacubd(WQW T
K)dcB[a, :]+u3

bd(WQW T
K)ddWV [d, :]+u2

bd(WQWK)ddB[b, :]
(40)

In order for O = SQUARE(u), we need

O[a, :] = u2
ace

D
c , O[b, :] = u2

bde
D
d (41)

Then, setting the quadratic terms of Equation 41 and Equations 39, 40 equal, we must have

(WQW T
K)cc = (WQW T

K)dd = 1 (42)

and
B[a, :] = eDa , B[b, :] = eDb (43)

The cubic terms in Equations 39, 40 must also vanish, which implies

WV [c, :] = WV [d, :] = 0D. (44)

The uacubd terms must also vanish, which implies

(WQW T
K)cd = (WQW T

K)dc = 0. (45)

Finally, note that the above must hold for all choices of a, b ∈ [N] and c, d ∈ [D]. This implies that we have:

V = 0D×D, ,B = ID×D, WQW T
K = ID×D (46)

In other words, the set of constraints from our arguments above fully specify the weights of linear attention. However, we
can verify that these weights fail to express SQUARE by evaluating the linear attention:

(WQW T
K)(V +B) = (uWQW T

KuT)(uV +B) = (uuT)(0D×D + ID×D) = uuT (47)

However, it is easy to check that uuT ̸= SQUARE(u), which completes the proof by contradiction.

34

Can Transformers Solve Least Squares to High Precision?

D.3. Upper and lower bounds with BASECONV for gradient descent

In this section, we detail upper and lower bounds for implementing gradient descent using BASECONV, as discussed in
Section 4.

• Upper bounds. We provide two explicit constructions for implementing iterations gradient descent on linear regression:
one for non-causal BASECONV requiring O(1) layers and O(D) state size, and one for causal BASECONV requiring
O(1) layers and O(D2) state size.

• Lower bounds. In Appendix D.3.2, we prove that our constructions are asymptotically optimal with respect to layers
and state size.

D.3.1. UPPER BOUNDS: BASECONV CAN IMPLEMENT GRADIENT DESCENT FOR LINEAR REGRESSION

In this section, we provide weight constructions for exactly implementing gradient descent on linear regression. Recall:

LN =
1

2N

N∑
i=1

(wTxi − yi)
2 (48)

so

∇wLN =
1

N

N∑
i=1

(wTxi − yi)xi (49)

=
1

N

(
N∑
i=1

yixi −

(
N∑
i=1

xix
T
i

)
w

)
(50)

Non-causal BASECONV This weight construction uses Equation 49 to compute the gradient descent update.

We note that non-causal constructions for in-context linear regression are standard in the literature: e.g. (Von Oswald et al.,
2023; Ahn et al., 2024).

We start with input:

y ≡

x1 . . . xN xq

y1 . . . yN 0


We define the initial embedding: 

x1 . . . xN 0D

y1 . . . yN 0

w0 . . . w0 w0

0D . . . 0D 0D

0D . . . 0D 0D

0D . . . 0D xq

0 . . . 0 0


We drop the bottom two rows of the block matrix representation for now and show how to perform the gradient descent
update with the rest of the embedding.

35

Can Transformers Solve Least Squares to High Precision?

Layer 1: 

← xi →

← yi →

← w0 →

← xi →

← 0D →


︸ ︷︷ ︸
conv(in_proj(·))

⊙



← 1D →

← 1→

← 1D →

← w0 →

← 0D →


︸ ︷︷ ︸
gate_proj(·)

=



← xi →

← yi →

← w0 →

← xi ⊙w0 →

← 0D →




← xi →

← yi →

← w0 →

← xi ⊙w0 →

← 0D →


→︸︷︷︸

out_proj(·)



← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)1

D →


Layer 2: 

← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)1

D →


︸ ︷︷ ︸

conv(in_proj(·))

⊙



← 1D →

← 1→

← 1D →

← 1D →

← xi →


︸ ︷︷ ︸
gate_proj(·)

=



← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)xi →




← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)xi →


→︸︷︷︸

out_proj(·)=Identity



← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)xi →


Layer 3: 

← xi →

← yi →

← w0 →

← xi ⊙w0 →

← (wT
0 xi − yi)xi →


→︸︷︷︸

conv(in_proj(·))



← xi →

← yi →

← w0 →

← xi ⊙w0 →

←
∑N

i=1(w
T
0 xi − yi)xi →


36

Can Transformers Solve Least Squares to High Precision?

← xi →

← yi →

← w0 →

← xi ⊙w0 →

←
N∑
i=1

(wT
0 xi − yi)xi︸ ︷︷ ︸

=∇wL(w0)

→



→︸︷︷︸
out_proj(·)



← xi →

← yi →

← w0 − η∇wL(w0)→

← 0D →

← 0D →



After performing arbitrarily many gradient updates, a final BASECONV layer can be used to compute ŵTxq .

Causal BASECONV This weight construction uses Equation 50 to compute the gradient descent update.

We start with input:

y ≡


x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0


We use two BASECONV layers to construct an initial embedding, after which each gradient descent update step will only
require a single BASECONV layer.

In the following construction, we use flt to denote the flatten operation, which maps an M ×N matrix to a MN -entry
vector with the same elements.

Layer 1:



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

x1 . . . xN 0D

flt(x1(1
D)T) . . . f lt(xN (1D)T) flt(0D(0D)T)


︸ ︷︷ ︸

conv(in_proj(·))

⊙



← 1D →

← 1→

← 1D →

y11
D . . . yN1D 0D

flt(1DxT
1) . . . f lt(1DxT

N) flt(0D(0D)T)


︸ ︷︷ ︸

gate_proj(·)

=



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

y1x1 . . . y1xN 0D

flt(x1x
T
1) . . . f lt(xNxT

N) flt(0D(0D)T)


→︸︷︷︸

out_proj=Identity



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

y1x1 . . . y1xN 0D

flt(x1x
T
1) . . . f lt(xNxT

N) flt(0D(0D)T)


37

Can Transformers Solve Least Squares to High Precision?

Layer 2: 

x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→


︸ ︷︷ ︸

conv(in_proj(·))

⊙



← 1D →

← 1→

← 1D →

← 1D →

← 1D2 →


︸ ︷︷ ︸

gate_proj(·)

=



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→





x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→


→︸︷︷︸

out_proj=Identity



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→


Now, we use a single BASECONV layer to implement a gradient descent update.



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

0D . . . 0D 1D

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→


︸ ︷︷ ︸

conv(in_proj(·))

⊙



← 1D →

← 1 →

← 1D →

← 1D →

← 1D →

← 1D2 →

0D . . . 0D 1D

0D2

. . . 0D2

flt(1DwT
0)


︸ ︷︷ ︸

gate_proj(·)

=



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

0D . . . 0D 1D

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→

0D . . . 0D
∑N

i=1 yixi

0D2

. . . 0D2 ∑N
i=1 flt(xi(xi ⊙w0)

T)



Note that the gradient

∇wL(w0) =
1

N

(
N∑
i=1

yixi −

(
N∑
i=1

xix
T
i

)
w0

)
can be written as a linear combination of the vector ∑N

i=1 yixi∑N
i=1 flt(xi(xi ⊙w0)

T)


38

Can Transformers Solve Least Squares to High Precision?

so we can write a weight construction for out_proj that updates w0 → w0 − η∇wL(w0):

x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0

0D . . . 0D 1D

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→

0D . . . 0D
∑N

i=1 yixi

0D2

. . . 0D2 ∑N
i=1 flt(xi(xi ⊙w0)

T)



→︸︷︷︸
out_proj



x1 . . . xN 0D

y1 . . . yN 0

0D . . . 0D w0 − η∇wL(w0)

0D . . . 0D 1D

←
∑N

i=1 yixi →

←
∑N

i=1 flt(xix
T
i)→

0D . . . 0D
∑N

i=1 yixi

0D2

. . . 0D2 ∑N
i=1 flt(xi(xi ⊙w0)

T)


D.3.2. LOWER BOUNDS: BASECONV CONSTRUCTIONS ARE ASYMPTOTICALLY OPTIMAL

Note that the non-causal weight construction in Appendix D.3.1 requires O(1) layers and O(D) state size, while the causal
weight construction in Appendix D.3.1 requires O(1) layers and O(D2) state size. Clearly the O(D) state size requirement
for non-causal models is tight, since one needs to store the gradient∇wL ∈ RD. In this section, we prove that the O(D2)
state size requirement for causal models is also asymptotically tight.

Theorem D.32. Any single-pass (causal) algorithm computing the gradient

∇wL =
1

N

 N∑
j=1

yjxj −

 N∑
j=1

xjx
T
j

w


given inputs {(x1, y1), . . . , (xN , yN); w}, with (xi, yi) ∈ R(D+1)N) and w ∈ RD, requires Ω(D2) state size in the worst
case, where yj ∈ R and xj ,w ∈ RD.

Proof. For simplicity, we pick N = D for large enough D.

Since we can compute 1
N

∑D
j=1 yjxj in O(D) space, we focus on computing the expensive

(∑N
j=1 xjx

T
j

)
w term. Assume

there exists a single-pass algorithm A that computes
(∑N

j=1 xjx
T
j

)
w exactly for all choices of x1, . . . ,xD,w ∈ RD.

Now consider the following two claims:

1. Define sD to be the state of the algorithm after seeing x1, . . . ,xD. Then we claim that sD must have enough
information to exactly reconstruct MD :=

∑D
j=1 xjx

T
j .

This follows since the algorithm must be correct for any value w ∈ RD takes on. In particular, setting w = ei for
i ∈ [D], we observe that the algorithm must be able to exactly recover MDei = MD[:, i], i ∈ [D].

2. The space of matrices 
D∑

j=1

xjx
T
j


over all choices of xj ∈ RD, j ∈ [d] contains the set of all real symmetric matrices in RD×D.

This holds since for any real symmetric matrix A, we can obtain a set of possible xj’s via its eigendecomposition (Strang,
2012):

A = QΛQT =

D∑
j=1

xjx
T
j

39

Can Transformers Solve Least Squares to High Precision?

where xj =
√

λjQ[:, j].

From the first claim, we conclude that sD must contain enough information to be able to recover MD for any possible value
MD can take on (over all choices of x1, . . . ,xD ∈ RD). From the second claim, we have that the space of possible values
of MD includes the set of all possible real symmetric matrices. Since we know that this set requires (D)(D+1)

2 parameters
to represent, we can conclude that |sD| ≥ (D)(D+1)

2 ≥ Ω(D2).

40

Can Transformers Solve Least Squares to High Precision?

D.4. BASECONV and Jackson’s Theorem

In this section we prove BASECONV’s ability to approximate arbitrary univariate and multivariate smooth functions.

We start with a special case of smooth functions that apply entry-wise univariate smooth functions:

Definition D.33. Let f : [−1, 1]→ R be a (k, L)-smooth univariate function. Then define

f : [−1, 1]N×D → RN×D

as follows. For all 0 ≤ i < N , 0 ≤ j < D, and u ∈ [−1, 1]N×D:

(f(u))[i, j] = f(u[i, j]).

Now we will state a simple observation on BASECONV’s ability to approximate these functions.

Lemma D.34. For any smooth function f as defined in Definition D.33, let g(x) = Pf̄ (x) with Pf̄ being the polynomial
from Corollary D.12. Then for all x ∈ [−1, 1]N×D,

∥g(x)− f(x)∥∞ ≤ ϵ.

Proof. Follows from Definitions D.7 and D.33 and Corollary D.12.

Next we will state a construction of an arithmetic circuit for a function that applies a univariate polynomial to all entries in
[−1, 1]N×D:

Lemma D.35. Let P(X) be a degree d univariate polynomial. Then there is a (ND,O(ND), O(d), ND)-circuit to compute
P (u) where P (u) is defined as follows. For an input u ∈ [−1, 1]N×D,

P (u)[i, j] = P (u[i, j]).

Proof. Let the univariate polynomial be

P (X) =

d∑
i=0

ciX
i

where coefficients ci ∈ R.

Next we state the natural arithmetic circuit to compute P (x) for x ∈ R in Algorithm 2:

Algorithm 2 circuit CP (x):
1: s0 ← c0
2: m0 ← 1
3: for j = 1, 2, . . . , d do
4: mj ← mj−1 · x ▷ Multiplication gate
5: tj ← cj ·mj ▷ Multiplication gate
6: sj ← sj−1 + tj ▷ Addition gate
7: return sd ▷ sd is the output gate

Next we apply the above circuit in parallel to form the circuit that computes P (u) in Algorithm 3:

Algorithm 3 Circuit for P (u):

1: for i = 0, 1, . . . , N − 1 do
2: for j = 0, 1, . . . , D − 1 do
3: z[i, j] = CP (u[i, j]) ▷ Do this in parallel
4: return z ▷ z is the output matrix

41

Can Transformers Solve Least Squares to High Precision?

Looking at Algorithm 2, the depth of the circuit is 3d, or O(d), since that is the bound on iterations of the for loop, and each
iteration we compute 3 sequential operations. Therefore it’s a (1, O(d), O(d,O(1))-circuit.

For Algorithm 3, The width is O(ND), since we have our input of size N ×D, which goes through the circuit in parallel,
as stated in Algorithm 3. Therefore we have an (ND,O(ND), O(d), O(ND))-circuit that computes P (u).

Since BASECONV has the ability to represent any arithmetic circuit, we get the following:

Corollary D.36. We can implement P (u) (where P (u) is as defined in Lemma D.35) when deg(P) = d with a
(N,O(d log(ND)), D,O(ND), D)− BASECONV.

Proof. Follows from Lemma D.35 giving us the (ND,O(ND), O(d), O(ND))-circuit for an arbitrary polynomial and
Theorem D.30 gives us the BASECONV model to implement the circuit.

We will prove a tighter bound showing we can represent P (u) using a constant number of BASECONV layers (for constant
deg(P)):

Theorem D.37. We can implement P (u) when deg(P) = d with an (O(N), O(d), D,O(N), D)− BASECONV model.

Proof. We will convert the steps done in Algorithm 2 to layers of BASECONV. Since Algorithm 3 is essentially running
Algorithm 2 in parallel over all entries of input u ∈ [−1, 1]N×D, the latter happens automatically in our BASECONV
implementation.

For this proof, define
Pj(X) = Xj

and let Ci be the matrix of size N ×D and all the entries are ci.

We expand the input to our BASECONV layers as follows,

u =

(
u′

03N×D

)
.

This means that the size of the internal dimension of our BASECONV layers will be (4N,D).

To begin iterations of the for loop we need to store initial values into the extra space in u. Taking us from

u =


u′

0N×D

0N×D

0N×D

→


u
1N×D

1N×D

C0

 =: u0

We do this via BASECONV(u′, ID×D,

(
0N×D

1N×D

1N×D

C0

)
,04N×D,14N×D) which computes




u
0N×D

0N×D

0N×D

 ID×D +


0N×D

1N×D

1N×D

C0


⊙

04N×D ∗


u

0N×D

0N×D

0N×D

+ 14N×D

 .

The above simplifies to 


u
0N×D

0N×D

0N×D

+


0N×D

1N×D

1N×D

C0


⊙ (14N×D

)
,

42

Can Transformers Solve Least Squares to High Precision?

which gives us 
u

1N×D

1N×D

C0

 =: u0,

as desired

This was done with a (4N, 1, D, 4N,D)− BASECONV layer.

Our goal is, at the end of iteration j to compute uj ∈ R4N×D such that,

uj =


u

Pj(u)
Cj ⊙ Pj(u)

C0 +C1 ⊙ P1(u) + · · ·+Cj ⊙ Pj(u)

 .

We will view the above matrix in terms of the variables in the Algorithm 2 as follows
u

Pj(u)
Cj ⊙ Pj(u)

C0 +C1 ⊙ P1(u) + · · ·+Cj ⊙ uj

 =:


u
mj

tj
sj

 .

The for loop runs for values of 1 ≤ j ≤ d which the remainder of this proof will replicate. There are three lines in the for
loop in Algorithm 2 which we will cover how these operations happen in constant number of BASECONV layers.

In line 4, the first line in the for loop computes

uj−1 =


u

mj−1

tj−1

sj−1

→


u
mj

tj−1

sj−1

 =: u
(1)
j .

Note that mj = mj−1 ⊙ u.

We use the remember primitive to compute u
(1)
j from uj−1. Define f : R2N×D → R2N×D as follows

f

(
u

mj−1

)
=

(
u

mj−1 ⊙ u

)
.

If we can compute f with BASECONV layers then we can compute u(1)
j for uj−1 by calling remember(uj , 0, 2N − 1, f).

We show BASECONV

((
u
mj

)
, ID×D,02N×D,H,

(
1N×D

0N×D

))
maps

(
u

mj−1

)
→
(

u
mj

)
,

where H is defined as in Proposition D.24. We plug the matrices into the BASECONV layer as follows:((
u

mj−1

)
· ID×D + 02N×D

)
⊙
(
H ∗

(
u

mj−1

)
+
(
1N×D

0N×D

))
.

We know from Proposition D.24 that this convolution operation is a shift down by N rows. Therefore the above simplifies to((
u

mj−1

)
· ID×D + 02N×D

)
⊙
((

0N×D

u

)
+
(
1N×D

0N×D

))
,

43

Can Transformers Solve Least Squares to High Precision?

which simplifies to (
u

mj−1

)
⊙
(
1N×D

u

)
=

(
u

mj−1 ⊙ u

)
= f

(
u
mj

)
,

as desired. Therefore by Proposition D.26, line 4 can be computed by (4N, 8, D, 4N,D)− BASECONV.

For line 5 of the for loop we need to compute

u
(1)
j =


u
mj

tj−1

sj−1

→


u
mj

tj
sj−1

 =: u
(2)
j .

Note that tj = Cj ⊙mj .

To do this we will use three BASECONV layers. We use the remember primitive to compute u
(2)
j from u

(1)
j . Define

g : R2N×D → R2N×D as follows,

g

(
mj

tj−1

)
=

(
mj

Cj ⊙mj

)
.

If we can compute g with BASECONV layers then we can compute u(2)
j for uj−1 by calling remember(u(1)

j , N, 3N−1, g).

Indeed, we show the g can be computed by first computing BASECONV
((mj

tj−1

)
, ID×D,02N×D,02N×D,

(
1N×D

0N×D

))
:((

mj

tj−1

)
· ID×D + 02N×D

)
⊙
(
02N×D ∗

(
mj

tj−1

)
+

(
1N×D

0N×D

))
,

which simplifies to ((
mj

tj−1

))
⊙
((

1N×D

0N×D

))
.

This results in (
mj

0N×D

)
.

We pass into the next layer, BASECONV
((mj

0N×D

)
, ID×D,

(
0N×D

1N×D

)
,H,

(
1N×D

0N×D

))
where H is defined as in Proposi-

tion D.24: ((
mj

0N×D

)
· ID×D +

(
0N×D

1N×D

))
⊙
(
H ∗

(
mj

0N×D

)
+

(
1N×D

0N×D

))
.

Since the kernel H is as in Proposition D.24, this simplifies to((
mj

1N×D

)
⊙
((

0N×D

mj

)
+

(
1N×D

0N×D

)))
.

The above simplifies further to (
mj

1N×D

)
⊙
(
1N×D

mj

)
,

which results in: (
mj

mj

)
.

We pass the above to BASECONV
((mj

mj

)
, ID×D,02N×D,02N×D,

(
1N×D

Cj

))
:((

mj

mj

)
· ID×D + 02N×D

)
⊙
(
02N×D ∗

(
mj

mj

)
+

(
1N×D

Cj

))
44

Can Transformers Solve Least Squares to High Precision?

which simplifies to (
mj

mj

)
⊙
(
1N×D

Cj

)
.

The above results in (
mj

Cj ⊙mj

)
= g

(
mj

tj−1

)
,

as desired.

Therefore by Corollary D.27, line 5 was computed by (4N,O(1), D, 4N,D)− BASECONV.

For line 6, the final line of the for loop, we want

u
(2)
j =


u
mj

tj
sj−1

→


u
mj

tj
sj

 =: uj .

Note that sj = sj−1 + tj

Define function h : R2N×D → R2N×D as follows,

h

(
tj

sj−1

)
=

(
tj

sj−1 + tj

)
.

If we can compute h with BASECONV layers then we can compute uj for uj−1 by calling remember(u(2)
j , 2N, 4N−1, h).

Indeed we show that h can be computed by computing BASECONV

((
tj

sj−1

)
,0D×D,12N×D,H,02N×D

)
, where kernel

H ∈ R2N×D is defined as:

H[k, :] ≡

{
1D if k ∈ {0, N}
0D otherwise.

.

This layer computes ((
tj

sj−1

)
· 02N×D + 12N×D

)
⊙
(
H ∗

(
tj

sj−1

)
+ 02N×D

)
.

This simplifies to (
12N×D

)
⊙
(
H ∗

(
tj

sj−1

))
=

(
H ∗

(
tj

sj−1

))
.

Now we compute this convolution for column i, 0 ≤ i < 2N . For notational convenience, let
(

tj
sj−1

)
be noted as matrix

V. Then we have:
H[:, i] ∗V[:, i] = coeff

(
(1 +XN)V[:, i](X) mod X2N

)
,

where (1 +XN) is the polynomial representation of the columns of H (since there’s a one in the 0th index and a one in the
N th index of each column).

The expression simplifies to
coeffV[:, i](X) +V[:, i](X)XN mod X2N ,

which can be broken down to

coeff
((
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1

)
mod X2N

)
+ coeff

((
V[0][i]XN +V[1][i]XN+1 + · · ·+V[2N − 1][i]X3N−1

)
mod X2N

)
45

Can Transformers Solve Least Squares to High Precision?

with the lower order terms in the second coefficient vector being zeros,

coeff
((
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1

)
mod X2N

)
+ coeff

((
0 + 0X + · · ·+ 0XN−1 +V[0][i]XN + · · ·+V[2N − 1][i]X3N−1

)
mod X2N

)
After taking mod X2N we get

coeff
(
V[0][i] +V[1][i]X + · · ·+V[2N − 1][i]X2N−1

)
+ coeff

(
0 + 0X + · · · 0XN−1V[0][i]XN + · · ·V[N − 1][i]X2N−1

)
The first set of coefficients is the input matrix as is. And the second one is the input matrix shifted down as seen in
Proposition D.24. Therefore when we add these vectors we are doing(

tj
sj−1

)
+

(
0N×D

tj

)
= h

(
tj

sj−1

)
,

as desired. Therefore by Proposition D.26, line 6 is computed with by (4N, 1, D, 4N,D)− BASECONV.

The sd matrix gives us C0 +C1 ⊙m1 + · · ·+Cd ⊙md. Recalling that

C0 +C1 ⊙m1 + · · ·+Cd ⊙md ≡
d∑

j=0

Cj ⊙ uj = P (u),

and hence sd is our desired output.

We have d layers, each consisting of O(1) BASECONV layers. Giving us O(d) many layers to implement Algorithm 2.

Therefore, via the ability to stack BASECONV layers to do function composition, the for loop was computed by a
(4N,O(d), D, 4N,D)− BASECONV , as desired.

The following states BASECONV’s ability to approximate a univariate smooth function:

Proposition D.38. Let f be the (k, L) -smooth function defined in Definition D.33. Then there is a(
N,O

(
k

√
L
ϵ

)
+ k,D, (ND), D

)
− BASECONV model that approximates f within error ϵ.

Proof. Follows from Corollary D.12, Lemma D.34, and Theorem D.37.

D.5. Multivariate function approximation

We begin by defining more multivariate notation.

We consider the following multivariate functions:

Definition D.39. For 0 ≤ 1 < N, 0 ≤ j < D, let f̄i,j : [−1, 1]N×D → R be a (k, L)-smooth multivariate function. Then
define

f(x) : [−1, 1]N×D → RN×D

as follows. For all 0 ≤ i < N , 0 ≤ j < D, u ∈ [−1, 1]N×D define

f(u)[i, j] := f̄i,j(u).

Lemma D.40. For any smooth function f as defined in Definition D.39, let g(X1, . . . , XN×D) = Pf̄ (X1, . . . , XN×D) be
the polynomial from Corollary D.14. Then for all x ∈ [−1, 1]N×D,

∥g(x)− f(x)∥∞ ≤ ϵ.

Proof. Follows from Definitions D.7 and D.39 and Corollary D.14.

46

Can Transformers Solve Least Squares to High Precision?

Next we will state a construction for an arithmetic circuit for a function that takes a [−1, 1]N×D variable input:

Lemma D.41. Let P (X) be a degree d multivariate polynomial. Then there is a
(
n,O(d · nd), O(d log(n)), O(nd)

)
-circuit

to compute P (u) on any input u ∈ [−1, 1]n.

Proof. Let the multivariate polynomial be as defined in Definition D.6. We build the circuit to compute this in Algorithm 4,

Algorithm 4 circuit CP (x):
1: for α = (α1, . . . , αn) ∈ Zn

≥0 such that
∑n

i=1 αi ≤ d do
2: mα ← 1
3: for i = 1, 2, . . . , n do ▷ Done in parallel
4: if αi ̸= 0 then
5: mα ← mα · xαi

i

6: tα ← cα ·mα

7: for α = (α1, . . . , αn) ∈ Zn
≥0 such that

∑n
i=1 αi ≤ d do

8: s←
∑

tα ▷ Done in parallel
9: return s

We compute the for loop starting on line 3 by making multiplications in parallel. Therefore obtaining a depth of O(log(d)).
We also have the for loop starting on line 7, making pairwise addition operations, resulting in a depth of O(d log(n)).

We again use the result that BASECONV can represent any arithmetic circuit to get:

Corollary D.42. We can implement P (u) (where P (u) is as defined in Lemma D.41) when deg(P (X1, . . . , XND)) = d
with a

(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV where u ∈ [−1, 1]N×D.

Proof. Lemma D.41 gives us the arithetmic circuit that computes this polynomial. Then via Theorem D.30 we get a(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV model to implement the circuit.

Finally we state BASECONV’s ability to approximate multivariate smooth functions:

Proposition D.43. Let f be the function defined in Definition D.39. Then there is a(
N,O(d log(ND)), D,O((ND)d), D

)
−BASECONV model that approximates f to within error ϵ, with d = Ok(

k

√
NDL

ϵ).

Proof. We get the existence of a polynomial that approximates f for some ϵ from Corollary D.14. Then via Corollary D.42
we get that we can represent any polynomial, implying

(
N,O(d log(ND)), D,O((ND)d), D

)
− BASECONV represents

any polynomial that approximates the multivariate smooth function f .

47

