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ABSTRACT

In recent years, prompt-based methods have emerged as a promising direction for
continual learning, demonstrating impressive performance across various bench-
marks. These methods create learnable prompts to infer task identity, then select
and integrate specific prompts into the pretrained model to generate instructed fea-
tures for prediction. In this paper, we first analyze the working patterns of such
method across different distribution scenarios through extensive empirical analy-
sis. Our analysis exposes the limitations of existing methods: first, two-stage in-
ference can make mistakes even when the first stage has already provided reliable
predictions; second, enforcing identical architectures for both stages hampers per-
formance gains. To address these issues, we incorporated a self-supervised learn-
ing objective to learn discriminative features, thereby boosting the plasticity of the
model. During inference, we implemented a simple yet effective threshold filter-
ing strategy to selectively pass data to the second stage. This approach prevents er-
rors in the second stage when the first stage has already made reliable predictions,
while also conserving computational resources. Ultimately, we explore utilizing
self-supervised pretrained models as a unified task identity provider. Compar-
ing to state-of-the-art methods, our method achieves comparable results under in-
distribution scenarios and demonstrates substantial gains under out-of-distribution
scenarios (e.g., up to 6.34% and 5.15% improvements on Split Aircrafts and Split
Cars-196, respectively).

1 INTRODUCTION

Continual learning (CL) aims to equip models with the ability to constantly learn new knowledge
without forgetting previously acquired knowledge, with the main challenge being how to mitigate
catastrophic forgetting McCloskey & Cohen (1989); Goodfellow et al. (2013) occurs in deep neural
networks. Catastrophic forgetting refers to a phenomenon in which introducing new information
causes the model to forget old knowledge, thereby drastically reducing its performance on previous
learned tasks. Early studies Zenke et al. (2017); Aljundi et al. (2018); Chaudhry et al. (2018) gener-
ally start with neural networks that are randomly initialized, focusing primarily on class incremental
learning (CIL) scenario Van de Ven & Tolias (2019); De Lange et al. (2021); Masana et al. (2022);
Wang et al. (2024b), where each incremental stage involves non-overlapping categories. With the
emergence of large-scale pretrained models Dosovitskiy (2020); Kolesnikov et al. (2020); Yalniz
et al. (2019); Caron et al. (2021); Oquab et al. (2023), extensive efforts have started to apply them to
CL. Among these, a series of works Wang et al. (2022b;a); Smith et al. (2023); Chen et al. (2023);
Wang et al. (2024a) are based on prompt learning, which learns and retrieves task-related prompts
during training and inference, demonstrating remarkably superior performance.

Prompt-based CL methods typically involve creating a set of learnable prompts, which are then
optimized throughout the sequential learning of tasks. The core idea of these methods is to establish
a unified query mechanism during training and inference, where the most relevant prompt to the
current input are identified and incorporated into the pretrained model to generate instructed features
for prediction. As shown in Figure 1, some methods Wang et al. (2022a;b) utilize a frozen vision
transformer (ViT) to obtain uninstructed features and select prompts based on the cosine similarity
between these features and learnable keys, which are associated with the prompts. The matching
result is implicitly treated as inferred task identity (in gray). While the newly proposed HiDe-
Prompt Wang et al. (2024a) trains a separate model to predict labels, explicitly incorporating task
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Figure 1: Illustration of prompt-based CL methods.
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Figure 2: Performance comparison of
different prompt-based CL methods on
Split CIFAR-100 (ID) and Split Aircrafts
(OOD) using iBOT model pretrained on
ImageNet-21K, all datasets were splitted
into ten incremental tasks.

identity information through a label-to-task mapping to choose prompts (in beige).1 It significantly
bridges the performance gap between self-supervised and supervised pretrained models. However,
our empirical analysis reveals that these methods still fall short under out-of-distribution (OOD)
scenarios, especially in comparison to their remarkably high performance under in-distribution (ID)
scenarios, as shown in Figure 2.

In this paper, we first conducted a series of empirical analyses to thoroughly investigate the behav-
ior of the existing prompt-based CL methods across two different scenarios (i.e. ID and OOD).
The main observations are as follows: (1) self-supervised and supervised pretrained models per-
form similarly in ID scenarios, but self-supervised models excel in leveraging task identity in OOD
settings. (2) A reliable task identity, which is model-agnostic, benefits the second stage without
requiring identical architectures for both stages. Based on these observations, we first incorporated
self-distillation loss while training first-stage model to enhance the accuracy of its predicted task
identities. During inference, we found not all data requires two-stage inference, especially when
the first-stage model has already provided reliable predictions. We first modeled the prediction
confidence of the first-stage model using a β distribution, and then proposed a simple yet effec-
tive threshold filtering strategy. This approach mitigates issues encountered under OOD scenarios,
where second-stage model predicts incorrectly even with the correct task identity. Concretely, we
chose the lowest boundary of a specific highest density interval of the distribution as the threshold
for making decisions. We use this threshold to selectively send data to the second-stage model. Ul-
timately, we explored leveraging self-supervised pretrained models to improve the accuracy of task
identity inference, thereby enhancing the models’ continual learning capabilities.

The main contributions of this paper are summarized as follows: (1) We revisited existing prompt-
based CL methods, analyzing the performance differences these methods exhibit across different
scenarios and their main limitations. (2) We improved the first-stage model’s adaptability with
self-supervised learning, implemented a threshold filtering strategy to reduce second-stage errors
from reliable predictions, and used self-supervised pretrained models as a unified task identifier,
eliminating the need for identical architectures. (3) We achieved substantial improvements over
state-of-the-art methods in OOD benchmarks and obtained comparable results in ID benchmarks.

2 RELATED WORK

Continual Learning. Continual learning has received increasing attention from researchers. Early
approaches Zhu et al. (2021); Yu et al. (2020; 2022); Liu et al. (2022); Tao et al. (2024) tended to
train a deep neural network from scratch, broadly divided into three categories. The first is replay-
based methods, which alleviate forgetting by replaying stored previous exemplars Rebuffi et al.
(2017); Hou et al. (2019) or generated pseudo samples Shin et al. (2017); Ostapenko et al. (2019).

1For clarity, we refer to the model inferring task identity as the “first-stage model” and the model that uses
selected prompts to generate instructed features as the “second-stage model.” The following text will follow
this terminology.
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The second is regularization-based methods, which typically apply constraints to the model Li &
Hoiem (2017) by combining knowledge distillation Hinton (2015); Yu et al. (2019) techniques or
restricting changes of important parameters Kirkpatrick et al. (2017). The third is architecture-based
methods, which either expand the model when learning new tasks Zhu et al. (2022); Zhou et al.
(2022) or assign different parts of the model’s parameters to different tasks through masking Serra
et al. (2018). Some methods Douillard et al. (2022); Zhai et al. (2023a; 2024) employ a combination
of these techniques to achieve superior performance.

Approaches equipped with large-scale pretrained models (PTMs) have shifted the traditional CL
paradigms. By extracting robust features from PTMs, some works directly take advantage of this to
construct classifiers based on PTMs. SLCA Zhang et al. (2023) applied varying learning rates for
representation layer and classifier to mitigate progressive overfitting, and reduce classification bias
through prototype replay. RanPAC McDonnell et al. (2024) employed a frozen random projection
layer to project pretrained features into a higher-dimensional space for better linear separability.
Some works applied mixture of experts (MoE) methods, LAE Gao et al. (2023) employed an on-
line module for learning new tasks and an offline module for preserving learned knowledge, with
final predictions during the inference stage derived from the maximum logit of the two modules.
ESN Wang et al. (2023) trained a separate classifier for each new task and introduced an anchor-
based energy self-normalization strategy, with a voting-based strategy during inference stage to unify
the classifiers. The recent proposed Yu et al. (2024) expanded the vision-language model Radford
et al. (2021) through MoE and designed a distribution discriminator to dynamically allocate test
samples to either MoE adapters or the original CLIP during inference.

Prompt-based CL Methods. Such approaches typically create a set of learnable prompts and pre-
dict by incorporating the prompts most relevant to the current input. L2P Wang et al. (2022b) selects
prompts based on the cosine similarity between pretrained features and learnable keys, and integrates
the selected prompts into the token sequence after the image is patchified by ViT, before feeding it to
the transformer encoder. DualPrompt Wang et al. (2022a) categorizes prompts into general prompts,
which are shared by all samples, and expert prompts that are attached to the key and value following
L2P. CODA-Prompt Smith et al. (2023) proposed learning a set of prompt components to gener-
ate attention scores for weighting the prompts. HiDe-Prompt Wang et al. (2024a) adds a learnable
MLP to the frozen ViT and uses prototype replay for sequential training first-stage model to directly
predict class labels. It retrieves task identities by mapping them with class labels, allowing for the
explicit selection of prompts based on the predicted task identities to obtain instructed features.

3 PRELIMINARY

Prompt-based CL methods typically create a set of learnable prompts to generate instructed features.
In the case of vision tasks, for input image x ∈ RH×W×C , a pretrained ViT fθ first divides it into
N non-overlapping patches. It then attaches a class token and incorporated position encodings into
these patch embeddings to form a token sequence. This sequence is then processed through L-
layers of stacked multi-head self-attention (MSA) blocks. We denote the input sequence of the i-th
MSA layer as xi

e ∈ R(N+1)×D. For the i-th MSA layer, Query xi
q , Key xi

k, and Value xi
v are first

created by multiplying the identical input sequence xi
e with projection matrices W i

Q, W i
K , and W i

V ,
respectively. Then it calculates the self-attention scores and produces the output sequence through
the projection matrix W i

O as:

xj = Attention(xi
qW

i,j
Q , xi

kW
i,j
K , xi

vW
i,j
V ), j = 1, 2, ...,m (1)

xi+1
e = MSA(xi

q, x
i
k, x

i
v) = Concat(x1, ..., xm)W i

O (2)

where Attention(Q,K, V ) = QKT

√
D

V , m is the number of attention heads, xj is the output of the
jth head.

Existing prompt-based CL methods generally adopt two techniques: prompt tuning Lester et al.
(2021) and prefix tuning Li & Liang (2021). Prompt tuning appends learnable tokens to the sequence
xi
e before it proceeds to the next MSA layer, whereas prefix tuning involves appending them to the

xi
k and xi

v sequences.
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Table 1: Performance of supervised and self-supervised pretrained ViT models on Split CIFAR-100
and Split Aircrafts datasets, both datasets were splitted into ten incremental tasks.

Split CIFAR-100
(In-distribution)

Split Aircrafts
(Out-of-distribution)

ViT-B-16
supervised pretrained

on ImageNet-21K

Task ID Final Label Proportion(%) Task ID Final Label Proportion(%)
78.68 27.57
1.89 12.90

14.28 17.49
5.15 42.04

ViT-B-16-DINO
self-supervised pretrained

on ImageNet-1K

Task ID Final Label Proportion(%) Task ID Final Label Proportion(%)
79.42 49.27
2.51 9.93

10.68 15.27
7.39 25.08

Table 2: Various combinations and effects between the first-stage model and second-stage model,
experiments were conducted on Split Aircrafts, splitted into ten incremental tasks.

First-stage model Second-stage model Task accuracy Final accuracy
ViT-B-16-IN21K ViT-B-16-IN21K 40.47 45.06

ViT-B-14-DINOv2 ViT-B-16-IN21K 73.39 58.18

As illustrated in Figure 1, some methods Wang et al. (2022a;b); Smith et al. (2023) calculate the
cosine similarity between uninstructed features and keys, implicitly treating the matching results
as inferred task identity information (in gray). In contrast, a recent state-of-the-art method, HiDe-
Prompt Wang et al. (2024b), trains a model and explicitly uses its prediction as task identity to select
prompts (in beige). For prompt-based CL methods, an accurate task identity helps integrate relevant
information for correct predictions, while an incorrect identity typically leads to misclassification
by incorporating wrong information. To address the limitations of current approaches, we propose a
novel framework (in brown) that incorporates self-distillation loss and a threshold filtering strategy.

4 EMPIRICAL ANALYSIS

We will investigate two key questions regarding prompt-based CL methods: 1. How do the super-
vised pretrained and self-supervised models perform under ID and OOD scenarios? 2. Does the
first-stage model, which infers task identity, need to be identical to the second-stage model, which
incorporates prompts and provides the final predictions? Our experiments are conducted using the
HiDe-Prompt method Wang et al. (2024a), which has shown impressive performance across various
benchmarks. We will present our observations based on these findings.

Self-supervised models excel under OOD scenarios. To demonstrate the performance of prompt-
based CL methods across different distribution scenarios, we conducted a comparison of two ViT-
B-16 models: one supervised pretrained on ImageNet-21K and the other self-supervised pretrained
on ImageNet-1K using DINO Caron et al. (2021), across in-distribution dataset Split CIFAR-100
and out-of-distribution dataset Split Aircrafts. The results shown in Table 1 indicate that both mod-
els effectively utilized task identity under ID scenario, rarely making errors when the task identity
is correct, with incorrect predictions on only 1.89% and 2.51% of test samples under this condi-
tion. The proportion of correctly predicted samples was as high as 78.68% and 79.42%. Under
OOD scenarios, these two models exhibit significantly different performance. Specifically, the self-
supervised model was much better at leveraging the task identity, with 21.7% higher than supervised
pretrained model when both the task identity and the final prediction were correct.

Observation 1: Under ID scenarios, both self-supervised and supervised pretrained models perform
similarly, rarely making errors. However, under OOD scenarios, self-supervised models signifi-
cantly outperform supervised ones in leveraging task identity.

Task identity provision is model-agnostic. Previous methods typically restricted the first-stage
model and second-stage model to use the same architecture and pretrained weights. The accuracy
of the task identity provided by the first-stage model is critical for the subsequent task-specific

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

prompt selection by the second-stage model. If the first-stage task predictions are unreliable, it will
inevitably affect the final performance outputed from the second-stage model. The results presented
in Table 2 for the Aircraft dataset indicate that when using the same model, ViT-B-16-IN21K, for
both the first and second stages, the final accuracy reaches 45.06%. we then replaced the first-stage
model with ViT-B-14-DINOv2, which significantly improved task accuracy by 32.92%, leading to
an overall gain of 13.12% in final accuracy.

Observation 2: Providing task identity is a model-agnostic behavior, a reliable task identity benefits
the second stage without requiring identical architecture for both stages.

5 METHOD

5.1 BOOSTING CLASS INCREMENTAL LEARNING VIA SELF-SUPERVISED LEARNING

Our empirical analysis in Section 4 suggests that the first-stage and second-stage models can
be trained using different architectures. We propose incorporating self-supervised learning into
our framework from two angles: utilizing self-supervised pretrained models and applying self-
supervised loss to enhance task identity prediction.

5.1.1 WITH SELF-SUPERVISED PRETRAINED MODEL

Supervised pretrain often leads to neural collapse Galanti et al. (2021); Papyan et al. (2020); Fang
et al. (2021); Zhai et al. (2023b), where features of the same class cluster around their mean, making
it hard to generalize to OOD scenarios where more fine-grained discriminative ability is required.
Self-supervised pretrain avoids this issue by learning general representations capable of generalizing
to novel or unseen data, thereby enhancing OOD performance, which is especially advantageous for
CL. Considering the high transferability of features in self-supervised pretrained models and their
inherent advantages under OOD scenarios, using them as the first-stage models to provide task
identity proves more effective. Specifically, in this work, we explore models that have been self-
supervised pretrained at different scales with various pretrain methods, including iBOT Zhou et al.
(2021) pretrained on ImageNet-21K/1K, DINO Caron et al. (2021) and MoCo v3 Chen et al. (2021)
pre-trained on ImageNet-1K, and DINOv2 Oquab et al. (2023) pre-trained on LVD-142M.

5.1.2 WITH SELF-SUPERVISED LOSS

We incorporated self-distillation loss into our approach, a self-supervised learning objective derived
from the DINO (self-distillation with no labels) framework Caron et al. (2021), which is effective
in enhancing feature extraction capabilities of vision transformers. During training the first-stage
model, we consider the current network as fθs and replicate it as the teacher network, denoted as
fθt , parameterized by θs and θt respectively. Initially, we generate a set of augmented views V from
the input image x, including two global views {xg

1, x
g
2} and several local views. Then all views are

fed into the student network, while the global views are input only into the teacher network. Cross-
entropy loss is minimized between the outputs of the two networks to match their distributions:

min
θs

∑
x∈{x1

g,x
2
g}

∑
x′∈V
x′ ̸=x

H(Pt(x), Ps(x
′)) (3)

Where H(a, b) = −a log b, P (x) represents the network’s probability distribution over K dimen-
sions, calculated by the following equation:

P (x)(i) =
exp(fθ(x)

(i)/τ)∑K
k=1 exp(fθ(x)

(k)/τ)
(4)

with fθs , τs for student network, and fθt , τt for teacher network. The parameters of the student
network θs are optimized via stochastic gradient descent during the minimization of 3, while the
parameters of the teacher network θt are updated through the EMA (Exponential Moving Average)
algorithm Morales-Brotons et al. (2024).

Applying self-distillation loss (SDL) for CL on downstream data streams offers several advan-
tages. Firstly, the computation of self-distillation loss effectively acts like traditional knowledge
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distillation-based regularization methods for preventing forgetting, but it relaxes constraints to main-
tain model plasticity. By promoting consistency between multiple views (global and local) of the
same input, it facilitates the extraction of generalized features from images. The learned features are
task-invariant, making these generalized features favorable for the model’s improved understanding
and adaptation to new and unseen data, which is crucial for CL. Secondly, by updating the teacher
network with EMA, which is more stable and updates slowly, old knowledge is preserved. By con-
tinuously distilling knowledge from the teacher to the student and utilizing different views of the
data, SDL can potentially mitigate catastrophic forgetting.

5.2 NOT ALL DATA NEED TWO-STAGE INFERENCE

Our analysis in Section 4 reveals a key issue with the existing prompt-based CL methods: even if
the first-stage model correctly predicts the class label, the second-stage model may still misclassify
the category, despite receiving the correct task identity. This situation occurs frequently in OOD
scenarios, with an occurrence rate of around 10%. To mitigate this issue, we propose a simple yet
effective threshold filtering strategy to determine which samples require two-stage inference and
which do not. We utilize β distribution for modeling confidence scores and choosing the lowest
boundary of a specific highest density interval as the decision threshold. Predictions from the first-
stage model are used directly for samples above this threshold, while samples below this threshold
are fed to the second-stage model. Specially, given an input image x, the output probability for class
i of this image is Pi = ezi∑

je
zj

, where zi is its logits, j is the number of classes encountered so

far. The predicted class ŷ = argmax
i

Pi is the class with the highest probability. The confidence

c = max
i

Pi that the model assigns to x is the probability of the predicted class.

Assume that the confidence score follows β distribution, then the prior distribution can be repre-
sented as: θ ∼ Beta(α0, β0), where α0 and β0 are two parameters of the β distribution, which
control the shape of the distribution.

For n observed confidence scores from all test samples so far c1, c2, ..., cn, assuming they are also
sampled from β distribution, the likelihood function is:

L(θ) =

n∏
i=1

cα−1
i · (1− ci)

β−1 (5)

According to Bayes theorem, combining the prior distribution and the likelihood function, the pos-
terior distribution is:

P (θ|c1, . . . , cn) ∝

(
n∏

i=1

cα−1
i · (1− ci)

β−1

)
· Beta(α0, β0) (6)

Since both the prior and likelihood functions are β distributions, the posterior distribution is still β
distribution, and the updated parameters are:

αpost = α0 +

n∑
i=1

ci, βpost = β0 + n−
n∑

i=1

ci (7)

θpost ∼ Beta(αpost, βpost) (8)

After obtaining the posterior distribution, the confidence threshold can be determined by calculating
the quantile of the posterior distribution. For example, the lower limit of the d% highest density
interval (HDI) is selected as the confidence threshold for classification:

τ = Beta−1 (d|αpost, βpost) (9)

where Beta−1 represents the quantile function (or inverse cumulative distribution function) of the
β distribution.

For samples that exceed the threshold τ , we consider that the predictions from the first-stage model
are reliable and adopt them. For samples below τ , we fed them to the second-stage model for a
secondary inference phase, guided by the inferred task identity.

6
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Table 3: Performance comparison of various methods on Split Aircrafts and Split Cars-196 Datasets,
we present FAA, CAA, and FFM, each metric with mean and standard deviation over three different
random seeds. The best outcome is marked in bold, with the second-best underlined. All experi-
mental results for compared methods were reproduced by ourselves.

Split Aircrafts Split Cars-196
PTM (A-B) Method

FAA (↑) CAA (↑) FFM (↓) FAA (↑) CAA (↑) FFM (↓)

Sup-21K∗

L2P 22.76 ±0.66 35.99 ±1.18 21.22 ±3.79 34.49 ±0.19 45.97 ±1.40 12.39 ±2.18
DualPrompt 23.82 ±1.76 35.88 ±1.85 16.76 ±1.87 43.21 ±0.50 51.72 ±1.46 12.00 ±1.76

CODA-Prompt 19.02 ±0.99 35.69 ±1.14 34.04 ±4.26 33.12 ±0.13 50.16 ±1.05 34.54 ±2.19
HiDe-Prompt 44.21 ±0.79 52.75 ±1.78 10.04 ±0.54 49.75 ±0.18 58.47 ±0.87 7.80 ±0.22

Ours 47.47 ±0.34 55.45 ±1.75 7.77 ±0.44 54.90 ±0.10 62.23 ±1.15 7.59 ±0.39

iBOT-21K

L2P 33.26 ±2.82 50.62 ±2.37 15.74 ±2.28 49.42 ±0.86 61.02 ±1.08 10.29 ±0.46
DualPrompt 30.77 ±2.59 46.28 ±2.25 23.21 ±4.31 46.91 ±0.80 57.92 ±1.17 13.25 ±0.61

CODA-Prompt 36.52 ±1.04 53.43 ±1.44 21.05 ±2.72 60.28 ±0.43 70.10 ±0.18 11.89 ±0.43
HiDe-Prompt 60.24 ±1.52 63.44 ±3.70 4.45 ±0.16 68.23 ±0.50 71.67 ±1.37 3.07 ±0.14

Ours 66.58 ±0.77 71.36 ±1.59 5.15 ±0.52 71.51 ±0.30 75.15 ±0.80 5.03 ±0.13

iBOT-1K

L2P 34.82 ±2.33 51.06 ±1.87 17.55 ±1.18 52.40 ±0.53 62.90 ±1.20 10.33 ±0.99
DualPrompt 34.25 ±1.79 49.27 ±2.37 21.67 ±2.70 53.10 ±0.62 64.75 ±0.84 14.88 ±0.54

CODA-Prompt 39.24 ±0.60 56.10 ±1.65 18.56 ±2.32 62.11 ±1.09 72.48 ±0.77 10.74 ±0.86
HiDe-Prompt 61.37 ±1.68 64.14 ±3.57 4.59 ±0.54 70.67 ±0.11 73.91 ±1.16 3.95 ±0.25

Ours 65.54 ±0.52 70.34 ±1.55 5.82 ±0.22 74.94 ±0.04 78.58 ±0.76 4.87 ±0.52

DINO-1K

L2P 36.52 ±0.97 50.08 ±1.42 17.85 ±3.34 51.68 ±0.69 62.36 ±0.63 11.02 ±1.97
DualPrompt 36.05 ±2.46 52.15 ±2.81 18.46 ±2.68 52.97 ±0.83 64.21 ±1.25 11.47 ±1.32

CODA-Prompt 42.71 ±1.42 57.92 ±0.82 17.66 ±0.93 62.43 ±0.74 72.13 ±0.51 10.29 ±0.24
HiDe-Prompt 62.14 ±1.44 65.55 ±3.55 4.49 ±0.49 71.93 ±0.08 75.57 ±0.91 3.82 ±0.22

Ours 66.12 ±0.63 71.11 ±1.81 5.88 ±0.34 75.39 ±0.11 78.95 ±0.79 4.61 ±0.17

MoCo-1K

L2P 26.84 ±1.07 43.69 ±2.25 9.08 ±1.47 39.10 ±0.39 54.22 ±0.81 3.22 ±0.15
DualPrompt 27.68 ±2.01 43.55 ±2.03 9.58 ±2.90 41.73 ±0.80 56.68 ±1.00 3.29 ±0.38

CODA-Prompt 35.75 ±1.56 52.11 ±1.90 20.12 ±2.78 54.06 ±0.21 65.25 ±1.17 16.57 ±0.51
HiDe-Prompt 53.05 ±0.89 58.74 ±2.79 4.89 ±0.20 66.09 ±0.36 70.75 ±1.30 3.87 ±0.11

Ours 57.52 ±0.52 63.75 ±1.80 7.12 ±0.29 68.64 ±0.14 72.92 ±1.11 5.03 ±0.45

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. For evaluating the CIL performance of different methods under OOD scenarios, we chose
Split Aircrafts Maji et al. (2013) and Split Cars-196 Krause et al. (2013) datasets.Additionally, we
also conducted experiments on CIFAR-100 Krizhevsky et al. (2009), ImageNet-R Hendrycks et al.
(2021), and CUB-200 Wah et al. (2011); the first two are subclasses of ImageNet, whereas CUB-200
has 52 overlapping categories as ImageNet Ostapenko et al. (2022); Wen et al. (2022). Cars-196 was
divided into 7 tasks, all other datasets were divided into 10 tasks each. Detailed descriptions of these
datasets are available in the appendix.

Implementation Details. Following Wang et al. (2024a), we used ViT-Base model with a patch size
of 16 (except for DINOv2 Oquab et al. (2023), which is 14), set the projection dimension to 2048
for computing SDL, and used d=95 to determine the threshold. The weight of SDL was set to 0.1,
with all other training hyperparameters consistent with those in Wang et al. (2024a). Following the
evaluation metrics in Wang et al. (2024a), we reported the final average accuracy (FAA) of all seen
classes, the average accuracy over tasks refereed as cumulative average accuracy (CAA), and final
forgetting measure (FFM) of all previous tasks. The models are either supervised pretrained Ridnik
et al. (2021) or self-supervised pretrained Zhou et al. (2021); Caron et al. (2021); Chen et al. (2021)
on ImageNet-21K/1K, aligning with the benchmarks for a fair comparison. In extended experiments,
we also utilized DINOv2 Oquab et al. (2023) pretrained on LVD-142M.
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Table 4: FAA(↑) comparison for various methods on three different datasets.

Method Split ImageNet-R Split CUB-200
Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K

L2P 59.61 61.23 64.16 61.01 55.01 73.92 52.57 57.55 53.79 52.94
DualPrompt 65.83 60.50 64.81 60.75 54.06 74.55 48.09 56.62 55.75 52.04

CODA-Prompt 59.93 66.72 69.00 63.60 61.50 72.25 54.73 59.96 60.01 45.79
HiDe-Prompt 73.26 74.73 76.82 73.90 67.58 83.26 70.73 77.24 76.75 71.82

Ours 72.20 75.07 76.29 73.58 68.55 83.59 71.92 77.94 76.53 72.59

Method Split CIFAR-100
Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K

L2P 83.43 72.09 75.59 79.79 77.32
DualPrompt 87.98 73.65 77.49 78.10 73.80

CODA-Prompt 81.30 77.25 78.79 81.48 79.56
HiDe-Prompt 92.96 91.92 92.04 90.10 90.57

Ours 92.35 92.49 92.38 90.86 90.30

6.2 COMPARISON TO STATE-OF-THE-ART METHODS

Results on OOD scenarios. Table 3 displays the overall results of our method compared to four
popular prompt-based CL methods as we mentioned above on two OOD datastets: the Split Aircrafts
and Split Cars-196. For all approaches2, self-supervised pretrained models (without ∗) demonstrate
markedly better performance than supervised pretrained models (with ∗), consistent with our ob-
servations that self-supervised pretrained models have significant advantages under OOD scenarios.
Among all the methods, the proposed method demonstrated significant improvement over all four
compared methods across all models For supervised pretrained models, we achieved an FAA in-
crease of 3.26% and a CAA increase of 2.70% on Split Aircrafts, with improvements of 5.15% and
3.76% respectively on Split Cars-196, while also achieving the lowest forgetting on both datasets.
Similar improvements were observed for self-supervised models, notably a 6.34% FAA and 7.92%
CAA boost for the iBOT model pretrained on ImageNet-21K. The improvements in CAA highlight
our method’s consistent performance improvements across all stages of incremental learning, rather
than only after all tasks have been trained. Additionally, our method exhibits the lowest standard
deviation across almost all metrics, further indicating the stability of our approach. Compared to
HiDe-Prompt, our method exhibited slightly higher forgetting on self-supervised models.

Results on non-OOD scenarios. We also evaluated our proposed method on Split ImageNet-R,
CIFAR-100, and CUB-200, which are commonly assessed in previous methods. The overall results
are shown in Table 4. We achieved improvements of 0.55% and 0.16% over the SOTA method
across five different models on two ID datasets Split CUB-200 and Split CIFAR-100, respectively.
For Split ImageNet-R, we observed certain improvements on two self-supervised pretrained models
iBOT-21K and MoCo-1K, while experiencing slight declines on other models. In summary, although
existing methods already perform excellently under ID scenarios, our method can still achieve cer-
tain improvements. However, as we previously mentioned, our method shows even greater advan-
tages under OOD scenarios.

6.3 FURTHER ANALYSIS

Impact of pretrain data scale. In analyzing the effect of the scale of pretrain data, results in
Table 5 present the final average accuracy (FAA) provided by the first-stage model and second-
stage model across different data scales. We found that, in the first stage, supervised pretrained
model significantly underperforming all self-supervised models on Split CIFAR-100 and falling far
behind on Split Aircrafts, its strength lies in the second stage under ID scenarios (Split CIFAR-100),
where it achieves a 12.94% improvement over the first stage—the highest among all models. For
self-supervised pretrained models, except for MoCo-1K on Split Aircrafts, other models pretrained
on ImageNet-1K exhibit comparable performance in both stages. With increased scale of pretrain
data, the first-stage performance improves notably, while the improvement from the second stage
over the first stage lessens. For DINOv2 with the largest scale of pretrain data, the second stage’s

2We denote the supervised pretrained model as ∗, where ‘Sup’ stands for ‘supervised’ and ‘21K’ refers to
the ImageNet-21K dataset. The other four models are self-supervised, labeled in the format ‘A-B’, with A
representing the pretrain method and B the dataset.
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Table 5: Performance comparison across models on Split CIFAR-100 and Split Aircrafts datasets.

Pretrain
method

Pretrain
data

Split CIFAR-100 Split Aircrafts

first-stage
FAA

second-stage
FAA

first-stage
FAA

second-stage
FAA

Supervised - ImageNet-21K 79.41 92.35 42.42 47.37

Self-supervised

MoCoV3
ImageNet-1K

81.33 90.30 53.23 58.18
DINO 82.28 90.86 61.12 67.36
iBOT 83.39 92.38 60.72 66.49

iBOT ImageNet-21K 85.18 92.49 63.37 68.08
DINOv2 LVD142M 88.67 92.51 73.39 75.46

Table 6: The performance on Split CIFAR-100 and Aircrafts of different methods employing diverse
combinations of the first-stage model and second-stage model, compared to our proposed method.

Dataset First-stage model Second-stage model L2P Dual HiDe Ours

Split CIFAR-100
Sup-21K

Sup-21K
83.43 87.98 92.96 92.35

DINO-1K 81.83 87.77 93.01 92.53
DINOv2-LVD142M 82.15 88.09 93.88 94.18

Split Aircrafts
Sup-21K

Sup-21K
24.07 24.75 45.06 47.37

DINO-1K 25.26 28.30 53.29 61.06
DINOv2-LVD142M 25.56 29.43 58.18 70.01

improvement over the first on Split CIFAR-100 is only 3.84%, and the relative improvement on Split
Aircrafts is merely 2.07% (for comparison, although not shown, it is only 0.33% on HiDe-Prompt).

Combination of different models. We explored different combinations of first-stage and second-
stage models on Split CIFAR-100 and Split Aircrafts datasets, with results shown in Table 6. Ex-
isting methods that often use identical architectures and weights for both models are outlined in
the first row. For Split Aircrafts, by replacing the first-stage model with self-supervised pretrained
models (DINO-1K and DINOv2-LVD142M), we observed significant improvements both in ex-
plicit task identity prediction methods (HiDe-Prompt and ours) and in implicit task identity usage
methods like L2P and DualPrompt, which rely on matching results between pretrained features and
learnable keys. This indicates that supervised pretrained models might lack sufficient capability
to encode more fine-grained features under OOD scenarios, highlighting the necessity of employ-
ing self-supervised pretrained models. For our method, we achieved substantial improvements by
enhancing the accuracy of task identity and filtering first-stage predictions. On Split CIFAR-100,
previous methods that implicitly infer task identity experienced a slight decrease when the first-stage
model was replaced with a self-supervised model, except for a modest increase when using DINOv2
with DualPrompt. However, explicit methods continue to show significant enhancements, particu-
larly when applying DINOv2 to our method. Combining the high first-stage accuracy of DINOv2
with the extremely high efficacy of the supervised pretrained model in the second stage, we achieved
an impressive accuracy of 94.18%. We show more results from different model combinations in Ta-
ble 9, further analysis can be found in the appendix.

Class similarity for different models. Following the metric proposed in Ostapenko et al. (2022),
we assess the discriminative capabilities of different models across various scenarios by utilizing
class similarity S, defined as the average of pairwise similarities among the c classes in a given
dataset as follows:

S =
1

T

c∑
i=1

c∑
j=i+1

cos(pi, pj) (10)

Where T is the number of possible pairs of classes, cos is the cosine similarity function, pi is the
mean vector of extracted features belong to class i. On one hand, S reflects the difficulty of classifi-
cation on that dataset; the lower the similarity, the more orthogonal the features, and consequently,
the easier the classification. On the other hand, this metric can also be used to indicate the extent to
which the pretrained model leaks information about downstream data.

The heatmaps of the similarity matrices between classes are shown in Figure 3. The specific values
for S are in Table 8, which can be found in the appendix. The results indicate that class similarity S

9
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CIFAR-100

Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K

Aircrafts

Figure 3: Class similarity heatmaps for different models on CIFAR-100 (top row) and Aircrafts
(bottom row) datasets. Each heatmap represents the pairwise class similarity matrix, with the color
scale indicating similarity values. The lower the feature similarity indicates more orthogonal features
and lower classification difficulty. The higher suggests that the downstream dataset is more out-of-
distribution compared to the pretrained data.

Table 7: Ablation studies of our proposed method, we present FAA(↑) for comparison.

Method Split Aircrafts Split Cars-196
Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K

HiDe-Prompt 45.06 63.19 64.72 64.99 54.76 49.47 68.86 70.80 71.86 66.56
+SDL 46.09 64.39 64.51 66.82 56.41 51.47 70.07 73.85 74.43 67.74

+threshold 47.37 68.08 66.49 67.36 58.18 54.72 72.08 74.88 75.49 68.83

on CIFAR-100 is relatively low across all models, suggesting more orthogonal features and easier
classification. This is particularly obvious in Sup-21K, which shows a similarity as low as 0.228. As
all categories of CIFAR-100 are included in ImageNet Wen et al. (2022), the low similarity observed
in supervised pretrained models on this dataset is expected. On the contrast, these models exhibit
relatively higher class similarity on Aircrafts, despite the category “aircraft” being included in
ImageNet. Nonetheless, accurately classifying specific aircraft types within this fine-grained dataset
remains challenging for the models.

6.4 ABLATION STUDY

We conducted ablation studies to validate the effectiveness of each component of our proposed
method, with the results shown in Table 7. Both modules consistently improved performance across
different models. Specifically, on Split Aircrafts, SDL improved performance in all models except
for a slight decrease in iBOT-1K, while our proposed threshold filtering strategy provided further
enhancements. On Split Cars-196, both modules showed stable improvements across all models.

7 CONCLUSIONS

In this work, we revisited existed prompt-based CL methods through comprehensive analysis.
Through empirical analysis, we revealed several limitations of existing methods. To overcome these
limitations, we significantly boosted the performance of various pretrained models under OOD sce-
narios by introducing self-supervised learning objectives in the first stage and proposing a simple
threshold filtering strategy. Moreover, we explored the efficiency of self-supervised pretrained mod-
els in providing task identities, thereby achieving further improvements and contributing to estab-
lishing a more unified framework for these approaches.

Limitations. Although our proposed method shows significant improvement under OOD scenarios,
the gains under ID scenarios are relatively less. Additionally, even though we have overcome the
limitations of previous methods—allowing the first-stage model in our framework to be any archi-
tecture (ViT, CNN, etc.), the second-stage model still relies on the ViT structure to integrate prompts
and generate instructed features for prediction.
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A APPENDIX

A.1 CL DATASETS

Aircrafts includes 100 different categories, each representing a specific type of aircraft. It contains
a total of 6667 training samples and 3333 testing samples.

Cars-196 comprises 196 distinct categories, with each category corresponding to a specific type of
car. The dataset consists of 8144 training images and 8041 test images.

CIFAR-100 comprises 100 categories, divided into 20 superclasses, each containing 5 fine-grained
categories. Each category consists of 600 images of size 32x32, with 500 designated for the training
set and 100 for the testing set.

ImageNet-R consists of 200 subclasses extracted from ImageNet, each containing challenging or
stylistically recollected samples. The dataset includes a total of 30000 samples without a standard-
ized split between training and testing sets. Typically, previous methods Smith et al. (2023); Wang
et al. (2024a) assign 80% of the samples (24000) for training and the remaining 20% (6000) for
testing.

CUB-200-2011 comprises 200 distinct categories of birds, featuring 5994 training samples and 5794
testing samples.

A.2 CLASS SIMILARITY OF DIFFERENT MODELS

Table 8: Average class similarity for different models on testsets of CIFAR-100 and Aircrafts.

Sup-21K iBOT-21K iBOT-1K DINO-1K MoCo-1K

CIFAR-100 0.228 0.702 0.649 0.655 0.775
Aircrafts 0.782 0.905 0.923 0.923 0.946

A.3 MORE EXPERIMENTS FOR DIFFERENT COMBINATIONS OF TWO-STAGE MODELS

We display more experimental results of different combinations of first-stage and second-stage mod-
els in Table 9. Here, DINOv2-LVD142M is consistently used as the first-stage model, while various
self-supervised pretrained models are employed for the second stage. Our approach achieves sub-
stantial improvements over SOTA methods under both ID and OOD scenarios. Specifically, on
Split CIFAR-100 (ID scenario), we achieve an average improvement of 0.94% over the other four
self-supervised models besides DINOv2-LVD142M, with all results outperforming the case where
DINOv2-LVD142M is used in both stages. This breaks the limitation discussed in our analysis
in Table 5 regarding the relatively limited second-stage improvement, highlighting the superiority
of our method. For Split Aircrafts (OOD scenario), we achieve significant gains in all situations,
with an average improvement of 6.01% across five models. Particularly, the final performance on
iBOT-1k and iBOT-21k surpasses that of using DINOv2-LVD142M in both stages.

Table 9: The performance on Split CIFAR-100 and Aircrafts of different methods employing diverse
combinations of the first-stage model and second-stage model, compared to our proposed method.

dataset first-stage model second-stage model L2P Dual HiDe Ours

Split CIFAR-100 DINOv2-LVD142M

DINOv2-LVD142M 85.60 85.84 92.54 92.51
MoCo-1K 75.28 78.00 91.81 93.06
DINO-1K 72.45 73.20 91.69 92.77
iBOT-1K 75.92 74.21 92.92 93.68

iBOT-21K 78.68 76.76 93.13 93.80

Split Aircrafts DINOv2-LVD142M

DINOv2-LVD142M 33.07 29.06 72.61 75.46
MoCo-1K 29.40 32.46 66.23 73.70
DINO-1K 36.84 38.67 69.29 75.95
iBOT-1K 38.29 39.54 70.55 75.62

iBOT-21K 37.21 35.44 68.18 76.16
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A.4 PREDICTION CONFIDENCE HISTOGRAMS OF DIFFERENT MODELS

Figure 4 illustrates the prediction confidence histograms of five different models on the test sets
of CIFAR-100 and Aircrafts after the first stage of training. Red indicates incorrect classifications,
and blue indicates correct classifications. The x-axis represents prediction confidence, and the y-axis
represents the number of samples. It is evident that on CIFAR-100, all models exhibit very high con-
fidence for correctly classified samples, whereas misclassified samples have generally lower confi-
dence. Under OOD scenario with Split Aircrafts, supervised pretrained models show a significantly
smaller number of correctly predicted samples with high confidence compared to self-supervised
pretrained models. For incorrectly predicted samples, self-supervised pretrained models not only
have generally lower confidence but also significantly fewer such samples.
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Figure 4: Confidence histograms on two datasets.
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