
Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Rahul Thomas 1 2 Louai Zahran 1 Erica Choi 1 3 Akilesh Potti 1 Micah Goldblum 1 3 Arka Pal 1

Abstract
Recent advances in Large Language Models
(LLMs) have led to widespread adoption of third-
party inference services, raising critical privacy
concerns. In this work, we introduce a novel re-
construction technique that can recover original
prompts from hidden states with nearly perfect
accuracy across multiple state-of-the-art LLMs
in the increasingly important open-weights set-
ting. Although the attack is conceptually simple,
it has not – to the best of our knowledge – previ-
ously been described nor shown to work practi-
cally. Furthermore, our attack remains effective
against various permutation and noise-based de-
fenses, challenging assumptions about the secu-
rity of previously proposed schemes. To address
these vulnerabilities, we propose Cascade, a multi-
party inference scheme that leverages sharding in
the sequence dimension to retain privacy of the
user input. Through theoretical analysis and em-
pirical evaluation, we demonstrate that Cascade
is secure against both our attack as well as pre-
vious methods, while maintaining computational
and communication efficiency. Our findings high-
light the importance of rigorous security analysis
in privacy-preserving LLM inference and offer
practical solutions for secure deployment.

1. Introduction
Modern large language models (LLMs) now often comprise
hundreds of billions of parameters, necessitating significant
hardware resources for deploying them for inference. In
particular, recent open-weights models demonstrate cutting-
edge performance (DeepSeek-AI et al., 2025; Qwen et al.,
2025), but remain difficult for many to run. Individuals and
organizations have therefore begun to increasingly rely on

*Equal contribution 1Ritual AI 2Stanford University 3Columbia
University. Correspondence to: Arka Pal (Project Lead)
<arka@ritual.net>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

third-party LLM inference services that host these models.
This raises significant privacy implications, particularly in
domains where confidentiality of data is paramount, such
as healthcare, finance and legal applications, and in juris-
dictions where data privacy is subject to regulations (e.g.
GDPR in Europe). As such, a growing area of research inter-
est is the creation of inference methodologies and schemes
that protect the privacy of user prompts.

One approach to privacy-preserving-inference is to have
multiple parties jointly perform the inference, with the idea
that each party cannot reconstruct the input with the infor-
mation that it is given in the protocol. This approach is
known as Secure Multi-Party Computation (SMPC) and
has a long history of application to general functions (Yao,
1982; Goldreich et al., 1987). Recently, the methodologies
of SMPC have been applied to LLMs (Huang et al., 2022;
Hao et al., 2022; Pang et al., 2023; Akimoto et al., 2023;
Dong et al., 2023b; Li et al., 2024). However, SMPC meth-
ods introduce significant computational and communication
overhead, particularly so at non-linearities in the model.

Thus, other works aim to mitigate the punitive costs of
SMPC through statistical obfuscation. Recent work (Zheng
et al., 2024; Yuan et al., 2024; Luo et al., 2024) has used the
permutation-equivariance of transformers (Xu et al., 2024)
to propose permutation-based schemes for private inference.
In these schemes, hidden states are revealed as permuted
plaintext to the party performing inference. To justify secu-
rity, these works refer to the extremely large permutation
space and conclude that input reversal is infeasible.

In this paper, we show that such permutation-based schemes
are in general not secure in the open-weights setting. We
devise a novel vocab-matching attack1 (see Figure 1) that
can nearly perfectly decode the user input in this setting,
improving on existing work (Wan et al., 2024). We show
that this attack maintains near-perfect decoding performance
across various permutation types, including those used by
the schemes above. Furthermore, the attack is capable of
decoding against common noising methods proposed in the
literature for private inference (Morris et al., 2023a).

We then introduce a new multi-party scheme, Cascade (see

1Our implementation is available at https://github.
com/ritual-net/vma-external.

1

https://github.com/ritual-net/vma-external
https://github.com/ritual-net/vma-external

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Goal: recover user text

“Computer viruses are parasitic programs which are…”

Corresponding hidden
states at layer =

User text = =

Hidden States

…
…

Model

Layer

Predicted tokens from
previous steps

Iterate through tokens
in vocabulary V

User text recovered so far:
 “Computer viruses are parasitic”

argmin

Choose token that matches
observed hidden state

User text: “Computer viruses are parasitic programs which are…”
Token indices:

MLP
Layernorm

O-proj

. . .

. . .

. . .
AttnNodes

CompNodes

. . .

MLP
Layernorm

O-projMLP
Layernorm

O-proj

. . .

Figure 1. Left: High-level representation of the vocab-matching attack to decode user text from hidden states in the open-weights setting.
This attack achieves nearly perfect decoding accuracy, even if hiddens are permuted or noised. Right: Schematic representation of our
proposed privacy-preserving multi-party inference scheme, Cascade, which prevents the vocab-matching attack.

Figure 1), which avoids our attack by leveraging token shard-
ing. We show that Cascade is also resistant to existing re-
versal approaches in the literature (Wan et al., 2024; Morris
et al., 2023b). While Cascade does not provide the rigor-
ous privacy guarantees of cryptographic MPC schemes, it is
much more efficient than them, and presents a new paradigm
in the trade-off between scalability and security.

2. Setup & Threat Model
We assume the setting of a user U who wishes to perform
inference with an LLM model M on some input prompt x,
which can be considered as an ordered sequence of tokens
[x1, x2, ..., xN]. We denote the size of the hidden state of
the LLM by d, and the sequence length by N .

As the user U does not have the resources to perform the
inference themselves, they rely on a set of third-parties
P1, P2, ..., PK . The model weights of M , including the
embedding lookup table, are known to all parties. We as-
sume that the parties behave semi-honestly, as in past works
(Zheng et al., 2024; Luo et al., 2024; Dong et al., 2023b;
Yuan et al., 2024). Semi-honest parties follow the defined
protocol faithfully, but may attempt to recover the user’s
data from information that they receive during the protocol.

3. Related Work
Several existing works have investigated the reversibility
of LLM embeddings (Song & Raghunathan, 2020; Morris
et al., 2023a; Li et al., 2023b; Kugler et al., 2024) with rela-
tively good decoding performance. Unlike our setting, these
focus on the reversal of a single vector e = ϕ(x) ∈ Rd,
where ϕ is an embedding model that returns a single fixed-
size vector from an N -token input x = [x1, x2, ..., xN]. In

our paper, we are instead concerned with the reversibility of
full intermediate LLM states [h1, h2, . . . , hN] ∈ RN×d.

The two closest previous works on reversibility in our set-
ting are those of Wan et al. (2024) and Morris et al. (2023b).
The former deals with hidden state reversal, while the latter
focuses on logit output distribution reversal. In both papers,
the authors train a transformer-based network to reverse
the sequence of hidden states into the original token inputs.
Experiments are conducted on two decoder-based models,
Llama-2-7B and ChatGLM-6B. Average F1 scores of ap-
proximately 60% are achieved across a range of datasets
in Wan et al. (2024) on hidden states near the last layers,
and scores around 75% are achieved for logit reversal in
Morris et al. (2023b). Importantly, the latter paper does not
assume adversary access to model weights, while the former
deals with a model provider performing inference on users’
embeddings and is more analogous to our setting.

Petrov et al. (2024) propose an attack that shares some
elements with ours, like the exploitation of the unidirectional
nature of decoder-based LLMs and the finite lookup table.
However, they focus on gradient reversal into original inputs
in the federated training setting, distinct from our private
inference setting. Also, their method relies on full-rank
properties of the gradients, which are not always satisfied.
By contrast, our method does not have any such restrictions.

To the best of our knowledge, no existing work succeeds at
reversing permutations of LLM hidden states.

4. Hidden State Reversal
We begin by considering the general case where one of
the parties performing inference, Pk, receives hidden states
h = [h1, h2, ..., hN] at some layer l of the LLM M .

2

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Can the party Pk reverse the hidden states h to the input
sequence of tokens x = [x1, x2, ..., xN] that produced h?

4.1. Informal Attack Description

We outline our proposed attack below, and provide a visual
depiction in Figure 1.

The attack begins with a batched forward pass over all
length-1 sequences [v], where v ranges over words in the
vocabulary V . From this, the adversary gets V = |V| candi-
date layer l hidden states h(v) ∈ R1×d. They set the first
predicted input token x̂1 to be the token v for which h(v)
exactly matches the first hidden state h1.

Next, the adversary performs a batched forward pass over all
length-2 sequences [x̂1, v] with v ∈ V , to get V candidate
layer l hidden states h(x̂1, v) ∈ R2×d. Now, they set the
second predicted input token x̂2 to be the token v where the
second row of h(x̂1, v) equals the second hidden state h2.

In general, at the nth stage, using the first n− 1 predicted
input tokens x̂1, . . . , x̂n−1, the adversary performs a for-
ward pass over all length-n sequences [x̂1, . . . , x̂n−1, v]
with v ∈ V . They obtain V candidate layer l hidden states
h(x̂1, . . . , x̂n−1, v) ∈ Rn×d, and set the nth predicted in-
put token x̂n to be the token v where the nth (last) row of
candidate states matches the nth hidden state hn. Iterating
over n = 1, . . . , N , the adversary sequentially obtains the
predicted input sequence x̂ from the layer l hidden states h.

Naively, one might expect that an exact match of h would re-
quire an exponential brute-force search over all V N possible
sequences of tokens x. However, we see that by exploiting
the autoregressive property of transformers, this is reduced
to a linear search; the total cost of this attack is O(V N).

4.2. Practical Implementation

4.2.1. ASSUMPTIONS

The key assumptions necessary for our attack are as follows.

(A1) The forward pass over the vocabulary in the attack will
match the forward pass that generated the given hiddens h.

(A2) Hidden states of LLMs are non-colliding: there are
few matches between candidate tokens v and hidden states
hn at each step of the attack. If the average number of
matches at each step is M , then the search space grows as
MN , which is infeasible when M or N is large. Prior work
(Dong et al., 2023a) has demonstrated the rank-reducing
effects of attention, so it is plausible that the size of the
subspace in latter layers is too small to prevent collisions.
Still, we will see this assumption holds in practice.

(A3) The LLM employs unidirectional attention. This holds
for decoder-only architectures, which are de-facto for many

current state-of-the-art LLMs.

(A4) The model weights are known to the party Pk. Later,
in the settings of Yuan et al. (2024); Luo et al. (2024), we
can relax this assumption.

Generally, (A1) is not satisfied due to non-determinism.

4.2.2. NON-DETERMINISM

Assumption (A1) asserts the forward pass performed over
the vocabulary matches the forward pass that generated
the given hiddens exactly. In general, due to the non-
associativity of floating-point operations (Villa et al., 2009),
this does not hold. In the GPU setting with parallel asyn-
chronous thread execution and pooling without global syn-
chronization, there can be considerable variation in the out-
put (Shanmugavelu et al., 2024). In addition, differences
in hardware, random number seeds, environment variables,
and the state of initialized memory on the machine add to
the variability, and these may not be known to the adversary.

Due to the presence of this reducible and irreducible noise,
exact matching cannot be used successfully with our attack.
Thus, we loosen our matching requirements by computing
the L1-distance between the last row of candidate hidden
states and the given hidden state, and accept a match for a
token if the distance is below some threshold ϵ. If no match
is found, we choose the token with minimal L1-distance.

However, by allowing an ϵ-ball for matching, we increase
the possibility of collisions as stated above. Is our attack
still successful – i.e. is assumption (A2) still satisfied – even
with this fuzzy matching? In Section 4.4, we find the answer
is emphatically yes.

4.2.3. EFFICIENCY

We optimize runtime using a proposal model to provide a
likelihood-based order of iteration through the vocabulary.
We find that this modification reduces the average number
of tokens searched through at each step from V/2 to ∼ 100,
resulting in over a 1000× speedup. Further, we implement a
novel variation of key-value-caching (KV-caching) to reduce
the computational cost of our attack. Further details on
these optimizations are given in Appendix A. With these
improvements, we reduce the decoding time of prompts of
length 50 from many hours to typically less than 30 seconds.
We provide details on the scalability of our attack with
respect to model size in Appendix B.

4.3. Formal Attack Description

We now provide a formalized description of our attack,
incorporating the modifications for efficiency and handling
the nondeterminism described above, in Algorithm 1. For a
step-by-step walkthrough, see Appendix C.

3

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Algorithm 1 Vocabulary-Matching Attack
input Model M , layer l hidden states h = [h1, . . . , hN],

vocabulary V , proposal model P , L1-threshold ϵ
output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N]

1: Initialize empty sequence x̂← []
2: for i = 1 to N do
3: Vordered ← argsort(P (x̂)) {Get ordered vocabulary

from proposal model}
4: min dist←∞
5: best match← None
6: for v ∈ Vordered do
7: g ←M≤l([x̂, v]) {Forward pass up to layer l}
8: dist← ∥g − hi∥1 {Calculate L1 distance}
9: if dist < min dist then

10: min dist← dist
11: best match← v
12: end if
13: if dist < ϵ then
14: x̂i ← v
15: break
16: end if
17: end for
18: if dist ≥ ϵ then
19: x̂i ← best match
20: end if
21: end for
22: return x̂

4.4. Experiments & Discussion

We conduct our experiments on two state-of-the-art open-
source LLMs, Gemma-2-2B-IT (Team et al., 2024) and
Llama-3.1-8B-Instruct (Grattafiori et al., 2024). These mod-
els have different sizes, training methods, and architectures.
We test on samples from the Fineweb-Edu dataset (Penedo
et al., 2024). The proposal model is the same as the model
being attacked. To ensure that the dataset is unseen by the
proposal model, we use the CC-MAIN-2024-10 data split,
which postdates the models’ training cutoff dates. To speed
up evaluation, we test on every fifth layer of the model,
extracting hidden states at layers 1, 6, 11, 16, 21, and 26.

For each layer of interest, we tune ϵ by performing a ternary
search on a small training set of 50 prompts from FineWeb,
to determine the optimal L1-threshold under which pre-
dicted tokens are accepted as matches. We evaluate on 1000
held out prompts, and our results are shown in Table 1. We
find that nearly all evaluation samples are perfectly decoded.
All ϵ values are given in Appendix D. Due to computa-
tional constraints, each evaluation prompt was truncated to
a maximum of 50 tokens; however, small-scale experiments
with prompts over 200 tokens demonstrated that our results
generalize to longer prompt settings – vocab-matching still
perfectly decodes hidden states into their input tokens.

Table 1. Percentage of perfectly decoded evaluation samples by
vocab-matching at layers of Gemma-2-2B-IT and Llama-3.1-8B-
Instruct.

Layer Gemma Llama

1 100% 100%
6 100% 100%

11 100% 100%
16 100% 100%
21 100% 99.9%
26 100% 99.7%

In the rare cases where perfect decoding was not achieved,
prompts contained formatting characters like newlines and
hyphens, or grammatically incorrect word repetitions. These
cause the proposal model to accept an incorrect token early
when its L1 error is below the ϵ threshold, even when the
correct token has a small L1 error. Tuning ϵ with a larger
training set or using a full vocabulary search may mitigate
these errors, but at a higher computational cost.

The success of our attack allows us to conclude that LLM
hidden states are highly distinct and non-colliding.

5. Permuted Hidden State Reversal
We now consider the case where one of the parties perform-
ing inference receives a permutation of the intermediate
sequence of hidden states h at some layer l of the LLM M .

5.1. Existing Work

Recently, a number of works have proposed utilizing permu-
tations to perform privacy-preserving inference in a multi-
party-computation (MPC) setup.

Zheng et al. (2024) introduce PermLLM. They permute
at the non-linear components of the LLMs in order to re-
veal them ‘safely’ to one of the parties, and therefore avoid
expensive iterated inter-party communication. The permu-
tation is done on the attention logits before the softmax, at
layer normalizations, and at the non-linear functions in the
MLP block. The latter is a purely elementwise function,
so the authors can do a full permutation across the [N, d]
elements, resulting in a permutation space of size (Nd)!.
However, softmax and layer-norm are row-wise operations,
so the permutation applied in this case is a (distinct) permu-
tation to the columns, followed by a permutation of the N
rows, resulting in a permutation space of size N !(d!)N .

Yuan et al. (2024) introduce STIP. They permute both the
model weights and the user prompt embeddings in the hid-
den d dimension, and the entire inference process (on the
next token) is then carried out by a single party.

4

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Luo et al. (2024) apply ideas from both of the above works
to formulate Centaur. This permutes the model weights,
utilizing additive secret-sharing for the linear layers, but
relies on two-party permuted plaintext computation at the
non-linearities (softmax, layer-norm and GeLU). Permuta-
tion is applied in the hidden d dimension.

5.2. Permuted Intermediate States Are Not Safe

We now propose a modification of our vocab-matching at-
tack in Section 4, which breaks user input privacy for the
above schemes in the open-weight setting. Extensions to the
attack also break privacy in the closed-weights setting that
Yuan et al. (2024) and Luo et al. (2024) originally consider:
see Appendix I for further details. Also, in Appendix J, we
explain why theoretical claims on statistical permutation
security from Luo et al. (2024) do not anticipate our attack.

We present our modified attack in the sequence-dimension,
hidden-dimension, and factorized-2D permutation settings.
See Appendix E for detailed pseudocode of the modifica-
tions. Our experimental setup is the same as in Section 4.4.

5.2.1. SEQUENCE-DIM PERMUTATION

Assume that permutation has been applied to layer l hidden
states h = [h1, h2, ..., hN] in the sequence dimension:

hseq perm = [hσ(1), hσ(2), ..., hσ(N)]

where σ is a permutation of [N] = {1, 2, . . . , N}. Then,
we modify the vocab-matching attack as follows. At the nth
stage, we now choose the vocabulary token v where the nth
row of the corresponding candidate hidden state is within
an L1-distance of ϵ from any row of hseq perm. Suppose this
ϵ-ball match is made with the ith row hσ(i). We set the
nth predicted input token x̂n to v, and remove hσ(i) from
consideration for hidden state matching in all future stages.
Iterating over n = 1, . . . , N , we obtain the predicted input
sequence x̂ from sequence-permuted hidden states hseq perm.

Compared to the vocab-matching attack, the opportunities
for collision are now increased up to N -fold, as we match
with up to N rows of h rather than one. However, we
again observe very few collisions in practice and are able to
decode essentially all input prompts: see Table 2.

5.2.2. HIDDEN-DIM PERMUTATION

Next we consider the case where permutation has been
performed on the hidden dimension of h instead. That is,
the party performing inference is now given:

hhidden perm = [π1(h1), π2(h2), ..., πN (hN)]

where each πi permutes elements of a d-dimensional vector.
In this setting, it is no longer possible to use L1-distance
directly to find the nearest vocabulary token match. We

instead use the sorted L1-distance, which individually sorts
the two vectors to be compared and then computes their L1-
distance. Again, the existence of noise may appear to be
a significant obstacle to this approach. However, we find
that even this relatively simple matching approach is robust
enough to noise to achieve nearly perfect decoding. Our
results are shown in Table 2.

5.2.3. FACTORIZED-2D PERMUTATION

We now consider the case of a factorized two-dimensional
permutation as used in Zheng et al. (2024), where a hidden-
dimension permutation is applied to each hidden state, and
then these resulting states are shuffled in the sequence di-
mension. The adversary now has:

hfact perm = [π1(hσ(1)), π2(hσ(2)), ..., πN (hσ(N))]

where σ is a permutation of [N] and each πi permutes a
d-dimensional vector. The attack in this setting again uti-
lizes the sorted-L1 matching function, but now expands to
consider all N rows of hfact perm, as in Section 5.2.1. Re-
markably, even in this setting, the hidden states of both
models are decoded nearly perfectly across layers (Table 2).

We conclude that permuted hidden states of LLMs are highly
decodeable by our attack, and therefore schemes which
expose them are not secure in the open-weights setting.

Table 2. The percentage of evaluation samples that were perfectly
decoded under sequence-dim, hidden-dim, and factorized-2D per-
mutations, for Gemma-2-2B-IT and Llama-3.1-8B-Instruct.

Layer Sequence-Dim Hidden-Dim Factorized-2D

Gemma Llama Gemma Llama Gemma Llama

1 100% 99.7% 100% 100% 99.9% 98.4%
6 99.8% 100% 100% 98.5% 99.5% 97.8%
11 100% 100% 100% 99.2% 99.5% 98.9%
16 100% 100% 99.9% 99.4% 99.2% 98.8%
21 99.8% 100% 98.2% 98.9% 99.1% 98.0%
26 99.8% 100% 98.0% 98.2% 99.0% 97.6%

6. Noised & Quantized Hidden State Reversal
Section 5 shows that modifications to our attack can decode
sequence-dimension, hidden-dimension, and factorized-2D
permutations of hidden states. We now examine the efficacy
of our attack on methods of defense which aim to disrupt as-
sumption (A2) in Section 4.2.1, by noising the hidden states
or quantizing the model. With enough noise or quantization,
decoding can be made impossible. However, high noise
will likely disrupt LLM performance. Thus, any such de-
fense is a delicate balancing act of ensuring security against
our attack, while still maintaining downstream model per-
formance. We find that generally, these methods are still
not sufficient to defend against our attack. Due to space
constraints, we provide much further detail in Appendix F.

5

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

7. Token-Sharded Multi-Party Inference
As we have found that permutations of hidden states are not
secure, a natural follow-up question is whether sharded hid-
den states are secure. We suggest the answer is affirmative
for certain sharding schemes. We propose a defense to the
vocab-matching attack based on token-dimension sharding
of hidden states, which leads to a new multi-party inference
scheme: Cascade.

Notably, Cascade does not use cryptographic primitives; the
computations are nearly unchanged from a standard forward
pass, so almost no additional computational overhead is
incurred. There is also no degradation of performance, as
unlike SMPC schemes, no approximations need to be made
to efficiently compute non-linearities. The scheme also does
not require any trusted party interaction during inference.

7.1. Scheme Description

At a high level, Cascade exploits the fact that only the self-
attention mechanism in transformers has interaction among
tokens in a sequence; for all other parts of the architecture,
the tokens are treated like batch dimension elements.

Therefore, the CompNodes each receive only a subset of the
tokens, and perform the bulk of batch operations in the LLM.
Then, self-attention is performed by separate AttnNodes,
who each receive Q,K, V -projections of sharded hidden
states from the CompNodes. The AttnNodes send partial
attention outputs at each layer back to the CompNodes, who
can reconstruct shards of the full attention output.

Sharding In multi-headed attention, we let H and HKV

be the attention head and key-value head (for grouped-query
attention) counts, N be the token count, demb be the hid-
den dimension, and d be the attention hidden dimension.
There are three axes of sharding used along the token di-
mension: (1) the sharding of hidden states h ∈ RN×demb ,
(2) the sharding of query states q ∈ RH×N×d, and (3) the
sharding of key and value states k,v ∈ RHKV ×N×d. These
involve splitting token indices [N] = {1, 2, . . . , N} into a
union of disjoint subsets {Ri}αi=1 for hiddens, {Sj}βj=1 for
queries, and {Tk}γk=1 for keys and values, where α, β, γ
are shard counts. We also shard the positional embeddings
p ∈ RN×demb and the attention mask s ∈ RH×N×N , which
are initialized pre-inference, as well as the masked logits
a ∈ RH×N×N and attention output o ∈ RN×demb .

Symmetrization In Appendix M, we show that we can
make S and T sharding equal at no loss of security. Thus,
from here on, we replace T with S and γ with β.

Our symmetrized notation for any layer is in Table 3. Note
that the last six rows rely on tensors that are not directly
shards of LLM states, but are derived from them, as in
Table 4. Here, max, softmax, and expsum are performed

row-wise, with expsum(x) :=
∑

i exp(xi). Also, eSk only
performs an expsum after subtracting row-wise maximums,
as in the numerically stable subtract-max form of softmax.

Tensor Shape Shards Notation

h,p,o (N, demb) (Ri, ∗) hRi ,pRi ,oRi

q,k,v (H,N, d) (∗, Ri, ∗) qRi ,kRi ,vRi

q,k,v (H,N, d) (∗, Sj , ∗) qSj ,kSj ,vSj

q,k,v (H,N, d) (∗, Ri ∩ Sj , ∗) qRi∩Sj ,kRi∩Sj ,vRi∩Sj

a, s (H,N,N) (∗, ∗, Sk) aSk , sSk

a, s (H,N,N) (∗, Ri, Sk) aRiSk , sRiSk

a, s (H,N,N) (∗, Sj , Sk) aSjSk , sSjSk

a, s (H,N,N) (∗, Ri ∩ Sj , Sk) a(Ri∩Sj)Sk , s(Ri∩Sj)Sk

mSk , eSk (H,N, 1) (∗, Ri, ∗) mRiSk , eRiSk

mSk , eSk (H,N, 1) (∗, Sj , ∗) mSjSk , eSjSk

mSk , eSk (H,N, 1) (∗, Ri ∩ Sj , ∗) m(Ri∩Sj)Sk , e(Ri∩Sj)Sk

uSk (H,N, |Sk|) (∗, Ri, ∗) uRiSk

uSk (H,N, |Sk|) (∗, Sj , ∗) uSjSk

uSk (H,N, |Sk|) (∗, Ri ∩ Sj , ∗) u(Ri∩Sj)Sk

Table 3. Sharding for intermediate LLM states, where ∗ is a full
slice. In slicing notation, a(Ri∩Sj)Sk = a[:, Ri ∩ Sj , Sk] and
m(Ri∩Sj)Sk = mSk [:, Ri ∩ Sj , :], with mSk as in Table 4.

Tensor Shape Formula

mSk (H,N, 1) max(aSk)
eSk (H,N, 1) expsum(aSk −mSk)
uSk (H,N, |Sk|) softmax(aSk)vSk

Table 4. Tensors derived from sharded states aSk ,vSk in Table 3.

Nodes There are two types of nodes which hold the
sharded states above: CompNodes and AttnNodes. We
initialize α CompNodes and β2 AttnNodes, indexed as
CompNodei and AttnNodejk for all i ∈ [α] and j, k ∈ [β].

Inference Cascade breaks single layer inference into the
pre-pass by CompNodes, attention-pass by AttnNodes,
and post-pass by CompNodes. We describe these in Al-
gorithm 7, Algorithm 8, and Algorithm 9 in Appendix G.
These form a single layer pass in Algorithm 2.

During Cascade layer l inference, each CompNodei begins
with hRi at layer l, and ends with hRi at layer l + 1. This
output is the input to CompNodei for layer l + 1 inference,
so inference for all layers can follow Algorithm 2.

After the last layer, CompNodes apply the LM head to get
Ri-sharded logits, and the CompNode with the last token
will use this to generate the next token’s embedding2. This is
sent back to the CompNode with the next token index in Ri.
Then, Cascade inference repeats to generate the next token.
This can be sped up with KV-caching: see Appendix Q.

2The logits can also be returned to the user if desired.

6

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Algorithm 2 Cascade Single Layer Forward Pass

input hRi at layer l from CompNodei for 1 ≤ i ≤ α
output hRi at layer l + 1 to CompNodei for 1 ≤ i ≤ α

1: for i = 1 to α: CompNodei do
2: qRi ,kRi ,vRi ← pre pass(hRi)
3: for j, k = 1 to β: AttnNodejk gets
4: qRiSj ,kRiSk ,vRiSk

5: end for
6: end for
7: for j, k = 1 to β: AttnNodejk do
8: mSjSk , eSjSk ,uSjSk ← attn pass(qSj ,kSk ,vSk)
9: for i = 1 to α: CompNodei gets

10: m(Ri∩Sj)Sk , e(Ri∩Sj)Sk ,u(Ri∩Sj)Sk

11: end for
12: end for
13: for i = 1 to α: CompNodei do
14: oRi ← post pass{mRiSk , eRiSk ,uRiSk}βk=1

15: hRi ← mlp(hRi + oRi) {Residual and MLP}
16: end for

7.2. Security Analysis

In this section, we examine the security properties of Cas-
cade. Cascade does not employ cryptographic techniques,
so we can only elucidate on statistical security. Nevertheless,
we examine a wide range of security considerations below.
The security of Cascade is a function of its implementation
parameters: the number of nodes participating, as well as
the sharding strategy used, i.e. {Ri}αi=1 and {Sj}βj=1.

Information Leakage To analyze information leakage,
we examine isolated computational stages of nodes. In all
stages (pre-pass, attention-pass, or post-pass) of Cascade, no
information is received during the computation. Therefore,
all input leakage comes from the stage initialization. Thus,
any leakage must occur from the following sharded tensors:

CompNodei → hRi , {mRiSk , eRiSk ,uRiSk}βk=1,

AttnNodejk → qSj ,kSk ,vSk .

We will examine leakage to CompNodes from hRi in Sec-
tion 7.2.1 and Section 7.2.2. We will analyze leakage from
qSj ,kSk ,vSk in Section 7.2.3. Finally, we consider all
other sources of leakage to CompNodes in Section 7.2.4.

Sharding Strategies When more nodes participate, each
has access to fewer tokens and hidden states, which makes
reversing the full input more difficult. Even holding the node
count fixed, the choice of sharding may also affect the diffi-
culty of reversal. For example, is it more secure for a node
to have access to [h1, h5, h9, h13] or [h1, h2, h12, h13]?

As the space of sharding strategies is vast, we focus on
(c, δ)-sharding strategies, where each sharded index set
takes the form of a ‘clustered-arithmetic’ or (c, δ)-sequence.

Definition 7.1. We say a subset of indices [N] is a (c, δ)-
sequence if it takes the following form for some i:

{i, i+ 1, . . . , i+ c− 1, δ + i, δ + i+ 1, . . . , δ + i+ c− 1,

2δ + i, 2δ + i+ 1, . . . , 2δ + i+ c− 1, . . .}.

We focus on these strategies as they fulfill several security
desiderata. We emphasize however that other strategies may
be preferable to (c, δ)-sharding depending on the use-case.

(c, δ) vs. Number of CompNodes Under (c, δ)-sharding,
the minimum number of CompNodes α needed to ensure all
indices in [N] are held by some node is given by α = ⌈δ/c⌉.

7.2.1. LAYER 0 COMPNODE HIDDEN SECURITY

We first consider the security of CompNodes at layer 0 of
the scheme, who each hold some token embeddings of the
input prompt x. As embeddings are immediately reversible
to their tokens through the lookup table, we conclude that
Cascade should not be used when the security of every token
is paramount. If individual token security is imperative,
Cascade can be integrated with SMPC as in Appendix H.

Given that a CompNode has access to some of the N to-
ken embeddings, say [en1

, en2
, . . . , ent

], the possibility of
reconstruction of the full prompt x is theoretically lower
bounded by the entropy of the distribution

p({xj : j ∈ [N] \ {n1, . . . , nt}} | xn1
, xn2

, . . . , xnt
)

The true distribution cannot easily be computed, but we may
approximate it using masked token infilling, as in the train-
ing of models like BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and ModernBERT (Warner et al., 2024).
We use the recently released state-of-the-art ModernBERT-
large to probe properties of this distribution under (c, δ)-
sharding. We use 200 samples from FineWeb-Edu to com-
pute the ROUGE-L (Lin, 2004) score over argmax-token
generation. Our results are shown in Figure 2. We see that
ROUGE-L score diminishes as both c and α increase; good
security seems to be achieved for c, α ≥ 8 and thus δ ≥ 64.

7.2.2. LAYER > 0 COMPNODE HIDDEN SECURITY

We now turn our attention to CompNode security of hRi at
deeper layers of the LLM. Can we select a sharding strategy
that defends against our attack outlined in Section 4? Also,
do we remain secure to learning-based attacks as in prior
works Wan et al. (2024) and Morris et al. (2023b)?
Definition 7.2. Let tmax be the maximum value of t for
which an adversary has resources to perform V t forward
passes. Then we define the vocab-matching threshold ρ as
ρ := tmax + 1.

Vocab-Matching Attack Our defense against vocab-
matching is to ensure large token gaps in nodes. For a

7

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Figure 2. ROUGE-L scores for Layer 0 token prediction using
ModernBERT-Large, as a function of c, the number of ‘clusters’ in
the sharding scheme, and α, the number of CompNodes. Higher α
and higher c tend towards lower ROUGE-L, increasing security.

(c, δ)-sharding scheme, in each shard, the distance from one
‘cluster’ of indices to the next is δ − c+ 1. Thus, in order
to carry out the attack, an attacker cannot perform a single
run through V and obtain the next token match; they must
search over length δ−c+1 sequences of infilled words, like
in Appendix C. The cost scales exponentially as V δ−c+1.
Because V ∼ O(100000) in typical modern LLMs3 the
vocab-matching threshold of any adversary is likely no more
than ρ = 3 in practice. Note δ − c+ 1 = (α− 1)c+ 1, so
regardless of the value of ρ, we can increase α or c until
δ − c + 1 ≥ ρ to prevent vocab-matching. For ρ = 3, all
α, c ≥ 2 satisfy this.

Learning-Based Attacks We now consider learning-
based reversal attacks. Although hidden states may not
be as easily reversible as token embeddings, it may be the
case that as attention propagates information among hidden
states, the text-infilling task is easier at deeper layers of the
LLM than at the purely textual level. We examine this hy-
pothesis by fine-tuning Gemma-2-2B-IT and Llama-3.1-8B-
Instruct on (c, δ)-masked input sequences from FineWeb-
Edu, with the target labels being the full input sequence.
Note this is a ‘worst-case’ scenario where the adversary
knows the c and δ parameters. We update both models to
use a bidirectional mask, in line with the token-infilling
nature of this task. We train until the evaluation loss on
a held-out set converges over layer 1 representations from
each model, and evaluate on layer 1 hidden states. Our ap-
proach is similar to Wan et al. (2024); Morris et al. (2023b).

Our ROUGE-L scores for reconstructed Gemma-2-2B-IT
prompts are shown in Table 5. In Appendix K, we simi-

3Although knowledge of the input distribution can make the
base of the exponential smaller than V , the cost still scales expo-
nentially, so large enough δ − c+ 1 prevents the attack variant.

larly analyze BLEU reconstruction scores (Papineni et al.,
2002). When c, α ≥ 8, we have a ROUGE-L score less
than 0.25, indicating significant reconstruction difficulty.
We also tested on c = 4, α = 16 and c = 8, α = 24 and
obtained ROUGE-L scores of 0.173 and 0.144, supporting
that security continues to improve by scaling c and α.

Table 5. ROUGE-L scores of text reconstruction from the hiddens
of layer 1 of Gemma-2-2B-IT for various values of c and α under
(c, δ)-sharding. Increasing c or α results in worse reconstruction.

α = 4 α = 8 α = 12

c = 1 0.701 0.467 0.349
c = 4 0.427 0.290 0.230
c = 8 0.355 0.222 0.191

We examine the choice of hidden layer, and if Llama repre-
sentations are decoded better, in Appendix L. We find simi-
lar or better security across these other parameter choices.

7.2.3. ATTNNODE FULL SECURITY

So far, we analyzed CompNode security. In Appendix M,
we examine AttnNode security and show how to improve it
through m-splitting, which makes S sharding more granular.

7.2.4. COMPNODE FULL SECURITY

In Section 7.2.1 and Section 7.2.2, we considered leakage
to CompNodes from hRi . Now, we consider how the shards
mRiSk , eRiSk ,uRiSk impact security. Our main result is a
condition necessary to prevent a modified vocab-matching
attack. For a proof of this theorem, see Appendix P.
Theorem 7.3. Suppose s is unidirectional. For Cascade to
be secure, each gap between clusters of consecutive indices
in each Ri must have size ≥ ρ.

Note (c, δ)-sharding satisfies this for δ ≥ c + ρ. In Ap-
pendix P, we argue further that such (c, δ)-sharding is suffi-
cient for Layer 0 security, by demonstrating a reduction to
an intractable linear program.

7.3. Communication and Computational Costs

We now enumerate communication and computational costs
associated with Cascade. As in previous SMPC works (Li
et al., 2023a; Dong et al., 2023b; Li et al., 2024), we assume
perfect parallel transport in communication, a homogeneous
node-wise bandwidth of B, and an inter-node latency of τ .
We denote F as the number of bytes per element.

7.3.1. THEORETICAL COSTS

We first provide theoretical estimates of costs in Cascade.

Computation There is almost no floating point overhead

8

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

in Cascade relative to vanilla inference: see Appendix N.
We provide empirical evidence for this in Section 7.3.2.

Communication We present single layer communication
byte and time overhead formulae, derived in Appendix O:

CommBytes = βF (2dH + 2dHKV + 2H) ·N (1)

CommTime = 2τ +
βFd(H + 2HKV)

B
·max

i
|Ri|

+
F (d+ 2)H

B
·max

j
|Sj |.

(2)

Note Equation (1) scales linearly with β, so byte overhead
is minimized with fewest AttnNodes. Also, communication
time is minimized when βmaxi |Ri| and maxj |Sj | are min-
imal. For fixed α, β, since {Ri}αi=1 and {Sj}βj=1 partition
[N], then maxi |Ri| ≥ ⌈N/α⌉ and maxj |Sj | ≥ ⌈N/β⌉.
Equality holds when all Ri, and all Sj , are around the same
size. Thus, (c, δ)-sharding has optimal communication time.

7.3.2. PERFORMANCE EXPERIMENTS

We now evaluate the real-world performance of Cascade
through the distributed computing framework Ray (Moritz
et al., 2018). We run our experiments on Paperspace ma-
chines with 16 vCPU and 64GB RAM, with the CPU model
being Intel Xeon Gold 6226R CPU @ 2.90GHz. All ma-
chines are colocated in the same region with an average
bandwidth of 2 Gbps and latency of 0.38 ms. We repeat
a single forward pass on Bert-Base and Bert-Large with a
128-token prompt a total of 100 times.

We benchmark against two recent SMPC schemes for LLM
inference, MPCFormer (Li et al., 2023a) and Puma (Dong
et al., 2023b). For MPCFormer, we modify the Crypten
implementation to use public rather than private weights, to
match our open-weights setting. Puma data is taken from
Dong et al. (2023b), as it is built on SPU with its own set of
optimizations. Our results are shown in Table 6.

We first compare Cascade for α = 1 without Ray against
vanilla inference, to estimate protocol overhead. The mean
runtime is 109ms vs. 91ms for vanilla inference for Bert-
Base, and 320ms vs. 273ms for Bert-Large. Profiling shows
this minor increase is due to the attention-score compila-
tion step discussed in Appendix N. Nevertheless, the mean
runtime is within the 95% confidence interval of vanilla
inference in both cases.

Next, we compare the performance of Cascade with α = 1
and using Ray. As seen above, this is slower than not us-
ing Ray by around a factor of 3×. This slowdown can be
attributed to framework-specific overhead, such as serial-
ization. In other words, Cascade is so efficient that the
distributed-compute framework overhead now constitutes
a significant proportion of its slowdown from vanilla infer-
ence, rather than protocol-specific overhead.

Table 6. Total runtime means and 95% confidence intervals in sec-
onds, for a single 128-token prompt forward pass on Bert-Base and
Bert-Large for MPCFormer, Puma, and some Cascade settings.

Scheme Bert-Base (s) Bert-Large (s)

MPCFormer 55.320 141.222
Puma 33.913 73.720

Cascadeα=1,no Ray 0.11 [0.10, 0.13] 0.32 [0.23,1.07]
Cascadeα=1 0.32 [0.31, 0.36] 1.01 [0.97, 1.09]
Cascadeα=4 0.59 [0.51,0.69] 1.57 [1.44, 1.73]
Cascadeα=8 0.74 [0.62, 0.96] 1.58 [1.27, 1.97]

Vanilla 0.09 [0.08,0.12] 0.27 [0.20, 0.99]

We further benchmark Cascade with α = 4, 8, using a
(c, δ)-sharding scheme with c = 1 and no m-splits. We
use clusters of 6 and 18 machines for α = 4 and 8, with 4
cores per node. Performance in these cases is slower than
for α = 1, due to communication overhead. Still, Cascade
is 90× faster than MPCFormer and 45× faster than Puma
for Bert-Large, even in its slowest setting. In Appendix R,
we further test Cascade runtime across various model sizes,
and find that it scales well to larger models.

Table 7. Communicated bytes for a 128-token prompt forward pass
on Bert-Base and Bert-Large for MPCFormer, Puma, and Cascade.

Scheme Bert-Base (GB) Bert-Large (GB)

MPCFormer 12.089 32.577
Puma 10.773 27.246
Cascadeα=1 0.009 0.025
Cascadeα=4 0.038 0.101
Cascadeα=8 0.076 0.203

Finally, we compare total communicated bytes for Cascade
versus MPCFormer and Puma in Table 7 above. Even in the
most expensive setting, Cascade is 160×more efficient than
MPCFormer and 140× more efficient than Puma. Thus,
with significant improvements in computation and commu-
nication cost, Cascade offers a new paradigm in the trade-off
between scalability and security.

8. Conclusion & Future Work
We identify a new attack for decoding LLM hidden states
into their original user text in the increasingly important
open-weights setting. This nearly perfectly decodes even
permuted hidden states, effectively invalidating the security
of some existing MPC schemes. We also introduce a novel
multi-party scheme, Cascade, that leverages token sharding
to defend against our attack and existing attacks in the litera-
ture. Future work could investigate the choice of ϵ threshold
in our attack, or examine the security of alternative sharding
strategies in Cascade.

9

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, and particularly, of privacy-preserving
inference of LLMs. Our work may lead to the enactment
of more secure and scalable methods of private inference
in the open-weights setting. There are many potential soci-
etal consequences of this, none of which we feel must be
specifically highlighted here.

References
Akimoto, Y., Fukuchi, K., Akimoto, Y., and Sakuma, J.

Privformer: Privacy-preserving transformer with mpc. In
2023 IEEE 8th European Symposium on Security and
Privacy (EuroSP), pp. 392–410, 2023. doi: 10.1109/
EuroSP57164.2023.00031.

Anderson, T. W. The integral of a symmetric unimodal func-
tion over a symmetric convex set and some probability
inequalities. Proceedings of the American Mathematical
Society, 6(2):170–176, 1955.

BitsAndBytes. Bitsandbytes: Optimized 8-bit and 4-bit ma-
trix multiplication routines. https://github.com/
bitsandbytes-foundation/bitsandbytes,
2025. Accessed: 2025-01-28.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L.,
Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia,
L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang, M.,
Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen,
Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R., Chen,
R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye,
S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S., Zhou,
S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T.,
Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W., Yu, W.,
Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen,
X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang,
X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen, X.,
Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang,
X., Shan, X., Li, Y. K., Wang, Y. Q., Wei, Y. X., Zhang,
Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y.,
Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao, Y., Wang, Y.,
Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong,
Y., Zou, Y., He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y.,

Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,
Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z.,
Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z., Zhang, Z., Hao,
Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li,
Z., Xie, Z., Song, Z., Pan, Z., Huang, Z., Xu, Z., Zhang,
Z., and Zhang, Z. Deepseek-r1: Incentivizing reasoning
capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019. URL https://arxiv.
org/abs/1810.04805.

Dong, Y., Cordonnier, J.-B., and Loukas, A. Attention is
not all you need: Pure attention loses rank doubly expo-
nentially with depth, 2023a. URL https://arxiv.
org/abs/2103.03404.

Dong, Y., jie Lu, W., Zheng, Y., Wu, H., Zhao, D., Tan,
J., Huang, Z., Hong, C., Wei, T., and Chen, W. Puma:
Secure inference of llama-7b in five minutes, 2023b. URL
https://arxiv.org/abs/2307.12533.

Edelmann, D., Móri, T. F., and Székely, G. J. On relation-
ships between the pearson and the distance correlation
coefficients. Statistics & probability letters, 169:108960,
2021.

Goldreich, O., Micali, S., and Wigderson, A. How to
play any mental game. In Proceedings of the Nine-
teenth Annual ACM Symposium on Theory of Comput-
ing, STOC ’87, pp. 218–229, New York, NY, USA,
1987. Association for Computing Machinery. ISBN
0897912217. doi: 10.1145/28395.28420. URL https:
//doi.org/10.1145/28395.28420.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., Yang, A., Fan, A., Goyal, A., Hartshorn,
A., Yang, A., Mitra, A., Sravankumar, A., Korenev,
A., Hinsvark, A., Rao, A., Zhang, A., Rodriguez, A.,
Gregerson, A., Spataru, A., Roziere, B., Biron, B., Tang,
B., Chern, B., Caucheteux, C., Nayak, C., Bi, C., Marra,
C., McConnell, C., Keller, C., Touret, C., Wu, C., Wong,
C., Ferrer, C. C., Nikolaidis, C., Allonsius, D., Song, D.,
Pintz, D., Livshits, D., Wyatt, D., Esiobu, D., Choudhary,
D., Mahajan, D., Garcia-Olano, D., Perino, D., Hupkes,
D., Lakomkin, E., AlBadawy, E., Lobanova, E., Dinan,
E., Smith, E. M., Radenovic, F., Guzmán, F., Zhang, F.,
Synnaeve, G., Lee, G., Anderson, G. L., Thattai, G., Nail,
G., Mialon, G., Pang, G., Cucurell, G., Nguyen, H., Ko-
revaar, H., Xu, H., Touvron, H., Zarov, I., Ibarra, I. A.,
Kloumann, I., Misra, I., Evtimov, I., Zhang, J., Copet, J.,
Lee, J., Geffert, J., Vranes, J., Park, J., Mahadeokar, J.,
Shah, J., van der Linde, J., Billock, J., Hong, J., Lee, J.,

10

https://github.com/bitsandbytes-foundation/bitsandbytes
https://github.com/bitsandbytes-foundation/bitsandbytes
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2307.12533
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Fu, J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J., Bitton,
J., Spisak, J., Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia,
J., Alwala, K. V., Prasad, K., Upasani, K., Plawiak, K., Li,
K., Heafield, K., Stone, K., El-Arini, K., Iyer, K., Malik,
K., Chiu, K., Bhalla, K., Lakhotia, K., Rantala-Yeary,
L., van der Maaten, L., Chen, L., Tan, L., Jenkins, L.,
Martin, L., Madaan, L., Malo, L., Blecher, L., Landzaat,
L., de Oliveira, L., Muzzi, M., Pasupuleti, M., Singh,
M., Paluri, M., Kardas, M., Tsimpoukelli, M., Oldham,
M., Rita, M., Pavlova, M., Kambadur, M., Lewis, M.,
Si, M., Singh, M. K., Hassan, M., Goyal, N., Torabi, N.,
Bashlykov, N., Bogoychev, N., Chatterji, N., Zhang, N.,
Duchenne, O., Çelebi, O., Alrassy, P., Zhang, P., Li, P.,
Vasic, P., Weng, P., Bhargava, P., Dubal, P., Krishnan,
P., Koura, P. S., Xu, P., He, Q., Dong, Q., Srinivasan,
R., Ganapathy, R., Calderer, R., Cabral, R. S., Stojnic,
R., Raileanu, R., Maheswari, R., Girdhar, R., Patel, R.,
Sauvestre, R., Polidoro, R., Sumbaly, R., Taylor, R., Silva,
R., Hou, R., Wang, R., Hosseini, S., Chennabasappa, S.,
Singh, S., Bell, S., Kim, S. S., Edunov, S., Nie, S., Narang,
S., Raparthy, S., Shen, S., Wan, S., Bhosale, S., Zhang,
S., Vandenhende, S., Batra, S., Whitman, S., Sootla, S.,
Collot, S., Gururangan, S., Borodinsky, S., Herman, T.,
Fowler, T., Sheasha, T., Georgiou, T., Scialom, T., Speck-
bacher, T., Mihaylov, T., Xiao, T., Karn, U., Goswami, V.,
Gupta, V., Ramanathan, V., Kerkez, V., Gonguet, V., Do,
V., Vogeti, V., Albiero, V., Petrovic, V., Chu, W., Xiong,
W., Fu, W., Meers, W., Martinet, X., Wang, X., Wang,
X., Tan, X. E., Xia, X., Xie, X., Jia, X., Wang, X., Gold-
schlag, Y., Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang,
Y., Li, Y., Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z.,
Papakipos, Z., Singh, A., Srivastava, A., Jain, A., Kelsey,
A., Shajnfeld, A., Gangidi, A., Victoria, A., Goldstand,
A., Menon, A., Sharma, A., Boesenberg, A., Baevski, A.,
Feinstein, A., Kallet, A., Sangani, A., Teo, A., Yunus, A.,
Lupu, A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poul-
ton, A., Ryan, A., Ramchandani, A., Dong, A., Franco,
A., Goyal, A., Saraf, A., Chowdhury, A., Gabriel, A.,
Bharambe, A., Eisenman, A., Yazdan, A., James, B.,
Maurer, B., Leonhardi, B., Huang, B., Loyd, B., Paola,
B. D., Paranjape, B., Liu, B., Wu, B., Ni, B., Hancock,
B., Wasti, B., Spence, B., Stojkovic, B., Gamido, B.,
Montalvo, B., Parker, C., Burton, C., Mejia, C., Liu, C.,
Wang, C., Kim, C., Zhou, C., Hu, C., Chu, C.-H., Cai, C.,
Tindal, C., Feichtenhofer, C., Gao, C., Civin, D., Beaty,
D., Kreymer, D., Li, D., Adkins, D., Xu, D., Testuggine,
D., David, D., Parikh, D., Liskovich, D., Foss, D., Wang,
D., Le, D., Holland, D., Dowling, E., Jamil, E., Mont-
gomery, E., Presani, E., Hahn, E., Wood, E., Le, E.-T.,
Brinkman, E., Arcaute, E., Dunbar, E., Smothers, E., Sun,
F., Kreuk, F., Tian, F., Kokkinos, F., Ozgenel, F., Cag-
gioni, F., Kanayet, F., Seide, F., Florez, G. M., Schwarz,
G., Badeer, G., Swee, G., Halpern, G., Herman, G., Sizov,
G., Guangyi, Zhang, Lakshminarayanan, G., Inan, H.,

Shojanazeri, H., Zou, H., Wang, H., Zha, H., Habeeb, H.,
Rudolph, H., Suk, H., Aspegren, H., Goldman, H., Zhan,
H., Damlaj, I., Molybog, I., Tufanov, I., Leontiadis, I.,
Veliche, I.-E., Gat, I., Weissman, J., Geboski, J., Kohli,
J., Lam, J., Asher, J., Gaya, J.-B., Marcus, J., Tang, J.,
Chan, J., Zhen, J., Reizenstein, J., Teboul, J., Zhong, J.,
Jin, J., Yang, J., Cummings, J., Carvill, J., Shepard, J.,
McPhie, J., Torres, J., Ginsburg, J., Wang, J., Wu, K., U,
K. H., Saxena, K., Khandelwal, K., Zand, K., Matosich,
K., Veeraraghavan, K., Michelena, K., Li, K., Jagadeesh,
K., Huang, K., Chawla, K., Huang, K., Chen, L., Garg,
L., A, L., Silva, L., Bell, L., Zhang, L., Guo, L., Yu, L.,
Moshkovich, L., Wehrstedt, L., Khabsa, M., Avalani, M.,
Bhatt, M., Mankus, M., Hasson, M., Lennie, M., Reso,
M., Groshev, M., Naumov, M., Lathi, M., Keneally, M.,
Liu, M., Seltzer, M. L., Valko, M., Restrepo, M., Patel,
M., Vyatskov, M., Samvelyan, M., Clark, M., Macey,
M., Wang, M., Hermoso, M. J., Metanat, M., Rastegari,
M., Bansal, M., Santhanam, N., Parks, N., White, N.,
Bawa, N., Singhal, N., Egebo, N., Usunier, N., Mehta,
N., Laptev, N. P., Dong, N., Cheng, N., Chernoguz, O.,
Hart, O., Salpekar, O., Kalinli, O., Kent, P., Parekh, P.,
Saab, P., Balaji, P., Rittner, P., Bontrager, P., Roux, P.,
Dollar, P., Zvyagina, P., Ratanchandani, P., Yuvraj, P.,
Liang, Q., Alao, R., Rodriguez, R., Ayub, R., Murthy, R.,
Nayani, R., Mitra, R., Parthasarathy, R., Li, R., Hogan,
R., Battey, R., Wang, R., Howes, R., Rinott, R., Mehta,
S., Siby, S., Bondu, S. J., Datta, S., Chugh, S., Hunt, S.,
Dhillon, S., Sidorov, S., Pan, S., Mahajan, S., Verma,
S., Yamamoto, S., Ramaswamy, S., Lindsay, S., Lindsay,
S., Feng, S., Lin, S., Zha, S. C., Patil, S., Shankar, S.,
Zhang, S., Zhang, S., Wang, S., Agarwal, S., Sajuyigbe,
S., Chintala, S., Max, S., Chen, S., Kehoe, S., Satter-
field, S., Govindaprasad, S., Gupta, S., Deng, S., Cho,
S., Virk, S., Subramanian, S., Choudhury, S., Goldman,
S., Remez, T., Glaser, T., Best, T., Koehler, T., Robinson,
T., Li, T., Zhang, T., Matthews, T., Chou, T., Shaked,
T., Vontimitta, V., Ajayi, V., Montanez, V., Mohan, V.,
Kumar, V. S., Mangla, V., Ionescu, V., Poenaru, V., Mi-
hailescu, V. T., Ivanov, V., Li, W., Wang, W., Jiang, W.,
Bouaziz, W., Constable, W., Tang, X., Wu, X., Wang, X.,
Wu, X., Gao, X., Kleinman, Y., Chen, Y., Hu, Y., Jia, Y.,
Qi, Y., Li, Y., Zhang, Y., Zhang, Y., Adi, Y., Nam, Y., Yu,
Wang, Zhao, Y., Hao, Y., Qian, Y., Li, Y., He, Y., Rait,
Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang, Z., Zhao,
Z., and Ma, Z. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Hao, M., Li, H., Chen, H., Xing, P., Xu, G., and Zhang, T.
Iron: Private inference on transformers. In Advances in
Neural Information Processing Systems, volume 35, pp.
15718–15731, 2022.

Huang, Z., jie Lu, W., Hong, C., and Ding, J. Cheetah: Lean
and fast secure two-party deep neural network inference.

11

https://arxiv.org/abs/2407.21783

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

In 31st USENIX Security Symposium (USENIX Security
22), pp. 809–826, 2022.

Kugler, K., Münker, S., Höhmann, J., and Rettinger,
A. Invbert: Reconstructing text from contextualized
word embeddings by inverting the bert pipeline. 2024.
doi: 10.48694/JCLS.3572. URL https://jcls.io/
article/id/3572/.

Li, D., Shao, R., Wang, H., Guo, H., Xing, E. P., and Zhang,
H. Mpcformer: fast, performant and private transformer
inference with mpc, 2023a. URL https://arxiv.
org/abs/2211.01452.

Li, H., Xu, M., and Song, Y. Sentence embedding leaks
more information than you expect: Generative embedding
inversion attack to recover the whole sentence, 2023b.
URL https://arxiv.org/abs/2305.03010.

Li, Z., Yang, K., Tan, J., jie Lu, W., Wu, H., Wang, X., Yu,
Y., Zhao, D., Zheng, Y., Guo, M., and Leng, J. Nimbus:
Secure and efficient two-party inference for transform-
ers, 2024. URL https://arxiv.org/abs/2411.
15707.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74–81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/W04-1013/.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. Roberta:
A robustly optimized bert pretraining approach, 2019.
URL https://arxiv.org/abs/1907.11692.

Luo, J., Chen, G., Zhang, Y., Liu, S., Wang, H., Yu, Y.,
Zhou, X., Qi, Y., and Xu, Z. Centaur: Bridging the
impossible trinity of privacy, efficiency, and performance
in privacy-preserving transformer inference, 2024. URL
https://arxiv.org/abs/2412.10652.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I.,
and Stoica, I. Ray: A distributed framework for emerging
ai applications, 2018. URL https://arxiv.org/
abs/1712.05889.

Morris, J. X., Kuleshov, V., Shmatikov, V., and Rush, A. M.
Text embeddings reveal (almost) as much as text, 2023a.
URL https://arxiv.org/abs/2310.06816.

Morris, J. X., Zhao, W., Chiu, J. T., Shmatikov, V., and
Rush, A. M. Language model inversion, 2023b. URL
https://arxiv.org/abs/2311.13647.

Pang, Q., Zhu, J., Möllering, H., Zheng, W., and Schnei-
der, T. BOLT: Privacy-preserving, accurate and efficient

inference for transformers. Cryptology ePrint Archive, Pa-
per 2023/1893, 2023. URL https://eprint.iacr.
org/2023/1893.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311–318,
2002.

Penedo, G., Kydlı́ček, H., allal, L. B., Lozhkov, A., Mitchell,
M., Raffel, C., Werra, L. V., and Wolf, T. The fineweb
datasets: Decanting the web for the finest text data
at scale, 2024. URL https://arxiv.org/abs/
2406.17557.

Petrov, I., Dimitrov, D. I., Baader, M., Müller, M., and
Vechev, M. Dager: Exact gradient inversion for large
language models. Advances in Neural Information Pro-
cessing Systems, 37:87801–87830, 2024.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng,
B., Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H.,
Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J.,
Lin, J., Dang, K., Lu, K., Bao, K., Yang, K., Yu, L.,
Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R.,
Li, T., Tang, T., Xia, T., Ren, X., Ren, X., Fan, Y., Su,
Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and
Qiu, Z. Qwen2.5 technical report, 2025. URL https:
//arxiv.org/abs/2412.15115.

Shanmugavelu, S., Taillefumier, M., Culver, C., Hernandez,
O., Coletti, M., and Sedova, A. Impacts of floating-point
non-associativity on reproducibility for hpc and deep
learning applications, 2024. URL https://arxiv.
org/abs/2408.05148.

Song, C. and Raghunathan, A. Information leakage
in embedding models. CCS ’20, pp. 377–390, New
York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450370899. doi: 10.1145/
3372297.3417270. URL https://doi.org/10.
1145/3372297.3417270.

Székely, G. J., Rizzo, M. L., and Bakirov, N. K. Measuring
and testing dependence by correlation of distances. 2007.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin, C.,
Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahriari, B.,
Ramé, A., Ferret, J., Liu, P., Tafti, P., Friesen, A., Casbon,
M., Ramos, S., Kumar, R., Lan, C. L., Jerome, S., Tsit-
sulin, A., Vieillard, N., Stanczyk, P., Girgin, S., Momchev,
N., Hoffman, M., Thakoor, S., Grill, J.-B., Neyshabur, B.,
Bachem, O., Walton, A., Severyn, A., Parrish, A., Ahmad,
A., Hutchison, A., Abdagic, A., Carl, A., Shen, A., Brock,
A., Coenen, A., Laforge, A., Paterson, A., Bastian, B.,
Piot, B., Wu, B., Royal, B., Chen, C., Kumar, C., Perry,

12

https://jcls.io/article/id/3572/
https://jcls.io/article/id/3572/
https://arxiv.org/abs/2211.01452
https://arxiv.org/abs/2211.01452
https://arxiv.org/abs/2305.03010
https://arxiv.org/abs/2411.15707
https://arxiv.org/abs/2411.15707
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2412.10652
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/2310.06816
https://arxiv.org/abs/2311.13647
https://eprint.iacr.org/2023/1893
https://eprint.iacr.org/2023/1893
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2408.05148
https://arxiv.org/abs/2408.05148
https://doi.org/10.1145/3372297.3417270
https://doi.org/10.1145/3372297.3417270

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

C., Welty, C., Choquette-Choo, C. A., Sinopalnikov, D.,
Weinberger, D., Vijaykumar, D., Rogozińska, D., Her-
bison, D., Bandy, E., Wang, E., Noland, E., Moreira,
E., Senter, E., Eltyshev, E., Visin, F., Rasskin, G., Wei,
G., Cameron, G., Martins, G., Hashemi, H., Klimczak-
Plucińska, H., Batra, H., Dhand, H., Nardini, I., Mein,
J., Zhou, J., Svensson, J., Stanway, J., Chan, J., Zhou,
J. P., Carrasqueira, J., Iljazi, J., Becker, J., Fernandez, J.,
van Amersfoort, J., Gordon, J., Lipschultz, J., Newlan, J.,
yeong Ji, J., Mohamed, K., Badola, K., Black, K., Milli-
can, K., McDonell, K., Nguyen, K., Sodhia, K., Greene,
K., Sjoesund, L. L., Usui, L., Sifre, L., Heuermann, L.,
Lago, L., McNealus, L., Soares, L. B., Kilpatrick, L.,
Dixon, L., Martins, L., Reid, M., Singh, M., Iverson,
M., Görner, M., Velloso, M., Wirth, M., Davidow, M.,
Miller, M., Rahtz, M., Watson, M., Risdal, M., Kazemi,
M., Moynihan, M., Zhang, M., Kahng, M., Park, M.,
Rahman, M., Khatwani, M., Dao, N., Bardoliwalla, N.,
Devanathan, N., Dumai, N., Chauhan, N., Wahltinez,
O., Botarda, P., Barnes, P., Barham, P., Michel, P., Jin,
P., Georgiev, P., Culliton, P., Kuppala, P., Comanescu,
R., Merhej, R., Jana, R., Rokni, R. A., Agarwal, R.,
Mullins, R., Saadat, S., Carthy, S. M., Cogan, S., Per-
rin, S., Arnold, S. M. R., Krause, S., Dai, S., Garg, S.,
Sheth, S., Ronstrom, S., Chan, S., Jordan, T., Yu, T.,
Eccles, T., Hennigan, T., Kocisky, T., Doshi, T., Jain,
V., Yadav, V., Meshram, V., Dharmadhikari, V., Barkley,
W., Wei, W., Ye, W., Han, W., Kwon, W., Xu, X., Shen,
Z., Gong, Z., Wei, Z., Cotruta, V., Kirk, P., Rao, A.,
Giang, M., Peran, L., Warkentin, T., Collins, E., Bar-
ral, J., Ghahramani, Z., Hadsell, R., Sculley, D., Banks,
J., Dragan, A., Petrov, S., Vinyals, O., Dean, J., Has-
sabis, D., Kavukcuoglu, K., Farabet, C., Buchatskaya,
E., Borgeaud, S., Fiedel, N., Joulin, A., Kenealy, K.,
Dadashi, R., and Andreev, A. Gemma 2: Improving
open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Villa, O., Chavarria-Miranda, D., Gurumoorthi, V.,
Márquez, A., and Krishnamoorthy, S. Effects of floating-
point non-associativity on numerical computations on
massively multithreaded systems. In Proceedings of Cray
User Group Meeting (CUG), volume 3, 2009.

Wan, Z., Cheng, A., Wang, Y., and Wang, L. Information
leakage from embedding in large language models, 2024.
URL https://arxiv.org/abs/2405.11916.

Warner, B., Chaffin, A., Clavié, B., Weller, O., Hallström,
O., Taghadouini, S., Gallagher, A., Biswas, R., Ladhak,
F., Aarsen, T., Cooper, N., Adams, G., Howard, J., and
Poli, I. Smarter, better, faster, longer: A modern bidi-
rectional encoder for fast, memory efficient, and long
context finetuning and inference, 2024. URL https:
//arxiv.org/abs/2412.13663.

White, C., Dooley, S., Roberts, M., Pal, A., Feuer, B., Jain,
S., Shwartz-Ziv, R., Jain, N., Saifullah, K., Naidu, S.,
Hegde, C., LeCun, Y., Goldstein, T., Neiswanger, W., and
Goldblum, M. Livebench: A challenging, contamination-
free llm benchmark, 2024. URL https://arxiv.
org/abs/2406.19314.

Xu, H., Xiang, L., Ye, H., Yao, D., Chu, P., and Li, B.
Permutation equivariance of transformers and its appli-
cations, 2024. URL https://arxiv.org/abs/
2304.07735.

Yao, A. C. Protocols for secure computations. In 23rd
Annual Symposium on Foundations of Computer Science
(sfcs 1982), pp. 160–164, 1982. doi: 10.1109/SFCS.1982.
38.

Yuan, M., Zhang, L., and Li, X.-Y. Secure transformer in-
ference protocol, 2024. URL https://arxiv.org/
abs/2312.00025.

Zheng, F., Chen, C., Zheng, X., and Zhu, M. Towards
secure and practical machine learning via secret sharing
and random permutation. Knowledge-Based Systems,
245:108609, 2022.

Zheng, F., Chen, C., Han, Z., and Zheng, X. Permllm: Pri-
vate inference of large language models within 3 seconds
under wan, 2024. URL https://arxiv.org/abs/
2405.18744.

13

https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2405.11916
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2304.07735
https://arxiv.org/abs/2304.07735
https://arxiv.org/abs/2312.00025
https://arxiv.org/abs/2312.00025
https://arxiv.org/abs/2405.18744
https://arxiv.org/abs/2405.18744

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

A. Vocab-Matching Attack Optimizations
Although the cost of the attack outlined in Section 4 is linear in V , the size of vocabularies can be quite large in practice. For
example, Gemma-2-2B-IT has a vocabulary size of 256000. Therefore we seek to optimize this by introducing a proposal
model. The purpose of the proposal model is to provide a suggested ordering over the vocabulary, rather than iterate through
it in an arbitrary order. It does so by taking in the token sequence that has been partially decoded so far and producing the
next-token logits. We then search through the next-token logits in decreasing order of probability. In practice, we find that
this modification reduces the expected number of tokens searched through at each step from V/2 to approximately 100, thus
representing a constant factor speedup of more than 1000×.

Moreover, we implement a novel variation of key-value-caching (KV-caching) to reduce the computational time of our
attack. Note that at the nth stage of the decoding, we are performing a V -batched forward pass on [x̂1, x̂2, ..., x̂n−1, v] over
v ∈ V , where x̂1, x̂2, . . . , x̂n−1 are the tokens that we have already decoded. As this forward pass needs to be repeated
many times for different v but the same x̂i, we cache the keys and values associated to the x̂i and reuse them across all
forward passes. This is different from standard KV-caching, which stores the keys and values for generation over a single
sequence: here, we reuse keys and values across many sequences. In practice, this optimized caching gives a significant
speedup in vocab-matching: across 10 evaluation prompts from FineWeb, the average caching speedup was around 20×,
with speedups for all prompts in the range 15-30×.

B. Scalability of Attack
To assess the scalability of our attack with respect to model size, we conducted additional experiments across a range of
model scales, from 1 billion to 27 billion parameters. Table 8 summarizes the results.

Table 8. Average attack time (in seconds) over 10 decodings for various model sizes.

Model Name Model Size (Parameters) Vocabulary Size Average Attack Time (s)

Llama-3.2-1B-Instruct 1B 128,256 49
Gemma-2-2B-IT 2B 256,000 124

Llama-3.1-8B-Instruct 8B 128,256 69
Gemma-2-27B-IT (ϵ = 30) 27B 256,000 304
Gemma-2-27B-IT (ϵ = 40) 27B 256,000 124

The attack time remains practical across all evaluated model sizes, typically on the order of minutes for perfect decoding
of length 100 prompts. We observe that the computational cost is primarily a function of the vocabulary size and the
choice of ϵ, rather than the total number of model parameters. Specifically, models with larger vocabularies (e.g., 256,000
tokens) exhibit proportionally longer attack times compared to models with smaller vocabularies (e.g., 128,256 tokens),
regardless of parameter count. While a poorly chosen ϵ leads to longer runtimes, it does not fundamentally impede the
attack. These results demonstrate that the attack scales favorably to larger models, including recent LLMs with tens of
billions of parameters.

C. Vocab-Matching Attack Walkthrough and Gap Generalization
Here, we provide an in-depth walkthrough of Algorithm 5 on an example prompt, where the adversary receives layer L
hidden states h1, . . . , hN ∈ Rd and attempts to recover the N -token input prompt. Then, we walk through a variant where
the adversary only receives some of these N hidden states but can perform a search over multiple unknown tokens.

Vanilla Attack Suppose a user provides the following prompt to an LLM inference provider hosting Gemma-2-2B-IT:
”What is currently the most populated city in Spain?”. After tokenization, this might be represented as the list [BOS,
”What”, ”is”, ”currently”, ”the”, ”most”, ”populated”, ”city”, ”in”, ”Spain”, ”?”, EOS], with BOS and EOS denoting special
beginning or end of sequence tokens. These 12 tokens have layer 0 embeddings e1, . . . , e12 ∈ Rd, and these give layer
L embeddings h1, . . . , h12 ∈ Rd. Denoting the stacked decoder layers in Gemma-2-2B-IT as ϕ1, . . . , ϕf , which are all
unidirectional and assumed to be deterministic (for now), one sees for ϕ≤L = ϕL ◦ . . . ◦ ϕ2 ◦ ϕ1 that

ϕ≤L(e1) = [h1] ∈ R1×d, ϕ≤L(e1, e2) = [h1, h2] ∈ R2×d, . . . , ϕ≤L(e1, . . . , e12) = [h1, . . . , h12] ∈ R12×d.

14

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

We first describe how the attacks works without the ϵ-threshold, i.e. setting ϵ < 0, and then describe how ϵ affects this.

First, the provider takes the Gemma-2-2B-IT vocabulary V with size V = 256000. For each token v ∈ V with embedding
ev ∈ Rd, they compute ϕ≤L(ev) ∈ R1×d, and then set ê1 as some ev which minimizes the L1 error ∥ϕ≤L(ev)1 − h1∥1.
Without non-determinism, ϕ≤L(e1) = h1, so assuming no collisions (no other ϕ≤L(ev) = h1), we will have ê1 = e1. Next,
they compute ϕ≤L(ê1, ev) ∈ R2×d for each v ∈ V , and set ê2 as some ev which minimizes ∥ϕ≤L(ê1, ev)2 − h1∥1. Again,
without non-determinism and collisions, we have ê2 = e2. This continues until finally, they compute ϕ≤L(ê1, . . . , ê11, ev) ∈
R11×d, and set ê12 as some ev which minimizes ∥ϕ≤L(ê1, . . . , ê11, ev)12 − h12∥1, which will be e12. Now, the provider
has true input embeddings [ê1, . . . , ê12] = [e1, . . . , e12], which can be reversed into the 12 input tokens via the lookup table.

Here, non-determinism and non-collidingness are necessary for provable success of the attack, as otherwise we may not
have each êi = ei. Furthermore, a total of 12V (around 3 million) forward passes are performed in the worst case, with the
exact count depending on the order of iteration in V . As this is expensive, we introduce ϵ-thresholding: instead of fully
iterating through V , we stop once we find an ev with associated L1 error ≤ ϵ. However, with a random order of iteration on
V , we might not expect significant speedups from this, since the correct token (or other tokens with error ≤ ϵ) might appear
late. Thus, we use a proposal model: this conditions each the order of iteration through V on already deciphered tokens,
allowing the ϵ-stopping condition to be met earlier. The optimizations from ϵ and the proposal model make the forward
pass count much less than 3 million in practice, but potentially at the cost of accuracy: if the proposal model suggests an
incorrect token with L1 error ≤ ϵ earlier than the correct token, the attack may not be able to decode any future tokens.

Generalized Attack Now, we discuss a generalization of the vanilla attack above, shown in Algorithm 3. Here, we
discuss how it applies to the example from the last section, with the same notation. Since we do not implement this
attack, and consider it primarily as a theoretical threat, we forgo details such as the proposal model and ϵ, and we assume
non-determinism. The generalized attack pertains to settings where the provider does not receive all N hidden states. For
instance, suppose they only receive h2, h5, h10. Can they still recover all input tokens?

The answer is negative. For instance, none of these 3 hidden states are functions of e11, e12, so one cannot fully4 guarantee
recovery tokens 11 and 12. Nevertheless, our generalized attack, with sufficiently large computation cost, allows recovery of
all tokens that the last hidden state h10 depends on, meaning the first 10 tokens.

First, since the provider does not know h1, they cannot carry out the first step of the vanilla attack to decipher e1. However,
from h3, they can obtain something stronger: e1, e2, e3. This is because [h1, h2, h3] = ϕ≤L(e1, e2, e3), so assuming
non-collidingness5 of the V 3 possible 3-token forward passes {ϕ≤L(ev1 , ev2 , ev3)}v1,v2,v3∈V , the provider can recover
e1, e2, e3 in at most V 3 forward passes. Next, from [h1, . . . , h5] = ϕ≤L(e1, . . . , e5) and non-collidingness of the V 2

possible 2-token forward passes {ϕ≤L(e1, e2, e3, ev4 , ev5)}v4,v5∈V , the provider can recover e4, e5 in at most V 2 forward
passes. Finally, from [h1, . . . , h10] = ϕ≤L(e1, . . . , e10) and non-collidingness of the V 5 possible 5-token forward passes
{ϕ≤L(e1, . . . , e5, ev6 , . . . , ev10)}v6,...,v10∈V , the provider can recover e6, . . . , e10 in at most V 5 forward passes.

Essentially, the provider has recovered the first 10 tokens in ≤ V 3 + V 2 + V 5 forward passes, where exponents 3, 2, 5
correspond to gaps between indices of known hidden states. In general, if the provider gets hi1 , . . . , hik with 1 ≤ i1 <
. . . < ik ≤ N , then they can carry out this attack to reverse the first ik tokens in ≤ V i1 + V i2−i1 + . . .+ V ik−ik−1 forward
passes. Although this attack seems quite powerful, the upper bound on forward passes can be quite large, so it is not always
practical. For instance, the dominating term in V 3 + V 2 + V 5 is V 5 ≈ 1027, so even if only a fraction of the upper bound
cost is achieved, it will time out. In general, as k ≤ N = o(V) in practice, the cost bound V i1 + V i2−i1 + . . .+ V ik−ik−1

is dominated by the maximum-gap term V g with g = maxj(ij+1 − ij). Thus, whenever g is large enough so that the
adversary cannot perform V g forward passes, we would expect the attack to time out, even with proposal models and other
optimizations. The minimum value of g satisfying this is precisely the vocab-matching threshold ρ from Definition 7.2.

Finally, we remark that the the generalized attack requires some stronger assumptions than the vanilla attack to succeed. For
instance, in the vanilla attack, we only need non-collidingness across V forward passes at a time. But in our example, we
need it across up to V 5 forward passes, and in general, we need it across up to V g forward passes. One interesting question
along this line is to find (if it even exists) the minimum token gap where there are significant collisions at some layer, for
various LLMs. With many gaps near this threshold, defenses like quantization and noise could prove more effective than
they do in Appendix F. We leave such work as an interesting future direction.

4One could infer these from all previous tokens for certain prompts, so here, we mean without assuming a prior on text. For instance,
in the example prompt, ”?” and EOS could be inferred from the rest of the prompt.

5Actually, since we are matching only the last row to h3, all that is needed is non-collidingness of the last row.

15

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Algorithm 3 Generalized Vocabulary-Matching Attack
input Model M , indices 1 ≤ i1 < i2 < . . . < ik ≤ N , layer l hidden states [hi1 , hi2 , . . . , hik], vocabulary V
output Nearly decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂ik−1, x̂ik]

1: Initialize empty sequence x̂← []
2: i0 ← 0
3: for j = 0 to k − 1 do
4: gap← ij+1 − ij
5: min dist←∞
6: best match← None
7: for v1, v2, . . . , vgap ∈ V do
8: g ←M≤l([x̂, v1, v2, . . . , vgap]) {Forward pass up to layer l}
9: dist← ∥g − hij+1∥1 {Calculate L1 distance}

10: if dist < min dist then
11: min dist← dist
12: best match← v
13: end if
14: end for
15: end for
16: return x̂

D. Optimal ϵ for Decoding
We report the full set of optimal ϵ thresholds in decoding, for each permutation type below. We observe that generally,
the optimal ϵ increases in later layers across all permutation types – which may be due to the effect of the reducible and
irreducible noise we mention in Section 4 taking up a larger subspace volume as it propagates to deeper layers. We also
observe that Llama tends to have much lower ϵ values in general.

There is also an interesting layerwise distinction between Gemma and Llama: the optimal ϵ for the last hidden layer (26) in
Gemma decreases by nearly 2× outside of the no permutation case. But the opposite is the case for Llama: it increases by
more than 2× at the last layer (32) for all but the no permutation case. Both Gemma and Llama have slightly decreased ϵ
at the last layer in the no permutation case. Investigating the reason for decreasing versus increasing ϵ-ball collisions in
the last few layers, based on distinctions in the architecture or weights of models like Gemma and Llama, and the type of
permutation applied, is an interesting direction for future work on vocab-matching.

Table 9. Optimal ϵ thresholds for hidden state reversal without permutation, over various Gemma-2-2B-IT and Llama-3.1-8B-Instruct
layers.

Layer Gemma Llama

1 22.0 0.6
6 70.0 7.1

11 204.0 18.3
16 293.0 29.0
21 400.0 76.0
26 318.0 156.0
32 — 150.0

16

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Table 10. Optimal ϵ thresholds for hidden state reversal with sequence dimension permutation, over various Gemma-2-2B-IT and Llama-
3.1-8B-Instruct layers.

Layer Gemma Llama

1 12.8 1.4
6 72.6 3.3

11 229.0 7.4
16 301.0 7.4
21 385.0 26.6
26 220.0 29.6
32 — 105.0

Table 11. Optimal ϵ thresholds for hidden state reversal with hidden dimension permutation, over various Gemma-2-2B-IT and Llama-
3.1-8B-Instruct layers.

Layer Gemma Llama

1 12.5 0.5
6 25.0 3.5

11 45.0 3.7
16 73.0 5.2
21 118.0 6.3
26 61.0 9.8
32 — 30.0

Table 12. Optimal ϵ thresholds for hidden state reversal with factorized-2D permutation, over various Gemma-2-2B-IT and Llama-3.1-8B-
Instruct layers.

Layer Gemma Llama

1 21.0 0.3
6 26.0 3.0

11 47.0 9.0
16 69.0 9.0
21 118.0 14.0
26 51.0 14.0
32 — 45.0

E. Vocab-Matching in Permuted Settings
In Section 5, we provided a high-level description of how to modify the attack in Section 4 to permuted setting. Below, we
provide exact psuedocode for the attack in sequence dimension, hidden dimension, and factorized-2D permutation settings.

17

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Algorithm 4 Attack on Sequence Dimension Permuted LLM Hidden States
input Model M , permuted layer l hidden states h = [hσ(1), hσ(2), ..., hσ(N)], vocabulary V , proposal model P , L1-

threshold ϵ
output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N]

1: Initialize empty sequence x̂← []
2: Initialize set of remaining hidden statesH ← {hσ(1), hσ(2), ..., hσ(N)}
3: for i = 1 to N do
4: Vordered ← argsort(P ([x̂, v]|x̂)) {Get ordered vocabulary from proposal model}
5: min dist←∞
6: best match← None
7: for v ∈ Vordered do
8: g ←M≤l([x̂, v]) {Forward pass up to layer l}
9: for h ∈ H do

10: dist← ∥g − h|∥1 {Calculate L1 distance}
11: if dist < min dist then
12: min dist← dist
13: best match← v
14: best h← h
15: end if
16: if dist < ϵ then
17: x̂i ← v
18: Remove h fromH
19: break
20: end if
21: end for
22: end for
23: if min dist ≥ ϵ then
24: x̂i ← best match
25: Remove best h fromH
26: end if
27: end for
28: return x̂

18

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Algorithm 5 Attack on Hidden Dimension Permuted LLM Hidden States
input Model M , layer l permuted hidden states h = [π1(h1), π2(h2), ..., πN (hN)], vocabulary V , proposal model P ,

L1-threshold ϵ
output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N]

1: Initialize empty sequence x̂← []
2: for i = 1 to N do
3: Vordered ← argsort(P ([x̂, v]|x̂)) {Get ordered vocabulary from proposal model}
4: min dist←∞
5: best match← None
6: for v ∈ Vordered do
7: g ←M≤l([x̂, v]) {Forward pass up to layer l}
8: dist← ∥sort(g)− sort(πi(hi))|∥1 {Calculate L1 distance of sorted vectors}
9: if dist < min dist then

10: min dist← dist
11: best match← v
12: end if
13: if dist < ϵ then
14: x̂i ← v
15: break
16: end if
17: end for
18: if min dist ≥ ϵ then
19: x̂i ← best match
20: end if
21: end for
22: return x̂

19

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Algorithm 6 Attack on Factorized-2D Permuted LLM Hidden States
input Model M , permuted layer l hidden states h = [π1(hσ(1)), π2(hσ(2)), ..., πN (hσ(N))], vocabulary V , proposal model

P , L1-threshold ϵ
output Decoded token sequence x̂ = [x̂1, x̂2, . . . , x̂N]

1: Initialize empty sequence x̂← []
2: Initialize set of remaining hidden statesH ← {π1(hσ(1)), π2(hσ(2)), ..., πN (hσ(N))}
3: for i = 1 to N do
4: Vordered ← argsort(P ([x̂, v]|x̂)) {Get ordered vocabulary from proposal model}
5: min dist←∞
6: best match← None
7: for v ∈ Vordered do
8: g ←M≤l([x̂, v]) {Forward pass up to layer l}
9: for h ∈ H do

10: dist← ∥sort(g)− sort(h)|∥1 {Calculate L1 distance of sorted vectors}
11: if dist < min dist then
12: min dist← dist
13: best match← v
14: best h← h
15: end if
16: if dist < ϵ then
17: x̂i ← v
18: Remove h fromH
19: break
20: end if
21: end for
22: end for
23: if min dist ≥ ϵ then
24: x̂i ← best match
25: Remove best h fromH
26: end if
27: end for
28: return x̂

20

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

F. Noised & Quantized Hidden State Reversal
As mentioned in Section 6, we now examine the efficacy of our attack on methods of defense that modify the hidden states
directly – such as by adding noise, or by quantizing the model to a lower precision. We investigate the following methods of
modification to the permuted LLM hidden states:

• Adding diagonal Gaussian noise with mean 0 and standard deviation σ to each hidden dimension in the input
embeddings, as proposed in Morris et al. (2023a).

• Inserting a randomly generated embedding as a prefix to the original sequence. This has the effect of modifying the
subsequent hidden states via self-attention.

• Quantization of the model.

Clearly, with a sufficiently high degree of noise, decoding can be made impossible. However, high noise will also likely
disrupt LLM performance. Therefore, the crux of any such defense is based on the delicate balancing act of ensuring security
against our attack, whilst still maintaining downstream model performance. We further consider the combination of both
permutation as well as the above noising methods.

F.1. Experiments

We apply each of the above noising methods on Gemma-2-2B-IT. For diagonal Gaussian noise, we test with σ = 0.1, 0.01.
For the random embedding prefix, we generate the embedding from a Gaussian with means and standard deviations of
each hidden dimension set to the average over the token vocabulary V . For quantization, we test with reduction of the
model from its original 16-bit to 8-bit and 4-bit, using the bitsandbytes library (BitsAndBytes, 2025). We apply each of the
above methods to all the permutation types described in Section 5, as well as the unpermuted hidden states. Our choice of
dataset, number of evaluation samples, and method of choosing ϵ is the same as in Section 4.4. As perfect decoding is less
commonly achieved with the addition of noise, we now report the ROUGE-L score between the decoded reconstruction and
the original prompt to measure decoding quality. We conduct testing again over layers 1, 6, 11, 16, 21 and 26, but report
only the highest ROUGE-L, as this can be considered the weakest attack point.

To measure the downstream impact of the noising methods, we utilize LiveBench (White et al., 2024), a benchmark that
tests across multiple different components of LLM performance, such as language, reasoning and math. Our results are
given in Table 13 below. A full breakdown of the LiveBench scores by category and the ROUGE-L scores by layer of each
of the above methods and permutation types is given in Appendix S.

Table 13. ROUGE-L reconstruction scores across 1000 evaluation samples for various noising methods and permutation types on Gemma-
2-2B-IT. The ‘Downstream Performance’ column is the normalized score on LiveBench (White et al., 2024), a benchmark that tests broad
components of LLM performance such as math, reasoning and language. Note that LiveBench scores carry some variability, and so the
baseline, Gaussian with standard deviation 0.01, and random embedding prefix methods are all within noise in performance.

Method Unpermuted Sequence Perm Hidden Perm Factorized-2D Downstream Performance

Baseline (no noise) 1.00 1.00 1.00 1.00 100.0%

Gaussian, σ = 0.01 0.93 0.07 0.07 0.07 101.4%
Gaussian, σ = 0.1 0.91 0.01 0.01 0.01 5.8%

Random emb. prefix 0.93 0.17 0.19 0.19 102.9%
8-bit quantization 0.89 0.86 0.75 0.73 97.6%
4-bit quantization 0.88 0.84 0.83 0.71 92.2%

We see that unpermuted hidden states are still highly decodeable via our attack under all methods tested – the ROUGE-L
scores are above 0.8 in all cases, indicating significant similarity with the original text. Remarkably, even 4-bit quantization is
not sufficient to introduce enough collisions to significantly mitigate our attack. We find that the combination of permutation
and Gaussian noise with standard deviation 0.01 appears largely secure, with ROUGE-L scores below 0.1, and maintains
downstream performance, and thus may represent a potential solution to the insecurity of STIP and Centaur. However, this

21

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

result is only necessary for security, and not sufficient; it is possible that extensions of our attack family can succeed even in
this setting. We leave further investigation of this to future work.

G. Cascade Scheme Details
Now, we describe the pre-pass, attention-pass, and post-pass components of Cascade, which were introduced in Section 7.1.
All shard-specific slicing and concatenation operations are initialized in the node setup. Furthermore, we assume that
all AttnNodes wait until all CompNodes finish the pre-pass to do the attention-pass, and all CompNodes wait until all
AttnNodes finish the attention-pass to do the post-pass.

Pre-pass At layer l, each CompNodei starts with the Ri−sharded hidden states hRi , and applies layer normalization if
necessary. Then, it Q,K, V -projects these to get the Ri−sharded query, key and value states qRi ,kRi ,vRi . CompNodei
then applies rotary or positional embedding to qRi ,kRi , using sharded positional embeddings pRi (the node can generate
these upon setup to avoid any communication overhead, since it only depends on its index set Ri), and returns all of
qRi ,kRi ,vRi , as described in Algorithm 7.

Attention-pass After the pre-pass, each AttnNodejk receives shards qRiSj ,kRiSk ,vRiSk from CompNodei. By con-
catenating their rows over 1 ≤ i ≤ α, AttnNodejk obtains qSj ,kSk ,vSk . For example, for qSj , concatenation is in the
order in which one concatenates elements of sorted Ri ∩ Sj over 1 ≤ i ≤ α to get sorted Sj . Then, AttnNodejk computes
aSjSk = qSj (kSk)T + sSjSk , where matrix multiplication is per-head and we broadcast HKV to H . For the post-pass,
AttnNodejk also stores row-wise maximums and subtract-max expsums mSjSk , eSjSk . Finally, AttnNodejk takes the
row-wise softmax and performs value multiplication to get uSjSk = softmax(aSjSk)vSk . All of mSjSk , eSjSk ,uSjSk are
returned, as in Algorithm 8.

Post-pass Finally, after the attention-pass, each CompNodei receives m(Ri∩Sj)Sk , e(Ri∩Sj)Sk ,u(Ri∩Sj)Sk from each
AttnNodejk, which are slices of its attention-pass outputs mSjSk , eSjSk ,uSjSk along the second-to-last dimensions. Then,
for each fixed 1 ≤ k ≤ β, CompNodei concatenates the rows of m(Ri∩Sj)Sk , e(Ri∩Sj)Sk ,u(Ri∩Sj)Sk over all 1 ≤ j ≤ β
to obtain mRiSk , eRiSk ,uRiSk . Next, CompNodei aims to combine these results mRiSk , eRiSk ,uRiSk over 1 ≤ k ≤ β
into the Ri−sharded (pre O-proj) output of attention. Using slicing notation, treating matrix multiplication as per-head, and
broadcasting HKV to H , this is

softmax(a)[:, Ri, :]v =

β∑
k=1

softmax(a)[:, Ri, Sk]v[:, :, Sk] ∈ RH×|Ri|×d

by blocked matrix multiplication. The terms in the summation are not known to CompNodei, since slicing here is performed
post-softmax. To correct for this, observe that for a row vector x ∈ RN and any 1 ≤ k ≤ β, again with slicing notation,

softmax(x)[Sk] =
expsum(x[Sk])∑
l expsum(x[Sl])

· softmax(x[Sk]) ∈ R|Sk|.

Thus, the above summation can be simplified as follows, with ⊙ denoting elementwise multiplication:

softmax(a)[:, Ri, :]v =

∑
k expsum(a[:, Ri, Sk])⊙ (softmax(a[:, Ri, Sk])v[:, Sk])∑

k expsum(a[:, Ri, Sk])

=

∑
k expsum(aRiSk)⊙ (softmax(aRiSk)vSk)∑

k expsum(aRiSk)

=

∑
k exp(mRiSk)⊙ expsum(aRiSk −mRiSk)⊙ (softmax(aRiSk)vSk)∑

k exp(mRiSk)⊙ expsum(aRiSk −mRiSk)

=

∑
k exp(mRiSk)⊙ eRiSk ⊙ uRiSk∑

k exp(mRiSk)⊙ eRiSk
=

∑
k exp(mRiSk − nRiSk)⊙ eRiSk ⊙ uRiSk∑

k exp(mRiSk − nRiSk)⊙ eRiSk

with nRi ∈ RH×|Ri|×1 being the elementwise maximum of mRiSk ∈ RH×|Ri|×1 over all 1 ≤ k ≤ β. The fraction is
elementwise divison, and expsum is performed row-wise along the last dimension. This expression is numerically stable
because each mRiSk − nRiSk ≤ 0 and each eRiSk ≤ 1. Now, each aggregate term in the numerator and denominator
summations is known to the CompNode. In essence, the CompNode is performing a weighted average of concatenated
AttnNode u results, with the weights also coming from AttnNodes m, e results. To get the final output of attention
corresponding to row indices in Ri, the CompNode finally performs O-projection. Algorithm 9 implements this.

22

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Algorithm 7 CompNodei Single Layer Pre-Pass

input hRi ,pRi

output qRi ,kRi ,vRi

1: qRi ← q proj(hRi)
2: kRi ← k proj(hRi)
3: vRi ← v proj(hRi)
4: qRi ← rotary pos emb(qRi ,pRi)
5: kRi ← rotary pos emb(kRi ,pRi)
6: return qRi ,kRi ,vRi

Algorithm 8 AttnNodejk Single Layer Attention-Pass

input qSj ,kSk ,vSk , sSjSk

output mSjSk , eSjSk ,uSjSk

1: kSk ← repeat kv(kSk)
2: vSk ← repeat kv(vSk)
3: aSjSk ← qSj (kSk)T + sSjSk

4: mSjSk ← row max(aSjSk)
5: aSjSk ← exp(aSjSk −mSjSk)
6: eSjSk ← row sum(aSjSk)
7: aSjSk ← aSjSk/eSjSk

8: uSjSk ← aSjSkvSk

9: return mSjSk , eSjSk ,uSjSk

Algorithm 9 CompNodei Single Layer Post-Pass
input mRiSk , eRiSk ,uRiSk for 1 ≤ k ≤ β
output oRi

1: Initialize oRi with zeroes and shape like uRiS1

2: Initialize wRi with zeroes and shape like eRiS1

3: nRi ← elementwise max{mRiSk}βk=1

4: for k = 1 to β do
5: wRi ← wRi + exp(mRiSk − nRiSk)⊙ eRiSk

6: oRi ← oRi + exp(mRiSk − nRiSk)⊙ eRiSk ⊙ uRiSk

7: end for
8: oRi ← oRi/wRi

9: oRi ← o proj(oRi)
10: return oRi

23

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

H. Integrating Cascade with SMPC
In Section 7.2.1, we concluded that Cascade should only be used when it is safe to reveal some number of tokens, but we
mentioned that integration with SMPC could alleviate this requirement. Here, we describe how Cascade can be fused with a
number of SMPC schemes to improve token security at the expense of computational and communication cost. The idea is
to form an L-layered Cascade-SMPC split, where a general SMPC scheme is executed on the first L LLM layers and
Cascade is carried out thereafter.

We begin with the SMPC stage for layers ≤ L. Denote the layer 0 input embeddings as x, and the layer L hidden states as
h. For the first L layers, we execute any SMPC protocol Φ based on additive secret sharing. Suppose Φ involves t nodes
N1, . . . ,Nt. Then Φ begins by additively splitting x =

∑t
s=1 xs, with each share xs given to Ns. By decomposing LLM

layers into SMPC-friendly functions or approximations, Φ allows each node Ns to compute some additive share hs of the
layer L hidden states, such that h =

∑t
s=1 hs. A key ingredient of SMPC schemes based on additive secret sharing is

computational indistinguishability: no node gains any information about x during the execution of Φ.

Once each Ns gets hs, we aim to execute Cascade for layers > L in the LLM. We initialize a Cascade sharding scheme
{Ri}, {Sj} and nodes {CompNodei}, {AttnNodejk}, which are some superset of the SMPC nodes6. Then, for each i, each
Ns sends the slice hRi

s = hs[Ri, :] ∈ R|Ri|×d to CompNodei. Finally, CompNodei adds its received sliced shares to get∑t
s=1 h

Ri
s = hRi . Since each CompNodei has Ri-sharded layer L hidden states, we can execute Cascade for all future

layers of the LLM with the Cascade nodes.

In this process, by computational indistiguishability, SMPC nodes gain no information about the input, and thus have
no direct token access. Likewise, computational indistiguishability ensures that sliced shares hRi

s give CompNodei no
additional information about the input. That is, Cascade nodes no longer have direct access to tokens: information leakage
only comes from the usual exposed shards at layers > L. Thus, even though the execution of Φ on the first L layers may be
more expensive than Cascade, token security is improved. To determine the optimal choice of L, further analysis should be
conducted on how information leakage from all exposed Cascade shards varies across layers.

I. Breaking Closed-Weight Permutation-Based Privacy-Preserving Schemes
We now describe how our attack in Section 5 can be modified to the closed-weight setting. We break our analysis into three
sections: describing the protocols in the closed-weight setting, explaining how our attack applies in these settings if public
embedding layer (lookup table) access is assumed, and showing how to relax the lookup table assumption.

I.1. Closed-Weight Scheme Descriptions

We first give more detail on the original closed-weight implementations of the STIP and Centaur schemes from Section 5.1.

STIP In STIP, there are three parties: the model developer P1, the model server P2 (who carries out inference), and the
user P3. The goal of STIP is to have P2 carry out inference on P3’s input, protect P1’s private model weights Θ from P2 and
P3, and protect P3’s private input data from P1 and P2. This is done with random permutation in the hidden dimension. At
initialization, P1 sends random d× d permutation matrices π, πc to the user P3, where d is the token embedding dimension.
They also randomly permute each weight matrix or vector in the row and/or column dimensions, to obtain the altered model
weights Θ′; these are given to the model server P2, who cannot recover Θ from them. Then during inference, instead of
sending their private input data X ∈ RN×d, the user encrypts it with permutation π, i.e. they send Xπ. Next, a standard
transformer forward pass is carried out, but with the weights Θ (unknown to P2) replaced by permuted weights Θ′. Finally,
the results are sent to the user, who applies permutation πc to obtain the output of the inference. The STIP authors show
through orthogonality of permutation matrices that the final output obtained is the same output as vanilla inference.

Centaur Centaur follows the three-party threat model of STIP, and attempts to reconcile two problems. On the model
weight privacy side, they aim to prevent exposure of the lookup table to the user. On the user privacy side, they wish to avoid
exposing certain unpermuted intermediate results. For example, the authors observe that during the computation of attention,
the calculation of QKT at each layer in STIP is insecure due to the Q and K permutations canceling. Therefore the authors
apply the cryptographically-based technique of additive secret sharing between the developer P1 and server P2 at most

6That is, unless there are more SMPC nodes than Cascade nodes. But this is usually never the case in practice, because most SMPC
schemes based on additive secret sharing involve 2 or 3 parties.

24

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

stages of self-attention, only requiring reconstruction of additive shares (by the developer) during nonlinearities. Although
this resolves the previous two concerns, it is still the case that permutations of true layer l hidden states are exposed to the
model developer at nonlinearities.

I.2. Public Embedding Layer

We now describe the implications of the efficacy of our family of attacks for the above schemes, as well as PermLLM,
assuming the embedding layer of the LLM is publicly known.

PermLLM Recall that PermLLM reveals the permuted hidden states at the non-linearities to the parties performing
inference; and that the hiddens at the softmax and layer-norm non-linearities, in particular, undergo factorized-2D permutation
as they are row-wise operations. Therefore, any party that receives the hidden states at these non-linearities, at any layer,
can directly apply the attack described in Section 5. We note that PermLLM claims to avoid such permutation security
pitfalls by ensuring that the user is one of the parties performing inference, and the only one with access to permuted hidden
states. However, such user involvement, while protecting against our attack, makes PermLLM entirely impractical for larger
models: the user must still do the bulk of computational cost in matrix multiplications during additive secret sharing.

STIP Recall that in STIP, party P2 carries out inference using a model with permuted weights Θ′, on a permutation of the
input, Xπ, in the hidden dimension. Apart from an additional detail regarding access to the embedding layer, which we
expand on below in Appendix I.3, this is analogous to the hidden-dimension permutation setting. A forward pass from the
altered transformer model with weights Θ′ up to layer l will allow P2 to recover hidden-dimension-permuted layer l hidden
states, and apply the attack from Section 5 to recover the input.

Centaur Centaur operates similarly to STIP from the perspective of our attack; at the non-linearities, hidden-dimension-
permuted hidden states are revealed to the parties performing inference; and party P2 has access to the permuted weights Θ′.
Therefore, the attack of Section 5 can also be used on Centaur.

I.3. Private Embedding Layer

In the above section, we assumed public lookup table access in order to perform forward passes over the vocabulary in the
attack. However, in both STIP and Centaur, the party P2, which performs inference, has access to the entire set of permuted
model weights Θ′ except for the token embedding layer, which is only revealed to the user P3. As such, without direct
access to the possible token embeddings, the adversary cannot immediately carry out our attack as described in Section 5.
Here, we explain how an adversary can still carry out our attack in the private embedding layer setting, by covering two
cases: one where the embedding matrix is tied to the LM (language-modeling) head, and one where it is not.

Tied Embedding In many modern LLM families, the embedding matrix is simply the tranpose of the LM head, whose
permutation in row and column dimensions) is known to P2. Therefore, the vocabulary embedding vectors to search over in
this case are simply permuted columns of this permuted language-modeling head – and these permutations can be uncovered
by matching against the permuted input embedding vectors received from the user at inference.

Explicitly, denoting W as the original RV×d embedding matrix, P2 has access to the permuted language-modeling head
πdW

TπV ∈ Rd×V , where πV , πd are V × V, d × d permutation matrices. In inference, the user P3 first applies a d × d
permutation π on the input embeddings e1, . . . , eN ∈ Rd; these are rows of W . Therefore, P2 sees permuted embedding
vectors e1π, . . . , eNπ ∈ Rd. Now, assuming the uniqueness of sorted rows of W , each eiπ can be obtained by applying the
permutation ππ−1

d on exactly one column of πdW
TπV . Thus P2 can recover ππ−1

d by looking for a sorted match between
the columns of πdW

TπV and each eiπ. Once obtained, they can compute ππ−1
d πdW

TπV = πWTπV , whose columns are
precisely all π-permuted vocabulary embeddings. With these, because the altered transformer forward pass is carried out on
π-permuted embeddings, P2 can carry out our attack on any permuted layer l hidden states it obtains.

To confirm the plausibility of the above, we examined the embedding matrices of Gemma, Llama and Mistral models and
found that it is indeed the case that for these modern LLM families, the rows of W are unique even when sorted.

Non-Tied Embedding Even if the language-modeling head is not the transpose of the embedding matrix, P2 can collect
the set of sorted input embeddings over the course of many inference requests. After sufficiently many calls, they can then
perform our attack by iterating through this collection of embeddings, permuting them to match the initial permuted input
embeddings. The only difference in this case is that P2 must wait for more inference requests in order to carry out the attack,
rather than being able to perform it immediately.

25

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

The final step to decoding by the adversary is then mapping the embeddings back into tokens. Note that this is essentially
isomorphic to breaking a simple substitution cipher. Again, by collecting data over many queries and using simple methods
such as frequency analysis and positional information, P2 can learn to decode this into the original tokens; substitution
ciphers are in general easily broken given sufficient data.

J. Distance Correlation Does Not Guarantee Permutation Security
We now contextualize statistical arguments on the security of permuted hidden states. In particular, we clarify why they
do not anticipate our attack. Both Yuan et al. (2024) and Luo et al. (2024) rely on results from distance correlation theory
(Székely et al., 2007) to support their arguments about the security of permuted hidden states, and thus claim their schemes
are secure. Citing Zheng et al. (2022), both papers quote the following result:

Eπ,WA∈Zd×d [Discorr(x, xWAπ)] ≤ EWB∈Zd×1 [Discorr(x, xWB)] . (3)

Discorr is the distance correlation function and x ∈ Rd is the input vector chosen from a data distribution. Here, the
expectations are taken over WA and WB sampled from standard random normal distributions and π sampled uniformly over
all d! permutation matrices. This result demonstrates that the expected distance correlation between any vector and the same
vector with a random permuted (dimensionality-preserving) linear map applied is less than the expected distance correlation
between the vector and the same vector with a 1-dimensional compressing linear map applied. Therefore, the authors claim
that permuted LLM hidden states retain less information about the input embeddings than a 1-D projection.

In each the following three subsections, we provide a separate reason for why this result cannot be used to make strong
guarantees on the security of their schemes.

J.1. Reconstruction From Random 1D Projections Is Feasible

The authors assert that reconstructing inputs after a random 1-dimensional linear projection is difficult. However, there is no
theoretical reason that this should be the case, especially for such projections of LLM hidden states.

We can make this statement precise as follows. Our attack is able to successfully reverse LLM hidden states with L1-distance
matching as demonstrated in Section 4.4. Assuming that two vectors are non-colliding with respect to L1-distance, we can
ensure random 1D projections of these two vectors are also non-colliding with high probability.

Theorem J.1. Let k > 0. Suppose random weights w ∈ Rd are drawn from a d-variate spherically symmetric distribution
D. Then any x,y ∈ Rd, we have the absolute difference of w-weighted sums of x and y exceeds the L1 distance between x
and y by a factor ≥ k, meaning ∣∣∣∣∣

d∑
i=1

wixi −
d∑

i=1

wiyi

∣∣∣∣∣ ≥ k
d∑

i=1

|xi − yi|, (4)

with probability ≥ Pγ∼D(|γ1| ≥ k
√
d).

Proof. Denote z = x− y. Observe that∣∣∣∣∣
d∑

i=1

wixi −
d∑

i=1

wiyi

∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

wi(xi − yi)

∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

wizi

∣∣∣∣∣ = |wTz|.

Thus, Equation (4) is equivalent to |wTz| ≥ k∥z∥1. Then, from the standard bound ∥z∥1 ≤
√
d∥z∥2, which can be proven

by an application of Cauchy-Schwarz, we see that Equation (4) holds whenever

|wTz| ≥ k
√
d∥z∥2. (5)

We now aim to compute the probability of the above event. Choose a d× d orthogonal matrix Q such that zq := Qz ∈ Rd

only has a nonzero coordinate L in its first position, i.e. zq = (L, 0, . . . , 0). By orthogonality and the fact that D
is spherically symmetric, we see wq := Qw has distribution D. Furthermore, orthogonal linear transformations are

26

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

length-preserving (by L2 norm), so we have ∥zq∥2 = ∥Qz∥2 = ∥z∥2 = |L|. In fact, as QTQ = I , observe that
wTz = wTQTQz = (Qw)T (Qz) = wT

q zq . Hence, Equation (5) becomes

|wT
q zq| = |L||(wq)1| ≥ k|L|

√
d.

This is equivalent to saying the first coordinate of wq has magnitude at least k
√
d. But we showed wq has distribution D, so

the probability that Equation (5) holds is precisely Pγ∼D(|γ1| ≥ k
√
d). This is therefore a lower bound on the probability

that Equation (4) holds, since we showed Equation (4) holds whenever Equation (5) does.

Although the above holds over all spherically symmetric distributions, we can obtain an exact bound above by setting D
to a multivariate Gaussian. That is, for w = (w1, . . . , wd), we i.i.d. sample each wi ∼ N (0, σ2). Then the lower bound
in the theorem is Pγ∼D(|γ1| ≥ k

√
d) = Pγ∼N (0,σ)(|γ| ≥ k

√
d) = 2 − 2Φ(k

√
d/σ), where Φ is the normal CDF. With

sufficiently large σ or small k, we can make this lower bound approach 2 − 2Φ(0) = 1. For instance, for d = 4096 in
Llama-3.1-8B-Instruct, if we sample weights with σ = 1 (as is done by Zheng et al. (2022) in the statement of Equation (3)),
setting k = 1/64 gives a lower bound of 2− 2Φ(1) ≈ 32%, and setting k = 1/32 gives a lower bound of 2− 2Φ(2) ≈ 5%.
To increase k (for a stronger guarantee of non-collision of the weighted sums) while maintaining the probability lower
bound, one must proportionally increase the standard deviation σ of the random weights.

It is therefore plausible that even with access to random 1D linear projections of LLM hidden states, our attack would
be successful. Further work should experimentally verify the efficacy of our attack with randomly-weighted sums, in the
presence of non-determinism and other practical implementation considerations.

J.2. Distance Correlation Misaligns With Reconstructibility

To measure privacy leakage, Zheng et al. (2022) use expected distance correlation. They justify their choice by noting
distance correlation is a well-known statistical metric, which represents structural similarity between datasets and is
straightforward to estimate. However, as we now show, distance correlation is not a universal measure of how reversible one
random variable is from another. To demonstrate this shortcoming, we introduce the notion of ‘δ-reconstructibility’, which
captures the ability to recover one variable from another variable up to a given absolute threshold. We define it as follows.

Definition J.2. Let X,Y be random variables. We say that (X,Y) is δ-reconstructible if there exists a function f(Y) such
that |X − f(Y)| ≤ δ almost always.

This notion of δ-reconstructibility is directly tied to privacy in our setting, as the non-determinism described in Sec-
tion 4 forces us to choose the candidate token within a given absolute threshold. We now show by construction that
δ-reconstructibility does not perfectly align with distance correlation: there are δ-reconstructible pairs with a lower distance
correlation than non-δ-reconstructible pairs.

Theorem J.3. For any δ > 0, there exist random variables W,X, Y, Z such that Discorr(W,X) > Discorr(Y,Z), the pair
(W,X) is not δ-reconstructible, and the pair (Y,Z) is δ-reconstructible.

Proof. Define independent random variables W, ε ∼ N (0, 1). Let Y come from an arbitrary symmetric distribution about
zero with support [−δ, δ], and construct

X = ρW +
√
1− ρ2ε, Z = |Y |

where 1 > ρ > 0.945. Using standard properties of normal random variables, one can see X ∼ N (0, 1), and the correlation
between X and W is ρ. Thus, by Theorem 7 in Székely et al. (2007), which lower bounds distance correlation of standard
normals in terms of (Pearson) correlation, we have DisCorr(W,X) > 0.89ρ > 0.841. Furthermore, by Theorem 1 in
Edelmann et al. (2021), which upper bounds the distance correlation of a symmetric random variable and its absolute value,
we have DisCorr(Y, Z) ≤ 2−1/4 < 0.841. Therefore, we have DisCorr(W,X) > DisCorr(Y, Z).

Now, we claim that (W,X) is not δ-reconstructible. To see this, note (W, ϵ) ∼ N (0, I) by independence, so the linear
transformation (W, ϵ) 7→ (W,X) can be seen to induce the joint distribution

(W,X) ∼ N
(
0,Σ =

(
1 ρ
ρ 1

))
.

27

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

From the standard conditional Gaussian formula, one obtains W |(X = x) ∼ N (ρx,
√
1− ρ2). Thus, for any estimator

f(X) of Y , we have for each x that

P (|W − f(X)| ≤ δ|X = x) ≤ P (|W − ρx| ≤ δ|X = x) = 2Φ

(
δ√

1− ρ2

)
− 1 = c < 1

where c is a constant dependent on ρ, δ, and Φ is the normal CDF. Here, the first inequality holds as W |(X = x)
is a normal distribution: this means P (|W − f(X)| ≤ δ|X = x), the integral of the corresponding normal PDF over
(f(x)− δ, f(x) + δ), is upper bounded by its integral over the same-size mean-centered interval (ρx− δ, ρx+ δ), which is
precisely P (|W − ρx| ≤ δ|X = x). This upper bound follows from the fact that an integral of a zero-centered normal (or
generally any unimodal symmetric distribution) over a fixed-size interval is maximal when that interval is zero-centered,
which is standard: see the first sentence in Anderson (1955), for example. Finally, taking the expectation of the above bound
over X and applying the law of total expectation, we get P (|W − f(X)| ≤ δ) ≤ c < 1. Since f(X) was chosen arbitrarily,
this shows (W,X) is not δ-reconstructible7, as required for the claim.

However, (Y, Z) is certainly δ-reconstructible. Because |Y | ≤ δ almost always, we see f(Z) = 0 always estimates Y
within a δ-threshold. Hence, we have our desired counterexample.

Additionally, we observe that Equation (3) involves an expectation of distance correlation over random linear maps and
permutations. Therefore, it is possible that there are particular linear weights and permutations where the distance correlation
with a randomly permuted linear projection is smaller than the distance correlation with a random 1D linear projection. So,
Equation (3) cannot be applied to make universal claims about reconstructibility across different models and permutations.

J.3. Transformers Have Token Interdependence

Even taking Equation (3) at face value, it is still questionable how it proves security for transformer models. Linear
projections are only one component of these architectures: a formal security guarantee should incorporate the other modules
in a transformer, especially self-attention, in which tokens are not processed independently. In particular, this means a
valid result should be proved over a distribution over full N × d inputs, rather than a distribution of 1 × d embeddings
as in Equation (3). In fact, the unidirectional nature of decoder-only LLMs through self-attention is a key property that
enables the vocabulary-matching attack to succeed (Section 4.2.1). Thus, the distance correlation result, which ignores this
dependence, fails to anticipate such an attack.

K. BLEU Scores for CompNode Hidden Reversal
In Section 7.2.2, we computed ROUGE-L scores to evaluate the success of learning-based reversal attacks on shards hRi

received by CompNodes at layer 1. Here, we further assess reconstruction quality at layer 1 using BLEU scores, shown in
Table 14. We find a similar trend as in Table 5, observing that security improves as c or α increases. Here, for c ≥ 4, α = 8,
we have a BLEU score between 0.1 and 0.2, indicating only marginal reconstructionability; and for c ≥ 4, α = 12, the
BLEU score lies below 0.1, indicating nearly no reconstructionability.

Table 14. BLEU scores of text reconstruction from layer 1 hiddens of Gemma-2-2B-IT for different values of c, α under (c, δ)-sharding.

α = 4 α = 8 α = 12

c = 1 0.537 0.229 0.130
c = 4 0.352 0.133 0.086
c = 8 0.246 0.123 0.083

7In fact, it shows something stronger: the optimal estimator’s probability of reconstructing W up to an absolute error of δ is upper
bounded by c. As δ → 0, the value of c actually approaches 2Φ(0)− 1 = 0.

28

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

L. CompNode Hidden Reversal Analysis on Layers & Llama
In Section 7.2.2, we described experiments performed on the hidden states of Gemma-2-2B-IT, where a bidirectional-
attention model was trained to reverse the sharded hidden states into the original text prompt. In Table 5, we showed that the
hiddens are largely secure to this attack for a suitable choice of c and α.

In this section, we first analyze if this is also true for Llama 3.1 8B-Instruct. We run a similar experimental setup as described
in Section 7.2.2, except we use Llama hidden representations, and we also use it as the reversal model; this also therefore
tests if increasing the reversal model’s capacity is a suitable method for improving sharded reconstruction. Due to the
computational constraints of training with a larger model, we examine this only for c = 8, α = 8 and c = 8, α = 12. The
reconstruction ROUGE-L scores are 0.1718 and 0.1443 respectively, significantly lower than those obtained with the same
parameters for Gemma. We leave to future work the interesting question of whether this implies that Llama representations
are inherently more resistant to decoding than Gemma representations.

Next, we analyze whether our results hold irrespective of the layer of the model used. We run additional experiments on
the hiddens of layers 11 and 21 of Gemma-2-2B-IT. Our results are shown in Table 15. We see that there is no substantial
difference in ROUGE-L score as the layer changes.

Table 15. ROUGE-L scores of text reconstruction from the hiddens of various layers of Gemma-2-2B-IT for different (c, δ)-sharding
setups. We see that the reconstruction quality is similar across layers.

Layer c = α = 4 c = α = 8

1 0.4268 0.2218
11 0.4627 0.2467
21 0.4021 0.2158

M. AttnNode Security
First, we justify our point from Section 7.1 that S and T sharding can be made symmetric at no loss of AttnNode security.

S-T Symmetrization Symmetry relaxation arises from a pairwise coverage requirement of S and T sharding: recall that
{Sj}βj=1 and {Tk}γk=1 cover [N], so all index pairs (x, y) ∈ [N] × [N] lie in some Sj × Tk. Because S and T sharding
correspond to query and key/value sharding, this means for all such index pairs (x, y), there is some AttnNodejk that holds
both the xth query row and the yth key row. Observe that a node holding these rows has – in the worst case – the same
information as if they hold the yth query and xth key rows. This is because the query and key matrices are linear projections,
which are injective and reversible in the worst-case, of the same hidden states. Therefore, we justify our simplification in
Section 7.1 that T sharding may be set equal to S sharding without security loss.

Now, we introduce a technique that allows us to improve AttnNode security. Since we have decided to set S and T sharding
equal, we would like a secure way to select S sharding, given R sharding. One option is to set S and R sharding equal,
and have each AttnNodejk receive the union of query shards from CompNodej and key/value shards from CompNodek.
However, this results in each AttnNode having access to twice as many query/key/value rows as each CompNode. To reduce
such leakage to AttnNodes and thus improve security, we instead propose a further m-split of AttnNodes as follows.

m-Splitting of AttnNodes To form S sharding from R sharding, we can let β = mα, and partition each Ri into m shards
Ri,1, . . . , Ri,m. Then the S shards are Sm(i−1)+x = Ri,x for all 1 ≤ i ≤ α and 1 ≤ x ≤ m. This ensures that pairwise
coverage is maintained, but reduces the number of tokens (technically Q,K, V -projections of hidden state rows, but these
are reversible to tokens in the worst case at layer 0) that each AttnNode has access to by a factor of m. Using this split
increases the value of β2, the total number of AttnNodes, by a factor of m2.

m-Splitting for (c, δ) Sharding We gave a general construction: there remains a degree of freedom in deciding the exact
choice of subdividing Ri into the subsets Ri,x. Under the assumption that Ri follows a (c, δ)-sharding scheme, we propose
that Ri,x contains the elements of sorted Ri at indices x, x+ δ, . . . , x+(t− 1)δ, where t = N

cα and the split factor is m = c.

29

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

For example, suppose that α = 3, c = 2, δ = 6, and N = 18. With a split of m = 2, we have β = mα = 6. Then,

R1 = {1, 2, 7, 8, 13, 14} R2 = {3, 4, 9, 10, 15, 16} R3 = {5, 6, 11, 12, 17, 18}
R1,1 = {1, 7, 13} R2,1 = {3, 9, 15} R3,1 = {5, 11, 17}
R1,2 = {2, 8, 14} R2,2 = {4, 10, 16} R3,2 = {6, 12, 18}
S1111 = {1, 7, 13} S1121 = {1, 3, 7, 9, 13, 15} S1131 = {1, 5, 7, 11, 13, 17}
S1112 = {1, 2, 7, 8, 13, 14} S1122 = {1, 4, 7, 10, 13, 16} S1132 = {1, 6, 7, 12, 13, 18}
S2121 = {3, 9, 15} S2131 = {3, 5, 9, 11, 15, 17} S2112 = {2, 3, 8, 9, 14, 15}
S2122 = {3, 4, 9, 10, 15, 16} S2132 = {3, 6, 9, 12, 15, 18} S3131 = {5, 11, 17}
S3112 = {2, 5, 8, 11, 14, 17} S3122 = {4, 5, 10, 11, 16, 17} S3132 = {5, 6, 11, 12, 17, 18}
S1212 = {2, 8, 14} S1222 = {2, 4, 8, 10, 14, 16} S1232 = {2, 6, 8, 12, 14, 18}
S2222 = {4, 10, 16} S2232 = {4, 6, 10, 12, 16, 18} S3232 = {6, 12, 18}

where we denote Sixjy = Ri,x ∪Rj,y , which is the set of tokens that AttnNodea,b has access to for a = m(i− 1) + x, b =
m(j − 1) + y. In other words, Ri above are the sets of token indices that the CompNodes receive, and the Sixjy are the sets
of token indices that the AttnNodes receive. Note that some Sixjy entries are not included above (there are 21 listed, but
β2 = 36 AttnNodes) because they exactly match a listed entry by Sixjy = Sjyix.

Vocab-Matching Attack Sharding S in this way prevents vocab-matching, like in Section 7.2.2. Indeed, as each Ri,x

has elements that are separated by δ, and each Sixjy combines elements from two different Ri,x’s, then there cannot be 3
consecutive elements in Sixjy if δ > 2. Furthermore, the largest number of missing tokens between two elements of Sixjy

(i.e. the largest ‘gap’) is lower bounded by δ
2 . Therefore, for sufficiently large δ, the vocab-matching attack is infeasible.

Learning-Based Attacks To test security against learning-based attacks, we conducted experiments with the above
scheme for m = {2, 3, 4}, with c = 8 and α = 8, and the same dataset and setup as in Section 7.2.2. Due to computational
constraints, we focus our experiments on Gemma-2-2B-IT on layer 1; we expect similar trends for Llama-3.1-8B-Instruct
and other layers. We train a single model for all shard possibilities that arise from Sixjy. Experiments are conducted with
the same dataset and model setup as described . Our results are shown in Table 16. We see that although m = 2 results in a
relatively higher ROUGE-L than that for the CompNodes in Table 5, the score for m = 4 is very similar; therefore, we
recommend using m ≥ 4 for security.

Table 16. ROUGE-L scores for different values of splitting parameter m on layer 1 of Gemma-2-2B-IT with c = 8, α = 8. We see that
the score for m = 4 is similar to that of CompNodes in Table 5 for the same c and α.

m ROUGE-L

2 0.3057
3 0.2643
4 0.2376

N. Computational Overhead Analysis
In Section 7.3.1, we claimed that Cascade has little overhead in computational costs compared to vanilla inference. We
justify this statement in the analysis below, by comparing CompNode and AttnNode steps against the vanilla forward pass.
For simplicity of analysis, we assume symmetry of S and T sharding, as justified in Appendix M.

Indeed, most operations performed by CompNodes will treat the (row) token dimension as the batch dimension. In the
pre-pass, these are normalization and Q,K, V -projection; and in the post-pass, these are attention value compilation (most
of Algorithm 9), O-projection, residual connection, and the MLP block. Except for attention value compilation, these steps
all occur in the vanilla pass, so the CompNodes combined will perform the exact same operations as in vanilla inference:
there are no extra computations performed.

The only extra operations thus come from (a) attention value compilation (linear weighting of partial attention outputs) by
CompNodes in the post-pass, and (b) AttnNode floating point computations which do not appear in the vanilla pass, i.e.

30

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

expsums of shards of attention score rows. This is because all other steps of the Cascade self-attention either treat the tokens
as batch elements, or involve splitting up matrix multiplication into multiplication of sharded matrices; and the latter is
blocked matrix multiplication, which does not inherently change the operations performed.

Now, (a) only involves ∼ H|Ri|d operations for each CompNodei, since it involves a few steps of elementwise summation
and multiplication of H × |Ri| × d matrices (after broadcasting). Summing this over all 1 ≤ i ≤ α gives ∼

∑
i H|Ri|d =

HNd extra operations. Also, (b) only involves ∼ H|Sj ||Sk| operations for each AttnNodejk because expsum is done
over rows of an H × |Sj | × |Sk| shard of attention scores. Summing over all 1 ≤ j, k ≤ β, we see this requires
∼
∑

j,k H|Sj ||Sk| = HN2 extra operations in total. This means the total AttnNode computation overhead is∼ HN(d+N)
operations.

Importantly, this is cheaper than most computation-heavy steps in standard inference. Compared to the ∼ HN2d operations
from multiplication of H × N × N attention scores with H × N × d values, this overhead requires ∼ 1

N + 1
d times

as many operations. Since d is often in the hundreds, we can ensure for large N , say N ≥ 256, that this ratio is quite
small. Furthermore, if N is not large, then the overhead is still limited compared to the ∼ HNdembd operations from
Q,K, V -projection, since it requires ∼ 1

demb
+ N

demb
times as many operations and demb is in the hundreds or thousands.

Essentially, the choice of sharding does not significantly affect the total computational overhead, and this overhead is quite
modest compared to the computations performed in a vanilla forward pass.

O. Communication Analysis
In Section 7.3.1, we gave the total communication byte and time overheads for performing a inference on a single layer of
an LLM with Cascade. Here, we provide a full justification of these equations. Like in Appendix N, we assume symmetry
of S and T sharding, so the superscript T in sharded notation is replaced with S.

Recall that in each layer, there are two communication stages: (A) the CompNodes send sharded query, key, value matrices
to the AttnNodes between pre-pass and attention-pass, and (B) the AttnNodes send sharded attention outputs and expsums
to the CompNodes between attention-pass and post-pass. We operate under the assumption that all CompNodes synchronize
before (A) and all AttnNodes synchronize before (B), so that we can derive an exact expression for communication cost; this
makes our communication cost derivation a worst-case analysis. See Appendix Q for optimizations that can be made if this
assumption is relaxed.

For single-layer inference, in stage (A), CompNodei must send each of the |Ri| rows of the H × |Ri| × d query matrix
qRi to some AttnNodes. In particular, for a row index r ∈ Ri, it sends the row q[:, r, :] of qRi to all AttnNodesjrk with
1 ≤ k ≤ β, where jr is the unique index satisfying r ∈ Sjr . That is, CompNodei sends each of its |Ri| rows to exactly β
AttnNodes. Since each row contains Hd elements, then CompNodei must send out β|Ri|Hd elements from sharded query
states. A similar analysis shows CompNodei sends out 2β|Ri|HKV d elements from sharded key and value states, so it
sends out a total of β|Ri|d(H + 2HKV) elements. Summing this over all i and noting

∑α
i=1 |Ri| = N gives the total bytes

communicated in (A):
CommBytesA = βFd(H + 2HKV) ·N.

Assuming perfect parallel transport and uniform bandwidth B across nodes, i.e. all communication overhead comes from
CompNode with the most elements to send (plus latency τ), the communication time in stage (A) is

CommTimeA = τ +
βFd(H + 2HKV)

B
·max

i
|Ri|.

Next, in stage (B), each AttnNodejk must send each CompNodei some rows of its partial post-value attention outputs uSjSk ,
partial attention score row maximums mSjSk , and partial attention score row subtract-max expsums eSjSk . These matrices
are of shapes H × |Sj | × d,H × |Sj | × 1, H × |Sj | × 1, respectively, and CompNodei receives |Ri ∩ Sj | out of the |Sj |
rows from each. This means the total number of elements that AttnNodejk sends to all CompNodes is

(d+ 2)H ·
α∑

i=1

|Ri ∩ Sj | = (d+ 2)H · |Sj |.

Since
∑β

j,k=1 |Sj | = β
∑β

j=1 |Sj | = βN , this means the total number of bytes sent by all β2 AttnNodes is

CommBytesB = βF (d+ 2)H ·N.

31

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

And, again under the parallel transport and uniform bandwidth assumption, the communication time in (B) is

CommTimeB = τ +
F (d+ 2)H

B
·max

j
|Sj |.

Combining these costs, we obtain the following total communication byte and time overheads for a single layer:

CommBytes = βF (2dH + 2dHKV + 2H) ·N,

CommTime = 2τ +
βFd(H + 2HKV)

B
·max

i
|Ri|+

F (d+ 2)H

B
·max

j
|Sj |.

Finally, we compute the number of communication rounds per layer. Stage (A) has each of the α CompNodes send results
to at most β2 AttnNodes, which is at most αβ2 rounds. Stage (B) has each of the β2 AttnNodes send results to at most α
CompNodes, which is at most αβ2 rounds. In total, the rounds per layer are bounded above by 2αβ2. This can be quite
large, but we can guarantee a tighter upper bound if our scheme involves (c, δ)-sharding for CompNodes with m-splitting
of AttnNodes (as in Appendix M). Here, β = mα since each of the α shards in {Ri}αi=1 is split into m pieces to form
{Sj}βj=1. Each CompNode sends results to mβ AttnNodes, and each AttnNode sends results to 1 CompNode, so there are
mαβ + β2 = 2β2 rounds. Essentially, the number of rounds scales linearly with the number of AttnNodes.

P. Full CompNode Leakage Analysis
P.1. Necessity of (c, δ)-Sharding

We have examined information leakage from hRi in Section 7.2.1 and Section 7.2.2, as well as from qSj ,kSk ,vSk

in Section 7.2.3. For a comprehensive security analysis, all that remains is to consider additional leakage from
mRiS1 , eRiS1 ,uRiS1 , . . . ,mRiSβ , eRiSβ ,uRiSβ , the information that CompNodei receives from β AttnNodes to be-
gin the post-pass. Our main theorem shows that considering this leakage, a scheme like (c, δ)-sharding is, in some sense,
required to maintain security against vocab-matching: without sufficiently large gaps between consecutive clusters of indices,
a variant of the attack can be carried out at Layer 0 to reveal additional tokens to a node.

Theorem P.1. Suppose S and T sharding are equal, and the attention mask s is unidirectional. Furthermore, denote the
vocab-matching threshold as ρ, as defined in Definition 7.2. Then to prevent the vocab-matching attack, for all i ∈ [α], each
gap between clusters of consecutive indices in Ri must have size ≥ ρ.

Proof. Fix i, and denote Ri = {r1, r2, . . . , rm} in ascending order. Consider any k ∈ [β]. Now, since aRiSk =
qRi(kSk)T + sRiSk , and s is unidirectional, we see that the lth row of exp(aRiSk)vSk is exactly f(rl, {s ∈ Sk : s < rl}),
where we denote

f(r, S) :=
∑
s∈S

exp
(
q[:, r, :](k[:, s, :])T

)
v[:, s, :].

This lth row is known to CompNodei because we can write it in terms of known shards:

exp(aRiSk)vSk = (softmax(aRiSk)vSk)⊙ expsum(aRiSk) = uRiSk ⊙ eRiSk ⊙ exp(mRiSk).

Thus, for each rl ∈ Ri and k ∈ [β], we see that CompNodei knows f(rl, {s ∈ Sk : s < rl}). At Layer 0, since q,k,v are
linear projections of token embeddings, we see that f(r, S) only depends on tokens with indices in the set {r} ∪ S. Since
CompNodei knows all tokens with indices Ri from hRi at layer 0, then each f(rl, {s ∈ Sk : s < rl}) only depends on
unknown tokens at indices {s ∈ Sk : s < rl} \ Ri. Thus, f(rl+1, {s ∈ Sk : s < rl+1}) depends on the same unknown
tokens as f(rl, {s ∈ Sk : s < rl}), and extra unknown tokens at {s ∈ Sk : rl < s < rl+1}, which we call the (k, l)-gap.

If there are < ρ tokens in a (k, l)-gap for some l, then following the generalized attack in Appendix C, CompNodei can
perform a forward pass over all V <ρ candidate sequences of such unknown tokens in the (k, l)-gap and compute candidate
values for f(rl, {s ∈ Sk : s < rl}) and f(rl+1, {s ∈ Sk : s < rl+1}), and then select the candidate sequence which allows
these quantities to match their known values. This would allow them to recover all tokens in the (k, l)-gap. Thus, to prevent
this vocab-matching attack variant, we need each (k, l)-gap to have size ≥ ρ or zero. This forces clusters of consecutive
indices in Ri to have size ≥ ρ gaps between them.

32

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

P.2. Sufficiency of (c, δ)-Sharding

Now, we provide an argument that only considering Layer 0 shards, when R and S sharding both follow a (c, δ)-sharding
scheme with sufficiently large c, δ, it is intractable for any CompNode to recover the input.

To do this, we will demonstrate a reduction to a variant of the subset sum problem with vectors, which is known to be
NP-complete. Our reduction relies on two assumptions (B1), (B2), which we highlight shortly. We begin by fixing i ∈ [α],
so that Ri = {ic, ic+ 1, . . . , ic+ c− 1, ic+ δ, ic+ δ + 1, . . . , ic+ δ + c− 1, . . .}. As we mentioned earlier, CompNodei
has access to mRiS1 , eRiS1 ,uRiS1 , . . . ,mRiSβ , eRiSβ ,uRiSβ and hRi at Layer 0. Knowledge of the latter is equivalent
to knowledge of tokens at indices Ri, so we consider leakage from the former triples. In fact, at Layer 0, note each triple
mRiSk , eRiSk ,uRiSk only depends on tokens with indices in Ri ∪ Sk. Since all tokens in Ri are known to CompNodei,
then this triple only depends on unknown tokens Sk \Ri. Across all k, these sets are disjoint. Thus, under the following
assumption, we can conclude that the reversal problems from the β different triples are independent.

(B1) For any k1 ̸= k2, CompNodei has independent priors on tokens with indices in Sk1 and tokens with indices in Sk2 .

Thus, we now only need to consider leakage from one triple mRiSk , eRiSk ,uRiSk . Explicitly, Sk = {kc, kc+ 1, . . . , kc+
c − 1, kc + δ, kc + δ + 1, . . . , kc + δ + c − 1, . . .}. So, if k = i and Sk = Ri, then all these shards are functions only
of known tokens at indices Ri, and no information is leaked to CompNodei. Thus, without of loss of generality, we now
assume k < i, as k > i is similar. From now on, when we say a shard depends on tokens, we ignore known tokens.

Recall that exp(aRiSk)vSk = uRiSk ⊙ eRiSk ⊙ exp(mRiSk), and expsum(aRiSk) = eRiSk ⊙ exp(mRiSk) by definition.
Thus, this triple reveals the exact same information as the triple mRiSk , expsum(aRiSk), exp(aRiSk)vSk , which have
shapes (H, |Ri|, 1), (H, |Ri|, 1), (H, |Ri|, d). We concatenate the last two to form bRiSk of shape (H, |Ri|, d+ 1), so our
original triple is equivalent to mRiSk , bRiSk . Now, note that because S and R are both (c, δ)-sharding and the attention
mask is unidirectional, the first c out of |Ri| rows of aRiSk will have c elements followed by all −∞, with the nonzero c
only depending on tokens at indices kc, . . . , kc + c − 1, respectively. The next c rows have 2c elements that depend on
tokens at indices kc, . . . , kc+ c− 1, kc+ δ, kc+ δ + 1, . . . , kc+ δ + c− 1, followed by all −∞. A similar pattern holds
for each next c rows. Thus, the |Ri| rows of bRiSk follow a similar token dependence pattern: the first c depend on tokens
kc, . . . , kc+ c− 1, the next c depend on tokens kc, . . . , kc+ c− 1, kc+ δ, kc+ δ + 1, . . . , kc+ δ + c− 1, and so on.

Now, for each position x ∈ [N], we define a list of V possible concatenations [kx, vx] ∈ RH×2d, where kx denotes the xth
row across all heads of the layer 0 query states, and likewise for vx. Denote this list as Ax, which is distinct for different
values of x due to the effects of positional embeddings; it is indexed in the same order as the vocabulary. For each r ∈ Ri and
position x ∈ [N] with x ≤ ri, we denote Br,x as the list of (d+ 1)-dimensional vectors whose first entry is exp(q[:, r, :]kTx)
and last d entries are exp

(
q[:, r, :]kTx

)
vx, over all [kx, vx] ∈ Ax. Note this is also of size V , and is indexed in the same

order as the vocabulary. It is simple for a node to compute Br,x for all r ∈ Ri and x ≤ ri, as they know q[:, r, :], and can
directly compute and iterate through Ax.

The key point, building on our observation from earlier, is that (d+ 1)-dimensional rows of bRiSk are sums of vectors from
sets Br,x. In particular, there are i1, . . . , ic such that for all 1 ≤ r ≤ c, the rth row equals Br,kc[i1] + . . .+ Br,kc+c−1[ic].
Then, there are ic+1, . . . , i2c such that for all c + 1 ≤ r ≤ 2c, the rth row equals Br,kc[i1] + . . . + Br,kc+c−1[ic] +
Br,kc+δ[ic+1] + . . .+Br,kc+δ+c−1[i2c]. A similar pattern holds for 2c+ 1 ≤ r ≤ 3c, and so on. The final indices i1, i2, . . .
correspond to the positions of input tokens in the vocabulary, for all tokens with indices in Sk.

Therefore, reversal of the input from bRiSk alone is at least as difficult as the following problem: given c different sets, each
containing V vectors derived from token and position embeddings, select some vector from each set so that they sum to a
given vector. This is a variant of the subset sum problem for vectors, which is computationally intractable for large enough
V, c. Particularly, since V is in the hundreds of thousands, this is likely already intractable for c ≥ 8.

Finally, we consider additional leakage from mRiSk . In the worst case, this reveals at most one of the tokens with indices
in Sk for each k, as a maximum of a row of aRiSk reveals at most one element of the row, with upper bound constraints
placed on the other elements. Given the large number of possibilities for these elements, it is unlikely that the upper bound
constraints provide much information, which we incorporate in the assumption below. Therefore, leakage from mRiSk is at
worst equivalent to effectively reducing the parameter c above by one, since we have one less set to select a vector from. This
means if c ≥ 8 was secure for reversal from bRiSk , we need c ≥ 9 to ensure security for reversal from bRiSk ,mRiSk . Note
that the variant of the subset sum problem for reversal from bRiSk , together with the inequality constraints from mRiSk

leakage, form a linear program. So, we have implicitly used the following assumption to claim security.

33

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

(B2) The linear program described above is computationally intractable.

Therefore, assuming choices of c, δ which satisfy (B1) and (B2), we have shown Cascade is completely secure for
any CompNode only executing Layer 0. In practice, these assumptions may not always hold. In fact, learning-based
attacks attempt to violate the independence assumption of (B1), through token-infilling between gaps of a (c, δ)-sequence.
Furthermore, even as the subset sum problem is NP-complete, this does not mean that the particular choice of sets in our
setup are not susceptible to, say, an approximation algorithm. To truly test (B2), future work should explicitly enumerate
the linear program and test the efficacy of state-of-the-art solvers on it, perhaps with token-infilling priors integrated.
Nevertheless, the above explicit reduction shows that for large enough c, δ, it is quite likely that (B1) and (B2) nearly hold.

Q. Cost Optimizations
In Section 7.1, we gave a high-level overview of Cascade, and deferred discussions about optimization. Here, we discuss a
few cost and communication optimizations, again assuming symmetry of S and T sharding.

Caching After a new token is generated in Cascade, the CompNode holding that token will send it back to one of the
existing CompNodes, and single-token generation will repeat to get the next token. To speed up generation after the first new
token, the CompNodes and AttnNodes can store their partial intermediate states, and only the 1 CompNode and β AttnNodes
associated with the most recent token will need to participate in the single-token generation: this means KV-caching naturally
extends to Cascade. Formally, suppose n is the index of the most recently generated token, and it belongs to the hidden shard
Ri and the query shard Sj . Only CompNodei needs to perform new computation in generating the (n+ 1)st token, along
with each AttnNodejk for 1 ≤ k ≤ β: this is because only these AttnNodes require the nth query row. Furthermore, these
β + 1 nodes, having stored intermediate results from previous forward passes, can avoid repeat computation of attention
scores and earlier hidden states. Essentially, this results in token-sharded KV-caching.

Symmetry Reduction We see that AttnNodejk and AttnNodekj actually have the exact same information in the worst-
case: they both have access to indices Sj∪Sk. Thus, at no loss of security, we can combine AttnNodejk and AttnNodekj into
one node, thereby approximately halving the number of AttnNodes required, and reducing communication byte overhead.

Synchronization A key assumption in our communication analysis from Appendix O was that nodes synchronize between
stages. That is, AttnNodes wait until they all finish before sending information to CompNodes in parallel; and likewise for
the CompNodes sending information to AttnNodes. But in practice, depending on the sharding scheme, synchronization
is not necessary; and relaxing it can allow some nodes to proceed earlier than others. For instance, in a sharding scheme
where CompNode1 holds only the first k tokens, because the first k logits do not depend at all on tokens k + 1, . . . , n in a
unidirectional model, then CompNode1 can proceed through all its forward passes without waiting for any information from
other nodes. Future work could analyze the tradeoff between such synchronization relaxations, which are not possible with
schemes like (c, δ)-sharding, and token security.

R. Cascade Scalability
Here, we demonstrate how Cascade for α = 2 without m-splitting scales across different model sizes. The below numbers
are obtained over 100 runs. Observe that the runtime grows sublinearly with the model size, suggesting Cascade can also
scale well to larger models like Llama-2-70B. Furthermore, we emphasize that our baseline Puma on Llama-2-7B (Dong
et al., 2023b) took around 300 seconds for a full forward pass, so our approach is over 20× faster.

Model Name Model Size (Parameters) Mean Runtime (s) 95% Confidence Interval (s)

Bert-Base 110M 0.7 [0.62,0.74]
Bert-Large 335M 1.3 [1.24,1.46]
Llama-3.2-1B-Instruct 1B 2.6 [2.33,2.96]
Llama-2-7B 7B 12.7 [11.07,14.07]
Llama-2-13B 13B 22.7 [20.58,25.99]

Table 17. Model-size-scaling analysis for Cascade. Runtimes and confidence intervals obtained over 100 runs.

34

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

S. Noising method performance
Below, we provide exact (not only the maximum) ROUGE-L scores across layers 1, 6, 11, 16, 21, 26, for all methods of
noising discussed in Section 6. Table 18, Table 19, Table 20 show these results. We also provide a complete breakdown of
LiveBench scores per category in Table 22.

Table 18. The ROUGE-L scores of decoded texts with added noise and no permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.9263 0.9177 0.9309 0.8901 0.8844
6 0.9273 0.3271 0.9340 0.8726 0.8652

11 0.9070 0.0856 0.8170 0.8943 0.8764
16 0.9175 0.0587 0.7552 0.8620 0.8669
21 0.9232 0.0977 0.8247 0.8834 0.8839
26 0.9070 0.0485 0.6257 0.8751 0.8771

Table 19. The ROUGE-L scores of decoded texts with added noise and sequence dimension permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.0696 0.0000 0.1683 0.8167 0.8157
6 0.0354 0.0000 0.0418 0.8236 0.8409

11 0.0278 0.0011 0.0337 0.8479 0.8138
16 0.0133 0.0023 0.0202 0.8568 0.8116
21 0.0136 0.0051 0.0321 0.8283 0.8250
26 0.0096 0.0096 0.0236 0.8236 0.7956

Table 20. The ROUGE-L scores of decoded texts with added noise and hidden dimension permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.0669 0.0000 0.1945 0.7544 0.7497
6 0.0353 0.0000 0.0359 0.6696 0.6420

11 0.0301 0.0009 0.0300 0.6667 0.8138
16 0.0166 0.0018 0.0144 0.6325 0.8116
21 0.0164 0.0036 0.0153 0.5029 0.8250
26 0.0116 0.0101 0.0114 0.3848 0.7956

Table 21. The ROUGE-L scores of decoded texts with added noise and factorized-2D permutation.

Layer σ = 10−2 σ = 10−1 Random Emb 8-bit quantization 4-bit quantization

1 0.0675 0.0000 0.1919 0.7328 0.7146
6 0.0346 0.0000 0.0361 0.6075 0.5820

11 0.0273 0.0016 0.0297 0.4916 0.5753
16 0.0182 0.0027 0.0140 0.3731 0.5701
21 0.0196 0.0044 0.0151 0.3845 0.5568
26 0.0116 0.0120 0.0117 0.3496 0.5564

35

Hidden No More: Attacking and Defending Private Third-Party LLM Inference

Table 22. Performance of Gemma-2-2B-IT on LiveBench with added noise.
Method Avg. Coding Data Instruction Language Math Reasoning

Analysis Following

Baseline (no noise) 20.7 9.4 26.1 48.9 15.2 13.1 11.3
Gaussian, σ = 10−2 21.0 11.1 27.4 51.2 13.7 13.4 9.3
Gaussian, σ = 10−1 1.2 0.0 0.0 6.9 0.4 0.0 0.0
Random emb. prefix 21.3 8.8 27.5 50.1 16.1 13.6 12.0

8-bit quantization 20.2 8.8 27.1 49.2 13.3 13.0 10.0
4-bit quantization 19.1 6.5 25.5 50.5 9.5 10.9 12.0

36

