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Abstract
In this paper, we address learning tasks on graphs
with missing features, enhancing the applicabil-
ity of graph neural networks to real-world graph-
structured data. We identify a critical limitation
of existing imputation methods based on feature
propagation: they produce channels with nearly
identical values within each channel, and these
low-variance channels contribute very little to
performance in graph learning tasks. To over-
come this issue, we introduce synthetic features
that target the root cause of low-variance chan-
nel production, thereby increasing variance in
these channels. By preventing propagation-based
imputation methods from generating meaning-
less feature values shared across all nodes, our
synthetic feature propagation scheme mitigates
significant performance degradation, even under
extreme missing rates. Extensive experiments
demonstrate the effectiveness of our approach
across various graph learning tasks with missing
features, ranging from low to extremely high miss-
ing rates. Additionally, we provide both empirical
evidence and theoretical proof to validate the low-
variance problem. The source code is available at
https://github.com/daehoum1/fisf.

1. Introduction
Graph neural networks (GNNs) have achieved significant
success in graph learning tasks such as node classifica-
tion (Kipf & Welling, 2016a; Veličković et al., 2017) and
link prediction (Kipf & Welling, 2016b; Salha et al., 2019).
Since a wide range of data contain entities with relations,
these data can be represented in graphs and many problems
are formulated as graph learning tasks (Wu et al., 2022; Liao
et al., 2021). However, real-world graph-structured data of-
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ten include missing features for various reasons (e.g., private
information in social networks and measurement failure),
which hinders the direct application of GNNs to real-world
data. This challenge is especially prevalent in industries,
where severe feature missing rates of 97.5%, 99.9%, and
99.98% have been reported in real-world applications (Park
et al., 2023; Chai et al., 2020; Kim & Chi, 2018). Conse-
quently, applying GNNs to graphs with missing features has
received great attention as a task termed graph learning task
with missing features (Chen et al., 2020; Jiang & Zhang,
2020; Taguchi et al., 2021).

Recently, propagation-based imputation methods (Rossi
et al., 2022; Um et al., 2023; 2024; 2025), which im-
pute missing features by diffusing observed features along
edges in a channel-wise manner, have shown promising
results. The diffused features, derived from observed
features, provide sufficient information for GNNs to per-
form downstream graph learning tasks (Um et al., 2023).
The propagation-based methods offer two key advantages
over conventional neural network-based imputation meth-
ods (Monti et al., 2017; Chen et al., 2020): superior perfor-
mance and fast imputation without learnable parameters.

In this paper, we unveil an inherent limitation of the
propagation-based methods: when all observed features
within a channel are nearly identical, the diffusion process
fills all missing features in the channel with similarly iden-
tical values. We refer to such channels, where the feature
values are nearly identical across nodes (i.e., low-variance),
as low-variance channels. As illustrated in Figure 1a, we
observe that the majority of channels in the outputs of state-
of-the-art propagation-based methods (Rossi et al., 2022;
Um et al., 2023) tend to be low-variance channels. Further-
more, we provide theoretical proof that propagation-based
methods produce a zero-variance channel when the observed
features within a channel have identical values. Due to their
nearly identical values across nodes, low-variance channels
contribute minimally to graph learning tasks that require dis-
tinct representations of nodes or node pairs, as demonstrated
in Figure 1b.

To address the aforementioned low-variance channel prob-
lem, we propose a new propagation-based imputation
scheme called Feature Imputation with Synthetic Features
(FISF). Specifically, FISF consists of two diffusion stages.
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Figure 1. (a) Distributions of variance for each feature channel. The distributions for imputation methods are calculated
from imputed matrices for the CiteSeer dataset with 99.5% missing features. While existing propagation-based imputation
methods (FP and PCFI) produce outputs with numerous low-variance channels (outlined in red), our FISF effectively
addresses the low-variance problem. (b) Accuracy (%) on semi-supervised node classification tasks while progressively
excluding channels from the original feature matrix. The accuracy remains stable despite an increasing proportion of
channels being removed in ascending order of variance (blue line). However, removing channels starting from the highest
variance results in significant performance degradation.

First, to identify low-variance channels, FISF imputes
missing features using existing propagation-based meth-
ods (Rossi et al., 2022; Um et al., 2023). In each identified
low-variance channel, FISF removes all the imputed fea-
tures and generates a synthetic feature by injecting random
noise into a randomly selected node. Finally, FISF diffuses
both the observed and synthetic features to produce the final
imputed features. Unlike existing propagation-based algo-
rithms, FISF employs a novel distance encoding scheme
to spread synthetic features widely, effectively increasing
channel variance. We verify that FISF effectively resolves
the low-variance problem, as shown in Figure 1a, enabling
GNNs to achieve remarkable performance gains in down-
stream graph learning tasks.

In summary, our key contributions are as follows: 1)
We identify and analyze a phenomenon where exist-
ing propagation-based imputation methods produce low-
variance channels in their outputs, supported by both em-
pirical and theoretical evidence. 2) We propose FISF, a
novel propagation-based imputation method that addresses
the issue of low-variance channels by leveraging synthetic
features. To the best of our knowledge, this is the first work
to employ synthetic features for imputation. 3) Through
extensive experiments, we demonstrate that FISF effectively
eliminates low-variance channels in output matrices, re-
sulting in significant performance improvements on both
semi-supervised node classification and link prediction tasks
under various missing feature settings.

2. Related Work
2.1. Learning on Graphs with Missing Features

Dealing with missing data has long been an active re-
search field in machine learning (Allison, 2009; Troyan-
skaya et al., 2001). Methods for handling missing data in
graph-structured data can be categorized into three groups.

(i) GNN Architecture. Several methods propose new GNN
architectures to perform learning tasks on graphs with miss-
ing features. GCN for missing features (GCNMF) (Taguchi
et al., 2021) combines a GCN (Kipf & Welling, 2016a) layer
with a Gaussian mixture model that represents missing fea-
tures. (Jiang & Zhang, 2020) develops a message passing
layer that aggregates only known features. Graph feature
neural network (GRAFENNE) (Gupta et al., 2023) consists
of three-phase message-passing layers to address heteroge-
neous and dynamic features. However, these methods, due
to their specially designed layers, cannot take full advantage
of off-the-shelf GNN models.

(ii) Reconstruction. Reconstruction-based methods train
models by minimizing the reconstruction error between ob-
served features and their reconstructed values. Recurrent
Multi-Graph CNN (RMGCNN) leverages recurrent neural
networks to complete a feature matrix (Monti et al., 2017).
Structure-attribute-transformer (SAT) (Chen et al., 2020)
models the joint distribution of graph structures and node
features. Max-entropy graph autoencoder (MEGAE) (Gao
et al., 2023) maximizes the entropy of latent features in
autoencoders to alleviate the spectral concentration problem.
While these methods aim to accurately reconstruct miss-
ing features, achieving accurate reconstructed features does
not necessarily guarantee high performance in downstream
tasks (Um et al., 2023).

(iii) Propagation. In this paper, propagation-based im-
putation refers to an approach that imputes missing fea-
tures by diffusing known features without trainable param-
eters. Propagation-based imputation is based on feature
homophily, the tendency that features of connected nodes
are often similar on a graph. While preserving observed fea-
tures, missing features are updated by aggregating features
from neighboring nodes. Feature propagation (FP) (Rossi
et al., 2022) is pioneering work that iteratively propagates
known features in a channel-wise manner and fills in miss-
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ing features. Pseudo-confidence-based feature imputation
(PCFI) (Um et al., 2023) calculates pseudo-confidence of
each feature value and leverages pseudo-confidence as the
importance of feature values during propagation. These
propagation-based techniques have been favored due to their
effectiveness under high rates of missing features. However,
they often cause missing features to become overly similar
when a small number of observed features are highly alike,
leading to minimal feature differences between nodes. Our
approach mitigates this issue by encouraging greater fea-
ture distinctiveness between nodes, thereby enhancing the
performance of downstream GNNs in graph learning tasks.

2.2. Distance Encoding
To widely spread synthetic features, we assign varying im-
portance to each feature based on distance encoding. Dis-
tance encoding is a technique that utilizes graph-distance
measures (e.g., shortest path distance, generalized PageRank
scores (Li et al., 2019)) calculated between a node and a des-
ignated node set. (You et al., 2019) proposes an aggregation
scheme using the computed distance of a given node from
sampled anchor node sets. (Zhang & Chen, 2018) and (Li
et al., 2020) leverage encoded distance as extra node features
for link prediction. Position-aware graph neural network
(P-GNN) (Zhang et al., 2021) unifies several techniques,
including distance encoding, into a labeling trick.

3. Notation and Problem Definition
Notation. An undirected connected graph can be repre-
sented as G = (V, E ,A) where V = {v1, . . . , vN} is the
set of N nodes, E is the edge set, and A ∈ {0, 1}N×N is
an adjacency matrix. X = [xi,a] ∈ RN×F denotes a node
feature matrix where F is the number of feature channels
and xi,a represents the a-th channel feature value of vi.

Let d(vi, vj |A) be the shortest path distance between the
i-th node and the j-th node on G with A. Then, we define
a function dset(·) as dset(vi|V ′,A) = minvj∈V′d(vi, vj |A)
where V ′ ⊆ V . That is, we use dset(vi|V ′,A) to denote the
shortest path distance between the i-th node and its nearest
node in a node set V ′ ⊆ V on G with A.

Partially known (observed) features mean that X has miss-
ing elements. V(a)

k denotes a set of nodes whose a-th chan-
nel feature values are known. V(a)

u denotes a set of nodes
whose a-th channel feature values are unknown (missing)
(i.e., V(a)

u = V \ V(a)
k ). We refer to V(a)

k and V(a)
u as source

nodes and missing nodes, respectively. By rearranging the
whole nodes based on whether the feature value is known or
not for each channel, the whole features and the adjacency
matrix for the a-th channel can be written as

x(a) =

[
x
(a)
k

x
(a)
u

]
, A(a) =

[
A

(a)
kk A

(a)
ku

A
(a)
uk A

(a)
uu

]
, (1)

where x(a), x(a)
k , and x

(a)
u are column vectors for the a-th

channel. A(a) and A represent the same graph structure
although the node order of A(a) is rearranged from A. We
use B:,z to denote the z-th column of a matrix B.

Problem definition. We address the problem of graph
learning tasks with missing features, where our goal is to
minimize performance degradation in downstream learning
tasks despite high rates of missing features. Formally, graph
learning tasks with missing features can be expressed as

Ŷ = f({x(a)
k }

F
a=1,A) (2)

where Ŷ represents the predicted output for a given task
and f is the target function to be learned. We decompose f
into two steps, expressed as f = gθ ◦h, where h is a feature
imputation scheme, and gθ is an off-the-shelf GNN model
that operates on the full feature matrix obtained via h.

4. Proposed Method
4.1. Overview of FISF
We present an imputation scheme called feature imputation
with synthetic features (FISF), designed to minimize perfor-
mance degradation in graph learning tasks despite high rates
of missing features. Figure 2 provides an overview of FISF,
which consists of two diffusion stages: pre-diffusion and dif-
fusion with synthetic features. Using a pre-imputed feature
matrix obtained through pre-diffusion (see Section 4.2), we
calculate the variance of features for each channel. We then
create a synthetic feature in each low-variance channel (see
Section 4.3). In the second diffusion stage, these synthetic
features are widely propagated to update the features in low-
variance channels (see Section 4.4). This stage produces the
final output feature matrix of FISF, which is subsequently
fed into gθ for downstream tasks.

4.2. Pre-diffusion

We adopt channel-wise inter-node diffusion in PCFI (Um
et al., 2023) as the pre-diffusion stage, while FP (Rossi et al.,
2022) can also be used for pre-diffusion (see Appendix 5.5).
For notational convenience, we temporarily rearrange all
nodes in a channel-wise manner as described in Section 3.
Specifically, for the a-th channel, we reorder the nodes ac-
cording to V(a)

k and V(a)
u , i.e., x(a) and A(a) are created by

reordering A. After the diffusion is completed, we restore
the node ordering to its original state.

The channel-wise inter-node diffusion calculates and uti-
lizes pseudo-confidence (PC) (Um et al., 2023), which acts
as the importance of each feature value during the diffu-
sion. We use Si,a to denote the shortest path distance be-
tween the i-th node and its nearest source node for the a-th
channel, i.e., Si,a = dset(vi|V(a)

k ,A(a)). We let X̃ be a
pre-imputed feature matrix via pre-diffusion. Then, fol-
lowing (Um et al., 2023), PC (ξi,a) of x̃i,a is assigned by
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Figure 2. A brief overview of feature imputation with synthetic features (FISF). First, pre-diffusion constructs a full feature
matrix X̃ by imputing missing features via channel-wise diffusion. Then, for each low-variance channel in X̃, we inject one
synthetic feature into a randomly chosen node from nodes with missing features. Finally, diffusion with synthetic features
produces X̂ which is a final output of FISF. X̂ is fed to a downstream GNN which performs a given graph learning task.

ξi,a = αSi,a(0 < α < 1) where α is a hyperparameter.
Thereafter, the transition matrix for the pre-diffusion is con-
structed using a weighted adjacency matrix W(a) ∈ RN×N ,
defined as

W
(a)
i,j =

{
ξj,a/ξi,a if A(a)

i,j = 1

0 if A(a)
i,j = 0,

(3)

where W
(a)
i,j represents the message passing strength from

the j-th node to the i-th node during the pre-diffusion pro-
cess. For a row-stochastic transition matrix, we normalize
W(a) to W

(a)
= (D(a))−1W(a) where D(a) is a diagonal

matrix with diagonal entries D
(a)
i,i =

∑
j Wi,j . Then, to

preserve the known features x(a)
k during the pre-diffusion,

we replace the first |V(a)
k | rows in W with one-hot vectors

indicating V(a)
k . As a result of the replacement, we attain

the pre-diffusion transition matrix W̃(a) expressed by

W̃(a) =

[
Ikk 0ku

W
(a)

uk W
(a)

uu

]
, (4)

where Ikk ∈ R|V(a)
k |×|V(a)

k | is an identity matrix and 0ku ∈
R|V(a)

k |×|V(a)
u | is a zero matrix.

The pre-diffusion is implemented by iterative propagation
steps using W̃(a) as

x̃(a)(t) = W̃(a)x̃(a)(t− 1), t = 1, · · · ,K;

x̃(a)(0) =

[
x
(a)
k

0u

]
,

(5)

where x̃(a)(t) is an imputed feature vector after t propaga-
tion steps and 0u is a zero vector with a length of |V(a)

u |.
After K propagation steps, we obtain x̃(a)(K). As K →∞,
the recursion converges and x̃(a)(K) reaches a steady state

(see Appendix A). Based on the proof that initial values for
x
(a)
u do not affect the steady state, we initialize x

(a)
u with

zeros (i.e., 0u). We use x̃(a)(K) with large enough K to
approximate the steady state.

We rearrange {x̃(a)(K)}Fa=1 back to their original order
to reorder the nodes considering synthetic features in the
second diffusion stage. By stacking the originally ordered
vectors in {x̃(a)(K)}Fa=1 along the channels, we obtain a
pre-imputed feature matrix X̃, which is the output of the
pre-diffusion stage.

4.3. Synthetic Feature Generation
When all given known features in the a-th channel (i.e., ele-
ments in x

(a)
k ) have the same value c, lim

t→∞
x̃(a)(t) becomes

a vector where all elements are c (see Appendix B). We refer
to a channel with the same or nearly the same feature values
as a low-variance channel. This low-variance channel does
not contribute to distinguishing nodes. In semi-supervised
node classification, distinctive node representations are es-
sential for classifying nodes into multiple classes. Similarly,
in link prediction, uniform representations across nodes re-
sult in identical representations for node pairs. To address
this, we aim to make imputed features in such channels more
distinctive across nodes by injecting a synthetic feature that
acts as a known feature.

We first identify low-variance channels to inject synthetic
features. We calculate the variance of X̃:,a (i.e., pre-imputed
feature values in the a-th channel) for all a ∈ {1, . . . , F}.
Then r% of channels are selected in order of lowest to high-
est variance, where r is a hyperparameter between 0 and 100.
Fl denotes the set of low-variance channel indices. For each
channel in Fl, we randomly select one node with a missing
feature to inject a synthetic feature. For a selected node
v
(b)
s in a channel b ∈ Fl, we inject a synthetic feature with

randomly sampled value x(b)s from a uniform distribution
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on [0, 1]. Consequently, |Fl| number of synthetic feature
values are injected and {(v(b)s , x(b)

s )}b∈Fl
is combined with

the result of pre-diffusion (X̃) for the second diffusion stage
called diffusion with synthetic features.

4.4. Diffusion with Synthetic Features

Diffusion with synthetic features (DSF) produces X̂ =
[x̂i,a] ∈ RN×F which is a final output of FISF. DSF receives
X̃ from the pre-diffusion and {(v(b)s , x(b)s )}b∈Fl

. Then DSF
updates X̃ by replacing features in the low-variance chan-
nels (i.e., X̃:,b for all b ∈ Fl). The purpose of DSF is to
increase the variance of low-variance channels by using
synthetic features.

DSF treats a synthetic feature x(b)s as known features x(b)
k

during diffusion. Then the updated known node set becomes
V(b)
k∗ = V(b)

k ∪ {v
(b)
s }. Thus the updated unknown node set

becomes V(b)
u∗ = V(b)

u \ {v(b)s }. That is, v(b)s is moved from
V(b)
u to V(b)

k∗ . Similar to pre-diffusion, we first temporarily
reorder all the nodes in the order of V(b)

k∗ and V(b)
u∗ . By

reordering, features and the adjacency matrix in the b-th
channel in Fl can be expressed as

x(b) =

[
x
(b)
k∗

x
(b)
u∗

]
, A(b) =

[
A

(b)
k∗k∗ A

(b)
k∗u∗

A
(b)
u∗k∗ A

(b)
u∗u∗

]
, (6)

where x
(b)
k∗ and x

(b)
u∗ are column vectors and x

(b)
k∗ contains

x(b)
s . The length of x(b)

k∗ and x
(b)
u∗ are |V(b)

k |+1 and |V(b)
u |−1,

respectively.

The preparations above are the same as the pre-diffusion,
except for assuming x(b)

s as a known feature. However, sim-
ply diffusing features of V(b)

k∗ as pre-diffusion results in x(b)s

influencing only its surroundings. This is because not only
x(b)
s but also known features with nearly the same values

diffuse. For example, if a given graph has 10, 000 nodes
and 90% features are missing in the b-th channel, there exist
1, 000 known features with nearly the same feature values
in the channel. Known features spread to their surrounding
features through diffusion and make the surrounding fea-
tures be similar to their own value. Thus, it is hard for x(b)s

to exert a wide influence across nodes. This issue hinders
the channel from deviating from a low variance since most
of the features become nearly the same value.

To overcome the issue, we design DSF to give more influ-
ence to synthetic features than that of known features. For
the wide diffusion of x(b)

s , we leverage the shortest path
distance from v

(b)
s . We measure the shortest path distance

from v
(b)
s to all nodes in V . Formally, we use Ss

i,b to denote

d(vi, v
(b)
s |A(b)) and measure Ss

i,b for all vi ∈ V .

Then the PC ξsi,a of x̂i,a is computed based on the short-

est path distance from only the synthetic node v
(b)
s , not

from the whole known nodes. That is, ξsi,a is defined
by ξsi,a = βSs

i,a(0 < β < 1) where β is a hyperpa-

rameter. As vi is positioned closer to v
(b)
s , ξsi,a increases.

We also use usual PC (ξ∗i,b) based on distances from the

whole known nodes V(b)
k∗ containing v

(b)
s . We calculate

S∗
i,b = dset(vi|V(b)

k∗ ,A(b)) and obtain PC calculated by
ξ∗i,b = αS∗

i,b(0 < α < 1). While both ξi,b and ξ∗i,b play
a role as the importance of each feature value, ξi,b is de-
termined by the distance from only synthetic node v

(b)
s in

contrast to ξ∗i,b considering the distances from whole known

nodesV(b)
k∗ . Using the PCs, we define a weighted adjacency

matrix M(b) ∈ RN×N by

M
(b)
i,j =


ξ∗j,b
ξ∗i,b
·
ξsj,b
ξsi,b

if A(b)
i,j = 1

0 if A(b)
i,j = 0.

(7)

M
(b)
i,j is the strength of a message passing from the j-th

node to the i-th node in the DSF.

The term ξ∗j,b/ξ
∗
i,b strengthens a message passing from a

high-PC feature to a low-PC feature as in the pre-diffusion
(see Eq. 3). However, different from the pre-diffusion, the
synthetic feature of v(b)s is considered as one of the nodes
in V(b)

k . Thus the influence of the synthetic feature is very
weak compared to that of the many observed similar features.
To widely spread the synthetic feature, we introduce the
term ξsj,b/ξ

s
i,b, which strengthens a message passing from a

feature of a node near v(b)s to a feature of a node far from
v
(b)
s . This term makes the synthetic feature spread widely

compared to observed features. The design goals of the two
terms naturally combine through multiplication in Eq. 7.
ξ∗i,b is 1 for both v ∈ V(b)

k and x(b)s . However, ξsi,b is 1 for

x(b)
s while it is at most β for v ∈ V(b)

k . Therefore, in the
second stage diffusion, the synthetic feature has a greater
influence than observed features.

To construct a transition matrix, we prepare a row-stochastic
matrix by normalizing M(b) to M

(b)
= (D′(b))−1W(b)

where D′(b) is a diagonal matrix with D
′(b)
ii =

∑
j Mi,j .

Then, we replace the first |V(b)
k∗ | rows in M with one-hot

vectors representing V(b)
k∗ to preserve x(b)

k∗ including x(b)s . By
the replacement, we obtain a DSF transition matrix M̃(b) as
follows:

M̃(b) =

[
Ik∗k∗ 0k∗u∗

M
(b)

u∗k∗ M
(b)

u∗u∗

]
, (8)

where Ik∗k∗ ∈ R|V(b)

k∗ |×|V(b)

k∗ | is an identity matrix and
0k∗u∗ ∈ R|V(b)

k∗ |×|V(b)

u∗ | is a zero matrix.
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Figure 3. Accuracy (%) on semi-supervised node classification tasks under structural-missing and uniform-missing settings
with various rm. Figures highlighted in red indicate performance improvements over the most competitive baseline across
each setting. Cases where accuracy cannot be measured due to out-of-memory errors are not included.

We define diffusion with synthetic features (DSF) by

x̂(b)(t) = M̃(b)x̂(b)(t− 1), t = 1, · · · ,K;

x̂(b)(0) =

[
x
(b)
k∗

0u∗

]
,

(9)

where x̂(b)(t) denotes an imputed feature vector after t prop-
agation steps and 0u∗ denotes a zero vector of the same
length as |V(b)

u∗ |. As K → ∞, x̂(b)(K) converges (see
the proof in Appendix A). With sufficiently large K, we
approximate the steady state lim

t→∞
x̂(b)(t) to x̂(b)(K). We

perform DSF in the b-th channel for all b ∈ Fl and obtain
{x̂(b)(K)}b∈Fl

. Since vectors in {x̂(b)(K)}b∈Fl
have dif-

ferent ordering from the original one, we restore ordering of
all the vectors according to the original order. To construct
X̂ ∈ RN×F , we prepare X̃ ∈ RN×F from the pre-diffusion
and replace X̃:,b for all b ∈ Fl with the corresponding vec-
tor in {x̂(b)(K)}b∈Fl

. The feature matrix with the replaced

columns is X̂, a final output of FISF. X̂ is fed to a GNN to
perform a given task. The detailed steps of the proposed
FISF algorithm are provided in Algorithm 1 in Appendix F.

5. Experiments
We perform comparative evaluation of FISF against state-
of-the-art methods on two main graph learning tasks: semi-
supervised node classification and link prediction.

5.1. Datasets and Baselines

Datasets. We conduct experiments on six benchmark
datasets: Cora (McCallum et al., 2000), CiteSeer (Giles
et al., 1998), PubMed (Sen et al., 2008), OGBN-
Arxiv (Hu et al., 2020)), Amazon-Photo, and Amazon-
Computers (Shchur et al., 2018). Detailed information on
the datasets is provided in Appendix E.1.

Baselines. We compare FISF with LP (Zhuŕ & Ghahra-
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Table 1. Performance on semi-supervised node classification tasks at rm = 0.995, measured by accuracy (%). Standard
deviation errors are given. OOM denotes an out-of-memory error.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

Full features 81.87± 1.59 69.32± 0.57 77.45± 2.17 91.69± 0.78 86.19± 0.78 72.30± 0.10

LP 74.54± 1.79 65.42± 1.80 71.67± 4.94 82.27± 2.72 76.01± 1.84 67.56± 0.00
GCNMF 31.33± 2.73 24.84± 2.44 40.48± 0.53 25.60± 0.17 37.21± 0.08 9.00± 6.27
GRAFENNE 20.2± 10.98 17.58± 2.94 33.12± 2.43 21.10± 17.39 16.31± 11.84 13.66± 12.23
MEGAE 38.78± 4.76 32.94± 4.08 OOM 68.90± 9.46 42.37± 5.03 OOM
FP 71.86± 2.82 58.61± 1.74 71.96± 3.06 85.42± 3.16 76.62± 1.94 68.03± 0.52
PCFI 74.62± 1.78 66.06± 3.26 74.47± 2.54 87.49± 1.50 79.02± 1.22 68.78± 0.25

FISF 79.29± 1.72 69.68± 2.47 76.90± 1.50 88.22± 0.79 79.40± 1.11 69.92± 0.17

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

Full features 81.87± 1.59 69.32± 0.57 77.45± 2.17 91.69± 0.78 86.19± 0.78 72.30± 0.10

LP 74.54± 1.79 65.42± 1.80 71.67± 4.94 82.27± 2.72 76.01± 1.84 67.56± 0.00
GCNMF 34.01± 8.08 29.71± 5.12 40.08± 0.45 25.59± 0.16 37.20± 0.08 5.86± 0.00
GRAFENNE 20.55± 13.65 19.32± 7.42 34.75± 4.26 29.96± 20.92 21.74± 15.94 15.52± 11.70
MEGAE 46.13± 9.06 34.32± 7.65 OOM 55.31± 10.37 41.02± 4.05 OOM
FP 77.58± 1.98 68.55± 2.33 72.62± 4.18 87.50± 1.49 80.75± 0.70 68.82± 0.07
PCFI 78.82± 1.48 68.94± 1.95 76.28± 2.52 88.09± 1.41 81.80± 0.71 69.26± 0.17

FISF 79.09± 1.73 69.52± 1.81 77.53± 1.28 88.32± 1.37 82.12± 0.51 69.81± 0.16

maniŕH, 2002) and five state-of-the-art methods for graph
learning tasks with missing features. (1) LP that does not
use any feature propagates partially given labels for semi-
supervised node classification. (2) GCNMF (Taguchi et al.,
2021) and (3) GRAFENNE (Gupta et al., 2023) are GNN
architecture-based methods. (4) MEGAE (Gao et al., 2023)
is a reconstruction-based method. (5) FP (Rossi et al., 2022)
and (6) PCFI (Um et al., 2023) is propagation-based meth-
ods. Since imputation methods (including MEGAE, FP,
PCFI, and FISF) combine with GNNs to perform down-
stream tasks, we commonly utilize vanilla GCN (Kipf &
Welling, 2016a) models for semi-supervised node classi-
fication. In link prediction, we commonly utilize graph
auto-encoder (GAE) models for the imputation methods.

5.2. Experimental Setup
We follow the missing setting in (Um et al., 2023). To
evaluate models on graphs containing missing features, we
remove a fixed rate (e.g., 90%) of features in the datasets.
A missing rate denoted as rm represents the rate of feature
removal. We fill the positions where features are removed
with NaN values. We remove features in the following two
ways: structural missing and uniform missing. First, in the
case of structural missing, we randomly select nodes at a
ratio of rm from entire nodes and remove all the features
of the selected nodes. Second, uniform missing removes
randomly selected feature values with a ratio of rm from
a feature matrix X. We report average performance (e.g.,
accuracy, ROC AUC, and AP) after five runs of experiments
under a fixed setting. Therefore, for each missing way,
we randomly generate five different binary masks with the
same size of X for each dataset. These masks indicate the
locations in X where features are missing.

For semi-supervised node classification tasks, we randomly
create five different training/validation/test node splits for
all the datasets except for OGBN-Arxiv which has a fixed
split according to the specific criteria. For link predic-
tion tasks, we also randomly create five different train-
ing/validation/test edge splits of each dataset. OGBN-Arxiv
is excluded from the link prediction tasks due to out-of-
memory errors. Grid search is employed to tune α, β,
and γ, the three hyperparameters of FISF. α and β are
searched within {0.1, 0.3, 0.5, 0.7, 0.9}. γ is chosen from
{10, 30, 50, 70, 90}. For all the methods including FISF, we
tune hyperparameters based on validation sets. We utilize
the publicly released code for all the baselines. Further im-
plementation details including dataset splits, training details,
and baseline implementations are provided in Appendix E.

5.3. Semi-supervised Node Classification Results

To investigate how rm affects semi-supervised node classifi-
cation accuracy, we conduct experiments by increasing rm
while keeping all other settings fixed. Figure 3 demonstrates
accuracy under structural-missing and uniform-missing set-
tings with varying rm. The accuracy of LP remains con-
sistent since LP does not utilize features. For all methods
except for LP, the accuracy tends to decrease as rm increases.
While propagation-based imputation methods outperform
the other methods, FP and PCFI suffer performance degra-
dation as rm increases. However, FISF shows robust per-
formance despite high rm regardless of the datasets. Note
that FISF using only 0.1% of features (i.e., rm = 0.999)
performs similarly to or even outperforms FISF with full
features on Cora, CiteSeer, and PubMed. Furthermore, FISF
consistently demonstrates superiority across various missing
rates (rm), including low rm, regardless of the missing pat-

7



Propagate and Inject: Revisiting Propagation-Based Feature Imputation for Graphs with Partially Observed Features

Table 2. Performance on link prediction tasks at rm = 0.995, measured by ROC AUC score (%). Standard deviation errors
are given. The best result is highlighted in bold and underlined, while the second-best result is highlighted only in bold.
OOM denotes an out-of-memory error.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS

Full features 92.20± 0.96 90.55± 1.36 96.41± 0.25 95.70± 0.32 93.71± 0.65

GCNMF 67.44± 0.45 68.34± 1.79 87.20± 0.28 81.00± 0.25 82.92± 0.19
GRAFENNE 53.79± 5.26 62.96± 13.82 60.11± 6.10 66.44± 1.74 67.23± 1.71
MEGAE 67.13± 0.75 69.34± 2.46 OOM 86.53± 1.97 84.89± 1.77
FP 83.85± 1.32 79.83± 2.18 78.54± 1.13 94.25± 0.58 91.27± 0.71
PCFI 86.75± 0.84 79.38± 1.81 82.49± 0.82 96.65± 0.25 94.54± 0.37

FISF 87.26± 1.44 84.12± 1.17 83.19± 0.78 95.86± 0.21 94.70± 0.30
FISF+NIP 87.16± 1.46 84.20± 1.70 83.28± 0.42 96.35± 0.18 95.29± 0.32

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS

Full features 92.20± 0.96 90.55± 1.36 96.41± 0.25 95.70± 0.32 93.71± 0.65

GCNMF 63.46± 1.04 63.50± 3.40 81.73± 3.13 80.98± 0.17 82.95± 0.11
GRAFENNE 68.49± 17.00 61.38± 13.53 65.74± 11.32 68.53± 6.57 70.16± 4.12
MEGAE 65.86± 1.22 62.21± 3.18 OOM 84.25± 1.35 84.95± 2.20
FP 86.79± 1.36 81.55± 2.30 76.87± 2.89 95.96± 0.17 94.10± 0.33
PCFI 87.35± 1.28 82.33± 1.88 84.68± 0.75 97.05± 0.16 95.62± 0.24

FISF 87.44± 0.80 83.45± 2.53 85.33± 0.47 96.64± 0.18 95.13± 0.35
FISF+NIP 87.70± 0.77 82.53± 1.94 85.32± 0.48 96.67± 0.21 96.09± 0.24

terns. The performance gain obtained with FISF diminishes
as the missing rate decreases. This is natural since a smaller
rm means fewer missing features to impute, making it diffi-
cult to achieve a significant improvement solely through the
superiority of the imputation method. Nevertheless, FISF
consistently shows its effectiveness at even low rm.

We then investigate how semi-supervised node classification
accuracy varies depending on the missing ways (structural
and uniform missing) at the same rm = 0.995. Table 1
shows the results. While most nodes have some observed
features in uniform-missing settings, (1 − rm) of nodes
do not have observed features at all in structural-missing
settings. Therefore, the performance of methods tends to be
better in uniform-missing settings than in structural-missing
settings. For both missing ways, FISF outperforms the state-
of-the-art methods across all the datasets. Results for the
case where the downstream GNN is GIN are provided in
Table 33 in Appendix G.

5.4. Link Prediction Results

Table 2 summarizes the ROC AUC score on link predic-
tion tasks at rm = 0.995. (The AP comparison results are
presented in Appendix G.) NIP denotes node-wise inter-
channel propagation included in PCFI (Um et al., 2023),
which refines an output matrix from channel-wise diffusion.
Since NIP is effective in link prediction tasks, we demon-
strate the ROC AUC score of FISF and FISF+NIP (FISF fol-
lowed by NIP). FISF and FISF+NIP achieve state-of-the-art
performance in three and four settings, respectively, out of

10 settings. Even in the remaining three settings, FISF+NIP
still demonstrates the second-best scores which are com-
parable with the best scores. That is, FISF and FISF+NIP
achieve strong performance across all five datasets regard-
less of missing ways. As highlighted scores in Table 2
shows, FISF demonstrates its effectiveness on link predic-
tion tasks with missing features.

5.5. Complexity Analysis
Here, we discuss the complexity of FISF, which involves
two diffusion stages: pre-diffusion and diffusion with syn-
thetic features. FISF takes O(|E| + (1 + γF )N2) time
under structural-missing settings. Under uniform-missing
settings, FISF takes O(|E| + (1 + γ)FN2) time. We ob-
serve that the majority of the computation time in FISF is
consumed by employing Dijkstra’s algorithm to calculate
the shortest path distance for each channel. The time com-
plexity of Dijkstra’s algorithm is O(N2). In pre-diffusion
under structural missing settings, Dijkstra’s algorithm is
once utilized since nodes with observed features are equal
across all the channels. However, under uniform-missing
settings, the time complexity of pre-diffusion increases to
O(N2F ), considering the use of Dijkstra’s algorithm across
all channels.

We can utilize not only channel-wise inter-node diffusion in
PCFI but also FP for pre-diffusion. We introduce a variant
called FastFISF, which utilizes FP for pre-diffusion, offer-
ing efficiency by bypassing the calculation of the shortest
path distance. Table 3 demonstrates the results of FastF-
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Table 3. Performance on semi-supervised node classification tasks at rm = 0.995, measured by accuracy (%).
Structural missing

Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV Average

FISF 79.29± 1.72 69.68± 2.47 76.90± 1.50 88.22± 0.79 79.40± 1.11 69.92± 0.17 77.24
FastFISF 78.94± 1.92 69.42± 1.44 77.14± 0.94 88.10± 1.38 79.09± 1.42 69.53± 0.21 77.04

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV Average

FISF 79.09± 1.73 69.52± 1.81 77.53± 1.28 88.32± 1.37 82.12± 0.51 69.81± 0.16 77.73
FastFISF 79.29± 1.84 69.39± 1.57 77.41± 1.77 88.03± 1.46 81.70± 0.54 69.45± 0.18 77.55

Table 4. Running time of methods. OOM denotes an out-of-
memory error.

Missing way structural uniform
Method CORA PUBMED CORA PUBMED

GCNMF 10.3s 19.4s 9.87s 28.3s
GRAFENNE 47.9s 74.7s 51.1s 74.0s
MEGAE 1753s OOM 1801s OOM
FP 2.36s 3.12s 2.25s 2.90s
PCFI 2.45s 3.23s 11.1s 34.1s
FastFISF 13.4s 34.6s 11.8s 42.5s
FISF 13.4s 34.8s 17.6s 78.2s

Table 5. Performance on semi-supervised node classification
tasks at rm = 0.995, measured by accuracy (%).

Dataset FP ScalableFISF FISF
CORA 71.86± 2.82 78.25± 1.38 79.29± 1.72
CITESEER 58.61± 1.74 68.52± 1.82 69.68± 2.47
PUBMED 71.96± 3.06 74.40± 2.64 76.90± 1.50
PHOTO 85.42± 3.16 86.98± 1.80 88.22± 0.79
COMPUTERS 76.62± 1.94 78.08± 1.18 79.40± 1.11
OGBN-ARXIV 68.03± 0.52 68.55± 0.42 69.92± 0.17

ISF compared to the original FISF on semi-supervised node
classification tasks. For channels that are not low-variance
channels, features obtained via pre-diffusion are maintained
until the end of diffusion with synthetic features. There-
fore, since PCFI outperforms FP in terms of performance in
downstream tasks, FISF shows slightly better performance
than FastFISF in most cases. However, since the perfor-
mance of FastFISF is comparable to that of FISF, FastFISF
can serve as a rapid alternative to FISF without a significant
loss in performance.

To address the increasing time complexity in uniform-
missing settings, we can employ FastFISF where the time
complexity is O(|E| + γFN2) regardless of the missing
way. Therefore, to address the increasing time complexity
of FISF in uniform-missing settings, we can employ FastF-
ISF, accompanied by only a slight performance loss. Table 4
demonstrates the training time of methods. FP has the low-
est training time among the methods. However, FISF brings
great performance improvement compared to FP. For in-
stance, in structural-missing setups with rm = 0.995, FISF
achieves significant gains in node classification accuracy
over FP, showing improvements of 7.43% and 4.94% on
Cora and PubMed, respectively. We can further confirm
that FastFISF significantly decreases the training time in

uniform-missing settings.

5.6. Scalability of FISF
In FISF, the bottleneck in terms of computation and memory
lies in distance encoding, which requires O(N2 · F ) compu-
tation and O(N2) memory usage. However, the core concept
of FISF, adding synthetic features to low-variance channels
and diffusing them, isn’t confined to specific distance en-
coding methods, enabling the development of scalable yet
effective algorithms with minimal modifications. Here, we
introduce a lighter version of FISF named ScalableFISF that
utilizes FP instead of the distance encoding. FP decreases a
computation complexity to O(|E|) and is validated as a scal-
able algorithm in (Rossi et al., 2022) through an experiment
on a graph with∼2.5M nodes. Specifically, in ScalableFISF,
we utilize FP for pre-diffusion and add synthetic features
to low-variance channels. Then, by treating the synthetic
features as observed features, we simply reapply FP in these
low-variance channels, without distance encoding. Table 5
demonstrates performance on semi-supervised node clas-
sification at rm = 0.995 under structural missing settings,
measured in accuracy. The results show that ScalableFISF
significantly enhances the performance of FP by addressing
the low-variance problem. ScalableFISF exhibits decreases
in performance compared to FISF, yet ScalableFISF shows
reasonable performance and offers advantages in terms of
complexity. Therefore, if PCFI reaches its scalability limit
on extremely large graphs with high-dimensional features,
ScalableFISF can be a good alternative.

6. Conclusion
In this paper, we identify the problem of low-variance
channels, a critical limitation of existing propagation-based
imputation methods. Building on this key discovery, we
propose FISF for graph feature imputation. FISF effec-
tively addresses the problem of low-variance channels by
injecting synthetic features, improving performance in both
semi-supervised node classification and link prediction tasks
across various missing rates. We believe that our work will
be widely applied to diverse real-world scenarios that in-
volve graphs with missing features, as our synthetic feature
scheme is simple to use and consistently offers performance
gains regardless of the missing rates.
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Impact Statement
The proposed method could be misused on graph-structured
datasets containing missing private or personal data. We
strongly advocate for its responsible use to ensure a positive
societal impact, particularly in applications such as health-
care (Ramirez et al., 2020; Li et al., 2022), where graph
neural networks are widely employed.
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Diffusion improves graph learning. arXiv preprint
arXiv:1911.05485, 2019.

Li, M. M., Huang, K., and Zitnik, M. Graph representation
learning in biomedicine and healthcare. Nature Biomedi-
cal Engineering, 6(12):1353–1369, 2022.

10

https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj


Propagate and Inject: Revisiting Propagation-Based Feature Imputation for Graphs with Partially Observed Features

Li, P., Chien, I., and Milenkovic, O. Optimizing general-
ized pagerank methods for seed-expansion community
detection. Advances in Neural Information Processing
Systems, 32, 2019.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance en-
coding: Design provably more powerful neural networks
for graph representation learning. Advances in Neural
Information Processing Systems, 33:4465–4478, 2020.

Liao, W., Bak-Jensen, B., Pillai, J. R., Wang, Y., and Wang,
Y. A review of graph neural networks and their appli-
cations in power systems. Journal of Modern Power
Systems and Clean Energy, 10(2):345–360, 2021.

Luan, S., Zhao, M., Chang, X.-W., and Precup, D. Break the
ceiling: Stronger multi-scale deep graph convolutional
networks. Advances in neural information processing
systems, 32, 2019.

Mattei, P.-A. and Frellsen, J. Miwae: Deep generative
modelling and imputation of incomplete data sets. In
International conference on machine learning, pp. 4413–
4423. PMLR, 2019.

McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K.
Automating the construction of internet portals with ma-
chine learning. Information Retrieval, 3:127–163, 2000.

Monti, F., Bronstein, M., and Bresson, X. Geometric matrix
completion with recurrent multi-graph neural networks.
Advances in neural information processing systems, 30,
2017.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. arXiv
preprint arXiv:1905.10947, 2019.

Park, S., Lee, K., Jeong, D.-E., Ko, H.-K., and Lee, J.
Bayesian nonparametric classification for incomplete data
with a high missing rate: an application to semiconductor
manufacturing data. IEEE Transactions on Semiconduc-
tor Manufacturing, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Ramirez, R., Chiu, Y.-C., Hererra, A., Mostavi, M., Ramirez,
J., Chen, Y., Huang, Y., and Jin, Y.-F. Classification of
cancer types using graph convolutional neural networks.
Frontiers in physics, 8:203, 2020.

Rossi, E., Kenlay, H., Gorinova, M. I., Chamberlain, B. P.,
Dong, X., and Bronstein, M. M. On the unreasonable
effectiveness of feature propagation in learning on graphs

with missing node features. In Learning on Graphs Con-
ference, pp. 11–1. PMLR, 2022.

Saha, A., Harowicz, M. R., Grimm, L. J., Kim, C. E., Ghate,
S. V., Walsh, R., and Mazurowski, M. A. A machine
learning approach to radiogenomics of breast cancer: a
study of 922 subjects and 529 dce-mri features. British
journal of cancer, 119(4):508–516, 2018.

Salha, G., Limnios, S., Hennequin, R., Tran, V.-A., and
Vazirgiannis, M. Gravity-inspired graph autoencoders for
directed link prediction. In Proceedings of the 28th ACM
international conference on information and knowledge
management, pp. 589–598, 2019.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
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A. Proof of Convergence of Diffusion Stages
Our FISF consists of two diffusion stages: pre-diffusion and
DSF. Both stages utilize row stochastic transition matrices
for diffusion. We prove the convergence of the two diffusion
stages as follows.

Proposition A.1. The pre-diffusion transition matrix for the
a-th channel is defined by

W̃(a) =

[
Ikk 0ku

W
(a)

uk W
(a)

uu

]
,

where W̃(a) is row-stochastic. Using W̃(a), the pre-
diffusion in the a-th channel is defined by

x̃(a)(t) = W̃(a)x̃(a)(t− 1), t = 1, · · · ,K;

x̃(a)(0) =

[
x
(a)
k

0u

]
,

Then, lim
K→∞

x̃(a)(K) converges.

The proof of Propostion A.1 refers to (Um et al., 2023).
After we establish the convergence of pre-diffusion, we
demonstrate that this proof extends to cover the convergence
of DSF. To start, we introduce two lemmas.

Lemma A.2. W
(a)

is the row-stochastic matrix calculated
by W

(a)
= (D(a))−1W(a) where D(a) is a diagonal ma-

trix that has diagonal entities D(a)
ii =

∑
j Wi,j . W

(a)

uu is

the |x̂(a)
u | × |x̂(a)

u | bottom-right submatrix of W
(a)

and let

ρ(·) denote spectral radius. Then, ρ(W
(a)

uu ) < 1.

Proof. Consider W
(a)

uu0 ∈ RN×N , where the bottom right

submatrix is denoted as W
(a)

uu and all other elements are
zero. That is,

W
(a)

uu0 =

[
0kk 0ku

0uk W
(a)

uu

]

where 0kk ∈ {0}|x̂
(a)
k |×|x̂(a)

k |, 0ku ∈ {0}|x̂
(a)
k |×|x̂(a)

u |,

and 0uk ∈ {0}|x̂
(a)
u |×|x̂(a)

k |. Given that W
(a)

represents
the weighted adjacency matrix of the connected graph G,
W

(a)

uu0 ≤ W
(a)

element-wise and W
(a)

uu0 ̸= W
(a)

. Fur-

thermore, considering that W
(a)

uu0 + W
(a)

constitutes the
weighted adjacency matrix of a strongly connected graph,
we can conclude that W

(a)

uu0 + W
(a)

is irreducible based
on Theorem 2.2.7 in (Berman & Plemmons, 1994). Conse-
quently, applying Corollary 2.1.5 in (Berman & Plemmons,
1994), ρ(W

(a)

uu0) < ρ(W
(a)

). Since the spectral radius
of a stochastic matrix is one according to Theorem 2.5.3

in (Berman & Plemmons, 1994), we have ρ(W
(a)

) = 1.

Moreover, since both W
(a)

uu0 and W
(a)

uu share the same non-

zero eigenvalues, it follows that ρ(W
(a)

uu0) = ρ(W
(a)

uu ).

Ultimately, this leads to the conclusion that ρ(W
(a)

uu ) =

ρ(W
(a)

uu0) < ρ(W
(a)

) = 1.

Lemma A.3. Iuu −W
(a)

uu is invertible where Iuu is the
|x̂(a)

u | × |x̂(a)
u | identity matrix.

Proof. Since 1 is not an eigenvalue of W
(a)

uu by Lemma A.2,

0 is not an eigenvlaue of Iuu −W
(a)

uu . Thus Iuu −W
(a)

uu is
invertible.

We now prove Propostion A.1 as follows.

Proof. Unfolding the recurrence relation gives us:

x̂(a)(t) =

[
x̂
(a)
k (t)

x̂
(a)
u (t)

]
=

[
Ikk 0ku

W
(a)

uk W
(a)

uu

][
x̂
(a)
k (t− 1)

x̂
(a)
u (t− 1)

]

=

[
x̂
(a)
k (t− 1)

W
(a)

uk x̂
(a)
k (t− 1) +W

(a)

uu x̂
(a)
u (t− 1)

] .

Since x̂(a)
k (t) = x̂

(a)
k (t−1) in the first |x̂(a)

k | rows, it follows
that x̂(a)

k (K) = . . . = x̂
(a)
k . That is, x̂(a)

k (K) retains the
values of x(a)

k . Therefore, lim
K→∞

x̂
(a)
k (K) converges to x

(a)
k .

Now, we focus solely on the convergence of lim
K→∞

x̂
(a)
u (K).

When we unroll the recursion for the last |x̂(a)
u | rows,

x̂(a)
u (K) = W

(a)

uk x
(a)
k +W

(a)

uu x̂
(a)
u (K − 1)

= W
(a)

uk x
(a)
k +W

(a)

uu (W
(a)

uk x
(a)
k +W

(a)

uu x̂
(a)
u (K − 2))

= . . .

= (

K−1∑
t=0

(W
(a)

uu )
t)W

(a)

uk x
(a)
k + (W

(a)

uu )
K x̂(a)

u (0)

By Lemma A.2, lim
K→∞

(W
(a)

uu )
K = 0. Therefore,

lim
K→∞

(W
(a)

uu )
K x̂

(a)
u (0) = 0, regardless of the initial

state for x̂
(a)
u (0). (we replace x̂

(a)
u (0) with a zero col-

umn vector for simplicity.) Hence, our focus shifts to
lim

K→∞
(
∑K−1

t=0 (W
(a)

uu )
t)W

(a)

uk x
(a)
k .

Given that Lemma A.2 establishes ρ(W
(a)

uu ) < 1, and

Lemma A.3 affirms the invertibility of (Iuu −W
(a)

uu )
−1,
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Table 6. Ablation study of different variants of FISF on semi-supervised node classification tasks under structural-missing
settings at rm = 0.995. Results are reported as accuracy (%) with standard deviation.

Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

FISF-A (only synthetic feature injection) 73.66± 2.14 65.81± 2.96 72.93± 3.49 87.73± 0.97 78.64± 1.76 66.79± 0.20
FISF-B (fully synthetic features) 70.21± 5.10 26.06± 3.25 54.03± 2.62 88.05± 0.81 79.05± 0.86 63.52± 0.46
FISF-C (diffusion only with a synthetic feature) 75.23± 1.26 67.13± 2.07 74.92± 2.19 87.46± 1.40 78.78± 1.51 66.70± 0.40

FISF 79.29± 1.72 69.68± 2.47 76.90± 1.50 88.22± 0.79 79.40± 1.11 69.92± 0.17

Table 7. Comparison of different value assignment strategies for synthetic features in FISF, evaluated on semi-supervised
node classification under structural-missing settings at rm = 0.995. ‘Randomly sampled (Ours)’ denotes FISF where
synthetic values are sampled from a uniform distribution. Results are reported as accuracy (%) with standard deviation.

Synthetic features CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

Max 79.15± 1.57 68.97± 2.28 76.67± 0.85 88.02± 0.86 78.95± 1.60 69.44± 0.10
Min 74.05± 1.69 65.32± 2.59 73.75± 2.66 88.16± 1.00 79.17± 0.78 69.47± 0.21
Median 73.87± 1.59 65.39± 2.67 73.83± 2.75 88.14± 1.07 79.28± 0.84 68.22± 0.37
Mean 76.00± 1.75 66.35± 3.08 73.69± 2.53 87.79± 1.08 78.60± 1.69 68.28± 0.20
Channel-wise Mean + Std 77.79± 1.74 69.10± 2.64 74.68± 2.68 87.98± 1.02 78.54± 1.68 68.30± 0.38

Randomly sampled (Ours) 79.29± 1.72 69.68± 2.47 76.90± 1.50 88.22± 0.79 79.40± 1.11 69.92± 0.17

Table 8. Ablation study of FISF. SS node classification de-
notes semi-supervised node classification. # denotes the
number of synthetic features injected into a low-variance
channel. * denotes the optimal hyperparameter at the set-
ting.

Task SS node classification Link prediction

Dataset CORA CITESEER

# β γ ACC AUC AP

1 1 0 74.62± 1.78 79.38± 1.81 82.98± 0.86
1 1 100 78.50± 1.91 83.63± 1.69 85.42± 1.79
1 1 * 78.52± 1.94 83.46± 1.84 85.32± 1.59
1 * 100 78.78± 1.51 58.67± 13.44 60.27± 14.40
2 * * 78.88± 1.91 82.11± 2.43 83.61± 2.50
1 * * 79.29± 1.72 84.12± 1.17 85.85± 1.38

the geometric series converges as follows

lim
K→∞

x̂(a)
u (K) = lim

K→∞
(

K−1∑
t=0

(W
(a)

uu )
t)W

(a)

uk x
(a)
k

= (Iuu −W
(a)

uu )
−1W

(a)

uk x
(a)
k .

In conclusion, the recursion in the pre-diffusion converges.

In the case of DSF, the DSF transition matrix M̃(b) in Eq. 8
is also row stochastic. The distinction between W̃(a) and
M̃(b) lies solely in the number of channels where diffusion
is performed and the sizes of each sub-matrix. Therefore,
the convergence of the DSF can also be established through
the proof of Proposition A.1.

B. Proof of the Proposition in Sec 4.3
We refer to the proposition in Sec. 4.3 as Proposition B.1.

Proposition B.1. In pre-diffusion (channel-wise inter-node
diffusion (Um et al., 2023)), when all given known features
in the a-th channel (i.e., elements in x

(a)
k ) have the same

value c, lim
t→∞

x̃(a)(t) becomes a vector where entire ele-
ments are equal to c.

Proof. In accordance with the given assumption, entire el-
ements in x

(a)
k have the value of c. Here, we can initialize

x̂(a)(0) with the same values as c. According to the proof of

Proposition 1, lim
K→∞

x̂
(a)
u (K) = (Iuu−W

(a)

uu )
−1W

(a)

uk x
(a)
k

and x̂
(a)
k (K) = x

(a)
k . This means that initializing x̂(a)(0)

with the values of c does not affect the final output,
lim

K→∞
x̂(a)(K). Formally, pre-diffusion of which steady

state is the same as that of Eq. 5 can be expressed as fol-
lows:

x̃(a)(t) = W̃(a)x̃(a)(t− 1), t = 1, · · · ,K;

x̃(a)(0) =

[
ck
cu

]
,

(10)

where ck and cu are column vectors with lengths of |V(a)
k |

and |V(a)
u |, respectively, filled only with the value c.

Since W̃(a) is row stochastic,
∑K−1

j=0 W̃
(a)
i,j = 1 for all

i ∈ {1, . . . , N}. Therefore, in Eq. 10 , the i-th ele-
ment in x̃(a)(1) is calculated as

∑K−1
j=0 W̃

(a)
i,j · c = c ·∑K−1

j=0 W̃
(a)
i,j = c for all i ∈ {1, . . . , N}. That is, x̃(a)(1)

is filled only with the value c, which is the same as x̃(a)(0).
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Table 9. Classification results measured by Micro-F1 score (%). OOM denotes an out-of-memory error.

Approach Method Echocardiogram ABIDE Duke Breast Cancer Diabetes
(rm = 2.59%) (rm = 52.52%) (rm = 11.94%) (rm = 4.03%)

Tabular Imputation

GAIN 68.67± 4.99 89.30± 1.81 76.31± 1.32 53.58± 0.59
MIWAE 69.43± 6.25 64.33± 0.93 OOM OOM
GRAPE 75.00± 0.81 91.61± 0.89 OOM OOM
IGRM 69.33± 8.21 66.38± 1.85 OOM OOM

Graph Imputation

GCNMF 86.00± 2.49 75.05± 2.94 74.86± 1.36 52.17± 0.85
FP 85.67± 4.67 90.79± 1.44 75.38± 2.82 53.03± 0.85
PCFI 86.33± 2.87 90.56± 1.21 75.85± 2.11 52.37± 1.36
FISF 86.67± 2.36 90.94± 1.45 76.58± 0.62 53.75± 1.01

Table 10. Performance in semi-supervised node classification on OGBN-Arxiv at rm = 0.995, measured by accuracy (%).

Missing setting LP GCNMF GRAFFENE FP PCFI FISF

MNAR-I 67.56± 0.00 60.73± 0.91 14.60± 4.68 68.63± 0.35 68.24± 0.67 69.02± 0.57
MNAR-D 67.56± 0.00 60.89± 0.52 14.47± 4.54 68.08± 0.41 67.88± 0.29 68.51± 0.25

Thus, even if this recursion repeats, x̃(a)(t) remains the

same as
[
ck
cu

]
, which results in lim

t→∞
x̃(a)(t) =

[
ck
cu

]
where

entire elements are equal to c.

C. Additional Experiments
C.1. Ablation Study

We conduct an ablation study to investigate the effectiveness
of the elements in FISF. We perform both semi-supervised
node classification and link prediction. For ablation study
on semi-supervised node classification, we conduct exper-
iments on Cora under a structural-missing setting with
rm = 0.995. For link prediction, we utilize CiteSeer under
a structural-missing setting with rm = 0.995. β takes a
role in spreading synthetic features widely and γ implies
the ratio of selected low-variance channels to diffuse with
synthetic features. Table 8 demonstrates the results of the
ablation study. The results show that the performance gain
by introducing synthetic features (i.e., γ ̸= 0) is significant.
The optimal β and the optimal γ synergistically enhance the
performance, resulting in considerable improvements. The
bottom two rows in Table 8 demonstrate that injecting two
synthetic features into row-variance channels leads to degra-
dation in performance. This shows the validity of injecting
a single synthetic feature into a low-variance channel.

We further conduct an additional ablation study on the use
of synthetic features. We compare the performance of FISF
and three of its variants, depending on how synthetic fea-
tures are injected and utilized within a low-variance channel.

• FISF-A (only synthetic feature injection): A synthetic
feature is injected but not used in the diffusion process.

• FISF-B (fully synthetic features): All missing features
are directly replaced with randomly sampled synthetic
values without any diffusion.

• FISF-C (diffusion only with a synthetic feature): Dif-
fusion is performed using only the synthetic feature,
with known features removed.

Table 6 presents the results of semi-supervised node classi-
fication. As shown in the table, simply injecting synthetic
features, or performing diffusion using only the injected
synthetic feature without any observed features within the
channel, results in significantly worse performance com-
pared to the original FISF.

Additionally, we conduct an extensive ablation study com-
paring various value assignment strategies for synthetic fea-
tures. Since FISF does not involve a learning process during
imputation, statistical approaches may serve as the most rea-
sonable alternatives to random sampling. Specifically, we
compare the performance of FISF variants using different
value assignment strategies, including the max, min, mean,
and median of the observed features. We also evaluate a
variant called Channel-wise Mean + Std, which statistically
determines synthetic feature values on a per-channel ba-
sis. Specifically, (1) Max: the maximum of the observed
feature values within the channel; (2) Min: the minimum
of the observed feature values; (3) Median: the median of
the observed values; (4) Mean: the mean of the observed
values; (5) Channel-wise Mean + Std: the mean of each
low-variance channel after pre-diffusion, plus the standard
deviation of values in non-low-variance channels. The re-
sults are presented in Table 7. As shown in the table, the
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Figure 4. Accuracy (%) on semi-supervised node classification tasks while increasing the proportion of excluded channels
from the original feature matrix.

Figure 5. ROC AUC score (%) on link prediction tasks while increasing the proportion of excluded channels from the
original feature matrix.

Figure 6. Semi-supervised node classification accuracy with different α, β and γ. The blue dashed lines indicate existing
state-of-the-art performance.

original FISF consistently achieves the best performance.
We believe this performance gain stems from the increased
diversity across feature channels in the imputed matrix, fa-
cilitated by the use of randomly sampled values.

C.2. Applicability to Medical Tabular Data

To demonstrate the wide applicability of FISF, we conduct
experiments in medical classification using medical tabular
datasets, which initially contain missing features. We uti-
lize four medical tabular datasets: Echocardiogram (Asun-
cion et al., 2007), ABIDE (Di Martino et al., 2014), Duke
Breast Cancer (Saha et al., 2018), and Diabetes (Asuncion
et al., 2007). In addition to graph imputation methods,
since we address imputation on tabular data, we further

compare FISF with four imputation methods developed for
tabular datasets, including GAIN (Yoon et al., 2018), MI-
WAE (Mattei & Frellsen, 2019), GRAPE (You et al., 2020),
and IGRM (Zhong et al., 2023). For graph imputation meth-
ods, we select the three most competitive baselines: GC-
NMF, FP, and PCFI. We simply construct k-nearest neighbor
(kNN) graphs to apply graph imputation methods including
our FISF to tabular datasets. The goal of these experiments
is to classify each patients, i.e., disease diagnosis.

Table 9 presents the results of medical classification on tab-
ular datasets. As shown in the table, FISF consistently ex-
hibits the best classification performance among graph data
imputation methods. Notably, FISF, developed for graph-
structure data, also surpasses tabular imputation methods
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Table 11. Accuracy (%) of FISF for different values of m, the scale factor for random noise, on semi-supervised node
classification.

m 0.01 0.1 1 (used) 10 100

CORA 76.83± 1.38 78.72± 1.35 79.29± 1.72 79.65± 1.11 71.09± 8.03
CITESEER 68.10± 2.02 68.69± 2.86 69.68± 2.47 68.95± 3.38 66.68± 2.17
PUBMED 75.09± 2.12 76.78± 1.98 76.90± 1.50 77.28± 0.71 69.19± 12.55
PHOTO 87.95± 1.20 88.49± 1.04 88.22± 0.79 88.01± 1.34 87.75± 1.64
COMPUTERS 78.86± 0.76 78.93± 1.23 79.40± 1.11 80.01± 0.20 80.16± 0.79
OGBN-ARXIV 68.48± 0.17 69.04± 0.38 69.92± 0.17 69.82± 0.15 69.31± 0.18

Table 12. Accuracy (%) of FISF for different values of m on semi-supervised node classification, when normalized features
are given.

m CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

0.1 78.68± 1.78 69.42± 2.31 76.93± 1.11 87.55± 1.64 79.24± 0.42 69.56± 0.30
1 79.03± 1.45 69.50± 2.50 77.16± 1.11 88.12± 1.43 80.23± 0.65 69.88± 0.21
10 77.99± 1.58 68.50± 2.11 76.14± 2.05 88.21± 0.85 77.61± 1.62 69.75± 0.22

on the Echocardiogram, Duke Breast Cancer, and Diabetes
datasets, which do not have predefined connectivity among
samples. This indicates the potential for extending graph
data imputation to the tabular domain. Furthermore, while
MIWAE, GRAPE, and IGRM, which are state-of-the-art
tabular imputation methods, suffer from scalability issues,
graph imputation methods, including our FISF, operate well
across all datasets. Throughout these experiments, we con-
firm that FISF is effective even in medical classification on
tabular datasets initially containing missing values, which
are not graph-structured data.

C.3. Missing Not at Random Setting

Our FISF is a generic method that is effective regard-
less of missing settings. To further validate the effec-
tiveness of FISF beyond the random missing setting, we
conduct additional experiments on ‘Missing Not At Ran-
dom’ (MNAR) scenarios. In MNAR scenarios, the miss-
ing probability depends on the unobserved values them-
selves. Thus, for the experiments, we establish two
MNAR settings: MNAR-I and MNAR-D. In MNAR-
I, the missing probability of a feature increases as the
feature’s value increases; conversely, in MNAR-D, the
missing probability decreases as the feature’s value in-
creases. For MNAR-I and MNAR-D, we set the miss-
ing probability of xi,a to max(1, exp(

xi,a

(max(X)−min(X)) ))

and max(1, exp(
−xi,a

(max(X)−min(X)) )), respectively. Table 10
shows classification accuracy in semi-supervised node clas-
sification on the OGBN-Arxiv dataset under MNAR settings.
The results reveal that FISF consistently outperforms the
baselines across both MNAR settings, thereby demonstrat-
ing its effectiveness even in MNAR scenarios.

C.4. Contribution of Low-variance Channels in
Downstream Tasks

In order to experimentally confirm little contribution of
low-variance channels in downstream tasks, we compare
performance by excluding partial channels from the original
feature matrix using two different ways. The first way (red
lines in Figure 4 and Figure 5) is excluding channels in de-
scending order of variance, starting from the highest, based
on a fixed proportion. Then, as the second way (blue lines),
we exclude channels from the lowest variance in ascending
order, i.e., the low-variance channels are removed first.

Figure 4 demonstrates the results on semi-supervised node
classification tasks. Since a low-variance channel contains
nearly identical values that do not aid in distinguishing
nodes, the classification accuracy denoted by blue lines
persists despite an increasing removal proportion of low-
variance channels. However, cases of channel removal from
the highest variance suffer significant performance degrada-
tion even with low proportion of channel removal.

As shown in Figure 5, little contribution of low-variance
channels is also evident in link prediction tasks. Since
identical representations among nodes results in consistent
representations across node pairs, low-variance channels
also contribute very little to performance in link prediction
tasks.

C.5. Effects of Hyperparameters

We further analyze the effects of FISF hyperparameters,
(α, β, γ), on Cora under structural missing settings with
rm = 0.995. Figure 6 shows the accuracy of FISF models
with different α, β and γ. When varing each hyperparam-
eter, the other hyperparameters are set to their optimal val-
ues. Compared to existing state-of-the-art performance of
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Table 13. Performance on semi-supervised node classification tasks at rm = 0.995, measured by accuracy (%).

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV Average

FISF 79.29± 1.72 69.68± 2.47 76.90± 1.50 88.22± 0.79 79.40± 1.11 69.92± 0.17 77.24
FISF* 78.68± 1.72 69.68± 2.47 76.74± 1.84 88.22± 0.79 79.40± 1.11 69.92± 0.17 77.11

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV Average

FISF 79.09± 1.73 69.52± 1.81 77.53± 1.28 88.32± 1.37 82.12± 0.51 69.81± 0.16 77.73
FISF* 79.09± 1.73 69.52± 1.81 76.89± 2.01 88.32± 1.37 81.56± 0.47 69.81± 0.16 77.53

Table 14. Performance on link prediction tasks at rm = 0.995, measured in ROC AUC score (%).

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS Average

FISF 87.26± 1.44 84.12± 1.17 83.19± 0.78 95.86± 0.21 94.70± 0.30 89.03
FISF* 86.80± 1.27 84.12± 1.17 82.46± 0.94 95.76± 0.33 94.39± 0.82 88.70

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS Average

FISF 87.44± 0.80 83.45± 2.53 85.33± 0.47 96.64± 0.18 95.13± 0.35 89.60
FISF* 87.56± 1.29 81.15± 1.17 82.46± 0.69 95.68± 0.42 94.94± 0.27 88.36

74.62%, all FISF models consistently exceed it by a con-
siderable margin regardless of the value of α. Furthermore,
significant performance improvement are observed with a
small γ. A small β results in the performance degradation.
This is because too small β assigns excessive influence to
synthetic features, which hinders the spread of known fea-
tures. This result validates the DSF stage, which enables the
wide spread of synthetic features, is properly designed.

C.6. Effects of the Magnitude of Synthetic Feature
Values

To confirm the effects of the magnitude of synthetic feature
values, we conduct additional experiments by using a scale
factor m. The values for the synthetic features are scaled by
multiplying them by m, after being sampled from a uniform
distribution on [0, 1]. Table 11 shows the results. As shown
in the table, m ∈ {0.1, 1, 10} generally shows similar per-
formance, while there is a performance decrease in the case
of m ∈ {0.01, 100}. We believe that the performance drop
for m = 0.01 is due to the fact that it barely increases the
variance of the channel. For m = 100, after the imputation
process, the low-variance channels with injected synthetic
features will be on a different scale compared to other chan-
nels without injected synthetic features, which disrupts the
learning process of the downstream GNN.

To generalize the sampling distribution against the magni-
tude of values in the feature channel, node-wise normal-
ization can be a good solution. We apply node-wise L2
normalization to pre-imputed features where synthetic fea-
tures will be injected. Table 12 shows the results. We can
confirm that m = 1 produces maintains robust performance
across different datasets. These discussions and experimen-
tal results demonstrate that the performance is significantly
affected when the magnitude of random noise is either too
small or too large. They also suggest that node-wise nor-
malization can be a good solution to handle various scales
of features effectively.

C.7. Hyperparameter search for FISF

Despite the outperforming performance of FISF, conducting
a hyperparameter search for FISF with three hyperparame-
ters (α, β, and γ) can be burdensome in certain situations.
However, both α and β (0 < α, β < 1) play a shared role
in a base of distance during calculating PC (i.e. ξ∗i,b = αS∗

i,b

and ξsi,a = βSs
i,a). Thus we can combine them into one,

i.e., α = β. By doing this, the search complexity can be
reduced from 53 to 52 without the performance degrada-
tion by setting five search points for each hyperparameter.
Table 13 and Table 14 show that the FISF* with the light
search does not degrade performance on semi-supervised
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Figure 7. t-SNE plot visualizing imputed features.

Figure 8. t-SNE plot visualizing deep features in GCN.

node classification and link prediction. The version with the
light search requires from 20 minutes to 10 hours depend-
ing on the datasets, therefore this burden is manageable for
practical usage of FISF.

C.8. Smoothness Analysis

We generate a synthetic feature in a low-variance channel in
order to make features in that channel distinctive across
nodes. To investigate smoothness (feature homophily),

we compare the smoothness of output features obtained
through imputation methods. For this comparison, we em-
ploy Dirichlet energy, a representative criterion for mea-
suring smoothness on a graph. As shown in Table 15, FP
displays the lowest Dirichlet energy among the imputation
methods. In contrast, FISF makes Dirichlet energy of the
imputed features similar to that of the original features. Note
that our FISF shows the highest Dirichlet energy (distinc-
tiveness) among the methods. Through the outperforming
performance of FISF over the existing methods, we can
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Table 15. log(ED) of imputed features under a structural-missing setting with rm = 0.995, where ED is the Dirichlet
energy. Original denotes original given features.

Missing way Structural Uniform
Method ↓ CORA CITESEER PUBMED CORA CITESEER PUBMED

Original 4.36 4.49 3.11 4.36 4.49 3.11
FP 1.90 1.94 0.798 1.89 1.91 0.805
PCFI 3.14 2.59 1.49 2.52 2.64 1.43
FISF (Ours) 3.25 2.92 4.15 2.69 2.70 4.34

Table 16. Average cosine similarity of imputed features by FISF, under a structural-missing setting with rm = 0.995.

Dataset Inter-class Intra-class Ratioclass 1 class 2 class 3 class 4 class 5 class 6 class 7 Average
CORA 0.760 0.858 0.902 0.902 0.844 0.691 0.826 0.870 0.842 1.11
CITESEER 0.279 0.267 0.341 0.636 0.282 0.513 0.380 - 0.403 1.45
PUBMED 0.871 0.893 0.936 0.880 - - - - 0.903 1.04

Table 17. Average cosine similarity of original features.

Dataset Inter-class Intra-class Ratioclass 1 class 2 class 3 class 4 class 5 class 6 class 7 Average
CORA 0.0578 0.841 0.113 0.0896 0.683 0.0690 0.0853 0.109 0.0883 1.53
CITESEER 0.0470 0.655 0.0601 0.0617 0.0650 0.762 0.0581 - 0.0644 1.37
PUBMED 0.0719 0.112 0.937 0.0779 - - - - 0.0946 1.32

confirm that features with low dirichlet energy (high feature
homophily) does not always ensure good performance in
downstream tasks while smoothness is an inductive bias of
GNNs.

To investigate smoothness within classes, we conduct further
experiments. Table 16 demonstrates the intra-class cosine
similarity calculated from imputed features by FISF. Ratio
denotes average similarity/inter-class similarity. If Ratio is
greater than 1, inter-class similarity becomes less than the
average intra-class similarity, which means the feature is
distinctive enough for classification of node features.

Table 17 shows the intra-class cosine similarity calculated
from original features. The results indicate that original
features also have values of Ratio greater than 1 across the
datasets. This means that the datasets also originally have
higher intra-class feature similarity compared to inter-class
feature similarity. Despite the introduction of synthetic
features during diffusion, as shown in Table 16, we can
observe that imputed features by our scheme consistently
maintains higher intra-class feature similarity than inter-
class feature similarity.

We also perform qualitative analysis on imputed features
and deep features to compare imputation methods. The
qualitative analysis is conducted in structural missing set-
tings with rm = 0.995. Figure 7 and Figure 8 demonstrates
the t-SNE plots visualizing imputed features and deep fea-
tures, respectively. FISF provides clearer cluster structures

Table 18. Performance on semi-supervised node classifica-
tion tasks at rm = 0.995, measured by accuracy (%).

Dataset FISF FISF-L
CORA 79.29± 1.72 78.92± 1.60
CITESEER 69.68± 2.47 69.63± 1.40
PUBMED 76.90± 1.50 76.70± 1.62
PHOTO 88.22± 0.79 88.10± 0.97
COMPUTERS 79.40± 1.11 79.09± 1.14
OGBN-ARXIV 69.92± 0.17 69.03± 0.19

for both imputed features and deep features than the other
imputation methods.

C.9. Synthetic Features Sampled from a Non-Uniform
Distribution

Our FISF samples the value of a synthetic feature from a
uniform distribution, because this value only needs to differ
from the nearly identical values of observed features within
the same channel. Random sampling from a uniform distri-
bution is simple yet effective to achieve this goal. In terms
of selecting a node for placing a synthetic feature, we have
considered another node sampling scheme that does not rely
on a uniform distribution. We attempted to sample the node
from a distribution in which the sampling probability varies
based on the locations of observed features. We aimed to
increase the sampling probability for nodes farther from
observed features. However, we empirically observe that
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Figure 9. Distributions of variances for each feature channel with zero/random initialization for missing features. Cora
dataset with 99.5% missing features is commonly used.

Table 19. p-values comparing our FISF to the runner-up on SSNC, measured across 50 splits of each dataset under
structural-missing settings with rm = 0.995. min FISF denotes the worst accuracy among 50 runs.

Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

FISF (ours) 79.14± 1.32 68.83± 1.95 76.97± 1.44 88.11± 1.21 79.11± 1.01 69.91± 0.22
min FISF 75.95 65.43 74.77 86.56 77.09 69.45
runner-up 74.35± 1.65 66.01± 2.99 74.53± 2.40 87.44± 1.25 78.72± 1.31 68.78± 0.24
p-value 1.66× 10−18 6.69× 10−7 3.13× 10−8 2.08× 10−3 7.87× 10−2 1.96× 10−28

sampling the node from this distribution rather degrades per-
formance slightly in downstream tasks, compared to when
sampled from a uniform distribution. Table 18 shows the
comparison results between the original FISF and FISF-L
using the aforementioned node sampling strategy. We be-
lieve that this degradation comes from biased selected nodes,
which damages the diversity across feature channels in an
imputed matrix. Consequently, we sample both a node and
a value for a synthetic feature from uniform distributions.

C.10. Zero Initialization vs Random Initialization

Do low variance channels occur due to zero initializa-
tion use for missing features? We compare the variance
distributions when zero initialization and random initial-
ization are used for missing features. Figure 9 shows that
many low-varince channels persist despite random initial-
ization, but there is a slight difference between the distri-
butions despite using the same setting. This is because all
the propagation-based methods approximate the steady state
with a sufficiently large hyperparameter K, indicating the
number of diffusion iteration (e.g., K = 40 is used in FP
and K = 100 is used in PCFI and FISF). However, we
have further confirmed that variance distributions becomes
identical with very large values (e.g., K = 1000) regardless
of initialization. Although the final approximated results
are not affected by initialization for missing features with a

large K, careful consideration is needed when determining
K, depending on the initialization. In conclusion, low-
variance channels are not mainly caused by the use of zero
initialization for missing features.

C.11. Statistical Analysis

We conduct additional experiments to show that our FISF
is insensitive to random synthetic feature generation and
evaluate the statistical significance of FISF’s superior per-
formance. Table 19 shows p-values comparing FISF to the
runner-up in each setting for the results in semi-supervised
node classification tasks under structural missing settings
with missing rate (rm = 99.5%). As shown in the table, the
p-value indicates the statistical significance of the perfor-
mance improvement of our FISF over the runner-up. The
results demonstrate that our FISF significantly outperforms
the runner-up in most cases, with p-values much lower than
0.05, suggesting that the performance gains are not due
to random chance. Furthermore, even the worst accuracy
among 50 runs (min FISF) shows superior or competitive
performance compared to the runner-up. This demonstrates
that our FISF is robust and insensitive to variations in the
random generation of synthetic features, thereby confirming
the stability and reliability of our method under extreme
missing feature scenarios.
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Figure 10. Diffusing a synthetic feature for each low-variance channel results in distinctive imputed features across nodes.

Table 20. log(ED) of imputed features on PubMed under
structural-missing settings with rm = 0.995.

rm 0.0 0.3 0.5 0.9 0.995 0.999

FP 3.11 3.39 3.29 2.80 0.80 0.77
PCFI 3.11 3.45 3.39 3.06 1.49 2.12
FISF (Ours) 3.11 3.45 3.40 3.11 4.15 5.27

C.12. Investigating the Counterintuitive Performance
Trend of FISF under High Missing Rates

We conduct additional experiments to investigate the un-
derlying reason for the counterintuitive performance trend
of FISF at high missing rates, as observed in the PubMed
dataset results in Figure 3. Feature homophily, which can be
measured by the Dirichlet energy (ED), is a crucial factor
for downstream graph neural networks to perform semi-
supervised node classification tasks. Hence, we measure the
Dirichlet energy (ED) of imputed features. Since this trend
is highlighted on PubMed, we perform these experiments on
PubMed. Table 20 shows the results. These results indicate
that our FISF maintains high Dirichlet energy despite high
rates of missing features, while other propagation-based
methods suffer from a severe decrease in Dirichlet energy.
The high levels of feature homophily (i.e., Dirichlet energy)
stem from synthetic features, which diffuse their values
along edges to overcome the low-variance problem.

D. Discussions
D.1. Justification for synthetic feature injection
Conceptual explanation. In low-variance channels, all
missing features are filled with nearly the same values re-
gardless of connectivity, which can not provide any struc-
tural information. In contrast, in our scheme, for each low-
variance channel, the synthetic feature diffuses its value to

Table 21. The distribution of channel variances in fea-
tures imputed by PCFI on PubMed according to rm under
structural-missing settings.

channel variance 0.0 0.3 0.5 0.9 0.995 0.999

[10−3,∞) 13 12 9 1 0 0
[10−4, 10−3) 467 435 388 126 19 13
[10−5, 10−4) 20 53 103 373 163 70
[0, 10−5) 0 0 0 0 318 417

Table 22. The distribution of channel variances in features
imputed by FP on PubMed according to rm under structural-
missing settings.

channel variance 0.0 0.3 0.5 0.9 0.995 0.999

[10−3,∞) 13 9 0 0 0 0
[10−4, 10−3) 467 412 6 58 0 0
[10−5, 10−4) 20 79 339 439 25 4
[0, 10−5) 0 0 155 3 475 496

its surroundings and creates a local spike centered on the
node with the synthetic features. Each node has larger dif-
ferences in values from the synthetic feature as the distance
from the central node increases. If we inject one synthetic
feature into each low variance channel, but place it at a
different location for each channel. Then the diffused node
feature vector containing every low-variance channel feature
after diffusion becomes distinctive from those of the other
nodes by reflecting the graph structure. Figure 10 illustrates
a visualization of the distinctiveness of the diffused feature
vector by our scheme.

Channel variance analysis. To clarify why randomly sam-
pled values effectively enhance feature distinctiveness, we
conduct further experiments that investigate distributions of
each channel’s variance for varying missing rate (rm). We
compare the distributions of the output matrices obtained by

22



Propagate and Inject: Revisiting Propagation-Based Feature Imputation for Graphs with Partially Observed Features

Table 23. Performance in semi-supervised node classification on various datasets, measured by accuracy (%).

Method CORA CITESEER PUBMED PHOTO COMPUTERS

node2vec 76.67± 1.48 64.00± 1.66 69.50± 4.09 87.77± 1.42 78.98± 1.55
Preliminary diffusion + node2vec 77.20± 1.38 66.78± 1.62 70.19± 4.35 87.81± 1.74 79.25± 0.94
FISF (ours) 79.29± 1.72 69.98± 2.47 76.90± 1.50 88.20± 0.79 79.40± 1.11

Table 24. The distribution of channel variances in fea-
tures imputed by FISF on PubMed according to rm under
structural-missing settings.

channel variance 0.0 0.3 0.5 0.9 0.995 0.999

[10−3,∞) 13 14 12 8 7 0
[10−4, 10−3) 467 465 414 380 246 222
[10−5, 10−4) 20 21 74 112 193 205
[0, 10−5) 0 0 0 0 54 73

our FISF and existing propagation-based imputation meth-
ods. Tables 21, 22 and 24 demonstrate the results. As shown
in Tables 21 and 22, the number of low-variance channels
in outputs produced by existing propagation-based imputa-
tion methods substantially increases as rm increases. This
implies a decrease in the distinctiveness of imputed fea-
tures since all features within a low-variance channel have
nearly the same values. Unlike these methods, as shown
in Table 24, we can confirm that FISF effectively alleviates
the occurrence of low-variance channels, indicating signifi-
cantly higher feature distinctiveness compared to existing
methods. From a theoretical perspective, a zero-variance
channel—corresponding to the first eigenvector of the graph
Laplacian—is regarded in the literature as an example of
zero expressiveness, as it is not useful for discriminating
between nodes (Chung, 1997; Von Luxburg, 2007).

D.2. Low Variance Problem vs Over-Smoothing
Problem

To clarify the distinction between the low variance problem
and the over-smoothing problem (Keriven, 2022), we em-
phasize a fundamental difference between the two issues
from the perspective of self-loops. Propagation-based im-
putation methods (Rossi et al., 2022; Um et al., 2023) and
typical GNNs share a message passing framework to up-
date features using aggregation steps. However, during the
aggregation steps of propagation-based imputation meth-
ods, all observed features have self-loops with a weight of
1, while these observed features do not aggregate features
from neighboring nodes (i.e., do not consider graph struc-
tures). The purpose of this aggregation rule is to preserve
the observed features despite multiple aggregation steps,
while updating the values of missing features. Due to this
different aggregation rule only for observed features, the
steady state of overall imputed features is determined by the
values of observed features (as shown in Appendix A). We

mathematically demonstrate that the cause of low variance
channels lies in the situation where the values of observed
features within a specific channel are identical (as shown in
Appendix B). In a nutshell, the low-variance problem arises
from identical values of observed features within a specific
channel.

In contrast, typical GNNs that suffer from the over-
smoothing problem have consistent update rules, includ-
ing the weights of self-loops, across nodes and features.
All nodes update their features by aggregating features
from neighboring nodes. The cause of the over-smoothing
problem is proven to be the excessive number of GNN
layers (Keriven, 2022; Oono & Suzuki, 2019; Luan et al.,
2019). The key point in this proof is that the eigenvalues of
the graph Laplacian, which is the weighted matrix used in
GNN layers for message passing, fall between 0 and 1. In
contrast, although the weighted matrix used in propagation-
based imputation also has eigenvalues between 0 and 1,
the reason why the large number of layers does not lead to
the over-smoothing problem is due to the aforementioned
unique aggregation rule regarding self-loops.

There are two main approaches designed to address the
over-smoothing problem. The first is a self-loop-based
approach, including APPNP (Gasteiger et al., 2018) and
GDC (Klicpera et al., 2019), which adds self-loops with
certain weights to all nodes to prevent excessive smooth-
ing. We compare this approach with our FISF by applying
an APPNP-style diffusion rule, as shown in Table 6 of the
general response PDF. As illustrated in the table, our FISF
consistently outperforms the APPNP-style imputation by
significant margins across various datasets under structural
missing settings with a missing rate of 0.995. The second
approach is concatenation-based, where multi-scale features
aggregated from neighbors at different hops are concate-
nated (Luan et al., 2019; Wang et al., 2020). However,
since imputation requires output with the same dimension
as the original features, the concatenation-based approach
developed to address the over-smoothing problem cannot
be applied to imputation.

D.3. Why not Use graph Positional/Structural
Encoding?

The key distinction of our FISF approach from graph po-
sitional/structural encoding is that FISF allows for the in-
tegration of feature information and structural information
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Table 25. Ablation study on the number of additional channels used in PCFI+FISF+ for semi-supervised node classification
under structural-missing settings at rm = 0.995. F and ropt denote the number of channels in the feature matrix and the
optimal hyperparameter r used by the original FISF, respectively. Results are reported as accuracy (%) with standard
deviation.

# Additional Channels CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

0 (Vanilla PCFI) 74.62 ± 1.78 66.06 ± 3.26 74.47 ± 2.54 87.49 ± 1.50 79.02 ± 1.22 68.78 ± 0.25

0.125F · ropt% 77.04± 1.42 67.90± 2.22 75.84± 2.33 87.93± 1.55 79.04± 1.90 68.96± 0.30
0.25F · ropt% 77.50± 0.92 68.39± 1.11 77.08± 2.23 87.69± 1.00 79.21± 1.31 69.01± 0.17
0.5F · ropt% 78.56± 1.07 68.71± 2.52 77.17± 2.29 87.92± 1.00 78.47± 1.33 69.19± 0.14
F · ropt% 78.70± 0.69 69.13± 2.35 77.18± 1.25 87.94± 1.34 79.28± 1.92 69.15± 0.27
min(2F · ropt%, F ) 78.60± 1.22 69.23± 2.38 77.10± 1.40 87.96± 0.65 79.22± 1.45 69.28± 0.28

Table 26. Accuracy (%) on semi-supervised node classification under structural-missing settings at rm = 0.995. LPE and
RWPE denote Laplacian postional encoding (Dwivedi et al., 2023) and Random Walk positional encoding (Dwivedi et al.,
2022), respectively. OOM and Timeout denote an out-of-memory error and a failure caused by exceeding the maximum
allowed execution time of 72 hours, respectively.

Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

MEGAE 39.96 ± 8.73 28.97 ± 7.09 OOM 74.47 ± 3.85 51.58 ± 5.52 OOM
MEGAE+LPE 66.70 ± 2.38 50.26 ± 5.02 OOM 80.64 ± 0.70 71.26 ± 2.77 OOM
MEGAE+RWPE 48.91 ± 10.50 42.13 ± 3.04 OOM 78.01 ± 0.78 54.77 ± 6.64 OOM
MEGAE+FISF+ 78.98± 1.38 68.45± 2.23 OOM 86.61± 1.06 76.52± 1.27 OOM

FP 71.61 ± 3.13 59.13 ± 3.15 72.56 ± 3.22 86.69 ± 1.94 77.02 ± 1.37 68.24 ± 0.24
FP+LPE 73.44 ± 5.27 62.71 ± 2.30 71.72 ± 3.01 86.79 ± 1.99 78.04± 1.62 Timeout
FP+RWPE 71.55 ± 1.90 59.16 ± 1.44 70.21 ± 3.29 86.90 ± 1.82 77.27 ± 1.73 68.30 ± 0.45
FP+FISF+ 78.67± 1.53 68.32± 2.23 76.44± 1.89 87.08± 2.22 78.33± 1.20 69.12± 0.30

PCFI 74.62 ± 1.78 66.06 ± 3.26 74.47 ± 2.54 87.49 ± 1.50 79.02 ± 1.22 68.78 ± 0.25
PCFI+LPE 76.51 ± 2.44 67.39 ± 2.28 74.61 ± 1.75 87.95 ± 1.07 79.13 ± 1.34 Timeout
PCFI+RWPE 74.34 ± 1.40 65.81 ± 2.81 72.25 ± 2.54 87.96 ± 0.91 78.85 ± 1.56 68.89 ± 0.18
PCFI+FISF+ 78.70± 0.69 69.13± 2.35 77.18± 1.25 89.07± 1.34 79.28± 1.92 69.15± 0.27

within low-variance channels. In FISF, although a synthetic
feature with randomly sampled values is injected into a
low-variance channel, the channel still contains observed
features with nearly identical values. Since FISF preserves
all observed features during its diffusion process, the output
of FISF retains this feature information, reflecting the nearly
identical values within the channel. Simultaneously, the
injected synthetic feature with a distinct value makes its sur-
rounding nodes similar to its own value, thereby encoding
structural information. After the final diffusion stage, the
low-variance channels in the output will contain both nearly
identical observed feature values and feature values similar
to the synthetic feature, corresponding to feature informa-
tion and structural information, respectively. Thus, FISF can
naturally integrate both feature and structural information
within low-variance channels.

We compare our FISF with the case where a posi-
tional/structural encoding vector is used as complemen-
tary values. We employ node2vec (Grover & Leskovec,
2016), a representative structural encoding method. Ta-

ble 23 presents the accuracy in semi-supervised node clas-
sification under structural-missing settings with a missing
rate of 99.5%, where “node2vec” denotes the case where
node2vec is used alone as input, and “Preliminary diffusion
+ node2vec” refers to the case where node2vec is used as
complementary values. As shown in the table, our FISF con-
sistently outperforms both cases using positional/structural
encoding vectors across datasets. These performance gains
stem from FISF’s ability to integrate feature information
and structural information within low-variance channels.

D.4. Can FISF Be Applied to Other Imputation
Methods as Additional Channels?

We conduct additional experiments in which FISF is ap-
plied to other imputation methods as additional channels
(denoted as FISF+). We further compare FISF+ with Lapla-
cian Positional Encoding (LPE) (Dwivedi et al., 2023) and
Random Walk Positional Encoding (RWPE) (Dwivedi et al.,
2022). Table 25 shows the results. As shown in the table,
while LPE and RWPE generally improve the performance
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Table 27. Dataset statistics.

Dataset #Nodes #Edges #Features #Classes

CORA 2,485 5,069 1,433 7
CITESEER 2,120 3,679 3,703 6
PUBMED 19,717 44,324 500 3
PHOTO 7,487 119,043 745 8

COMPUTERS 13,381 245,778 767 10
OGBN-ARXIV 169,343 1,166,243 128 40

of existing imputation methods by providing structural in-
formation, FISF+ consistently achieves the most significant
performance improvements. Unlike positional encodings,
our approach can use the feature information preserved in
low-variance channels.

We conduct additional experiments to evaluate how many
additional channels with synthetic features improve results.
For FISF+, we do not perform separate hyperparameter tun-
ing; instead, we reuse the optimal hyperparameters from
the original FISF. Accordingly, the number of additional
channels added by FISF+ is set to F · ropt. Table 26 shows
the results. As shown in the table, even a small number of
additional channels using FISF+ leads to substantial per-
formance improvements. We further observe that, for each
dataset, the optimal number of additional channels tends to
lie near the number of channels into which the original FISF
injects synthetic features.

E. Experimental Details
E.1. Dataset Details

Table 27 summarizes the dataset statistics. All the datasets
used in this paper are provided in Pytorch Geometric. All
the datasets used in our work, including the Cora, Cite-
Seer, PubMed, Photo, Computers, and OGBN-arxiv, are
MIT-licensed. In the citation networks, nodes and edges
represent documents and citation links, respectively. In the
case of recommendation networks, nodes represent goods
and an edge connects two nodes only when the nodes (i.e.,
products) are frequently bought together. Following (Rossi
et al., 2022) and (Um et al., 2023), we conduct all experi-
ments on the largest connected graph of each dataset. FISF
can also handle disconnected graphs by working on each
connected graph.

E.2. Implementation Details

We conduct all the experiments on a single NVIDIA
GeForce RTX 2080 Ti GPU and an Intel Core I5-6600 CPU
at 3.30 Hz. All models are implemented in Pytorch (Paszke
et al., 2019) and Pytorch Geometric (Fey & Lenssen, 2019).

Semi-supervised node classification. We randomly cre-

Table 28. Statistics of medical tabular datasets.

Dataset N F Fnum Fcat C rm

Echocardiogram 74 12 3 9 2 2.59%
Duke Breast Cancer 907 93 34 59 2 11.94%
ABIDE 1112 104 85 19 2 52.52%
Diabetes 10177 47 11 36 3 4.03%

ate 5 different training/validation/test node splits for each
dataset except for OGBN-Arxiv. (The node split of OGBN-
Arxiv is fixed according to published years of papers (i.e.,
nodes).) Following the splits in (Klicpera et al., 2019), we
assign 20 nodes per class as training nodes. Subsequently,
the number of validation nodes is adjusted to ensure that
when combined with the training nodes, it totals 1, 500. For
test nodes, we include all nodes except those designated as
training or validation nodes.

Vanilla GCN models for imputation methods (MEGAE (Gao
et al., 2023), FP (Rossi et al., 2022), PCFI (Um et al., 2023),
and our FISF) and GCNMF models are trained as follows.
We utilize Adam optimizer (Kingma & Ba, 2014) and set
the maximum number of epochs to 10, 000. We use an
early stopping strategy based on validation accuracy, with
a patience of 200 epochs. We apply dropout (Srivastava
et al., 2014) with the drop probability p. p and learn-
ing rates in all experiments are searched in {0, 0.25, 0.5}
and {0.01, 0.005, 0.001, 0.0001}, respectively, using grid
search on validation sets. We train GRAFENNE models
by following the training details specified in (Gupta et al.,
2023).

For all the baselines, we follow all the hyperparameters
specified in the original papers or codes. If hyperparameters
(specifically, hidden dimension and the number of layers) for
a specific dataset are not clarified in the papers, we perform
a hyperparameter search using a grid search approach. The
search ranges of hidden dimension and the number of layers
are {16, 32, 64, 128, 256} and {2, 3}, respectively.

Link prediction. For GCNMF and GAE used as down-
stream models for imputation methods, we train all the
models with Adam optimizer for 200 iterations. We apply
dropout (Srivastava et al., 2014) with the drop probability p.
Through grid search on the validation sets, p and learning
rates in all experiments are searched within {0, 0.25, 0.5}
and {0.1, 0.01, 0.005, 0.001, 0.0001}, respectively. We ran-
domly create 5 different training/validation/test edge splits
for each dataset. For each split, as the splits in (Kipf &
Welling, 2016b), we assign 10% edges for the training set,
5% edges for the validation set, and 85% edges for the test
set.

For GAE models for the imputation methods, we commonly
train the models as follows. We use Adam optimizer and set
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Table 29. FISF hyperparameters used in experiments on semi-supervised node classification tasks.

Missing way Structural missing
rm 0.3 0.5 0.9 0.995 0.999

Datasets α β γ α β γ α β γ α β γ α β γ
CORA 0.7 0.9 10 0.7 0.9 50 0.9 0.7 90 0.9 0.7 90 0.9 0.9 90

CITESEER 0.9 0.7 90 0.7 0.7 30 0.9 0.5 50 0.9 0.9 90 0.9 0.9 90
PUBMED 0.9 0.9 10 0.9 0.7 70 0.9 0.5 10 0.9 0.5 90 0.9 0.5 90
PHOTO 0.5 0.9 10 0.5 0.7 90 0.1 0.9 70 0.1 0.1 70 0.1 0.1 50

COMPUTERS 0.3 0.9 10 0.1 0.1 90 0.1 0.7 50 0.1 0.1 50 0.1 0.1 90
OGBN-ARXIV 0.3 0.3 10 0.3 0.3 10 0.1 0.3 30 0.1 0.1 90 0.1 0.1 70

Missing way Uniform missing
rm 0.3 0.5 0.9 0.995 0.999

Datasets α β γ α β γ α β γ α β γ α β γ
CORA 0.9 0.9 10 0.9 0.7 30 0.7 0.9 30 0.9 0.7 70 0.7 0.7 70

CITESEER 0.1 0.3 50 0.1 0.3 70 0.9 0.5 70 0.9 0.9 30 0.7 0.7 90
PUBMED 0.3 0.1 10 0.3 0.1 30 0.9 0.5 50 0.9 0.5 50 0.9 0.5 90
PHOTO 0.3 0.3 53 0.3 0.3 50 0.1 0.3 70 0.3 0.1 30 0.1 0.5 90

COMPUTERS 0.5 0.5 10 0.5 0.5 10 0.1 0.3 10 0.1 0.5 50 0.1 0.5 50
OGBN-ARXIV 0.3 0.1 10 0.3 0.1 30 0.9 0.3 30 0.1 0.1 90 0.1 0.1 10

Table 30. FISF hyperparameters used in experiments on link
prediction tasks.

Missing way Structural missing Uniform missing
rm 0.995 0.995

Datasets α β γ α β γ
CORA 0.5 0.9 90 0.3 0.9 10

CITESEER 0.9 0.9 90 0.1 0.7 10
PUBMED 0.1 0.3 70 0.1 0.5 90

COMPUTERS 0.1 0.9 10 0.1 0.9 70
PHOTO 0.1 0.7 10 0.1 0.7 10

Table 31. URL links for baselines.

Baseline URL link

GCNMF https://github.com/marblet/GCNmf
GRAFENNE https://github.com/data-iitd/Grafenne
MEGAE https://github.com/zqgao22/max-entropy-gae
FP https://github.com/twitter-research/feature-propagation
PCFI https://github.com/daehoum1/pcfi

the number of epochs to 200. Learning rates are searched
from {0.01, 0.005, 0.001, 0.0001} by grid search on vali-
dation sets. Following (Kipf & Welling, 2016b), (Taguchi
et al., 2021), and (Um et al., 2023), we leverage GAE mod-
els with 32-dimensional hidden layer and 16-dimensional
latent variables.

Medical Classification. We create five random splits for

training, validation, and testing, with proportions of 10%,
10%, and 80%, respectively. The classification performance
is then measured by calculating the average Micro-F1 score
across these five splits. We utilize MLP classifiers on the
feature matrices imputed by tabular imputation methods to
perform classification. For the MLP classifiers, we set the
number of layers and the hidden dimension to 2 and 64,
respectively. Table 28 presents the statistics of the medical
tabular datasets used in this paper. N refers to the number
of samples, while F indicates the number of features. The
numerical and categorical features are represented by Fnum

and Fcat, respectively. The numerical features are scaled
to a fixed range of 0 to 1, and categorical features are en-
coded using one-hot encoding. C denotes the number of
classes, and rm indicates the missing feature rate in each
dataset. The value of k in kNN graph construction for graph
imputation methods is selected from {1,3,5,10} based on
the validation set.

FISF implementation. For semi-supervised node classifi-
cation tasks, we set the number of layers and learning rates
to 64 and 0.005, respectively. For link prediction tasks on
Cora, CiteSeer, and PubMed, we set learning rates to 0.01.
We set learning rates to 0.001 for Photo and Computers. In
all experiments, we fix K to 100 and dropout is applied
with p = 0.5. In the case of experiments on OGBN-Arxiv,
following FP (Rossi et al., 2022) and PCFI (Um et al., 2023),
we leverage GCN layers with skip connections (Xu et al.,
2018) and set the hidden dimension to 256. Hyperparamters
(α, β, and γ) of FISF used in experiments are summarized
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in Table 29 and Table 30. We will release the code upon
publication.

Implementation of baselines. For LP, we use codes
implemented in Pytorch Geometric (Fey & Lenssen,
2019). The hyperparameter α of LP is searched from
{0.95, 0.9, 0.8, 0.7, . . . , 0.1}. For the baselines except for
LP, we use code released by the authors of papers. The
URL links for the baselines are given in Table 31. While
the codes for FP and PCFI are licensed under Apache-2.0,
and the codes for GCNMF and MEGAE are licensed under
MIT, the code for GRAFENNE has no public declaration of
license.

F. Algorithmic Description of FISF

Algorithm 1 Algorithmic procedure of FISF.

1: Input: Adjacency matrix A ∈ {0, 1}N×N , input fea-
tures X ∈ RN×F , known/unknown node sets V(a)

k ,
V(a)
u for each channel a, hyperparameters (α, β,K, r)

2: Output: Imputed feature matrix X̂ ∈ RN×F

3: // Pre-diffusion
4: for each channel a = 1 to F do
5: Compute shortest path distance Si,a =

dset(vi|V(a)
k ,A)

6: Compute PC: ξi,a = αSi,a

7: Build weighted matrix W
(a)
i,j =

ξj,a
ξi,a

if Ai,j = 1

8: Normalize W
(a)

= (D(a))−1W(a)

9: Replace top rows with one-hot encoding⇒ W̃(a)

10: Initialize x̃(a)(0) =

[
x
(a)
k

0u

]
11: for t = 1 to K do
12: x̃(a)(t) = W̃(a)x̃(a)(t− 1)
13: end for
14: end for
15: Stack {x̃(a)(K)}Fa=1 to form pre-imputed matrix X̃
16: // Synthetic Feature Generation
17: for each channel a = 1 to F do
18: Compute variance σ2

a = Var(X̃:,a)
19: end for
20: Select r% low-variance channels Fl

21: for each b ∈ Fl do
22: Randomly choose node v

(b)
s ∈ V(b)

u

23: Sample synthetic value x
(b)
s ∼ U(0, 1)

24: V(b)
k∗ ← V(b)

k ∪ {v
(b)
s }, V(b)

u∗ ← V(b)
u \ {v(b)s }

25: end for
26: // Diffusion with Synthetic Features (DSF)
27: for each b ∈ Fl do
28: Compute S∗

i,b = dset(vi|V(b)
k∗ ,A), ξ∗i,b = αS∗

i,b

29: Compute Ss
i,b = d(vi, v

(b)
s |A), ξsi,b = βSs

i,b

30: Build weighted matrix M
(b)
i,j =

ξ∗j,b
ξ∗i,b
· ξ

s
j,b

ξsi,b
if Ai,j = 1

31: Normalize M
(b)

= (D′(b))−1M(b)

32: Replace top rows with one-hot encoding⇒ M̃(b)

33: Initialize x̂(b)(0) =

[
x
(b)
k∗

0u∗

]
34: for t = 1 to K do
35: x̂(b)(t) = M̃(b)x̂(b)(t− 1)
36: end for
37: Replace column X̃:,b ← x̂(b)(K)
38: end for
39: return X̂← X̃
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G. Additional Experimental Results
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Figure 11. Distributions of variances for each feature channel on Cora dataset with 90%/99.5% missing features. FP
and PCFI generates output matrices with many low-variance channels outlined in red, whereas FISF resolves the issue of
low-variance channels.

Figure 12. Distributions of variances for each feature channel on CiteSeer dataset with 90%/99.5% missing features. FP
and PCFI generates output matrices with many low-variance channels outlined in red, whereas FISF resolves the issue of
low-variance channels.
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Table 32. Performance on link prediction tasks at rm = 0.995, measured by AP (%). Standard deviation errors are given.
The best result is highlighted in bold and underlined, while the second-best result is highlighted only in bold. OOM denotes
an out-of-memory error.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS

Full features 92.62± 1.13 91.60± 1.44 96.59± 0.32 95.24± 0.39 93.77± 0.61

GCNMF 70.20± 0.80 69.19± 1.78 86.20± 0.32 80.58± 0.28 83.34± 0.17
GRAFENNE 64.70± 3.76 72.08± 9.71 70.43± 3.74 64.78± 0.84 66.56± 1.14
MEGAE 69.78± 0.78 70.85± 2.92 OOM 86.46± 1.65 86.12± 1.13
FP 86.40± 1.26 82.61± 1.96 83.98± 0.79 93.74± 0.57 91.50± 0.56
PCFI 88.63± 0.90 82.98± 0.86 87.07± 0.42 96.31± 0.25 94.58± 0.37

FISF 88.81± 1.35 85.85± 1.38 87.55± 0.35 95.33± 0.22 94.71± 0.26
FISF+NIP 89.35± 1.24 85.25± 1.85 87.62± 0.12 95.95± 0.18 95.41± 0.33

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS

Full features 92.62± 1.13 91.60± 1.44 96.59± 0.32 95.24± 0.39 93.77± 0.61

GCNMF 64.21± 2.01 65.06± 2.67 82.64± 2.17 80.61± 0.20 83.38± 0.12
GRAFENNE 75.04± 13.33 71.39± 9.71 73.56± 5.77 68.36± 7.71 69.79± 5.81
MEGAE 67.98± 1.85 63.67± 2.89 OOM 83.22± 1.48 85.11± 2.00
FP 88.67± 1.26 85.39± 1.89 82.99± 2.14 95.51± 0.19 94.06± 0.27
PCFI 89.13± 1.06 85.47± 1.82 88.20± 0.38 96.87± 0.20 95.55± 0.32

FISF 89.16± 0.77 85.17± 2.00 88.73± 0.36 96.27± 0.23 95.12± 0.32
FISF+NIP 89.23± 0.89 84.73± 2.00 88.72± 0.36 96.32± 0.26 96.12± 0.30
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Table 33. Performance on semi-supervised node classification tasks at rm = 0.995, measured by accuracy (%). Standard
deviation errors are given. OOM denotes an out-of-memory error. All imputation methods use GIN as the downstream
network.

Structural missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

Full features 79.78± 1.49 68.58± 1.14 76.24± 2.51 87.26± 0.76 83.73± 1.50 70.24± 0.26

LP 74.54± 1.79 65.42± 1.80 71.67± 4.94 82.27± 2.72 76.01± 1.84 67.56± 0.00
GCNMF 31.33± 2.73 24.84± 2.44 40.48± 0.53 25.60± 0.17 37.21± 0.08 9.00± 6.27
GRAFENNE 20.20± 10.98 17.58± 2.94 33.12± 2.43 21.10± 17.39 16.31± 11.84 13.66± 12.23
MEGAE (GIN) 32.79± 5.64 29.68± 3.17 OOM 59.55± 9.17 37.94± 1.49 OOM
FP (GIN) 70.88± 3.30 59.68± 4.18 70.84± 4.28 81.85± 1.42 74.28± 2.51 67.80± 0.57
PCFI (GIN) 73.12± 3.17 65.10± 3.60 72.11± 3.92 82.34± 1.20 77.50± 1.39 68.83± 0.30

FISF (GIN) 78.15± 1.45 69.10± 2.16 75.31± 1.82 83.06± 1.68 77.96± 1.36 69.75± 0.20

Uniform missing
Method CORA CITESEER PUBMED PHOTO COMPUTERS OGBN-ARXIV

Full features 79.78± 1.49 68.58± 1.14 76.24± 2.51 87.26± 0.76 83.73± 1.50 70.24± 0.26

LP 74.54± 1.79 65.42± 1.80 71.67± 4.94 82.27± 2.72 76.01± 1.84 67.56± 0.00
GCNMF 34.01± 8.08 29.71± 5.12 40.08± 0.45 25.59± 0.16 37.20± 0.08 5.86± 0.00
GRAFENNE 20.55± 13.65 19.32± 7.42 34.75± 4.26 29.96± 20.92 21.74± 15.94 15.52± 11.70
MEGAE (GIN) 37.73± 8.15 32.29± 6.70 OOM 52.53± 2.00 37.20± 0.08 OOM
FP (GIN) 77.48± 1.81 68.52± 2.81 71.56± 3.73 83.59± 0.98 78.27± 0.85 68.61± 0.14
PCFI (GIN) 78.38± 1.35 68.61± 1.89 74.62± 2.59 83.77± 1.67 79.07± 0.91 69.40± 0.25

FISF (GIN) 79.01± 1.42 69.13± 1.96 75.05± 2.09 84.17± 2.08 79.50± 0.76 69.88± 0.22
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