
Grammars of Formal Uncertainty:
When to Trust LLMs in Automated Reasoning Tasks

Debargha Ganguly1, Vikash Singh1, Sreehari Sankar1, Biyao Zhang1, Xuecen Zhang1,
Srinivasan Iyengar2, Xiaotian Han1, Amit Sharma3, Shivkumar Kalyanaraman2, Vipin Chaudhary1

1Case Western Reserve University 2Microsoft Corporation 3Microsoft Research
{debargha,vikash,sreehari,bxz297,xxz1037,xhan,vipin}@case.edu

{sriyengar,amshar,shkalya}@microsoft.com
https://github.com/DebarghaG/grammars-formal-uncertainty (Quantify uncertainty)

https://github.com/DebarghaG/proofofthought (Auto formalization library)

Abstract

Large language models (LLMs) show remarkable promise for democratizing automated
reasoning by generating formal specifications. However, a fundamental tension exists:
LLMs are probabilistic, while formal verification demands deterministic guarantees.
This paper addresses this epistemological gap by comprehensively investigating failure
modes and uncertainty quantification (UQ) in LLM-generated formal artifacts. Our
systematic evaluation of five frontier LLMs reveals Satisfiability Modulo Theories
(SMT) based autoformalization’s domain-specific impact on accuracy (from +34.8%
on logical tasks to -44.5% on factual ones), with known UQ techniques like the entropy
of token probabilities failing to identify these errors. We introduce a probabilistic
context-free grammar (PCFG) framework to model LLM outputs, yielding a refined
uncertainty taxonomy. We find uncertainty signals are task-dependent (e.g., grammar
entropy for logic, AUROC>0.93). Finally, a lightweight fusion of these signals enables
selective verification, drastically reducing errors (14-100%) with minimal abstention,
transforming LLM-driven formalization into a reliable engineering discipline.

1 Introduction

Formal methods offer robust mathematical guarantees for system reliability [Huth and Ryan, 2004], but
their widespread adoption is impeded by high expertise and labor demands, traditionally limiting their
application to safety-critical domains where failures have catastrophic consequences [Clarke et al., 2018,
Woodcock et al., 2009]. Concurrently, Large Language Models (LLMs) have emerged with a remarkable
ability to generate formal artifacts such as code, proofs, and specifications [Brown et al., 2020, Chen
et al., 2021, Jiang et al., 2023a], potentially democratizing formal methods [Hou et al., 2023] and finding
new roles in formally correct reasoning and LLM verification [Ganguly et al., 2024, Pan et al., 2023].
However, these two approaches embody fundamentally different epistemological paradigms. Formal
methods are rooted in deterministic logical calculi, where conclusions derive necessarily from premises
via unambiguous inference rules. LLMs, in contrast, operate probabilistically, representing knowledge as
distributions over tokens where multiple, even contradictory, outputs can possess non-zero probability [Wei
et al., 2022a]. This inherent tension presents a core challenge: how can we harness the generative power of
LLMs for formal reasoning while upholding the rigorous guarantees that define formal verification’s value?

The central thesis of this paper is that the inherent probabilistic uncertainty in LLM outputs for formal
reasoning tasks, particularly when generating formal artifacts like SMT-LIB programs, is not a mere
nuisance but a valuable source of information for guiding verification. Existing methods often ignore
this by selecting only the highest-probability output [Chen et al., 2022], a simplification that we argue
undermines the deterministic correctness guarantees required for formal verification. In contrast, we

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/DebarghaG/grammars-formal-uncertainty
https://github.com/DebarghaG/proofofthought

demonstrate how to systematically capture and analyze this output uncertainty by modeling LLM-generated
SMT-LIB program distributions with Probabilistic Context-Free Grammars (PCFGs). Instead of focusing
on a single output, we analyze ensembles of LLM-generated SMT-LIB programs, treating these as samples
from the model’s internal probability distribution [Kadavath et al., 2022], which we then approximate
by applying PCFGs to the ensembles. This approximation not only identifies the most likely solutions but
also reveals strategic diversity, common structural motifs, and areas of high model uncertainty. Deriving
a comprehensive suite of metrics from this structured, quantifiable understanding of uncertainty can then
directly guide the verification workflow—for instance, by assessing artifact reliability, focusing human
review on more ambiguous or structurally complex candidates, and improving error detection strategies.

The core contributions of this paper are:

• We systematically evaluated frontier LLMs on four formal reasoning datasets, finding SMT-based
autoformalization significantly boosted accuracy on tasks like ProofWriter (+34.8%) but harmed others
like FOLIO (-44.5%), thus quantifying LLM-driven formal verification’s failure modes. We then
demonstrate that known uncertainty quantification techniques do not capture enough information to
identify errors in FV artifacts.

• Introduce a framework using probabilistic context-free grammars to model LLM-generated SMT-LIB
programs, enabling mathematically sound uncertainty quantification and bridging neural models with
formal verification.

• Developed and evaluated 25 uncertainty metrics, revealing a refined taxonomy (epistemic-knowledge,
epistemic-procedural, recursive-complexity, capacity-limited) that offers a more nuanced understanding
of uncertainty in neurosymbolic systems than the traditional epistemic/aleatoric dichotomy.

• Demonstrated that formal reasoning uncertainty is task-dependent and introduced a lightweight,
model-agnostic fusion of these varied uncertainty signals. This approach outperforms individual
metrics, improves calibration, enables selective verification to cut error rates by 14-100% with minimal
abstention, and suggests modality-aware architectures for enhanced reliability.

2 Methodology

Generating formal artifacts using ad-hoc Domain-Specific Languages (DSLs) introduces significant
engineering friction. This friction arises from the need to redesign generators, models, and parsers for
syntax changes, and it also complicates debugging erroneous outputs (e.g. syntactically incorrect FV
artifacts). To mitigate this overhead, we adopt the stable, widely supported SMT-LIB standard as a
common intermediate representation targeting SMT solvers. In this section, we consequently present a
theoretical framework linking language models and verification to analyze LLM-generated SMT-LIB
program distributions, enabling principled uncertainty quantification.

Problem Setup: We formalize the probability space over SMT-LIB programs. Let Σ be a finite alphabet.
The set of all finite strings Σ∗ forms a measurable space (Σ∗,F), where F is the σ-algebra generated by
cylinder sets (strings sharing a common prefix w). The SMT-LIB language LSMT ⊆Σ∗, approximated by
its standard context-free grammar GSMT , is measurable in F. For a task T and an LLM with parameters
θ, the LLM induces a probability measure µT,θ on (Σ∗,F). The measure over valid SMT-LIB programs is
then the conditional measure µT,θ,SMT (A)=µT,θ(A∩LSMT)/µT,θ(LSMT) for A∈F. This definition
requires µT,θ(LSMT)>0, a reasonable assumption that is empirically validated, as LLMs are generally
trained to generate syntactically valid code and formal specifications.

Modeling Background: To model distributions over structured programs like µT,θ,SMT , we employ
Probabilistic Context-Free Grammars (PCFGs). PCFGs extend standard Context-Free Grammars (CFGs)
by associating probabilities with their production rules. Formally, a PCFG is a 5-tuple G=(V,Σ,R,S,p),
where V is a finite set of non-terminals; Σ is a finite set of terminals disjoint from V ; R⊆V ×(V ∪Σ)∗ is
a finite set of production rules; and S∈V is the start symbol, such that (V,Σ,R,S) collectively form a CFG.
The fifth component, p :R→ [0,1], is a probability function assigning a probability p(r) to each rule r∈R.
For each non-terminalA∈V , these probabilities must satisfy

∑
r∈RA

p(r)=1, whereRA denotes the set of
rules with A as their left-hand side. The probability of a derivation π that applies rules r1,...,rk in sequence
is p(π)=

∏k
i=1p(ri). Consequently, for any terminal string w∈L(G), where L(G) is the language gen-

erated by the underlying CFG, its probability under G is µG(w)=
∑

π∈Π(w)p(π)=
∑

π∈Π(w)

∏
r∈πp(r),

where Π(w) represents the set of all leftmost derivations of w from S. It is important to note that a PCFG
G defines a consistent probability measure (i.e.,

∑
w∈L(G)µG(w)=1) if and only if the spectral radius of

2

Figure 1: Empirical analysis of LLM-generated SMT-LIB formalizations for the statement “Everyone
who studies math or physics and works hard will succeed.” The figure illustrates (left) syntactic and
logical forms in SMT-LIB, (center) multiple LLM-generated formal programs and their parsed Abstract
Syntax Trees (ASTs), and (right) rule-usage statistics learned by a Probabilistic Context-Free Grammar
(PCFG). With sufficient sampling, rule-occurrence frequencies define a probability distribution from which
structural uncertainty metrics—entropy, perplexity, KL divergence, and spectral radius—are computed.
These PCFG-derived uncertainty measures correlate strongly with correctness and formalization reliability,
achieving AUROC ≈ 0.93 on ProofWriter (grammar entropy), with ensemble signals reducing 14-100%
errors through selective verification. The analysis uses only observed LLM outputs (i.e., no synthetic or
simulated data) to quantify uncertainty in formal reasoning.

its moment matrix MG is less than or equal to 1. This condition ensures that probabilities are well-defined
and sum to one across the entire language generated by G.

Note: Constrained decoding with deterministic CFGs zeroes out grammar-invalid tokens at inference to
enforce syntax (e.g., JSON/code). Unlike our PCFG-based UQ, these methods (i) ensure syntax validity
rather than quantify uncertainty among already well-formed but potentially semantically wrong SMT-LIB
outputs; and (ii) require white-box token probabilities, or modifications to the LM head, unsuited to
black-box frontier API. We analyze valid outputs without changing model internals.

Approximation: To connect the theoretical LLM distribution µT,θ,SMT with a tractable prob-
abilistic model, we estimate parameters for a PCFG. We use the SMT-LIB v2 grammar
GSMT = (VSMT , ΣSMT , RSMT , SSMT) as its structural basis. We now generate N SMT-LIB
program samples PN = {P1,...,PN} from the target LLM (parameterized by θ) and parse them using
GSMT . This yields a set of parse trees Π(PN) from the successfully parsed programs. From each parse
tree π∈Π(PN), we identify and record every applied production rule r=(A→β)∈RSMT . This record
typically includes the rule itself, its source program identifier, structural context (such as depth), and
optionally, the corresponding source text mapping for qualitative analysis. This data collection also allows
for extracting richer contextual features than those used by standard Maximum Likelihood Estimation
for estimating the rule probability function p :RSMT → [0,1] from these rule application frequencies.

Maximum Likelihood Estimation (MLE) is used to estimate rule probabilities p(r) using counts from
Π(PN). (Note that MLE itself is not an uncertainty quantification metric; rather, it is the method used
to estimate the PCFG rule probabilities from which our uncertainty metrics are subsequently calculated.)
Given total application counts C(r) for a rule r=(A→β) and C(A)=

∑
r′∈RA

C(r′) for its left-hand
side (LHS) non-terminal A (where RA={r′∈RSMT | left(r′)=A}), the MLE is its relative frequency
p̂MLE(r)=C(r)/C(A), defined if C(A)>0. If C(A)=0, rules in RA are assigned a uniform probability
1/|RA|. For independent and identically distributed (i.i.d.) samples PN from µT,θ,SMT , these estimated
probabilities p̂N(r) converge almost surely (a.s.) to p∗(r) as N→∞. The limits p∗(r) are the parameters
of the GSMT -based PCFG that is closest in Kullback-Leibler (KL) divergence to the true distribution
µT,θ,SMT (i.e., p∗ = argminpDKL(µT,θ,SMT ∥ µG(p))). For finite N , additive (Lidstone) smoothing
with βs>0 (e.g., βs=1 for Laplace smoothing) addresses problematic zero counts where C(r)=0 but
C(A)>0, yielding p̂

(βs)
N (r)=(C(r)+βs)/(C(A)+βs|RA|).

Theorem 1 (Coverage Guarantee). Let µ be a distribution on a discrete sample space Σ∗, with Shannon
entropy H(µ) = −

∑
x∈Σ∗µ(x) log2µ(x). Suppose we draw N i.i.d. samples from µ. Then, for any

measurable subset A⊆Σ∗ with µ(A)=ϵ, the probability that none of the N samples land in A is at most

exp
(
− Nϵ

2H(µ)

)
, provided N is sufficiently large. Equivalently, the probability of failing to sample at least

3

one point in every region of mass ϵ is at most exp(−Nϵ/2H(µ)). Moreover, the largest ϵ for which this

“miss probability” is itself at most ϵ satisfies ϵ= 2H(µ)

N W
(

N
2H(µ)

)
, where W(·) is the Lambert W -function.

As N grows large, ϵ ≈ 2H(µ)

N ln
(

N
2H(µ)

)
, which vanishes at rate on the order of ln(N)/N . This result

builds upon foundational principles of information theory and typical set arguments [Cover, 1999]. Proof
is provided in the appendix.

This theorem guarantees N samples can represent the LLM’s implicit uncertainty via the output distribution,
thereby providing the first formal bridge linking the sample count (N), the distribution’s Shannon entropy,
and the probabilistic bound on covering the space of possible formal programs.

Our PCFG construction and uncertainty quantification are instance-level. For each question, we generate
N=100 SMT programs and induce a question-specific PCFG from that ensemble alone. Metrics from
this PCFG (as described in next paragraphs) are then used to predict correctness for that same question.
Our method therefore naturally adapts to each reasoning problem’s unique characteristics without training.

2.1 Probabilistic Context-Free Grammar (PCFG) Derived Metrics

We derive several PCFG metrics to quantify different facets of uncertainty, using established notation
(e.g., RA for the set of rules expanding non-terminal A). These metrics can be organized into five
conceptual categories that capture complementary aspects of uncertainty in the presence of a formal
well-defined grammar for the language: (1) Static grammar structure metrics describe the grammar’s
architectural scale; (2) Information-theoretic measures quantify probabilistic uncertainty through entropy
and divergence; (3) Spectral properties characterize recursive structure and derivation complexity;
(4) Self-consistency measures assess agreement across multiple LLM generations; and (5) Ensemble
methods combine signals for robust prediction. We detail each category below.

(1) Static Metrics for Grammar Structure and Complexity Basic structural properties of the grammar
GSMT provide a foundational understanding of its scale and potential complexity. These include the
number of non-terminals (|VSMT |) and rules (|RSMT |), the average number of rules per non-terminal
(|RSMT |
|VSMT |), and the average right-hand side (RHS) length (1

|RSMT |
∑

A→β∈RSMT
|β|, where |β| denotes the

length of β). Further metrics cover the maximum branching factor (maxA∈VSMT
|RA|), and the detection

of various forms of recursion (e.g., left-recursion A→Aγ or right-recursion A→ γA). These metrics
collectively characterize the grammar’s static architecture.

Beyond static metrics, analyzing the set of all rule probabilities P={p(A→β) |A→β∈RSMT} we com-
pute descriptive statistics such as mean, median, minimum, maximum, standard deviation (σ(P)), skewness
(γ1(P)), and kurtosis (γ2(P)). These statistics characterize the shape and spread of the learned probabilities.

(2) Information-Theoretic Measures Information theory provides principled ways to measure the
uncertainty associated with probabilistic choices within the grammar. The Shannon Entropy per
Non-terminal, for each A∈VSMT , quantifies the average uncertainty (in bits) in selecting a production rule
from RA: H(A)=−

∑
A→β∈RA

p(A→β)log2p(A→β) A higher H(A) indicates greater uncertainty
or variability in the expansions of A. The Rényi Entropy per Non-terminal, Hα(A), generalizes Shannon
entropy and is parameterized by an order α≥ 0. For α ≠ 1: Hα(A)=

1
1−α log2

∑
A→β∈RA

p(A→β)α

Key special cases include Shannon entropy (H1(A)=H(A) as α→1), max-entropy (H0(A)=log2|RA|
for α=0, reflecting the number of choices), collision entropy (H2(A)=−log2

∑
A→β∈RA

p(A→β)2

for α=2, sensitive to rule choice repetition), and min-entropy (H∞(A)=−log2maxA→β∈RA
p(A→β)

for α→∞, determined by the most probable rule). Calculating Rényi entropy for different α values (e.g.,
0.5,2) provides a richer characterization of the uncertainty profile than Shannon entropy alone.

The Overall Grammar Entropy is typically defined as the weighted average of the Shannon entropies of its
non-terminals, H(A), where weights π(A) correspond to the stationary distribution or expected frequency
of non-terminal A in derivations starting from SSMT : H(G)=

∑
A∈VSMT

π(A)H(A). The frequencies
π(A) can be estimated iteratively. H(G) represents the average uncertainty per derivation step across the
entire grammar. Perplexity, PP(G), measures how well the PCFG predicts derivations and is the exponen-
tiated grammar entropy: PP(G)=2H(G). It can be interpreted as the effective average number of choices
the grammar presents at each derivation step, weighted by likelihood; lower perplexity indicates a more pre-
dictable grammar. The KL divergence, DKL(pA||UA)=log2|RA|−H(A), quantifies the inefficiency (in
bits) of assuming a uniform rule distribution (U(A→β)=1/|RA|) for a non-terminal A compared to using

4

the true PCFG probabilities (p(A→β)). The overall grammar KL divergence from uniform,DKL(G||U)=∑
A∈VSMT

π(A)DKL(pA||UA), quantifies the PCFG’s deviation from maximum uncertainty.

Finally, we hypothesize a novel composite metric, NSUI(G), for probabilistic uncertainty and structural
complexity. This metric, which ranges from 0 to 1, combines normalized grammar entropy with a
factor reflecting the grammar’s recursive structure (via its spectral radius ρ(B)). It is calculated as
NSUI(G)=Eratio×Sfactor. The entropy ratio Eratio=H(G)/Hmax(G)∈ [0,1] uses the maximum
grammar entropy Hmax(G)=

∑
A∈VSMT

π(A)log2|RA| (assuming uniform rule choices). The spectral
factor is Sfactor=ρ(B)/(1+ρ(B))∈ [0,1). The motivation was to link higher NSUI values to indicate
greater probabilistic uncertainty via structural/recursive complexity.

(3) Spectral Properties The spectral radius of the grammar’s mean matrix (often referred to as the Jacobian
matrix in this context), B∈R|VSMT |×|VSMT |, offers insights into its recursive structure and complexity.
An element Bji is the expected number of times non-terminal Aj appears on the right-hand side (RHS)
of a production chosen for Ai: Bji=

∑
Ai→β∈RAi

p(Ai→β)×count(Aj,β), where count(Aj,β) is Aj’s
occurrences in β. The spectral radius ρ(B) = max{|λ| | det(B−λI) = 0} is B’s maximum absolute
eigenvalue. Typically, ρ(B) < 1 indicates a ‘proper’ grammar with finite expected derivation lengths,
while ρ(B)≥1 suggests potentially unbounded derivations or higher complexity, contributing to structural
uncertainty. This spectral radius is also a key component of the NSUI metric (introduced later in this section).

(4) Self-Consistency (SC) metrics quantify agreement across multiple generations from the LLM. Text
SC reflects solution consistency (e.g., via majority vote) across multiple LLM textual outputs, while SMT
SC measures it (e.g., via SMT solver agreement) across diverse LLM-generated SMT-LIB programs for
the same prompt, adapting principles from [Wang et al., 2022].

(5) Ensemble Predictors We also implement four distinct ensemble predictors for enhanced uncertainty
quantification. These are: (1) Ensemble Simple, an unweighted average of a key subset of metrics; (2)
Ensemble Average, a comprehensive unweighted average of all metric scores; (3) Ensemble Weighted,
where individual metric contributions are varied based on validation performance or theoretical importance;
and (4) Ensemble ML, a meta-machine learning model (e.g., logistic regression) trained on the vector
of metric scores to predict errors. This approach aims to improve overall predictive accuracy, calibration,
and robustness by combining varied uncertainty signals.

3 Results

We have evaluated five frontier LLMs, namely o3-mini, DeepSeekR1 (with CoT enabled [Wei et al.,
2022b]), DeepSeek-v3-04-21, Gemini Flash 2.0 & Lite (non-reasoning), on four datasets which are
widely adopted reasoning tasks; StrategyQA [Geva et al., 2021], ProntoQA [Saparov and He, 2023],
ProofWriter[Tafjord et al., 2021] and FOLIO [Han et al., 2024]. Our experimental setup involves two
distinct sampling configurations: For the initial benchmarking comparison of Text versus SMT reasoning
approaches (Tab. 1), we generate N =5 samples per question. For our core uncertainty quantification
analysis (Tables 4 and 5), we generate a much larger corpus of N=100 SMT-LIB program samples per
question to induce statistically meaningful PCFGs for each reasoning instance (as detailed in Appendix A.2).
From these samples, answers were derived via: 1) Text: direct LLM output (intrinsic reasoning over text); 2)
SMT: LLM-generated SMT-LIB solved by Z3 (autoformalization). Notably, SMT-LIB generation required
significantly less effort (more syntactically valid programs in fewer attempts) and used dramatically fewer
tokens per prompt compared to [Ganguly et al., 2024], while also offering multi-solver interoperability.

3.1 Benchmarking SMT based Formal Reasoning

Table 1: Benchmarking accuracy of frontier LLMs using direct text output (Text) versus SMT-LIB
generation solved by Z3 (SMT). No approach universally outperforms the other across all models
and datasets. Finer grained results are available in the supplementary material.

ACCURACY StrategyQA ProntoQA ProofWriter FOLIO
Text SMT δ Text SMT δ Text SMT δ Text SMT δ

o3-mini 0.7828 0.7980 -0.0152 1.0000 0.9980 0.0020 0.8893 0.9418 -0.0524 0.9450 0.5000 0.4450
DeepSeekv3 0.8292 0.6720 0.1572 1.0000 0.4501 0.5499 0.8057 0.5800 0.2257 0.9333 0.5961 0.3372
DeepSeek R1 0.8580 0.7760 0.0820 0.9939 0.7440 0.2499 0.9423 0.4935 0.4488 0.9252 0.5200 0.4052
Flash 2.0 0.7188 0.5360 0.1828 0.9820 0.9000 0.0820 0.4900 0.6660 -0.1760 0.9010 0.5625 0.3385
Flash 2.0 Lite 0.6760 0.4500 0.2260 0.9980 0.9980 0.0000 0.4060 0.7540 -0.3480 0.9017 0.7321 0.1696

5

On ProofWriter, a task closely aligned with symbolic logic, SMT-based methods yielded substantial
improvements for three models, particularly benefiting those that struggle with direct formal reasoning.
Conversely, on ProntoQA and FOLIO, direct textual reasoning consistently outperformed SMT across
most models, suggesting that for these QA tasks, the overhead introduced during autoformalization
outweighs potential benefits. StrategyQA showed mixed results, with o3-mini slightly benefiting from
SMT while other models performed better with direct reasoning.

The SMT approach systematically alters error profiles compared to direct reasoning, often trading precision
for recall. For struggling models, autoformalization often increases recall at the cost of precision, yielding
more formal answers but also more false positives, a tendency consistent with LLMs’ documented
proclivity toward proving satisfiability in [Ganguly et al., 2024]. On ProofWriter, where SMT generally
helped, performance gains stemmed from simultaneous improvements in both precision and recall,
indicating the approach successfully addressed fundamental reasoning errors. Conversely, on datasets where
direct reasoning excelled, SMT’s underperformance typically manifested as reduced recall, suggesting
failures in the formalization process resulted in missed correct answers.

Our results reveal predominantly epistemic uncertainty in both reasoning approaches. Direct reasoning fails
through knowledge gaps and procedural errors, while SMT introduces formalization errors when translating
to formal specifications. This explains task-dependent performance: SMT benefits tasks with explicit
premises (ProofWriter) by isolating deductive reasoning, while knowledge-intensive tasks (StrategyQA)
expose formalization bottlenecks. These findings highlight the critical need for Uncertainty Quantification
on LLM-generated formal artifacts to prevent upstream formalization errors from propagating through
otherwise sound solvers.

3.2 Benchmarking Uncertainty Quantification Techniques

Experiment Setup To evaluate uncertainty quantification (UQ) methods for identifying prediction
errors, we examine several facets: Error Discrimination utilizes the Area Under the Receiver Operating
Characteristic Curve (AUROC) to assess if uncertainty scores distinguish correct from incorrect predictions;
a higher AUROC signifies better uncertainty-error alignment. Selective Prediction Utility employs the Area
Under the Risk-Coverage Curve (AURC) to measure practical risk mitigation via abstention (including
analysis of optimal abstention percentages, associated error rates, and relative error reduction); lower
AURC indicates effective error identification, improving performance on retained samples. Finally,
Calibration Assessment evaluates the probabilistic reliability of confidence scores using metrics like
Expected Calibration Error (ECE), Reliability Diagrams, and the Brier Score; lower ECE and Brier scores
denote better calibration, where predicted confidence accurately reflects empirical correctness rates.

Table 2: Token-level baseline uncertainty quantification techniques and their results at detecting
autoformalization errors w.r.t. ground truth for DeepSeek-v3-0324 across reasoning datasets. While
conventional metrics (AUROC, ECE, Brier) show moderate performance, they inadequately capture the
distinct epistemic uncertainties in formalization versus reasoning processes. Notably, no UQ method
consistently excels across tasks . The uncertainty-aware abstention metrics reflect how the model can
selectively answer questions by applying an optimal uncertainty threshold (Opt.Thresh) that minimizes
error rate (Err@T) and maximizes error reduction (RelErrRed) compared to answering all questions.This
suggests the need for specialized UQ approaches that explicitly model the distribution of formal artifacts.
DeepSeekv3 is the only model we examined that provides token logprobs.

AUROC ECE Brier AURC Opt.T Err@T RelErrRed

StrategyQA Entropy 0.5872 0.1415 0.2433 0.2399 0.0500 0.3221 0.0180
Perplexity 0.6179 0.0802 0.2218 0.2218 0.5000 0.2520 0.2317

Kurtosis 0.6227 0.3038 0.3075 0.2236 0.5000 0.2440 0.2561

ProntoQA Entropy 0.5622 0.1395 0.2685 0.4585 0.0500 0.5408 0.0166
Perplexity 0.6118 0.1009 0.2522 0.4218 0.0500 0.5365 0.0244

Kurtosis 0.6078 0.2390 0.2990 0.4265 0.2000 0.5102 0.0722

ProofWriter Entropy 0.5165 0.1666 0.2761 0.3938 0.0500 0.4105 0.0226
Perplexity 0.5893 0.2430 0.3021 0.3214 0.4000 0.3633 0.1349

Kurtosis 0.5656 0.1657 0.2705 0.3322 0.4500 0.3564 0.1515

FOLIO Entropy 0.7001 0.2101 0.2465 0.4737 0.5000 0.4767 0.2679
Perplexity 0.5609 0.2385 0.2926 0.5514 0.0500 0.6380 0.0202

Kurtosis 0.5548 0.1761 0.2428 0.5560 0.0500 0.6319 0.0296

6

We benchmarked our syntactic PCFG approach against semantic entropy and clustering [Kuhn et al.,
2023, Farquhar et al., 2024] using entailment checking with independent prompts to DeepSeek-v3-0324,
comparing each generated SMT program with the original question as context to determine semantic
equivalence classes. Table 3 presents results across all four datasets. We evaluated: (1) Discrete Entropy over
semantic clusters, (2) Continuous Entropy using Monte Carlo sampling (MC), (3) Continuous Entropy using
Rao-Blackwellized estimator (RAO), and (4) the raw number of semantic clusters as an uncertainty signal.
The semantic methods failed to provide superior uncertainty signals, yielding near-random performance
(AUROC ≈ 0.5-0.6) and no practical error reduction (poor AURC). Computationally, semantic clustering
is inefficient, requiring O(M2) undecidable comparisons, whereas our PCFG method is efficient. We also
confirmed that standard NLI models (DeBERTa) fail completely, as they cannot parse formal SMT artifacts.

Table 3: Baseline semantic entropy based uncertainty quantification techniques for detecting auto-
formalization errors with respect to ground truth using DeepSeek-v3-0324. While moderate performance is
observed in limited configurations, semantic uncertainty does not distinctly capture epistemic uncertainties
in autoformalization. The artificially high AUROC on FOLIO reflects disproportionate error rates rather
than effective uncertainty quantification, as evidenced by high AURC values indicating poor risk-coverage
tradeoffs.

Dataset Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed

StrategyQA Discrete Entropy 0.5341 0.2345 0.3517 0.2724 0.0500 0.3263 0.0051
Continuous Entropy MC 0.5502 0.2050 0.2669 0.2555 0.0000 0.3280 0.0000
Continuous Entropy RAO 0.5801 0.2744 0.2987 0.2432 0.0000 0.3280 0.0000
Num. semantic clusters 0.5331 0.2160 0.3410 0.2681 0.0500 0.3263 0.0051

ProntoQA Discrete Entropy 0.6273 0.0788 0.2955 0.4453 0.0000 0.5507 0.0000
Continuous Entropy MC 0.5015 0.2900 0.3459 0.4910 0.1000 0.5461 0.0084
Continuous Entropy RAO 0.5779 0.4340 0.4515 0.4609 0.0500 0.5480 0.0049
Num. semantic clusters 0.5953 0.1258 0.3195 0.4585 0.1000 0.5507 0.0001

ProofWriter Discrete Entropy 0.5717 0.2256 0.3316 0.3254 0.0000 0.4200 0.0000
Continuous Entropy MC 0.5127 0.2340 0.3091 0.3611 0.3500 0.4154 0.0110
Continuous Entropy RAO 0.5966 0.3053 0.3469 0.3178 0.0000 0.4200 0.0000
Num. semantic clusters 0.5645 0.1775 0.3251 0.3322 0.0000 0.4200 0.0000

FOLIO Discrete Entropy 0.7542 0.2508 0.2541 0.4506 0.0500 0.6584 0.0007
Continuous Entropy MC 0.6811 0.4571 0.4186 0.4790 0.0000 0.6588 0.0000
Continuous Entropy RAO 0.7564 0.5383 0.5194 0.4364 0.0000 0.6588 0.0000
Num. semantic clusters 0.7523 0.3132 0.2886 0.4496 0.0000 0.6588 0.0000

Evaluation tasks: We expanded and evaluated our uncertainty metrics in two distinct prediction tasks:
(1) whether LLM-generated SMT programs, when executed by Z3, would yield the correct ground truth
answer (as prior baselines), and (2) whether the SMT output would be consistent with the model’s own
natural language reasoning.

Experiments for model and dataset combinations were chosen where a performance gap was observed, with
N=100 samples, thereby making UQ analysis meaningful, but where the SMT performance was not close to
random guessing. Our argument here is that because we are relying on information within the FV artifacts,
and those artifacts are not well-calibrated for the task (i.e., operating at the level of random guessing), we
cannot extract information about failure from them. We also employed temperature sampling with values
uniformly distributed between 0.1 and 2.0 to ensure diverse exploration of the LLM’s output distribution

Task-Dependent Signal Dominance in SMT vs Ground Truth Prediction:

Knowledge-Intensive Reasoning: For StrategyQA, cross-modal agreement metrics consistently
dominated. O3-mini showed strong performance with grammar entropy (AUROC=0.7448, AURC=0.1113)
and text consistency (AUROC=0.7369, AURC=0.1081). For DeepSeek-R1, text consistency substantially
outperformed all pure PCFG metrics (AUROC=0.7835, AURC=0.0983). This indicates epistemic un-
certainty in world knowledge as the primary correctness bottleneck as these cross-modal metrics effectively
gauge if the SMT formalization aligns with the LLM’s initial (potentially flawed) semantic interpretation.

Premise-Explicit Reasoning: For ProofWriter, PCFG-derived metrics demonstrated exceptional
discriminative power for ground truth prediction. O3-mini achieved near-perfect performance with
grammar entropy (AUROC=0.9301, AURC=0.0008) and perplexity (AUROC=0.9194, AURC=0.0008).
This confirms procedural epistemic uncertainty dominates in formal reasoning tasks, where an LLM’s
primary challenge shifts from knowledge recall to the correct application of formal rules. Thus, PCFG
metrics assessing structural variance in the SMT-LIB output can identify such deductive missteps with

7

high precision—o3-mini’s AURC of 0.0008 using grammar entropy, for instance, enables filtering nearly
all errors by abstaining on a minute fraction of outputs.

Table 4: Uncertainty quantification metrics for predicting ground truth correctness via PCFGs of
LLM-generated SMT programs. Results show AUROC, ECE, Brier, and AURC across models and
reasoning tasks, with ensemble methods consistently outperforming individual metrics. Color intensity
indicates performance strength (darker green = better)

StrategyQA ProofWriter
o3-mini DeepSeek-v3-0324 o3-mini Gemini 2.0 Flash Lite

Metric AUROC ECE Brier AURC AUROC ECE Brier AURC AUROC ECE Brier AURC AUROC ECE Brier AURC
Grammar Entropy 0.7448 0.3058 0.2340 0.1113 0.7087 0.1575 0.2302 0.2097 0.9301 0.4419 0.2500 0.0008 0.5380 0.3185 0.2869 0.1405
Perplexity 0.5589 0.3107 0.2862 0.1811 0.6122 0.1601 0.2641 0.2497 0.9194 0.5358 0.3515 0.0008 0.5934 0.3888 0.3182 0.1267
KL Divergence 0.6428 0.2485 0.2385 0.1471 0.5723 0.1393 0.2322 0.2878 0.5108 0.5167 0.3260 0.0074 0.5164 0.3080 0.2797 0.1573
NSUI 0.6334 0.2436 0.2539 0.1250 0.5997 0.0781 0.2191 0.2672 0.5645 0.5710 0.3843 0.0084 0.5243 0.3186 0.2642 0.1514
Renyi Ent (2) 0.5175 0.3303 0.2997 0.1977 0.6195 0.1622 0.2679 0.2429 0.8871 0.5405 0.3598 0.0013 0.5996 0.4102 0.3368 0.1285
Renyi Ent (0.5) 0.5973 0.3398 0.3042 0.1634 0.6126 0.1623 0.2626 0.2517 0.9301 0.4724 0.2879 0.0008 0.5933 0.4401 0.3581 0.1258
Max Ent 0.6649 0.3553 0.2935 0.1297 0.6851 0.0473 0.2099 0.2271 0.9086 0.7198 0.5550 0.0013 0.5417 0.3503 0.3045 0.1420
Ent Ratio 0.5385 0.3283 0.3028 0.1834 0.5311 0.1336 0.2538 0.3306 0.5860 0.5714 0.3764 0.0055 0.5177 0.3943 0.3426 0.1548
Spectral Factor 0.6334 0.2173 0.2364 0.1319 0.6800 0.0992 0.2236 0.2365 0.7473 0.3458 0.2247 0.0032 0.5011 0.5048 0.4157 0.1578
Spectral Radius 0.6334 0.2892 0.2747 0.1319 0.6800 0.0686 0.2148 0.2365 0.7473 0.3545 0.2305 0.0032 0.5011 0.3930 0.3172 0.1578
Nonterminals 0.5111 0.3540 0.3188 0.2006 0.6115 0.1329 0.2469 0.2547 0.8011 0.4267 0.2397 0.0019 0.5167 0.4838 0.4215 0.1672
Rules 0.5548 0.2117 0.2385 0.1855 0.6197 0.1109 0.2252 0.2583 0.5108 0.4186 0.2201 0.0084 0.5549 0.2422 0.2315 0.1370
Avg Rules / NT 0.5737 0.2400 0.2415 0.1752 0.6021 0.0902 0.2260 0.2616 0.9301 0.5393 0.3499 0.0008 0.5840 0.2790 0.2656 0.1301
Avg RHS Len 0.5350 0.6141 0.5651 0.1979 0.5122 0.1753 0.2712 0.3279 0.8011 0.6535 0.5086 0.0026 0.5631 0.3413 0.2906 0.1480
Max Branch Factor 0.5181 0.1500 0.1997 0.1990 0.6180 0.1450 0.2270 0.2688 0.5914 0.2979 0.1377 0.0055 0.5745 0.2189 0.2293 0.1355
Rule Dist Mean 0.5740 0.3161 0.2836 0.1752 0.6021 0.1811 0.2534 0.2616 0.9301 0.4945 0.3034 0.0008 0.5838 0.4368 0.3713 0.1301
Rule Dist StdDev 0.5291 0.3995 0.3517 0.1811 0.5281 0.1251 0.2573 0.3116 0.5108 0.5555 0.3723 0.0074 0.5144 0.4474 0.3795 0.1559
Rule Dist Skew 0.5833 0.3178 0.2850 0.1689 0.6036 0.1431 0.2489 0.2610 0.9301 0.4923 0.2987 0.0008 0.5844 0.4511 0.3779 0.1313
Rule Dist Kurtosis 0.5659 0.3948 0.3420 0.1785 0.5787 0.1720 0.2600 0.2754 0.5860 0.5107 0.3115 0.0055 0.5044 0.1437 0.1913 0.1726
Self Consistency Text 0.7369 0.1604 0.1603 0.1081 0.6017 0.2874 0.3048 0.2882 0.8990 0.0423 0.0280 0.0020 0.5525 0.2283 0.2419 0.1376
Self Consistency SMT 0.7416 0.1523 0.1609 0.1051 0.6203 0.2318 0.2745 0.2513 0.7121 0.8501 0.7764 0.0025 0.7364 0.3535 0.2751 0.1031
Ensemble Average 0.7622 0.3724 0.2916 0.1103 0.6795 0.1214 0.2077 0.2182 0.9949 0.3356 0.1414 0.0005 0.6140 0.3922 0.3192 0.1240
Ensemble Weighted 0.7657 0.1738 0.1617 0.1099 0.7211 0.1257 0.2135 0.1989 0.9785 0.4612 0.2566 0.0003 0.7235 0.3327 0.2539 0.1035
Ensemble ML 0.7850 0.2090 0.1756 0.1013 0.7709 0.0877 0.1968 0.1847 0.9892 0.0572 0.0280 0.0003 0.7631 0.2897 0.2229 0.0823
Ensemble Simple 0.6702 0.2055 0.2104 0.1410 0.6401 0.1763 0.2514 0.2483 0.9355 0.4419 0.2582 0.0008 0.6476 0.3867 0.3039 0.1071

Table 5: Uncertainty metrics based on PCFGs for predicting consistency between LLM’s SMT
formalization and its natural language reasoning. Task-specific uncertainty patterns emerge: rule
distribution kurtosis dominates for StrategyQA (AUROC=0.8695), while different metrics excel for each
model-task combination, highlighting the multifaceted nature of formalization uncertainty.

StrategyQA ProofWriter
DeepSeek R1 DeepSeekv3-0324 Gemini 2.0 Flash Lite o3-mini

Metric AUROC ECE Brier AURC AUROC ECE Brier AURC AUROC ECE Brier AURC AUROC ECE Brier AURC
Grammar Entropy 0.7609 0.4617 0.2968 0.0216 0.7354 0.3058 0.2551 0.0970 0.6622 0.1277 0.2095 0.5689 0.8602 0.4419 0.2542 0.0013
Perplexity 0.6211 0.3789 0.2640 0.0361 0.6721 0.3282 0.2718 0.1205 0.7212 0.3255 0.2849 0.5273 0.9032 0.4429 0.2616 0.0013
KL Divergence 0.5776 0.4408 0.2855 0.0443 0.5335 0.1195 0.1780 0.1633 0.5486 0.2387 0.2630 0.6341 0.6667 0.5167 0.3238 0.0039
NSUI 0.5963 0.2529 0.1433 0.0462 0.5973 0.1768 0.1919 0.1411 0.6741 0.1195 0.1624 0.5221 0.9355 0.4077 0.2172 0.0008
Renyi Ent (2) 0.6242 0.3980 0.2746 0.0378 0.6799 0.3403 0.2808 0.1160 0.7624 0.3192 0.2624 0.5037 0.9032 0.4382 0.2580 0.0013
Renyi Ent (0.5) 0.6149 0.3942 0.2755 0.0376 0.6667 0.3333 0.2751 0.1223 0.6994 0.2766 0.2619 0.5438 0.8925 0.5063 0.3246 0.0013
Max Ent 0.7174 0.3994 0.2341 0.0262 0.6353 0.1309 0.1738 0.1247 0.5982 0.3401 0.3083 0.5900 0.9355 0.2589 0.1029 0.0008
Ent Ratio 0.5217 0.5047 0.3529 0.0543 0.6154 0.4091 0.3307 0.1446 0.5511 0.1641 0.2511 0.6346 0.9677 0.4074 0.2082 0.0003
Spectral Factor 0.5481 0.1533 0.0927 0.0640 0.7034 0.1254 0.1580 0.1206 0.6538 0.0943 0.1677 0.5316 0.5269 0.6329 0.5061 0.0084
Spectral Radius 0.5481 0.2067 0.1166 0.0640 0.7034 0.1896 0.1752 0.1206 0.6538 0.1648 0.1703 0.5316 0.5269 0.6243 0.4953 0.0084
Nonterminals 0.5264 0.5679 0.4237 0.0557 0.5549 0.2271 0.2455 0.1480 0.5166 0.4180 0.3958 0.6509 0.6505 0.5520 0.3650 0.0047
Rules 0.6087 0.3083 0.1839 0.0396 0.5675 0.2025 0.2077 0.1485 0.5749 0.4256 0.3818 0.6252 0.5108 0.4186 0.2201 0.0064
Avg Rules / NT 0.7034 0.4068 0.2532 0.0273 0.6034 0.1393 0.1854 0.1399 0.6565 0.2913 0.2761 0.5923 0.8011 0.4394 0.2554 0.0026
Avg RHS Len 0.5637 0.2491 0.1566 0.0544 0.5208 0.1254 0.1818 0.1972 0.6014 0.4855 0.4420 0.6098 0.5054 0.6535 0.5116 0.0074
Max Branch Factor 0.6801 0.3325 0.2042 0.0324 0.5937 0.1563 0.1920 0.1457 0.5818 0.5167 0.4747 0.6313 0.7419 0.6809 0.5100 0.0032
Rule Dist Mean 0.7034 0.5352 0.3733 0.0273 0.6034 0.3210 0.2742 0.1399 0.6565 0.2197 0.2280 0.5923 0.8011 0.4842 0.2971 0.0026
Rule Dist StdDev 0.6056 0.6755 0.5361 0.0413 0.6281 0.2226 0.2221 0.1445 0.7183 0.3136 0.2807 0.5455 0.8710 0.4232 0.2392 0.0013
Rule Dist Skew 0.6848 0.4800 0.3260 0.0309 0.5986 0.3057 0.2619 0.1406 0.6796 0.1783 0.2199 0.5720 0.8172 0.4864 0.2964 0.0019
Rule Dist Kurtosis 0.5311 0.2521 0.1588 0.0534 0.6600 0.0731 0.1576 0.1256 0.8695 0.3187 0.2412 0.4448 0.9462 0.5107 0.3056 0.0008
Self Consistency Text 0.8245 0.1002 0.0751 0.0155 0.5778 0.1874 0.2008 0.1754 0.5350 0.2788 0.2616 0.6064 0.7050 0.9352 0.9023 0.0030
Self Consistency SMT 0.7570 0.2062 0.1373 0.0268 0.7116 0.1662 0.1909 0.1054 0.7505 0.5380 0.4357 0.4822 0.7100 0.8600 0.7863 0.0030
Ensemble Average 0.8183 0.4695 0.3058 0.0180 0.7064 0.1876 0.1831 0.0983 0.7927 0.1531 0.1702 0.4848 0.9300 0.3560 0.1741 0.0007
Ensemble Weighted 0.8494 0.3256 0.1711 0.0155 0.7709 0.2340 0.1971 0.0798 0.8070 0.1673 0.1632 0.4718 1.0000 0.4231 0.2375 0.0003
Ensemble ML 0.8245 0.3084 0.2003 0.0170 0.8517 0.1861 0.1703 0.0573 0.7946 0.1308 0.1592 0.4784 1.0000 0.0496 0.0199 0.0003
Ensemble Simple 0.6957 0.4363 0.2748 0.0316 0.6727 0.3021 0.2567 0.1119 0.7584 0.0796 0.1568 0.4929 0.6667 0.4419 0.2661 0.0039

Predicting SMT-Text Consistency:

Arithmetic Reasoning: On ProntoQA with Gemini Flash 2.0, SMT consistency achieved remarkable
performance in predicting text-SMT alignment (AUROC=0.9291, AURC=0.0084), while spectral radius
(AUROC=0.6425, AURC=0.0379) emerged as the only effective structural metric. This isolates recursive
complexity as a distinct source of uncertainty in arithmetic formalization, as excessively convoluted SMT
structures, indicated by a high spectral radius, risk diverging from the model’s more direct textual reasoning
on numerical problems.

8

Model-Specific Patterns: For Gemini Flash 2.0 Lite on StrategyQA, kurtosis of the rule distribution
was the strongest predictor of SMT-Text consistency (AUROC=0.8695). Analysis revealed a distinctive
“switching” behavior between minimal and verbose SMT patterns, producing a bimodal distribution with
heavy tails—a novel diagnostic for capacity limitations in formalization, whereby such stylistic oscillations
between overly terse or verbose SMT, captured by kurtosis, make the resulting formal artifact more prone
to misalign with the intended textual meaning.

Ablation Study: PCFG spectral radius from LLM-generated SMT-LIB programs consistently decreases
with sampling temperature (In App B), as broader exploration diversifies rule selections, reducing fixation
on recursive productions that heavily influence moment matrix eigenvalues. Probability mass spreads
more uniformly across production alternatives, diminishing single recursive pattern dominance and thus
lowering the mean matrix’s maximum absolute eigenvalue. Notably, grammatical properties lack sharp
phase transitions across temperature ranges; derived PCFGs show smooth, monotonic changes in spectral
and information-theoretic characteristics, implying a continuous, rather than abrupt, generative response
to temperature. Non-terminal expansion distributions shift from concentrated to broader with increasing
temperature, though this plateaus, indicating finite exploration capacity, possibly constrained by inherent
model biases or the grammar’s finite structure. The striking consistency of these spectral-temperature
curves across diverse LLMs points to a fundamental, universal mechanism by which these models navigate
the coherence-diversity trade-off when generating structured formal languages. Finally, our fine-grained
localized entropy within PCFG production rules surpasses global or non-grammatical standard techniques
in error prediction, confirming that granular structural uncertainty in specific grammatical constructs
directly flags component-level semantic error likelihood, offering more precise diagnostics.

4 Discussion

Our analysis reveals a fundamental insight: the syntactic atypicality (e.g., in PCFG rule entropy or usage
kurtosis) of LLM-generated formal artifacts serves as a powerful signal for semantic errors, reminiscent
of OOD detection [Ganguly et al., 2025]. When LLMs correctly understand logical relationships, they
consistently produce high-probability rule sequences, whereas semantic misunderstandings manifest as
statistical anomalies—creating distinctive “syntactic fingerprints” of reasoning failure that enable our
exceptional error detection (AUROC=0.9301 on ProofWriter). This typicality-based approach transcends
architectures, its PCFG metric rankings consistently capturing intrinsic difficulties like formalizing
ambiguous language across diverse models.

However, the relationship between typicality and correctness isn’t straightforward; metrics with superior
discriminative ability often exhibit poor calibration (ECE=0.4419), indicating anomaly magnitude
doesn’t linearly predict error probability—necessitating calibration-aware fusion, perhaps by integrating
consistency signals. Even more revealing is asymmetric self-consistency (e.g., Gemini/ProntoQA: SMT
AUROC=0.9291 vs. text AUROC=0.5108), suggesting LLMs may use distinct, imperfectly aligned formal
versus textual reasoning pathways, not just translate a unified process. Such insights shift neurosymbolic
design from translation-focus to pathway-alignment and grounding, e.g., via joint training, as SMT
syntactic typicality alone is insufficient if its pathway misaligns with textual reasoning.

5 Related Works

Formal Reasoning with LLMs LLMs show proficiency in formal reasoning [Welleck et al., 2022a, Chen
et al., 2022], but face challenges including hallucination, uncertainty expression [Lin et al., 2022a], self-
verification [Hou et al., 2023], and reasoning opacity [Wei et al., 2022b]. Hybrid approaches combine LLMs
with formal tools but often overlook model uncertainty. For autoformalization, early sequence-to-sequence
models [Wang et al., 2018, 2020] evolved into LLM-based approaches [Wu et al., 2022, Agrawal et al., 2022,
Gadgil et al., 2022, Murphy et al., 2024], with structured methods [Jiang et al., 2023b, Zhao et al., 2024]
combining LLMs with ATPs, and various applications [Liu et al., 2023, Pan et al., 2023, Olausson et al.,
2023, Ye et al., 2023, Zhou et al., 2024, Huang et al., 2024a, Xin et al., 2024a, Jiang et al., 2024, Quan et al.,
2024, Xin et al., 2024b]. Proofstep generation advanced from classification [Whalen, 2016, Huang et al.,
2019, Bansal et al., 2019] to language modeling [Polu and Sutskever, 2020, First et al., 2023, Wang et al.,
2024, Welleck et al., 2022b, Jiang et al., 2022], with recent work exploring zero-shot capabilities [Zhang
et al., 2023, Yousefzadeh and Cao, 2023, Scheidt, 2023, Frieder et al., 2023a,b,c, Zhang et al., 2024a] and
formal proof generation [Zheng et al., 2024, Xin et al., 2024a, Huang et al., 2024a, Thakur et al., 2024]. Proof
search strategies include supervised learning [Loos et al., 2017, Chvalovskỳ et al., 2019], reinforcement

9

learning [Kusumoto et al., 2018, Crouse et al., 2021, Piepenbrock et al., 2021], MCTS [Wu et al., 2021,
Lample et al., 2022, Wang et al., 2023a], and language-agent methods [Thakur et al., 2024, An et al., 2024].

Uncertainty in LLM Reasoning Research explores various uncertainty estimation approaches in language
models: information-theoretic methods using entropy [Kadavath et al., 2022, Kuhn et al., 2023, Duan
et al., 2024], perplexity [Mora-Cross and Calderon-Ramirez, 2024, Margatina et al., 2023], and mutual
information [Malinin, 2019, Wimmer et al., 2023, Depeweg, 2019, Ash, 1965]; ensemble strategies
like MC Dropout [Srivastava et al., 2014, Gal and Ghahramani, 2016a, Lakshminarayanan et al., 2017],
Deep Ensembles [Fadeeva et al., 2023, Lakshminarayanan et al., 2017], and BatchEnsemble [Gal and
Ghahramani, 2016b, Lakshminarayanan et al., 2017, Wen et al., 2020] for hallucination detection [Arteaga
et al., 2024]; consistency techniques evaluating output agreement [Wang et al., 2023b, Cole et al., 2023,
Huang et al., 2024b, Zhang et al., 2024b, Lakshminarayanan et al., 2017, Gawlikowski et al., 2023,
Manakul et al., 2023, Chen and Mueller, 2024]; similarity-based methods [Lin et al., 2024]; Bayesian
approaches including BNNs [Shridhar et al., 2019, Blundell et al., 2015], variational inference [Graves,
2011, Jordan et al., 1999, Kullback and Leibler, 1951], Gaussian processes [Iwata and Ghahramani,
2017, Liu et al., 2020], and MCMC [Xiao and Wang, 2018]; and language-based methods extracting
uncertainty from verbalizations [Cosmides and Tooby, 1996, Lin et al., 2022b, Tian et al., 2023, Xiong
et al., 2024, Kojima et al., 2022, Groot and Valdenegro-Toro, 2024]. Our work models implicit uncertainty
in distributions over multiple formal outputs rather than relying on individual response signals.

Formal Grammars for Language Model Outputs Context-Free Grammars (CFGs) have been employed
to constrain language model generation at inference time, ensuring syntactically valid outputs for structured
formats like JSON [Sengottuvelu, 2023], SQL and programming languages[Melcer et al., 2024]. These
constrained decoding methods modify token probability distributions by masking invalid tokens according
to grammar rules. Probabilistic Context-Free Grammars (PCFGs) extend CFGs by associating probabilities
with production rules, finding applications in natural language parsing [Manning and Schutze, 1999],
bioinformatics [Durbin et al., 1998], and program analysis [Alur et al., 2014]. Recent work [Li et al.,
2024] applies PCFGs to guide enumerative program synthesis by learning probability distributions over
production rules from successful synthesis traces. While their application domain differs (synthesis
guidance vs. uncertainty quantification), it demonstrates the power of PCFGs for reasoning about structured
program spaces. HySynth [Barke et al., 2024] similarly enables probabilistic analysis for LLM-generated
DSL programs. Our work represents the first application of PCFGs to uncertainty quantification for
LLM-driven autoformalization.

Verification and Reasoning Uncertainty DTV [Zhou et al., 2024], SAT-LM [Ye et al., 2023], and
related approaches [Quan et al., 2024] connect LLMs with formal verification, while latent space
methods [Lee et al., 2020, Wu and Wu, 2021] complement uncertainty estimation research [Kadavath
et al., 2022, Lin et al., 2022b]. Our work extends PCFG inference [De la Higuera, 2010] to uncertainty
quantification in formal verification artifacts, representing the first systematic framework for diagnosing
LLM autoformalization reliability through grammatical uncertainty analysis.

6 Conclusion

Our research presents a PCFG-based framework for SMT-LIB UQ, establishing that syntactic atypicalities
in LLM-generated formal artifacts, previously underexploited, serve as potent, quantifiable signals of
underlying semantic errors. Our evaluations revealed nuanced LLM behaviors—task-dependent uncertainty
responses, localized PCFG entropy’s diagnostic power, and asymmetric self-consistency suggesting distinct,
imperfectly aligned formal versus textual reasoning pathways. Building on these discoveries, we introduced
a novel uncertainty taxonomy and a lightweight, model-agnostic signal fusion technique that improves
metric synergy and calibration. Applied together, this PCFG framework and fusion strategy achieve
substantial error rate reductions via selective verification, offering an empirically validated methodology
to significantly enhance LLM reliability in formal verification workflows.

10

Acknowledgment

This work was supported in part by the NSF research grant #2112606, #2117439, #2320952, #2137603.

References
Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about systems.

Cambridge university press, 2004.

Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al. Handbook of model
checking, volume 10. Springer, 2018.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal methods: Practice and
experience. ACM computing surveys (CSUR), 41(4):1–36, 2009.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot
learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée
Lacroix, and William El Sayed. Mistral 7b, 2023a. URL https://arxiv.org/abs/2310.06825.

Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. Decomposing
uncertainty for large language models through input clarification ensembling. arXiv preprint
arXiv:2311.08718, 2023.

Debargha Ganguly, Srinivasan Iyengar, Vipin Chaudhary, and Shivkumar Kalyanaraman. PROOF
OF THOUGHT : Neurosymbolic program synthesis allows robust and interpretable reason-
ing. In The First Workshop on System-2 Reasoning at Scale, NeurIPS’24, 2024. URL
https://openreview.net/forum?id=Pxx3r14j3U.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-LM: Empowering Large
Language Models with Symbolic Solvers for Faithful Logical Reasoning. In Findings of the Association
for Computational Linguistics: EMNLP, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disen-
tangling computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588,
2022.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly)
know what they know. arXiv preprint arXiv:2207.05221, 2022.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 35:24824–24837, 2022b.

11

https://arxiv.org/abs/2310.06825
https://openreview.net/forum?id=Pxx3r14j3U

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346–361, 2021. doi: 10.1162/tacl_a_00370. URL
https://aclanthology.org/2021.tacl-1.21/.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis of
chain-of-thought. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=qFVVBzXxR2V.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. ProofWriter: Generating Implications, Proofs,
and Abductive Statements over Natural Language. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP, 2021.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alexander Wardle-Solano, Hannah Szabó, Ekaterina
Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, Ansong Ni, Linyong
Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander Fabbri, Wojciech Maciej Kryscinski, Semih Yavuz,
Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex Ying, Arman Cohan, and
Dragomir Radev. FOLIO: Natural language reasoning with first-order logic. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages 22017–22031, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1229. URL
https://aclanthology.org/2024.emnlp-main.1229/.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
language models using semantic entropy. Nature, 630(8017):625–630, 2024.

Debargha Ganguly, Warren Richard Morningstar, Andrew Seohwan Yu, and Vipin Chaudhary. Forte :
Finding outliers with representation typicality estimation. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=7XNgVPxCiA.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover: Grounded
mathematical proof generation with language models. Advances in Neural Information Processing
Systems, 35:4913–4927, 2022a.

Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in words.
arXiv preprint arXiv:2205.14334, 2022a.

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First Experiments with Neural Translation of
Informal to Formal Mathematics. In Proceedings of the International Conference on Intelligent
Computer Mathematics, 2018.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and Josef Urban. Exploration of Neural Machine
Translation in Autoformalization of Mathematics in Mizar. In Proceedings of the ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2020.

Yuhuai Wu, Albert Q Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. Autoformalization with Large Language Models. In Proceedings of the International
Conference on Neural Information Processing Systems, 2022.

Ayush Agrawal, Siddhartha Gadgil, Navin Goyal, Ashvni Narayanan, and Anand Tadipatri. Towards a Math-
ematics Formalisation Assistant using Large Language Models. arXiv preprint arXiv:2211.07524, 2022.

Siddhartha Gadgil, Anand Rao Tadipatri, Ayush Agrawal, Ashvni Narayanan, and Navin Goyal. Towards
Automating Formalisation of Theorem Statements using Large Language Models. In International
Conference on Neural Information Processing Systems Workshop on MATH-AI, 2022.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autoformalizing
Euclidean Geometry. In Proceedings of the International Conference on Machine Learning, 2024.

12

https://aclanthology.org/2021.tacl-1.21/
https://openreview.net/forum?id=qFVVBzXxR2V
https://aclanthology.org/2024.emnlp-main.1229/
https://openreview.net/forum?id=7XNgVPxCiA

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix,
Yuhuai Wu, and Guillaume Lample. Draft, Sketch, and Prove: Guiding Formal Theorem Provers with
Informal Proofs. In Proceedings of the International Conference on Learning Representations, 2023b.

Xueliang Zhao, Wenda Li, and Lingpeng Kong. Subgoal-Based Demonstration Learning for Formal
Theorem Proving. In Proceedings of the International Conference on Machine Learning, 2024.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang
Zheng, Yichun Yin, Lin Li, et al. FIMO: A Challenge Formal Dataset for Automated Theorem Proving.
arXiv preprint arXiv:2309.04295, 2023.

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cedegao E Zhang, Armando Solar-Lezama, Joshua B
Tenenbaum, and Roger Levy. LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2023.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. SATLM: Satisfiability-Aided Language Models
using Declarative Prompting. In Proceedings of the International Conference on Neural Information
Processing Systems, 2023.

Jin Peng Zhou, Charles E Staats, Wenda Li, Christian Szegedy, Kilian Q Weinberger, and Yuhuai Wu.
Don’t Trust: Verify–Grounding LLM Quantitative Reasoning with Autoformalization. In Proceedings
of the International Conference on Learning Representations, 2024.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo Li,
Linqi Song, and Xiaodan Liang. MUSTARD: Mastering Uniform Synthesis of Theorem and Proof
Data. In Proceedings of the International Conference on Learning Representations, 2024a.

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. LEGO-Prover: Neural Theorem Proving with Growing Libraries.
In Proceedings of the International Conference on Learning Representations, 2024a.

Dongwei Jiang, Marcio Fonseca, and Shay B Cohen. LeanReasoner: Boosting Complex Logical Reasoning
with Lean. In Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2024.

Xin Quan, Marco Valentino, Louise A Dennis, and André Freitas. Verification and Refinement of Natural
Language Explanations through LLM-Symbolic Theorem Proving. arXiv preprint arXiv:2405.01379,
2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale
Synthetic Data. arXiv preprint arXiv:2405.14333, 2024b.

Daniel Whalen. Holophrasm: A Neural Automated Theorem Prover for Higher-Order Logic. arXiv
preprint arXiv:1608.02644, 2016.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. GamePad: A Learning Environment for
Theorem Proving. In Proceedings of the International Conference on Learning Representations, 2019.

Kshitij Bansal, Sarah M. Loos, Markus Norman Rabe, Christian Szegedy, and Stewart Wilcox. HOList:
An Environment for Machine Learning of Higher Order Logic Theorem Proving. In Proceedings of
the International Conference on Machine Learning, 2019.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Proving. arXiv
preprint arXiv:2009.03393, 2020.

Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-Proof Generation and Repair with
Large Language Models. In Proceedings of the ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2023.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng Yang, Jing
Tang, Jian Yin, Zhenguo Li, et al. Proving Theorems Recursively. arXiv preprint arXiv:2405.14414,
2024.

13

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. NaturalProver: Grounded
Mathematical Proof Generation with Language Models. In Proceedings of the International Conference
on Neural Information Processing Systems, 2022b.

Albert Q Jiang, Wenda Li, Szymon Tworkowski, Konrad Czechowski, Tomasz Odrzygóźdź, Piotr
Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding Hammers to Integrate Language Models and
Automated Theorem Provers. In Proceedings of the International Conference on Neural Information
Processing Systems, 2022.

Shizhuo Dylan Zhang, Talia Ringer, and Emily First. Getting More out of Large Language Models for
Proofs. In Proceedings of the Conference on Artificial Intelligence and Theorem Proving, 2023.

Roozbeh Yousefzadeh and Xuenan Cao. Large Language Models’ Understanding of Math: Source
Criticism and Extrapolation. arXiv preprint arXiv:2311.07618, 2023.

Gregor vom Scheidt. Experimental Results from Applying GPT-4 to An Unpublished Formal Language.
arXiv preprint arXiv:2305.12196, 2023.

Simon Frieder, Julius Berner, Philipp Petersen, and Thomas Lukasiewicz. Large Language Models for
Mathematicians. arXiv preprint arXiv:2312.04556, 2023a.

Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas
Lukasiewicz, Philipp Christian Petersen, and Julius Berner. Mathematical Capabilities of ChatGPT.
In Proceedings of the International Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023b.

Simon Frieder, Martin Trimmel, Rashid Alawadhi, and Klaus Gy. LLM vs ITP. In International
Conference on Neural Information Processing Systems Workshop on MATH-AI, 2023c.

Lichen Zhang, Shuai Lu, and Nan Duan. Selene: Pioneering Automated Proof in Software Verification.
In Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2024a.

Chuanyang Zheng, Haiming Wang, Enze Xie, Zhengying Liu, Jiankai Sun, Huajian Xin, Jianhao
Shen, Zhenguo Li, and Yu Li. Lyra: Orchestrating Dual Correction in Automated Theorem Proving.
Transactions on Machine Learning Research, 2024.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An In-Context
Learning Agent for Formal Theorem-Proving. arXiv preprint arXiv:2310.04353, 2024.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep Network Guided Proof Search.
In Proceedings of the International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, 2017.

Karel Chvalovskỳ, Jan Jakubüv, Martin Suda, and Josef Urban. ENIGMA-NG: Efficient Neural and
Gradient-Boosted Inference Guidance for E. In Proceedings of the International Conference on
Automated Deduction, 2019.

Mitsuru Kusumoto, Keisuke Yahata, and Masahiro Sakai. Automated Theorem Proving in Intuitionistic
Propositional Logic by Deep Reinforcement Learning. arXiv preprint arXiv:1811.00796, 2018.

Maxwell Crouse, Ibrahim Abdelaziz, Bassem Makni, Spencer Whitehead, Cristina Cornelio, Pavan
Kapanipathi, Kavitha Srinivas, Veronika Thost, Michael Witbrock, and Achille Fokoue. A Deep
Reinforcement Learning Approach to First-Order Logic Theorem Proving. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2021.

Jelle Piepenbrock, Tom Heskes, Mikoláš Janota, and Josef Urban. Learning Equational Theorem Proving.
In Proceedings of the Conference on Artificial Intelligence and Theorem Proving, 2021.

Minchao Wu, Michael Norrish, Christian Walder, and Amir Dezfouli. TacticZero: Learning to Prove
Theorems from Scratch with Deep Reinforcement Learning. Proceedings of the International
Conference on Neural Information Processing Systems, 2021.

Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat, Thibaut
Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree Proof Search for Neural Theorem Proving. In
Proceedings of the International Conference on Neural Information Processing Systems, 2022.

14

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han Shi, Yujun
Li, Lin Li, et al. DT-Solver: Automated Theorem Proving with Dynamic-Tree Sampling Guided by
Proof-level Value Function. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2023a.

Chenyang An, Zhibo Chen, Qihao Ye, Emily First, Letian Peng, Jiayun Zhang, Zihan Wang, Sorin Lerner,
and Jingbo Shang. Learn from Failure: Fine-Tuning LLMs with Trial-and-Error Data for Intuitionistic
Propositional Logic Proving. arXiv preprint arXiv:2404.07382, 2024.

Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-Eskin,
Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncovering the strategic reasoning limitations
of llms via game-theoretic evaluations. arXiv preprint arXiv:2402.12348, 2024.

Maria Mora-Cross and Saul Calderon-Ramirez. Uncertainty estimation in large language models to support
biodiversity conservation. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry
Track), pages 368–378, 2024.

Katerina Margatina, Timo Schick, Nikolaos Aletras, and Jane Dwivedi-Yu. Active learning principles for
in-context learning with large language models, 2023. URL https://arxiv.org/abs/2305.14264.

Andrey Malinin. Uncertainty estimation in deep learning with application to spoken language assessment.
PhD thesis, University of Cambridge, 2019.

Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, and Eyke Hüllermeier. Quantifying
aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual
information appropriate measures? In Robin J. Evans and Ilya Shpitser, editors, Proceedings of
the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, volume 216 of Proceed-
ings of Machine Learning Research, pages 2282–2292. PMLR, 31 Jul–04 Aug 2023. URL
https://proceedings.mlr.press/v216/wimmer23a.html.

Stefan Depeweg. Modeling epistemic and aleatoric uncertainty with bayesian neural networks and latent
variables. 2019. URL https://api.semanticscholar.org/CorpusID:208224498.

Robert B Ash. Information theory. Dover Publications, 1965.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1050–1059, New York, New York, USA, 20–22 Jun 2016a. PMLR. URL
https://proceedings.mlr.press/v48/gal16.html.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncer-
tainty estimation using deep ensembles. Advances in neural information processing systems, 30, 2017.

Ekaterina Fadeeva, Roman Vashurin, Akim Tsvigun, Artem Vazhentsev, Sergey Petrakov, Kirill Fedyanin,
Daniil Vasilev, Elizaveta Goncharova, Alexander Panchenko, Maxim Panov, et al. Lm-polygraph:
Uncertainty estimation for language models. arXiv preprint arXiv:2311.07383, 2023.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050–1059. PMLR, 2016b.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: An alternative approach to efficient ensemble
and lifelong learning, 2020. URL https://arxiv.org/abs/2002.06715.

Gabriel Y. Arteaga, Thomas B. Schön, and Nicolas Pielawski. Hallucination detection in llms: Fast and
memory-efficient finetuned models, 2024. URL https://arxiv.org/abs/2409.02976.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models, 2023b.
URL https://arxiv.org/abs/2203.11171.

15

https://arxiv.org/abs/2305.14264
https://proceedings.mlr.press/v216/wimmer23a.html
https://api.semanticscholar.org/CorpusID:208224498
https://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/2002.06715
https://arxiv.org/abs/2409.02976
https://arxiv.org/abs/2203.11171

Jeremy R. Cole, Michael J. Q. Zhang, Daniel Gillick, Julian Martin Eisenschlos, Bhuwan
Dhingra, and Jacob Eisenstein. Selectively answering ambiguous questions, 2023. URL
https://arxiv.org/abs/2305.14613.

Hsiu-Yuan Huang, Zichen Wu, Yutong Yang, Junzhao Zhang, and Yunfang Wu. Unc-ttp: A
method for classifying llm uncertainty to improve in-context example selection, 2024b. URL
https://arxiv.org/abs/2408.09172.

Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley A. Malin, and Sricharan Kumar. Sac3: Reliable
hallucination detection in black-box language models via semantic-aware cross-check consistency,
2024b. URL https://arxiv.org/abs/2311.01740.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
uncertainty in deep neural networks. Artificial Intelligence Review, 56(Suppl 1):1513–1589, 2023.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. Selfcheckgpt: Zero-resource
black-box hallucination detection for generative large language models, 2023. URL
https://arxiv.org/abs/2303.08896.

Jiuhai Chen and Jonas Mueller. Quantifying uncertainty in answers from any language model and
enhancing their trustworthiness. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 5186–5200, Bangkok, Thailand, August 2024. Association for Computational
Linguistics. URL https://aclanthology.org/2024.acl-long.283.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantification
for black-box large language models, 2024. URL https://arxiv.org/abs/2305.19187.

Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive guide to bayesian convolutional
neural network with variational inference, 2019. URL https://arxiv.org/abs/1901.02731.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
network. In International conference on machine learning, pages 1613–1622. PMLR, 2015.

Alex Graves. Practical variational inference for neural networks. Advances in neural information
processing systems, 24, 2011.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37:183–233, 1999.

S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of Mathematical Statistics,
22(1):79–86, 1951. ISSN 00034851. URL http://www.jstor.org/stable/2236703.

Tomoharu Iwata and Zoubin Ghahramani. Improving output uncertainty estimation and
generalization in deep learning via neural network gaussian processes, 2017. URL
https://arxiv.org/abs/1707.05922.

Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji Lakshminarayanan.
Simple and principled uncertainty estimation with deterministic deep learning via distance awareness,
2020. URL https://arxiv.org/abs/2006.10108.

Yijun Xiao and William Yang Wang. Quantifying uncertainties in natural language processing tasks, 2018.
URL https://arxiv.org/abs/1811.07253.

Leda Cosmides and John Tooby. Are humans good intuitive statisticians after all? rethinking some
conclusions from the literature on judgment under uncertainty. cognition, 58(1):1–73, 1996.

Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in words,
2022b. URL https://arxiv.org/abs/2205.14334.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher D. Manning. Just ask for calibration: Strategies for eliciting cali-
brated confidence scores from language models fine-tuned with human feedback, 2023. URL
https://arxiv.org/abs/2305.14975.

16

https://arxiv.org/abs/2305.14613
https://arxiv.org/abs/2408.09172
https://arxiv.org/abs/2311.01740
https://arxiv.org/abs/2303.08896
https://aclanthology.org/2024.acl-long.283
https://arxiv.org/abs/2305.19187
https://arxiv.org/abs/1901.02731
http://www.jstor.org/stable/2236703
https://arxiv.org/abs/1707.05922
https://arxiv.org/abs/2006.10108
https://arxiv.org/abs/1811.07253
https://arxiv.org/abs/2205.14334
https://arxiv.org/abs/2305.14975

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
express their uncertainty? an empirical evaluation of confidence elicitation in llms, 2024. URL
https://arxiv.org/abs/2306.13063.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems, volume 35, pages 22199–22213.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

Tobias Groot and Matias Valdenegro-Toro. Overconfidence is key: Verbalized uncertainty evaluation in
large language and vision-language models, 2024. URL https://arxiv.org/abs/2405.02917.

Rahul Sengottuvelu. Jsonformer: A bulletproof way to generate structured json from language models, 2023.

Daniel Melcer, Nathan Fulton, Sanjay Krishna Gouda, and Haifeng Qian. Constrained decoding for code
language models via efficient left and right quotienting of context-sensitive grammars. CoRR, 2024.

Christopher Manning and Hinrich Schutze. Foundations of statistical natural language processing. MIT
press, 1999.

Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge university press, 1998.

Rajeev Alur, Milo Martin, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis, and Abhishek
Udupa. Synthesizing finite-state protocols from scenarios and requirements. In Hardware and Software:
Verification and Testing: 10th International Haifa Verification Conference, HVC 2014, Haifa, Israel,
November 18-20, 2014. Proceedings 10, pages 75–91. Springer, 2014.

Yixuan Li, Julian Parsert, and Elizabeth Polgreen. Guiding enumerative program synthesis with large
language models. In International Conference on Computer Aided Verification, pages 280–301.
Springer, 2024.

Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick, and Nadia
Polikarpova. Hysynth: Context-free llm approximation for guiding program synthesis. Advances in
Neural Information Processing Systems, 37:15612–15645, 2024.

Dennis Lee, Christian Szegedy, Markus N Rabe, Sarah M Loos, and Kshitij Bansal. Mathematical Reason-
ing in Latent Space. In Proceedings of the International Conference on Learning Representations, 2020.

Minchao Wu and Yuhuai Wu. Latent Action Space for Efficient Planning in Theorem Proving. In
Proceedings of the Conference on Artificial Intelligence and Theorem Proving, 2021.

Colin De la Higuera. Grammatical inference: learning automata and grammars. Cambridge University
Press, 2010.

17

https://arxiv.org/abs/2306.13063
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://arxiv.org/abs/2405.02917

A Appendix: Proofs

A.1 Coverage Guarantees

Theorem 1 : Coverage Guarantees

Proof. Step 1: Construct a “high-probability” set. By definition of Shannon entropy in bits, there can
be at most 2H(µ) points x∈Σ∗ each having probability µ(x)≥2−H(µ). Gather all such points into a set

Shigh = {x∈Σ∗ :µ(x)≥2−H(µ)}.

A standard “typical-set” argument shows that µ(Shigh)≥1/2 (or at least a fixed positive constant).

Step 2: Missing Shigh. The probability that one sample X ∼ µ does not land in Shigh is at most
1−µ(Shigh)≤1/2. Hence the probability that none of N i.i.d. draws land in Shigh is at most (1/2)N =2−N .
Thus any set of measure at least 1/2 is missed with exponentially small probability.

Step 3: Missing a smaller-mass region A. If µ(A)= ϵ≤1/2, the probability that one draw misses A
is 1−ϵ, so the probability all N draws miss A is (1−ϵ)N ≈exp(−Nϵ) if Nϵ is not too large.

However, we need a uniform guarantee over all possible A of measure ϵ. By representing Σ∗ as composed
of at most 2H(µ) “atoms” each of probability at least 2−H(µ), the number of distinct subsets is at most
exp

(
2H(µ)ln2

)
. A union bound then modifies the exponent by about a factor of 1/2H(µ), so for large

N one has
Pr

[
∃A :µ(A)=ϵandall N samples miss A

]
≤ exp

(
− Nϵ

2H(µ)

)
.

This is the desired exponential coverage bound.

Step 4: Inverting the bound with the Lambert W -function. We have

Pr
[
miss some set of mass ϵ

]
≤ exp

(
− Nϵ

2H(µ)

)
.

We want to find ϵ such that this probability is itself at most ϵ:

exp
(
− Nϵ

2H(µ)

)
= ϵ.

Rearrange as
ϵ= exp

(
− Nϵ

2H(µ)

)
⇐⇒ ϵexp

(
Nϵ

2H(µ)

)
= 1.

Let x= Nϵ
2H(µ) . Then ϵ= 2H(µ)

N x, and the above becomes

2H(µ)

N
xexp(x) = 1 ⇐⇒ xex =

N

2H(µ)
.

By definition of the Lambert W -function, x=W
(

N
2H(µ)

)
. Substituting back, we get

ϵ=
2H(µ)

N
W

(
N

2H(µ)

)
.

Thus ϵ decreases to 0 as N→∞, roughly like

2H(µ)

N ln
(

N
2H(µ)

)
.

Hence, the probability of missing any set of mass at least ϵ is ≤ ϵ, with ϵ scaling on the order of ln(N)
N .

This completes the proof.

A.2 Temperature Sampling & Ablations

Sampling from an LLM at higher temperatures effectively “flattens” its probability distribution
over next-token choices, increasing the entropy of the samples and thus encouraging exploration of
lower-probability (more diverse) regions of the program space. Conversely, sampling at lower temperatures
sharpens the distribution, concentrating probability mass on the model’s highest-confidence predictions

18

and yielding lower-entropy (more conservative) samples. In other words, low-temperature sampling
focuses on the most likely, canonical SMT-LIB programs (small effective support), while high-temperature
sampling ventures into rarer, more varied corners of the output space (large effective support). If instead
of a smoothly varying temperature schedule you simply draw many samples at fixed temperatures—say
0.5, 1.0, 1.5, and 2.0—you will still span low- to high-entropy regimes, but less systematically. You
risk oversampling similar outputs at each temperature (especially near the extremes) and undersampling
the intermediate entropy levels that lie between 0.5->1.0 and 1.5->2.0. A continuous schedule allocates
exactly one sample per intermediate temperature, guaranteeing uniform coverage of entropy levels;
fixed-temperature repetition may require substantially more draws to approximate that coverage, potentially
leaving gaps in the distribution of generated programs.
Definition 1 (Gaussian Temperature Schedule). To smoothly explore the distribution over SMT-LIB
programs, we can define a temperature schedule for N samples as:

τi=τmin+(τmax−τmin)·exp
(
−(i−N/2)2

2σ2

)
(1)

where τmin=0.1, τmax=1.5, and σ= N
5 controls the spread of the Gaussian.

We can also skew this gaussian towards lower temperatures.
Definition 2 (Exponential Temperature Schedule). We can define a schedule that emphasizes sampling
at lower temperatures using:

τi=τmin+(τmax−τmin)·exp(−λ·i) (2)

where λ>0 controls the decay rate, and i=0,1,...,N−1.

Comparison: From a purely coverage-guarantee standpoint (i.e. our goal of hitting every “significant"
region of the SMT-LIB output distribution at least once), the Systematic uniform schedule remains
the most theoretically justified. It uniformly samples every temperature exactly once, from low to high.
Provably minimizes the worst-case “miss probability” by evenly covering the full entropy range. Gaussians
concentrates samples near the middle temperature; fewer at extremes. It does provide smooth transitions;
and avoids extreme high-entropy noise. However undersamples both very low-entropy (conservative) and
very high-entropy (creative) regions resulting in weaker uniform coverage. The exponential decay schedule
heavily biases toward low temperatures (low entropy), and therefore quickly focuses on high-confidence
outputs. However, there is almost no exploration of rare programs; poor coverage of tail regions.

B Temperature-Varied SMT Generation and PCFG Analysis

To empirically investigate the influence of LLM sampling temperature on the characteristics of generated
formal artifacts, we performed SMT-LIB v2 program generation across a defined temperature spectrum
(e.g., Tmin=0.0 to Tmax=2.0). Distinct Probabilistic Context-Free Grammars (PCFGs) were induced
from the SMT program ensembles parsed at each temperature point Ti, modeling the LLM’s syntactic
and structural tendencies under each generative condition.

Our analysis of these per-temperature PCFGs revealed distinct and significant trends as sampling
temperature was varied. Notably, the PCFG spectral radius generally trended upwards with increasing
temperature. This intriguing behavior suggests that higher temperatures, while fostering diversity, may
also enable the LLM to access and generate SMT structures with more pronounced or varied recursive
complexity, perhaps by activating a broader range of complex production rules rather than simplifying
structural choices. Consistent with expectations of increased diversity, grammar entropy and its associated
perplexity also demonstrated an upward trend, quantifying the heightened uncertainty and the expanded
set of effective choices exercised by the LLM at higher temperatures.

A particularly interesting observation was that the KL divergence from a uniform distribution also tended
to increase with temperature. This implies that as the LLM explores a wider variety of production rules
(evidenced by increased entropy), its choices within this expanded repertoire become, in a relative sense,
more specific or structured, deviating further from a purely random uniform selection over the increasingly
diverse set of utilized rules. Correspondingly, the entropy ratio generally decreased, which could occur if
the maximum possible entropy (based on the growing set of observed rules and non-terminals at higher
temperatures) increases at a faster rate than the actual grammar entropy. The composite metric NSUI showed

19

Figure 2: Spectral Radius VS Temperature Figure 3: Grammar Entropy VS Temperature

Figure 4: KLD vs Temp Figure 5: Entropy Ratio vs Temp

Figure 6: NSUI vs Temp Figure 7: Spectral Factor vs Temp

fluctuating behavior without a clear monotonic direction, reflecting the complex interplay of its underlying
components. The spectral factor, linked to the spectral radius, also exhibited a slight upward trend.

Metrics related to the observed grammar structure, such as the average number of rules utilized per
non-terminal, the maximum observed branching factor, and the average right-hand side (RHS) length
of applied rules, all generally increased with temperature. This supports the notion that higher temperatures
lead the LLM to explore and employ a more extensive and potentially more elaborate subset of the
SMT-LIB grammar. Regarding the shape of the rule probability distributions, kurtosis consistently
decreased, indicating that these distributions become flatter (less peaked) as temperature promotes more
uniform rule selection among the actively used rules. Conversely, the skew of these distributions tended
to increase, suggesting a shift in the asymmetry of rule preferences as temperature changes.

These ablation studies are meaningful as they reveal a nuanced picture of the LLM’s generative process
for formal languages. The trends suggest that increasing temperature doesn’t merely lead to random,
uniform outputs, but rather allows the LLM to explore a richer, potentially more complex, and structurally
diverse portion of the language space defined by GSMT . This expansion, however, may also come with
its own emergent structural specificities, as indicated by the KL divergence. These findings are crucial for

20

Figure 8: Perplexity vs Temp Figure 9: Average Rules per Non-terminal vs Temp

Figure 10: Max Branching Factor vs Temp Figure 11: Average RHS Length vs Temp

Figure 12: Kurtosis vs Temp Figure 13: Skew vs Temp

understanding the coherence-diversity trade-off, for validating the sensitivity of PCFG-derived metrics, and
for interpreting uncertainty scores, as the baseline characteristics of generated artifacts are systematically
altered by temperature in complex ways. The observed responses underscore the value of empirical studies
in characterizing LLM behavior for formal code generation.

21

C Detailed Results

C.1 Benchmarking Autoformalization

The performance benchmarks detailed in 6, 7, 8, 9, 10 were generated by evaluating five Large Language
Models (o3-mini, DeepSeekR1 with Chain-of-Thought, DeepSeek-v3-04-21, Gemini Flash 2.0, and
Gemini Flash 2.0 Lite) on four reasoning datasets. For each question, five samples were generated,
and answers were derived either directly from the LLM’s textual output or by solving LLM-generated
SMT-LIB programs using the Z3 solver. The “medium effort" designation for o3-mini indicates a specific
prompting or iteration level for that model. In Table 6, the SMT approach for models like Deepseek v3 not
only altered precision and recall but also resulted in substantial numbers of both False Positives (144) and
True Positives (199), suggesting that while it attempted more proofs, a large fraction of these new attempts
were erroneous. This contrasts with its text performance (42 FP, 174 TP). For the ProntoQA training set,
with only true answers (Table 7), the SMT Precision of 1.0000 across all models is a direct consequence
of the experimental design (no false statements to misclassify as true if TN is inherently 0); the variance in
False Negatives (e.g., 270 for Deepseek v3 SMT) thus purely reflects the inability to successfully formalize
and prove statements known to be true, a direct measure of formalization completeness for affirmatives.

Table 6: LLM Performance on StrategyQA (Text vs. SMT): SMT often boosts recall (e.g.,
Deepseek v3 from 0.81 to 0.91) but can reduce precision and overall accuracy for several
models, highlighting model-dependent autoformalization success on knowledge-intensive
tasks.

StrategyQA
Text SMT

Accuracy Precision Recall F1 TP TN FP FN Accuracy Precision Recall F1 TP TN FP FN
o3-mini (medium effort) 0.7828 0.8609 0.6047 0.7104 130 260 21 80 0.7980 0.8688 0.6347 0.7335 139 260 21 80
Deepseek v3 0324 0.8292 0.8055 0.8055 0.8055 174 234 42 42 0.6720 0.5801 0.9086 0.7081 199 137 144 20
DeepSeek R1 0.8580 0.8364 0.8402 0.8383 184 245 36 35 0.7760 0.7184 0.8037 0.7586 176 212 69 43
Gemini Flash 2.0 0.7188 0.6880 0.6570 0.6720 144 214 65 75 0.5360 0.4840 0.9269 0.6363 203 65 216 16
Gemini Flash 2.0 Lite 0.6760 0.6770 0.4970 0.5736 109 229 52 110 0.4500 0.4419 0.9726 0.6077 213 12 269 6

Table 7: LLM Performance on ProntoQA Train (True Statements Only; Text vs. SMT):
SMT exposes significant failures in formalizing and proving known true statements for
models like Deepseek v3 (Accuracy 0.45 vs. Text 1.00), indicating critical autoformaliza-
tion recall deficiencies rather than precision issues (SMT Precision remains 1.00 for all).

ProntoQA Train - ONLY TRUE Answers
Text SMT

Accuracy Precision Recall F1 TP TN FP FN Accuracy Precision Recall F1 TP TN FP FN
o3-mini (medium effort) 1.0000 1.0000 1.0000 1.0000 499 0 0 0 0.9980 1.0000 0.9980 0.9889 499 0 0 1
Deepseek v3 0324 1.0000 1.0000 1.0000 1.0000 450 0 0 0 0.4501 1.0000 0.4501 0.6200 221 0 0 270
DeepSeek R1 0.9939 1.0000 0.9939 0.9969 489 0 0 3 0.7440 1.0000 0.7440 0.8532 372 0 0 128
Gemini Flash 2.0 0.9820 1.0000 0.9820 0.9900 491 0 0 9 0.9000 1.0000 0.9000 0.9470 450 0 0 50
Gemini Flash 2.0 Lite 0.9980 1.0000 0.9980 0.9980 499 0 0 1 0.9980 1.0000 0.9980 0.9989 499 0 0 1

The ProofWriter results Table 8 are notable. We advise the reader to ignore DeepSeek R1’s SMT
performance, since it is based on a “Partial Run," because of poor model ability to autoformalize, due
to the overuse of thinking tokens, thereby causing an intractable timeline for converging to any solution
and API call explosion. Here, o3-mini (medium effort) showcases a successful SMT application, where its
accuracy improved to 0.9418 with a reduction in both False Positives (from 34 to 19) and False Negatives
(from 21 to 10) compared to its text output. On the FOLIO dataset (Table 9), a common pattern observed
in the SMT condition, beyond just low precision, was the significant reduction in True Negatives compared
to the Text condition for several models (e.g., Deepseek v3 dropped from 34 TN via Text to 5 TN via
SMT; Gemini Flash 2.0 from 37 TN to 0 TN). This suggests a systemic challenge in generating SMT
formulas that correctly evaluate to unsatisfiable for statements that are indeed false within the FOLIO
logical structure. Finally, the ProntoQA test set which includes both true and false statements (Table
10) revealed extreme model-specific behaviors under SMT. DeepSeek R1’s SMT output, for instance,
correctly identified all 242 false statements (0 FP, 242 TN) but failed to correctly identify any of the 258
true statements (0 TP, 258 FN), indicating a systematic bias in its SMT generation towards unsatisfiability
or an inability to complete proofs for satisfiable formulas in a mixed-distribution context, a stark contrast
to its perfect text performance and its SMT performance on true-only statements.

22

Table 8: LLM Performance on ProofWriter (Text vs. SMT): SMT substantially improves
models struggling with formal logic (e.g., Gemini Flash 2.0 Lite accuracy from 0.41 to
0.75), yet can degrade performance for models already strong in textual formal reasoning
(e.g., DeepSeek R1 accuracy from 0.94 to 0.49), showcasing task-specific SMT utility.

ProofWriter
Text SMT

Accuracy Precision Recall F1 TP TN FP FN Accuracy Precision Recall F1 TP TN FP FN
o3-mini (medium effort) 0.8893 0.8697 0.9153 0.8919 227 215 34 21 0.9418 0.9261 0.9597 0.9426 238 231 19 10
Deepseek v3 0324 0.8057 0.8016 0.8225 0.8110 190 175 47 41 0.5800 0.6587 0.3320 0.4414 83 207 43 167
DeepSeek R1 (Partial Run) 0.9423 0.9597 0.9220 0.9400 143 151 6 12 0.4935 0.4750 0.1870 0.2685 29 125 32 126
Gemini Flash 2.0 0.4900 0.4960 0.5710 0.5300 140 106 142 105 0.6660 0.6844 0.6160 0.5313 154 106 71 96
Gemini Flash 2.0 Lite 0.4060 0.3609 0.2440 0.2911 61 142 108 189 0.7540 0.7275 0.8120 0.7674 203 174 76 47

Table 9: LLM Performance on FOLIO (Text vs. SMT): Textual reasoning largely
outperforms SMT. For many models, SMT results in high recall but poor precision (e.g.,
Gemini Flash 2.0 SMT F1 0.72 vs Text 0.92) and a failure to identify false statements
(e.g., 0 SMT True Negatives for Gemini Flash 2.0), indicating issues with formalizing
negation or complex FOL conditions.

Folio
Text SMT

Accuracy Precision Recall F1 TP TN FP FN Accuracy Precision Recall F1 TP TN FP FN
o3-mini (medium effort) 0.9450 0.9682 0.9384 0.9531 61 43 2 4 0.5000 0.6890 0.2985 0.4166 20 36 9 47
Deepseek v3 0324 0.9333 0.9259 0.9615 0.9433 50 34 4 2 0.5961 0.6063 0.9193 0.7307 57 5 37 5
DeepSeek R1 0.9252 0.9670 0.9090 0.9374 60 39 2 6 0.5200 0.6363 0.5303 0.5785 35 21 20 31
Gemini Flash 2.0 0.9010 0.9275 0.9142 0.9200 64 37 5 6 0.5625 0.6000 0.9000 0.7200 63 0 42 7
Gemini Flash 2.0-lite 0.9017 0.904 0.9428 0.923 66 35 7 4 0.7321 0.7 1 0.8235 70 12 30 0

Table 10: LLM Performance on ProntoQA Test (True/False Mix; Text vs. SMT): SMT
shows divergent outcomes: catastrophic failure for some (e.g., DeepSeek R1 SMT
F1 0.00 vs. Text 1.00), yet significant improvement for others (Gemini Flash 2.0 Lite
SMT Accuracy 0.78 vs. Text 0.56), highlighting inconsistent SMT reliability on mixed
arithmetic statements.

ProntoQA TEST - BOTH TRUE AND FALSE
Text SMT

Accuracy Precision Recall F1 TP TN FP FN Accuracy Precision Recall F1 TP TN FP FN
o3-mini (medium effort) 1.0000 1.0000 1.0000 1.0000 258 240 0 0 1.0000 1.0000 1.0000 1.0000 258 242 0 0
Deepseek v3 0324 0.7200 0.7138 0.7635 0.7378 197 163 79 61 0.5140 0.5484 0.3295 0.4116 85 172 70 173
DeepSeek R1 1.0000 1.0000 1.0000 1.0000 253 242 0 0 0.4840 0.0000 0.0000 0.0000 0 242 0 258
Gemini Flash 2.0 0.7180 0.8232 0.5770 0.6780 149 210 32 109 0.4560 0.4753 0.5232 0.4981 135 93 149 123
Gemini Flash 2.0 Lite 0.5630 0.5811 0.5333 0.5562 136 144 98 119 0.7820 0.7210 0.9418 0.8168 243 148 94 15

23

C.2 Detailed Performance of Uncertainty Metrics for Ground Truth Prediction

This section provides a granular view of the performance of various Probabilistic Context-Free Grammar
(PCFG) derived metrics, self-consistency measures, and ensemble methods in predicting the correctness
of SMT-LIB outputs (with respect to ground truth) for specific LLM and dataset combinations. The
metrics evaluated include AUROC (Area Under the Receiver Operating Characteristic Curve) for
discrimination, ECE (Expected Calibration Error) and Brier score for calibration, and AURC (Area Under
the Risk-Coverage Curve) along with optimal threshold (Opt.T), error rate at threshold (Err@T), and
relative error reduction (RelErrRed) for selective prediction utility.

The UQ results for o3-mini on StrategyQA demonstrate moderate success in distinguishing correct SMT out-
puts from incorrect ones. While Grammar Entropy shows good individual discriminative power (AUROC
0.7448, AURC 0.1113), achieving a 13.88% relative error reduction by abstaining on just 5% of samples,
many other standalone PCFG metrics exhibit weaker performance. The self-consistency metrics (Text and
SMT) also perform well (AUROC 0.74), indicating that agreement between the LLM’s own reasoning
modalities is a key signal. Notably, the Ensemble ML method achieves the highest AUROC (0.7850) and a
significant relative error reduction (29.29% by abstaining on 10% of samples), underscoring the benefit of
integrating diverse uncertainty signals through a learned model. The comparatively higher ECE for many
metrics suggests that while discriminative, their raw scores may not always be well-calibrated probabilities.

Table 11: Uncertainty Quantification for o3-mini on StrategyQA: Ensemble ML (AUROC 0.7850)
and Self-Consistency metrics (Text/SMT AUROC 0.74) outperform most individual PCFG metrics
(Grammar Entropy AUROC 0.7448 being a strong contender). This suggests that for o3-mini on this
knowledge-intensive task, learned combinations or behavioral consistency signals are more potent than
isolated SMT structural properties for error detection.

StrategyQA - o3-mini
Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed
Grammar Entropy 0.7448 0.3058 0.2340 0.1113 0.0500 0.1895 0.1388
Perplexity 0.5589 0.3107 0.2862 0.1811 0.2000 0.1750 0.2045
KL Divergence 0.6428 0.2485 0.2385 0.1471 0.3000 0.1429 0.3506
NSUI 0.6334 0.2436 0.2539 0.1250 0.1500 0.1882 0.1444
Renyi Ent (2) 0.5175 0.3303 0.2997 0.1977 0.3000 0.1857 0.1558
Renyi Ent (0.5) 0.5973 0.3398 0.3042 0.1634 0.2500 0.1600 0.2727
Max Ent 0.6649 0.3553 0.2935 0.1297 0.0500 0.1895 0.1388
Ent Ratio 0.5385 0.3283 0.3028 0.1834 0.3000 0.1857 0.1558
Spectral Factor 0.6334 0.2173 0.2364 0.1319 0.1500 0.1882 0.1444
Spectral Radius 0.6334 0.2892 0.2747 0.1319 0.1500 0.1882 0.1444
Nonterminals 0.5111 0.3540 0.3188 0.2006 0.2000 0.2125 0.0341
Rules 0.5548 0.2117 0.2385 0.1855 0.2000 0.1750 0.2045
Avg Rules / NT 0.5737 0.2400 0.2415 0.1752 0.2000 0.1625 0.2614
Avg RHS Len 0.5350 0.6141 0.5651 0.1979 0.0500 0.2105 0.0431
Max Branch Factor 0.5181 0.1500 0.1997 0.1990 0.1500 0.1882 0.1444
Rule Dist Mean 0.5740 0.3161 0.2836 0.1752 0.2000 0.1625 0.2614
Rule Dist StdDev 0.5291 0.3995 0.3517 0.1811 0.0500 0.2105 0.0431
Rule Dist Skew 0.5833 0.3178 0.2850 0.1689 0.1500 0.1765 0.1979
Rule Dist Kurtosis 0.5659 0.3948 0.3420 0.1785 0.0500 0.2000 0.0909
Self Consistency Text 0.7369 0.1604 0.1603 0.1081 0.1500 0.1529 0.3048
Self Consistency SMT 0.7416 0.1523 0.1609 0.1051 0.1500 0.1529 0.3048
Ensemble Average 0.7622 0.3724 0.2916 0.1103 0.1000 0.1556 0.2929
Ensemble Weighted 0.7657 0.1738 0.1617 0.1099 0.0500 0.1895 0.1388
Ensemble ML 0.7850 0.2090 0.1756 0.1013 0.1000 0.1556 0.2929
Ensemble Simple 0.6702 0.2055 0.2104 0.1410 0.2000 0.1500 0.3182

For DeepSeek-v3 on StrategyQA, UQ metrics show a somewhat different pattern compared to o3-mini.
Ensemble ML again provides the best overall discrimination (AUROC 0.7709), achieving a relative error
reduction of 8.96% by abstaining on 5% of the samples. Interestingly, several individual PCFG-derived
metrics, such as Grammar Entropy (AUROC 0.7087), Max Entropy (AUROC 0.6851), and Spectral
Factor/Radius (AUROC 0.6800), demonstrate better discriminative power than the self-consistency metrics
(AUROCs 0.60-0.62). This suggests that for DeepSeek-v3 on this task, intrinsic structural characteristics
of the generated SMT are more indicative of correctness than its consistency with textual outputs. While
Ensemble Simple yields the highest relative error reduction (35.14%), this comes at the cost of a high
abstention rate (Opt.T 0.50), indicating practical trade-offs in selective prediction.

The UQ performance for o3-mini on ProofWriter is remarkably high, demonstrating the strong potential
of PCFG-based metrics in formal reasoning contexts. Numerous individual metrics, including Grammar
Entropy, Perplexity (AUROC 0.9194), Renyi Entropy (0.5) (AUROC 0.9301), Average Rules / NT

24

Table 12: Uncertainty Quantification for DeepSeek-v3 on StrategyQA: Ensemble ML leads with an AUROC
of 0.7709. Several individual PCFG-based metrics like Grammar Entropy (AUROC 0.7087) and Max En-
tropy (AUROC 0.6851) show reasonable efficacy, outperforming self-consistency measures for this model.

Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed
Grammar Entropy 0.7087 0.1575 0.2302 0.2097 0.05 0.3474 0.0612
Perplexity 0.6122 0.1601 0.2641 0.2497 0.5 0.28 0.2432
KL Divergence 0.5723 0.1393 0.2322 0.2878 0.05 0.3579 0.0327
NSUI 0.5997 0.0781 0.2191 0.2672 0.1 0.3222 0.1291
Renyi Ent (2) 0.6195 0.1622 0.2679 0.2429 0.45 0.2727 0.2629
Renyi Ent (0.5) 0.6126 0.1623 0.2626 0.2517 0.5 0.28 0.2432
Max Ent 0.6851 0.0473 0.2099 0.2271 0.1 0.3222 0.1291
Ent Ratio 0.5311 0.1336 0.2538 0.3306 0.05 0.3684 0.0043
Spectral Factor 0.68 0.0992 0.2236 0.2365 0.05 0.3474 0.0612
Spectral Radius 0.68 0.0686 0.2148 0.2365 0.05 0.3474 0.0612
Nonterminals 0.6115 0.1329 0.2469 0.2547 0.45 0.2909 0.2138
Rules 0.6197 0.1109 0.2252 0.2583 0.15 0.3176 0.1415
Avg Rules / NT 0.6021 0.0902 0.226 0.2616 0.05 0.3579 0.0327
Avg RHS Len 0.5122 0.1753 0.2712 0.3279 0.1 0.3444 0.0691
Max Branch Factor 0.618 0.145 0.227 0.2688 0.05 0.3474 0.0612
Rule Dist Mean 0.6021 0.1811 0.2534 0.2616 0.05 0.3579 0.0327
Rule Dist StdDev 0.5281 0.1251 0.2573 0.3116 0.5 0.32 0.1351
Rule Dist Skew 0.6036 0.1431 0.2489 0.261 0.1 0.3444 0.0691
Rule Dist Kurtosis 0.5787 0.172 0.26 0.2754 0.05 0.3579 0.0327
Self Consistency Text 0.6017 0.2874 0.3048 0.2882 0.1 0.3444 0.0691
Self Consistency SMT 0.6203 0.2318 0.2745 0.2513 0.1 0.3444 0.0691
Ensemble Average 0.6795 0.1214 0.2077 0.2182 0.1 0.3222 0.1291
Ensemble Weighted 0.7211 0.1257 0.2135 0.1989 0.05 0.3474 0.0612
Ensemble ML 0.7709 0.0877 0.1968 0.1847 0.05 0.3368 0.0896
Ensemble Simple 0.6401 0.1763 0.2514 0.2483 0.5 0.24 0.3514

(AUROC 0.9301), and various rule distribution statistics, achieve AUROC scores exceeding 0.90. More
impressively, their AURC values are exceptionally low (e.g., 0.0008 for Grammar Entropy), translating
to a 100% relative error reduction by abstaining on a small fraction of samples (e.g., 10%). This strongly
supports the hypothesis that syntactic irregularities in generated formal artifacts are highly indicative
of underlying semantic errors when the task aligns well with the formal language. Ensemble methods
elevate this performance to near-perfection (Ensemble Average AUROC 0.9949). Despite the excellent
discrimination, some metrics show high ECE values (e.g., Grammar Entropy ECE 0.4419), suggesting
that while they can effectively rank outputs by correctness likelihood, their raw scores may not be perfectly
calibrated across the entire probability spectrum.

The UQ results for Gemini 2.0 Flash Lite on ProofWriter present a mixed picture, contrasting with o3-mini’s
strong performance on the same task. Many individual PCFG-derived metrics demonstrate weak discrimi-
native ability, with AUROC scores often between 0.50 and 0.59 (e.g., Grammar Entropy at 0.5380, Spectral
Radius at 0.5011). However, SMT Self Consistency stands out as a significantly stronger individual per-
former with an AUROC of 0.7364. Ensemble methods, particularly Ensemble ML, achieve the best overall
performance (AUROC 0.7631, AURC 0.0823), leading to a 14.61% relative error reduction when abstaining
on 5% of the samples. This suggests that for Gemini 2.0 Flash Lite on ProofWriter, the structural variations
in its SMT outputs are less consistently tied to semantic correctness compared to o3-mini. Instead, behavioral
consistency (specifically, how its SMT outputs align with each other across multiple generations) and learned
patterns across a combination of (often individually weaker) signals provide more reliable error detection.

25

Table 13: Uncertainty Quantification for o3-mini on ProofWriter: PCFG-derived metrics achieve
exceptional discriminative power (e.g., Grammar Entropy AUROC 0.9301, AURC 0.0008), enabling
near-perfect error detection with minimal abstention (100% RelErrRed at Opt.T 0.10). Ensemble methods
(e.g., Ensemble Average AUROC 0.9949) further refine this, confirming that SMT structural properties
are extremely strong predictors of correctness for o3-mini on this formal reasoning task.

ProofWriter
Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed
Grammar Entropy 0.9301 0.4419 0.25 0.0008 0.1000 0.0000 1.0000
Perplexity 0.9194 0.5358 0.3515 0.0008 0.1000 0.0000 1.0000
KL Divergence 0.5108 0.5167 0.326 0.0074 0.0000 0.0106 0.0000
NSUI 0.5645 0.571 0.3843 0.0084 0.0000 0.0106 0.0000
Renyi Ent (2) 0.8871 0.5405 0.3598 0.0013 0.1500 0.0000 1.0000
Renyi Ent (0.5) 0.9301 0.4724 0.2879 0.0008 0.1000 0.0000 1.0000
Max Ent 0.9086 0.7198 0.555 0.0013 0.1000 0.0000 1.0000
Ent Ratio 0.586 0.5714 0.3764 0.0055 0.4500 0.0000 1.0000
Spectral Factor 0.7473 0.3458 0.2247 0.0032 0.3000 0.0000 1.0000
Spectral Radius 0.7473 0.3545 0.2305 0.0032 0.3000 0.0000 1.0000
Nonterminals 0.8011 0.4267 0.2397 0.0019 0.2000 0.0000 1.0000
Rules 0.5108 0.4186 0.2201 0.0084 0.0000 0.0106 0.0000
Avg Rules / NT 0.9301 0.5393 0.3499 0.0008 0.1000 0.0000 1.0000
Avg RHS Len 0.8011 0.6535 0.5086 0.0026 0.2500 0.0000 1.0000
Max Branch Factor 0.5914 0.2979 0.1377 0.0055 0.4500 0.0000 1.0000
Rule Dist Mean 0.9301 0.4945 0.3034 0.0008 0.1000 0.0000 1.0000
Rule Dist StdDev 0.5108 0.5555 0.3723 0.0074 0.5000 0.0000 1.0000
Rule Dist Skew 0.9301 0.4923 0.2987 0.0008 0.1000 0.0000 1.0000
Rule Dist Kurtosis 0.586 0.5107 0.3115 0.0055 0.4500 0.0000 1.0000
Self Consistency Text 0.899 0.0423 0.028 0.002 0.0500 0.0105 0.4684
Self Consistency SMT 0.7121 0.8501 0.7764 0.0025 0.1500 0.0000 1.0000
Ensemble Average 0.9949 0.3356 0.1414 0.0005 0.0500 0.0000 1.0000
Ensemble Weighted 0.9785 0.4612 0.2566 0.0003 0.0500 0.0000 1.0000
Ensemble ML 0.9892 0.0572 0.028 0.0003 0.0500 0.0000 1.0000
Ensemble Simple 0.9355 0.4419 0.2582 0.0008 0.1000 0.0000 1.0000

Table 14: Uncertainty Quantification for Gemini 2.0 Flash Lite on ProofWriter: Performance is moderate;
SMT Self Consistency (AUROC 0.7364) and Ensemble ML (AUROC 0.7631) are the strongest UQ
signals. Most individual PCFG structural metrics show weak discriminative power (many AUROCs
0.50-0.59), indicating that for this model on ProofWriter, behavioral consistency (SMT-based) and learned
combinations are more indicative of correctness than raw SMT syntactic properties alone.

Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed
Grammar Entropy 0.5380 0.3185 0.2869 0.1405 0.4500 0.1667 0.1081
Perplexity 0.5934 0.3888 0.3182 0.1267 0.1000 0.1742 0.0680
KL Divergence 0.5164 0.3080 0.2797 0.1573 0.0000 0.1869 0.0000
NSUI 0.5243 0.3186 0.2642 0.1514 0.1500 0.1845 0.0125
Renyi Ent (2) 0.5996 0.4102 0.3368 0.1285 0.1000 0.1742 0.0680
Renyi Ent (0.5) 0.5933 0.4401 0.3581 0.1258 0.1000 0.1742 0.0680
Max Ent 0.5417 0.3503 0.3045 0.1420 0.5000 0.1717 0.0811
Ent Ratio 0.5177 0.3943 0.3426 0.1548 0.2000 0.1835 0.0178
Spectral Factor 0.5011 0.5048 0.4157 0.1578 0.0000 0.1869 0.0000
Spectral Radius 0.5011 0.3930 0.3172 0.1578 0.0000 0.1869 0.0000
Nonterminals 0.5167 0.4838 0.4215 0.1672 0.1000 0.1854 0.0079
Rules 0.5549 0.2422 0.2315 0.1370 0.4000 0.1610 0.1383
Avg Rules / NT 0.5840 0.2790 0.2656 0.1301 0.3000 0.1377 0.2632
Avg RHS Len 0.5631 0.3413 0.2906 0.1480 0.1000 0.1685 0.0981
Max Branch Factor 0.5745 0.2189 0.2293 0.1355 0.3000 0.1522 0.1857
Rule Dist Mean 0.5838 0.4368 0.3713 0.1301 0.3000 0.1377 0.2632
Rule Dist StdDev 0.5144 0.4474 0.3795 0.1559 0.3500 0.1797 0.0384
Rule Dist Skew 0.5844 0.4511 0.3779 0.1313 0.3000 0.1522 0.1857
Rule Dist Kurtosis 0.5044 0.1437 0.1913 0.1726 0.4000 0.1610 0.1383
Self Consistency Text 0.5525 0.2283 0.2419 0.1376 0.4500 0.1545 0.1866
Self Consistency SMT 0.7364 0.3535 0.2751 0.1031 0.2000 0.1062 0.4408
Ensemble Average 0.6140 0.3922 0.3192 0.1240 0.1000 0.1722 0.0936
Ensemble Weighted 0.7235 0.3327 0.2539 0.1035 0.1000 0.1404 0.2484
Ensemble ML 0.7631 0.2897 0.2229 0.0823 0.0500 0.1596 0.1461
Ensemble Simple 0.6476 0.3867 0.3039 0.1071 0.2000 0.1519 0.1871

26

C.3 Detailed Performance of SMT-Based Uncertainty Metrics for Text-Answer Prediction

This section evaluates the efficacy of uncertainty quantification (UQ) metrics derived from SMT-LIB
generations in predicting the correctness of the SMT results with the corresponding textual answers.
The goal is to identify when the formalization (SMT output) aligns or diverges from the model’s natural
language reasoning output (textual answer). On StrategyQA, o3 mini had 100% agreement between SMT
and text answers, so UQ analysis for SMT-Text consistency prediction was not applicable for that specific
model-dataset pair as there were no disagreements to predict. Results for other cases are detailed below.

For DeepSeek R1 on StrategyQA, we assesses how well metrics derived from its SMT generations can
predict alignment with its textual answers. The results are strong: ensemble methods integrating these SMT
features, such as Ensemble Weighted (AUROC 0.8494) and Ensemble Average (AUROC 0.8183), are
highly effective. Notably, Text Self Consistency (AUROC 0.8245) is a top individual performer, suggesting
that instability in textual outputs often correlates with SMT-Text divergence. Among metrics purely derived
from SMT structure, Grammar Entropy (AUROC 0.7609) is noteworthy, achieving a 100% relative error
reduction in identifying SMT-Text disagreements if one abstains on 45% of cases. This performance in
predicting SMT-Text consistency is robust and highlights that both SMT structural integrity and textual
stability are key indicators. The AURC values are generally very low for top performers (e.g., 0.0155 for
Ensemble Weighted), indicating high utility in selectively flagging potential cross-modal disagreements.

Table 15: UQ for SMT-Text Consistency (DeepSeek R1, StrategyQA): SMT-derived metrics, especially
ensembles (Ensemble Weighted AUROC 0.8494), effectively predict SMT-Text answer agreement.
Text Self Consistency (AUROC 0.8245) is a strong predictor, while SMT-derived Grammar Entropy
(AUROC 0.7609) also shows good utility, enabling high error reduction (100% RelErrRed at Opt.T 0.45)
in identifying SMT-Text divergences.

Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed
Grammar Entropy 0.7609 0.4617 0.2968 0.0216 0.4500 0.0000 1.0000
Perplexity 0.6211 0.3789 0.2640 0.0361 0.5000 0.0204 0.7114
KL Divergence 0.5776 0.4408 0.2855 0.0443 0.3000 0.0580 0.1801
NSUI 0.5963 0.2529 0.1433 0.0462 0.1000 0.0562 0.2055
Renyi Ent (2) 0.6242 0.3980 0.2746 0.0378 0.5000 0.0204 0.7114
Renyi Ent (0.5) 0.6149 0.3942 0.2755 0.0376 0.5000 0.0408 0.4227
Max Ent 0.7174 0.3994 0.2341 0.0262 0.0500 0.0638 0.0973
Ent Ratio 0.5217 0.5047 0.3529 0.0543 0.3000 0.0580 0.1801
Spectral Factor 0.5481 0.1533 0.0927 0.0640 0.1500 0.0476 0.3265
Spectral Radius 0.5481 0.2067 0.1166 0.0640 0.1500 0.0476 0.3265
Nonterminals 0.5264 0.5679 0.4237 0.0557 0.5000 0.0408 0.4227
Rules 0.6087 0.3083 0.1839 0.0396 0.4000 0.0508 0.2809
Avg Rules / NT 0.7034 0.4068 0.2532 0.0273 0.0500 0.0638 0.0973
Avg RHS Len 0.5637 0.2491 0.1566 0.0544 0.1000 0.0562 0.2055
Max Branch Factor 0.6801 0.3325 0.2042 0.0324 0.0500 0.0638 0.0973
Rule Dist Mean 0.7034 0.5352 0.3733 0.0273 0.0500 0.0638 0.0973
Rule Dist StdDev 0.6056 0.6755 0.5361 0.0413 0.2000 0.0506 0.2839
Rule Dist Skew 0.6848 0.4800 0.3260 0.0309 0.0500 0.0638 0.0973
Rule Dist Kurtosis 0.5311 0.2521 0.1588 0.0534 0.1000 0.0674 0.0465
Self Consistency Text 0.8245 0.1002 0.0751 0.0155 0.0500 0.0319 0.5486
Self Consistency SMT 0.7570 0.2062 0.1373 0.0268 0.0500 0.0532 0.2477
Ensemble Average 0.8183 0.4695 0.3058 0.0180 0.2500 0.0135 0.8089
Ensemble Weighted 0.8494 0.3256 0.1711 0.0155 0.0500 0.0319 0.5486
Ensemble ML 0.8245 0.3084 0.2003 0.0170 0.2000 0.0380 0.4629
Ensemble Simple 0.6957 0.4363 0.2748 0.0316 0.1000 0.0562 0.2055

When predicting SMT-Text consistency for DeepSeek v3 on StrategyQA, UQ metrics based on SMT gener-
ations prove highly effective. The Ensemble ML approach, which learns from various SMT-derived features,
achieves an impressive AUROC of 0.8517 and offers a 55.56% relative error reduction in spotting SMT-
Text disagreements when abstaining on 25% of samples. Good individual predictors include SMT-derived
Grammar Entropy (AUROC 0.7354) and SMT Self Consistency (AUROC 0.7116). This demonstrates that
for DeepSeek v3, deviations from typical SMT structure (signaled by grammar entropy) or inconsistencies
in the SMT generation process itself are strong indicators that the SMT output might not align with the
model’s textual answer. The low AURC (0.0573) for Ensemble ML highlights its practical utility. This
task of predicting internal consistency (SMT-Text) shows strong signals, comparable to or even clearer
(e.g. for Ensemble ML) than predicting SMT-Ground Truth correctness for this model on the same dataset.

For Gemini Flash 2.0 Lite on StrategyQA, the task of predicting SMT-Text consistency reveals a standout
individual metric: Rule Distribution Kurtosis from the SMT generations achieves a very high AUROC
of 0.8695. This is a particularly interesting finding, as it suggests that the "tailedness" or outlier presence

27

Table 16: UQ for SMT-Text Consistency (DeepSeek v3, StrategyQA): Ensemble ML using SMT-derived
features shows excellent performance (AUROC 0.8517) in predicting SMT-Text agreement, with a 55.56%
relative error reduction. SMT-derived Grammar Entropy (AUROC 0.7354) and SMT Self Consistency
(AUROC 0.7116) also serve as solid individual predictors, indicating that atypical SMT structures and
generation instability can flag potential SMT-Text divergences.

Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed
Grammar Entropy 0.7354 0.3058 0.2551 0.097 0.0500 0.1789 0.1479
Perplexity 0.6721 0.3282 0.2718 0.1205 0.3000 0.1143 0.4558
KL Divergence 0.5335 0.1195 0.178 0.1633 0.0500 0.2000 0.0476
NSUI 0.5973 0.1768 0.1919 0.1411 0.0500 0.1895 0.0977
Renyi Ent (2) 0.6799 0.3403 0.2808 0.116 0.3000 0.1000 0.5238
Renyi Ent (0.5) 0.6667 0.3333 0.2751 0.1223 0.3500 0.1077 0.4872
Max Ent 0.6353 0.1309 0.1738 0.1247 0.1000 0.1889 0.1005
Ent Ratio 0.6154 0.4091 0.3307 0.1446 0.5000 0.1000 0.5238
Spectral Factor 0.7034 0.1254 0.158 0.1206 0.1000 0.1667 0.2063
Spectral Radius 0.7034 0.1896 0.1752 0.1206 0.1000 0.1667 0.2063
Nonterminals 0.5549 0.2271 0.2455 0.148 0.0500 0.2000 0.0476
Rules 0.5675 0.2025 0.2077 0.1485 0.1000 0.1778 0.1534
Avg Rules / NT 0.6034 0.1393 0.1854 0.1399 0.0500 0.1895 0.0977
Avg RHS Len 0.5208 0.1254 0.1818 0.1972 0.0500 0.2000 0.0476
Max Branch Factor 0.5937 0.1563 0.192 0.1457 0.1000 0.1889 0.1005
Rule Dist Mean 0.6034 0.321 0.2742 0.1399 0.0500 0.1895 0.0977
Rule Dist StdDev 0.6281 0.2226 0.2221 0.1445 0.3000 0.1571 0.2517
Rule Dist Skew 0.5986 0.3057 0.2619 0.1406 0.0500 0.1895 0.0977
Rule Dist Kurtosis 0.66 0.0731 0.1576 0.1256 0.0500 0.1895 0.0977
Self Consistency Text 0.5778 0.1874 0.2008 0.1754 0.1500 0.1765 0.1597
Self Consistency SMT 0.7116 0.1662 0.1909 0.1054 0.1000 0.1778 0.1534
Ensemble Average 0.7064 0.1876 0.1831 0.0983 0.1000 0.1667 0.2063
Ensemble Weighted 0.7709 0.234 0.1971 0.0798 0.0500 0.1895 0.0977
Ensemble ML 0.8517 0.1861 0.1703 0.0573 0.2500 0.0933 0.5556
Ensemble Simple 0.6727 0.3021 0.2567 0.1119 0.1500 0.1765 0.1597

in the distribution of PCFG rules used during SMT generation is a very strong signal of whether the
SMT output will align with the textual answer for this model. This metric’s performance surpasses many
other individual PCFG metrics (e.g., Grammar Entropy AUROC 0.6622, Perplexity AUROC 0.7212).
Ensemble methods, like Ensemble Weighted (AUROC 0.8070) and Ensemble Average (AUROC 0.7927),
provide robust overall performance, leveraging combinations of signals. The strong performance of kurtosis
aligns with the our discussion about “syntactic fingerprints" and how atypical SMT patterns (like bimodal
distributions captured by kurtosis) can signal reasoning issues or misalignments. The AURC for Kurtosis
(0.4448) suggests that while discriminative, its practical utility in terms of risk reduction might require
careful thresholding, achieving a 30.56% error reduction at a 50% abstention rate.

The results for o3-mini on ProofWriter for predicting SMT-Text consistency are exceptional. Ensemble
ML and Ensemble Weighted methods achieve perfect AUROC scores of 1.0000, signifying an ability to
flawlessly distinguish SMT outputs that align with textual answers from those that diverge. This allows for
a 100% relative error reduction with a very low 5% abstention rate. Beyond ensembles, many individual
PCFG metrics derived from the SMT generations show extremely high predictive capabilities. For instance,
Ent Ratio (AUROC 0.9677), Rule Dist Kurtosis (AUROC 0.9462), Max Ent (AUROC 0.9355), and NSUI
(AUROC 0.9355) are all remarkably strong predictors, each achieving 100% relative error reduction at
their respective optimal thresholds. This indicates that for o3-mini, particularly on a formal reasoning
task like ProofWriter, the structural and probabilistic characteristics of its SMT generations are almost
perfectly indicative of whether its formal and textual reasoning pathways are aligned. The exceptionally
low AURC values (e.g., 0.0003 for Ensemble ML) further emphasize the practical certainty offered by
these UQ measures in this context. This level of predictability for SMT-Text consistency is even more
pronounced than some of the SMT-Ground Truth prediction results for this model, demonstrating the
power of SMT features for diagnosing internal reasoning coherence.

28

Table 17: UQ for SMT-Text Consistency (Gemini Flash 2.0 Lite, StrategyQA): Rule Distribution Kurtosis
(AUROC 0.8695) from SMT generations is an exceptionally strong individual predictor of SMT-Text
agreement, significantly outperforming other PCFG metrics. Ensemble methods (e.g., Ensemble Weighted
AUROC 0.8070) also perform well. This highlights a specific SMT structural feature as a key indicator
of cross-modal alignment for this model.

Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed
Grammar Entropy 0.6622 0.1277 0.2095 0.5689 0.1000 0.6889 0.0432
Perplexity 0.7212 0.3255 0.2849 0.5273 0.0500 0.7053 0.0205
KL Divergence 0.5486 0.2387 0.263 0.6341 0.1000 0.7000 0.0278
NSUI 0.6741 0.1195 0.1624 0.5221 0.5000 0.6600 0.0833
Renyi Ent (2) 0.7624 0.3192 0.2624 0.5037 0.1000 0.6889 0.0432
Renyi Ent (0.5) 0.6994 0.2766 0.2619 0.5438 0.0500 0.7053 0.0205
Max Ent 0.5982 0.3401 0.3083 0.59 0.3000 0.6714 0.0675
Ent Ratio 0.5511 0.1641 0.2511 0.6346 0.2500 0.6667 0.0741
Spectral Factor 0.6538 0.0943 0.1677 0.5316 0.5000 0.6600 0.0833
Spectral Radius 0.6538 0.1648 0.1703 0.5316 0.5000 0.6600 0.0833
Nonterminals 0.5166 0.418 0.3958 0.6509 0.3500 0.6769 0.0598
Rules 0.5749 0.4256 0.3818 0.6252 0.1000 0.6889 0.0432
Avg Rules / NT 0.6565 0.2913 0.2761 0.5923 0.2500 0.6400 0.1111
Avg RHS Len 0.6014 0.4855 0.442 0.6098 0.0500 0.7053 0.0205
Max Branch Factor 0.5818 0.5167 0.4747 0.6313 0.0500 0.7053 0.0205
Rule Dist Mean 0.6565 0.2197 0.228 0.5923 0.2500 0.6400 0.1111
Rule Dist StdDev 0.7183 0.3136 0.2807 0.5455 0.1500 0.6706 0.0686
Rule Dist Skew 0.6796 0.1783 0.2199 0.572 0.2500 0.6400 0.1111
Rule Dist Kurtosis 0.8695 0.3187 0.2412 0.4448 0.5000 0.5000 0.3056
Self Consistency Text 0.535 0.2788 0.2616 0.6064 0.3500 0.6462 0.1026
Self Consistency SMT 0.7505 0.538 0.4357 0.4822 0.5000 0.5600 0.2222
Ensemble Average 0.7927 0.1531 0.1702 0.4848 0.4000 0.5833 0.1898
Ensemble Weighted 0.807 0.1673 0.1632 0.4718 0.3000 0.6143 0.1468
Ensemble ML 0.7946 0.1308 0.1592 0.4784 0.5000 0.5400 0.2500
Ensemble Simple 0.7584 0.0796 0.1568 0.4929 0.1500 0.6824 0.0523

Table 18: UQ for SMT-Text Consistency (o3-mini, ProofWriter): SMT-derived UQ metrics demonstrate
outstanding performance, with Ensemble ML and Ensemble Weighted achieving perfect AUROC (1.0000)
in predicting SMT-Text agreement. Numerous individual PCFG metrics, such as Ent Ratio (AUROC 0.9677)
and Rule Dist Kurtosis (AUROC 0.9462), are also exceptionally effective, enabling complete identification
of SMT-Text inconsistencies with minimal abstention. This underscores a very strong link between SMT
formalization properties and cross-modal reasoning alignment for o3-mini on this formal task.

Metric AUROC ECE Brier AURC Opt.T Err@T RelErrRed
Grammar Entropy 0.8602 0.4419 0.2542 0.0013 0.15 0.00 1.00
Perplexity 0.9032 0.4429 0.2616 0.0013 0.10 0.00 1.00
KL Divergence 0.6667 0.5167 0.3238 0.0039 0.35 0.00 1.00
NSUI 0.9355 0.4077 0.2172 0.0008 0.10 0.00 1.00
Renyi Ent (2) 0.9032 0.4382 0.2580 0.0013 0.10 0.00 1.00
Renyi Ent (0.5) 0.8925 0.5063 0.3246 0.0013 0.15 0.00 1.00
Max Ent 0.9355 0.2589 0.1029 0.0008 0.10 0.00 1.00
Ent Ratio 0.9677 0.4074 0.2082 0.0003 0.05 0.00 1.00
Spectral Factor 0.5269 0.6329 0.5061 0.0084 0.00 0.01 0.00
Spectral Radius 0.5269 0.6243 0.4953 0.0084 0.00 0.01 0.00
Nonterminals 0.6505 0.5520 0.3650 0.0047 0.40 0.00 1.00
Rules 0.5108 0.4186 0.2201 0.0064 0.50 0.00 1.00
Avg Rules / NT 0.8011 0.4394 0.2554 0.0026 0.25 0.00 1.00
Avg RHS Len 0.5054 0.6535 0.5116 0.0074 0.50 0.00 1.00
Max Branch Factor 0.7419 0.6809 0.5100 0.0032 0.30 0.00 1.00
Rule Dist Mean 0.8011 0.4842 0.2971 0.0026 0.25 0.00 1.00
Rule Dist StdDev 0.8710 0.4232 0.2392 0.0013 0.15 0.00 1.00
Rule Dist Skew 0.8172 0.4864 0.2964 0.0019 0.20 0.00 1.00
Rule Dist Kurtosis 0.9462 0.5107 0.3056 0.0008 0.10 0.00 1.00
Self Consistency Text 0.7050 0.9352 0.9023 0.0030 0.30 0.00 1.00
Self Consistency SMT 0.7100 0.8600 0.7863 0.0030 0.30 0.00 1.00
Ensemble Average 0.9300 0.3560 0.1741 0.0007 0.10 0.00 1.00
Ensemble Weighted 1.0000 0.4231 0.2375 0.0003 0.05 0.00 1.00
Ensemble ML 1.0000 0.0496 0.0199 0.0003 0.05 0.00 1.00
Ensemble Simple 0.6667 0.4419 0.2661 0.0039 0.35 0.00 1.00

29

D Supplementary Experimental Details

The comprehensive PCFG analysis underpinning our uncertainty quantification was conducted on a
focused set of benchmarks. Specifically, for 100 questions each from the StrategyQA, ProofWriter, and
ProntoQA datasets, a corpus of NSMT =100 SMT-LIB v2 program samples per question was generated.
The FOLIO dataset was excluded from this detailed PCFG study due to challenges in obtaining consistently
robust SMT formalizations from the evaluated LLMs. Each SMT program within these corpora was
parsed using an ANTLR-based parser to extract its constituent production rules. For the generation of
these primary SMT samples used in uncertainty quantification (distinct from the temperature ablation
study), LLM sampling temperature was maintained at its default setting to promote more deterministic
outputs, with up to 10 generation attempts per SMT sample to ensure corpus completeness.

For each of the selected questions, a unique PCFG was induced from its corresponding 100 SMT samples.
Rule probabilities within these per-question PCFGs were estimated via Maximum Likelihood Estimation
(MLE), incorporating Lidstone smoothing (specifically, Laplace smoothing with βs=1) to manage unseen
production rules. Beyond the metrics detailed in the main methodology, specific configurations included
the computation of Rényi entropy for orders α=0.5 and α=2.0 (Collision Entropy).

The evaluation framework for the derived uncertainty metrics incorporated specific settings. Expected
Calibration Error (ECE) was calculated using 10 discretization bins for confidence scores. In the analysis
of selective prediction utility (error vs. abstention), optimal abstention thresholds were determined by
targeting maximum relative error reduction while considering abstention levels up to a practical maximum
of 50%. For our Ensemble ML predictor, a Logistic Regression model was employed, configured with
balanced class weights and trained for up to 10,000 iterations on scaled features derived from the suite
of PCFG uncertainty metrics.

E SMT Error Ratios vs Text Error Ratios

Figure 14: SMT vs. Text Error Ratio Analysis for
o3-mini: Illustrates well-calibrated SMT generation,
indicated by a strong correlation between SMT and
Text error patterns.

Figure 15: SMT vs. Text Error Ratio Analysis for
Gemini Flash 2.0: Depicts less-calibrated SMT
generation, evidenced by a weaker correlation
between SMT and Text error patterns.

The figures juxtapose SMT versus Text error ratios (with marginals) for o3-mini (Fig. 14) and Gemini
Flash 2.0 (Fig. 15); the Text error ratio is defined as the proportion of incorrect direct textual answers from
the LLM per question out of the many samples, while the SMT error ratio is the proportion of incorrect
answers derived from its SMT-LIB formalizations. O3-mini exhibits a notable correlation between its SMT
and Text error distributions, characteristic of a well-calibrated SMT generation process where formalization
errors tend to align with textual reasoning errors. In contrast, Gemini Flash 2.0 shows a weaker correlation,

30

suggesting its SMT generations may introduce errors or exhibit patterns less consistently coupled with
its textual output, indicative of poorer calibration. This comparative error ratio analysis is valuable for
assessing the fidelity of an LLM’s autoformalization. Strong SMT-Text error correlation implies that the
SMT modality can be a more reliable indicator of the LLM’s general reasoning tendencies for a problem,
making SMT-derived uncertainty metrics potentially more transferable. Poor correlation, however, signals
a divergence between textual reasoning and formalization, cautioning against using SMT outputs as direct
proxies without careful consideration of modality-specific error sources and motivating efforts towards
better SMT-Text reasoning alignment.

F Qualitative Analysis

Beyond quantitative uncertainty metrics, the PCFG framework, by its nature of parsing and structuring
program ensembles, lends itself to a nuanced qualitative analysis of LLM-generated formal artifacts. Initial
explorations can focus on broad characteristics such as the distribution of SMT-LIB sorts (datatypes)
employed or the prevalent logical fragments (e.g., ‘QF_LIA‘, ‘QF_AUFBV‘) selected by the LLM for a
given problem class. However, a more profound understanding of an LLM’s formalization strategy emerges
from a detailed examination of substructures, like the assert statements, which constitute the semantic
core of an SMT program by stipulating the conditions and axioms for the solver. Our PCFG-based analysis
of these assertions, and the logical architectures therein, reveals critical patterns in how LLMs attempt
to translate natural language problem specifications into rigorous, machine-interpretable logic.

When an LLM generates multiple SMT program samples for a single natural language input, the
per-problem induced PCFG captures a distribution over grammatical structures. This distribution inherently
models the LLM’s normative formalization pathways alongside its idiosyncratic variations, particularly
in the construction of assert statements and their nested logical terms—including quantifiers (forall,
exists), logical connectives (=>, and, or, not), and predicate applications. Analyzing the probabilities
and diversity of production rules within these PCFGs allows for the identification and interpretation of
several key types of divergences and tendencies in formal specification:

Formalization Aliasing and Representational Stability A core aspect of a problem specification may
elicit syntactically diverse, yet ideally logically equivalent, assert statements across an ensemble of LLM
generations. For instance, an implication A⇒B might be directly asserted or rendered as ¬A∨B. The
PCFG reflects such syntactic polymorphism through multiple, lower-probability rule sequences mapping
to the same underlying semantic constraint. A high degree of such variability for asserting fundamental
problem axioms often signals the LLM’s lack of a converged or canonical formalization strategy, potentially
indicating uncertainty or representational underspecification for that particular logical construct.

Variance in Logical Decomposition and Structural Complexity The PCFG rule sets unveil the LLM’s
implicit preferences regarding the structural complexity and granularity of asserted logical terms. For
a given problem, some SMT samples might employ deeply nested quantifiers and connectives within
a monolithic assert statement. In contrast, other samples might exhibit a preference for flatter, more
direct assertions or decompose a complex axiom into several simpler, conjoined assert statements. This
divergence in logical decomposition strategies is captured by differing rule probabilities and derivation
depths within the PCFG, pointing to variations in the LLM’s approach to abstraction and information
chunking during the formalization process.

Identification of Atypical or Anomalous Assertions Occasionally, an LLM may generate assert
statements possessing highly unusual or infrequent syntactic structures relative to the typical formalizations
observed for a given problem context or across a dataset. The PCFG methodology inherently highlights
these as low-probability production rules or derivations. Qualitative inspection of the SMT code
corresponding to these rare assertion patterns can uncover unique, potentially innovative, or conversely,
flawed and overly convoluted ways the LLM attempts to axiomatize specific constraints, offering insights
into its error modes or its capacity for novel formal expression.

Semantic Divergence in Axiomatization More critically, divergences can be semantic rather than
merely syntactic, leading to logically distinct problem formalizations from the same natural language input.
Such semantic drift often manifests as significantly different asserted terms within assert statements,
pointing to LLM misinterpretation, unresolved ambiguity, or flaws in its inferential reasoning. For example,
if an input "All engineers use LaTeX" is ambiguously formalized, one SMT sample might correctly

31

assert (forall ((x Engineer)) (usesLaTeX x)), while a semantically divergent sample might
erroneously assert (forall ((x User)) (implies (usesLaTeX x) (isEngineer x))). The
PCFG rules governing the predicates, variables, and logical structure of terms within these assertions
would markedly differ, directly reflecting this semantic incongruity and providing a diagnostic trace.

Fidelity in Representing Ground Facts For declarative factual statements present in the input (e.g.,
"Constantine is a logician"), the LLM is expected to consistently assert the corresponding ground fact
in a stable manner. If the PCFG reveals multiple, conflicting, or unstable rule applications for asserting
properties of specific entities (e.g., some derivations asserting ‘(isLogician constantine)‘ while
others, for the same conceptual input fact, generate ‘(isPhilosopher constantine)‘ or vary the
predicate structure), this indicates a deficiency in the LLM’s fidelity in extracting and consistently
formalizing elementary factual information, pointing to potential grounding issues.

Program 1 Program 2 Program 3 Program 4

(set-logic QF_LIA)
(declare-const rela-
tion_count_G Int)
(declare-const rela-
tion_count_J Int)
(assert (> relation_count_G
relation_count_J))
(assert (>= relation_count_G
1))
(assert (>= relation_count_J
0))
(check-sat)
(get-model)

(set-logic QF_LIA)
(declare-const GC Int)
(declare-const JC Int)
(assert (> GC 0))
(assert (> JC 0))
(assert (> GC JC))
(assert (>= GC 10))
(assert (>= JC 1))
(check-sat)
(get-model)

(set-logic QF_LIA)
(declare-fun people_genghis ()
Int)
(declare-fun people_caesar ()
Int)
(assert (>= people_genghis
0))
(assert (>= people_caesar 0))
(assert (> people_genghis peo-
ple_caesar))
(assert (>= people_genghis
1000000))
(assert (<= people_caesar
500000))
(check-sat)
(get-model)

(set-logic QF_LIA)
(declare-const KN Int)
(declare-const CA Int)
(assert (> KN CA))
(assert (= KN 16))
(assert (= CA 1))
(check-sat)
(get-model)

Table 19: Divergent LLM Formalizations of a StrategyQA Problem: Sample SMT-LIB outputs illustrating
varied axiomatization strategies, with assert statements highlighted (blue). Such variations are central
to the qualitative PCFG analysis discussed.

G Computational Efficiency

The overhead of our uncertainty quantification pipeline is minimal and does not constitute a performance
bottleneck. Table 20 presents comprehensive runtime and memory profiles for the key computational com-
ponents. Z3 solver execution on individual SMT programs averages 10ms with minimal memory footprint
(24.7MB mean). PCFG construction from 100 SMT samples requires approximately 1.3 seconds, while sub-
sequent uncertainty metric calculation adds only 0.4 seconds. These measurements confirm that our experi-
mental pipeline is dominated by LLM inference time rather than formal verification or uncertainty quantifica-
tion overhead. All experiments employed a 30-second timeout for Z3 execution to handle edge cases where
malformed SMT programs might cause solver delays, though such timeouts were rarely triggered in practice.

Table 20: Runtime and memory profiles for uncertainty quantification pipeline components. All
measurements represent averages across thousands of executions on our experimental infrastructure.

Component Mean Median P90 P95 Std Dev Peak Mem

Z3 per SMT program 10ms 10ms 11ms 11ms 1ms 26.4MB
PCFG construction (100 SMT) 1.297s 1.286s 1.454s 1.527s 0.131s 161.9MB
UQ metrics calculation 0.408s 0.402s 0.423s 0.431s 0.023s 118.9MB

H Discussion around Risk Thresholds

Calibration and Risk Management: The relationship between typicality and correctness isn’t
straightforward; metrics with superior discriminative ability often exhibit poor calibration, indicating
anomaly magnitude doesn’t linearly predict error probability. This calibration challenge necessitates careful
deployment considerations. Our evaluation explicitly addresses this through multiple complementary
metrics: Expected Calibration Error (ECE) measures how well predicted confidence scores align with

32

empirical accuracy; Brier scores quantify probabilistic prediction quality; and the Area Under the
Risk-Coverage Curve (AURC) evaluates practical risk mitigation through selective abstention. For
instance, on ProofWriter with o3-mini, our Ensemble ML method achieves both excellent discrimination
(AUROC=0.9892) and strong calibration (ECE=0.0572, Brier=0.0280), demonstrating that well-calibrated
uncertainty estimates are achievable through careful metric fusion.

The selective verification framework inherently provides risk management: engineers can adjust abstention
thresholds along the Risk-Coverage curve based on application requirements—choosing low error rates
with higher abstention for safety-critical domains, or higher coverage with moderate error rates for less
critical applications. Our AURC metric summarizes this tradeoff across all possible thresholds, with our
ensemble methods consistently achieving lower AURC values than individual metrics, indicating superior
risk-coverage profiles. Importantly, our approach is conservative by design, erring toward caution by
abstaining when uncertain rather than providing false confidence. When our UQ metrics themselves exhibit
miscalibration, the multi-metric evaluation strategy (AUROC, ECE, Brier, AURC) provides redundancy
to catch such cases—no single metric failure can compromise the entire uncertainty quantification pipeline.

I Extensibility to Prolog: Pilot Study

To demonstrate that our PCFG-based uncertainty quantification framework generalizes beyond SMT-LIB
to other formal languages, we conducted a pilot study applying our methodology to Prolog programs.
This extensibility validation is critical for establishing that our approach addresses fundamental aspects
of LLM-generated formal artifacts rather than being narrowly tailored to SMT-specific properties.

I.1 Methodology

Our implementation leverages the modular design of our framework: the PCFG construction pipeline
uses ANTLR for parsing, which supports any language with a defined grammar specification. We utilized
the Prolog.g4 grammar from the ANTLR-v4 public repository, requiring only minimal adapter code
to integrate Prolog parsing into our existing uncertainty quantification pipeline. This demonstrates that
extending to new formal languages requires engineering effort proportional to grammar complexity rather
than fundamental algorithmic redesign.

I.2 Example: Logical Statement Translation

We converted the example from Figure 1 of the main paper—"Everyone who studies math or physics
and works hard will succeed"—into five semantically distinct Prolog formalizations that mirror the logical
variations observed in SMT-LIB generation:

Program 1

% Facts
person(alice).
person(bob).
person(charlie).

studies_math(alice).
studies_physics(bob).
works_hard(bob).
works_hard(charlie).

% Rule
succeeds(X) :-

studies_math(X).

succeeds(X) :-
studies_physics(X),
works_hard(X).

% On load: print all solutions and exit

33

:- initialization(main).
main :-

forall(succeeds(X), writeln(X)),
halt.

Program 2

% Facts
person(alice).
person(bob).
person(charlie).

studies_math(alice).
studies_physics(bob).
works_hard(bob).
works_hard(charlie).

% Rule
succeeds(X) :-

(studies_math(X)
; studies_physics(X)
),
works_hard(X).

% On load: print all solutions and exit
:- initialization(main).
main :-

forall(succeeds(X), writeln(X)),
halt.

Program 3

% Facts
person(alice).
person(bob).
person(charlie).

studies_math(alice).
studies_physics(bob).
works_hard(bob).
works_hard(charlie).

% Toggle which implication you want:
option(math). % ← comment this and uncomment the next to switch
% option(physics).

% Branch 1: StudiesMath(x) -> Succeeds(x)
succeeds(X) :-

option(math),
studies_math(X).

% Branch 2: (StudiesPhysics(x) WorksHard(x)) -> Succeeds(x)
succeeds(X) :-

option(physics),
studies_physics(X),
works_hard(X).

% On load: print all solutions and exit

34

:- initialization(main).
main :-

forall(succeeds(X), writeln(X)),
halt.

Program 4

% Facts
person(alice).
person(bob).
person(charlie).

studies_math(alice).
studies_physics(bob).
works_hard(bob).
works_hard(charlie).

% Nested implication expands to two rules
succeeds(X) :-

works_hard(X),
studies_math(X).

succeeds(X) :-
works_hard(X),
studies_physics(X).

% On load: print all solutions and exit
:- initialization(main).
main :-

forall(succeeds(X), writeln(X)),
halt.

Program 5

% Facts
person(alice).
person(bob).
person(charlie).

studies_math(alice).
studies_physics(bob).
works_hard(bob).
works_hard(charlie).

% Forward direction
succeeds(X) :-

studies_math(X).
succeeds(X) :-

studies_physics(X),
works_hard(X).

% Backward direction to enforce
studies_math(X) :-

succeeds(X),
\+ (studies_physics(X), works_hard(X)).

studies_physics(X) :-
succeeds(X),

35

works_hard(X).

% On load: print all solutions and exit
:- initialization(main).
main :-

forall(succeeds(X), writeln(X)),
halt.

I.3 PCFG Analysis Results

From these five programs, our pipeline successfully constructed a PCFG with the following characteristics:

Table 21: PCFG statistics for Prolog pilot study programs.

Metric Value
Total rule applications 560
Unique production rules 33
Non-terminal symbols 7
Maximum rule probability 1.0
Minimum rule probability 0.0086
Average rule probability 0.2121
Rules per non-terminal 4.7
Maximum branching factor 16
Grammar entropy 0.0
KL divergence (from uniform) 1.34
Spectral radius 0.83

The successfully computed uncertainty metrics (grammar entropy, spectral radius, KL divergence, etc.)
demonstrate that our framework’s core algorithms operate seamlessly on Prolog programs without
modification. The low grammar entropy (0.0) correctly captures that these five programs, while
semantically distinct, share highly similar syntactic structure—a scenario our framework is designed to
detect as potential formalization uncertainty masked by superficial similarity.

I.4 Implications for Framework Generality

This pilot study establishes three key results:

(1) Minimal Engineering Overhead: Extending our framework to Prolog required approximately 2-3
hours of engineering time to integrate the existing ANTLR Prolog grammar and write adapter code. No
modifications to core PCFG algorithms were necessary.

(2) Cross-Language Applicability: The fundamental insight—that syntactic typicality in LLM-generated
formal artifacts signals semantic uncertainty—transcends specific formal languages. The same PCFG-
derived metrics (entropy, spectral radius, rule distributions) computed for SMT-LIB apply equally to Prolog.

(3) Future Directions: This extensibility opens exciting possibilities for uncertainty quantification in
general-purpose programming languages (Python, Java) and other verification languages (Coq, Isabelle,
Lean), provided context-free grammars are available. The framework’s generality positions it as a universal
tool for assessing LLM-generated structured artifacts across domains.

Limitation: Conducting full-scale empirical evaluation of Prolog-based uncertainty metrics on reasoning
benchmarks (equivalent to our SMT-LIB experiments) would require substantial additional resources and
is beyond the scope of this work. However, the successful technical integration and metric computation
provide strong evidence of feasibility for future research.

I.5 Implementation Notes

All metrics are computed per-instance from the PCFG induced from N = 100 SMT-LIB samples.
Normalization for ensemble methods uses min-max scaling to [0,1] based on training set statistics. Code
for all metric computations will be released with our open-source implementation.

36

I.6 Example PCFG Characteristics

To provide concrete understanding of the PCFGs induced from LLM-generated SMT programs, we present
detailed statistics from a representative example. The following measurements come from a single question
in the ProofWriter dataset, which produced the longest SMT programs in our corpus, analyzed using 100
samples from o3-mini:

Table 22: Detailed PCFG statistics for a representative ProofWriter instance with 100 SMT-LIB samples.

Property Value
Total rule applications across corpus 63,202
Unique production rules observed 42
Number of non-terminal symbols 24
Maximum probability (any rule) 1.0
Minimum probability (any rule) 0.00035
Average probability (across unique rules) 0.5714

Interpretation: Despite 100 diverse samples generating over 63,000 rule applications, only 42 unique
production rules from the SMT-LIB grammar were utilized. This demonstrates that LLMs, even when
sampling with temperature, explore a relatively constrained subset of the full grammar—a key insight
enabling our tractable PCFG-based uncertainty quantification. The wide range of rule probabilities
(spanning nearly four orders of magnitude from 0.00035 to 1.0) provides rich distributional information
for our entropy-based and statistical metrics.

Scalability: These statistics confirm that PCFG construction remains computationally efficient even for
complex reasoning tasks. The grammar remains manageable in size (24 non-terminals, 42 unique rules)
while capturing meaningful structural variation across the 100-sample ensemble.

37

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: These claims are supported by the experimental results presented throughout the
paper, particularly in Tables 1-4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present all known limitations in the discussion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to viola-

tions of these assumptions (e.g., independence assumptions, noiseless settings, model well-
specification, asymptotic approximations only holding locally). The authors should reflect
on how these assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably
to provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: Proof for Theorem 1 (presented in the methodology section) is in the appendix
due to lack of space.

38

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sufficient details are provided in both the main text of the paper and the appendix.
Moreover, we will release key pieces of code that require non-trivial engineering effort at the
time of acceptance, for example our PCFG creation pipeline.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature
of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the
model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification:

39

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: All details have been provided, between the methodology and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our comprehensive evaluation framework, representing substantial resource
investment in frontier model sampling, was meticulously designed with robust statistical protocols
to ensure all observed performance differentials reflect meaningful and actionable insights.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [No]
Justification: The majority of computational resources were consumed by API credits. However,
our algorithm is sufficiently efficient that the paper’s results can be replicated using the processing
power of a standard laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes. No issues.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: Our motivation for problem-solving stems from the imperative for verifiable LLM
reasoning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for op-
timizing neural networks could enable people to train models that generate Deepfakes faster.

41

https://neurips.cc/public/EthicsGuidelines

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology
is being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: Does not apply.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with neces-

sary safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: We have cited all relevant authors, and related work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: At the time of submission, we do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submis-

sions via structured templates. This includes details about training, license, limitations, etc.

42

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used only
for writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLMs as a component of our verifiable reasoning pipeline.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

43

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Probabilistic Context-Free Grammar (PCFG) Derived Metrics

	Results
	Benchmarking SMT based Formal Reasoning
	Benchmarking Uncertainty Quantification Techniques

	Discussion
	Related Works
	Conclusion
	Appendix: Proofs
	Coverage Guarantees
	Temperature Sampling & Ablations

	Temperature-Varied SMT Generation and PCFG Analysis
	Detailed Results
	Benchmarking Autoformalization
	Detailed Performance of Uncertainty Metrics for Ground Truth Prediction
	Detailed Performance of SMT-Based Uncertainty Metrics for Text-Answer Prediction

	Supplementary Experimental Details
	SMT Error Ratios vs Text Error Ratios
	Qualitative Analysis
	Computational Efficiency
	Discussion around Risk Thresholds
	Extensibility to Prolog: Pilot Study
	Methodology
	Example: Logical Statement Translation
	PCFG Analysis Results
	Implications for Framework Generality
	Implementation Notes
	Example PCFG Characteristics

