
Published at 2024 ICLR 2024 Workshop on LLM Agents

HELPER-X: A UNIFIED INSTRUCTABLE EMBODIED AGENT TO
TACKLE FOUR INTERACTIVE VISION-LANGUAGE DOMAINS WITH
MEMORY-AUGMENTED LANGUAGE MODELS

Gabriel Sarch Sahil Somani∗ Raghav Kapoor∗

Michael J. Tarr Katerina Fragkiadaki

∗equal contribution

Carnegie Mellon University

helper-agent-llm.github.io

ABSTRACT

Methods for developing instructable embodied artificial agents typically train dis-
tinct models for each application and language domain to map instructions to the
corresponding actions and task plans. Here we explore the feasibility of developing
a versatile “generalist” instructable agent capable of operating across a broad spec-
trum of tasks, language domains, and environments, with a single model. Recent
research on instructable agents has used memory-augmented Large Language Mod-
els (LLMs) as task planners, a technique that retrieves language-program examples
relevant to the input instruction and uses them as in-context examples in the LLM
prompt to improve the performance of the LLM in inferring the correct action and
task plans. Our approach, HELPER-X, expands such external language-program
memory with a wide range of examples and prompt templates, while also extend-
ing the agent’s action API. This expansion of a shared unified memory enables
the agent to work across the domains of executing plans from dialogue, natural
language instruction following, active question asking, and commonsense room
reorganization. We evaluate the agent on four diverse interactive visual-language
embodied agent benchmarks: ALFRED, TEACh, DialFRED, and the Tidy Task.
These benchmarks vary significantly in terms of input instructions, question-asking
capabilities, task structures, and environmental settings. HELPER-X achieves
few-shot, state-of-the-art performance across these benchmarks using a single
agent, without requiring in-domain training, and remains competitive with agents
that have undergone in-domain training. Our work demonstrates the potential
of memory-augmented large language models to support generalist instructable
embodied agents.

1 INTRODUCTION

AI is undergoing a paradigm shift with the emergence of models like CLIP (Radford, 2021), GPT (gpt,
2023) and DALL-E (Betker, 2023), which are trained using web-scale data and are adaptable to a wide
range of downstream tasks. Adapting vision-language models (VLMs) (e.g., CLIP Radford (2021))
and large language models (LLMs) (e.g., GPT-4 OpenAI (2023)) trained on large datasets often
outperform their counterparts trained on smaller scale, task-specific data (Radford, 2021; OpenAI,
2023).

A typical way to adapt LLMs to downstream applications is through prompting (Brown, 2020;
Alayrac, 2022; Liu, 2022b; Hongjin, 2022; Mishra, 2022; Wei, 2021; Song, 2022b), exploiting
their strong in-context and few-shot learning abilities. Prompting freezes the model parameters and
steers the output of the model by conditioning on a prompt – input text typically composed of task
instructions and demonstrations. To ensure high performance on a given task, prompts need to be

1

https://helper-agent-llm.github.io/

Published at 2024 ICLR 2024 Workshop on LLM Agents

Figure 1: (left) HELPER-X can perform dialogue-based task completion in TEACh (Padmakumar,
2021), follow instructions from natural language in ALFRED (Shridhar, 2020), engage in instruction
following with active question asking in DialFRED (Gao, 2022), and organize rooms using spatial
commonsense reasoning in the Tidy Task (Sarch, 2022) with a single model. (right) Prompted
GPT-4 cannot generalize from an action-from-dialogue domain (TEACh) to action-from-instruction
domain (ALFRED). TEACh-tailored HELPER Sarch (2023), with corresponding prompt templates
and example memory, shows a 6.9% decrease in success rate when tested on ALFRED, a related
domain that shares the same action space and environments but differs in language inputs and task
types. HELPER-X maintains strong performance across both domains with a single model.

carefully designed, either by manual search or an automated procedure (Jiang, 2020; Shin, 2020).
Consequently, the challenge with adapting LLMs to a particular task becomes providing appropriate
prompts for the model to understand the task constraints and generate accurate outputs. For embodied
agent task planning, LLMs are commonly given a prompt that includes a description of the task to
perform, an API that defines the action space with function documentation, environment and task
instruction inputs, and a set of in-context examples for expected inputs and planning outputs for the
task (Liang, 2022; Singh, 2023).

When the amount of in-context examples and task descriptions necessary to cover the task constraints
increases, inference costs significantly rise due to additional attention operations. To handle com-
putational challenges and LLM context length, a growing body of research explores the concept of
“memory-augmented prompting” – a method that involves retrieving a set of pertinent in-context
examples to append to the prompt, thereby broadening their applicability (Perez, 2021; Schick, 2020;
Gao, 2020; Liu, 2022c; Song, 2023; Sarch, 2023; Lewis, 2020; Mao, 2021). For example, HELPER
in Sarch (2023), retrieves a set of language-program examples based on the user’s input instruction
and adds them to the prompt to provide contextualized examples for GPT-4 task planning.

Despite GPT-4’s robust generalization, memory-augmented prompting tailored for one domain does
not guarantee high performance in a similar yet distinct domain. Applying HELPER, prompted with
TEACh-specific examples and descriptions, to ALFRED – a related domain that shares the same
action space and environments but differs in language inputs and task types – results in a notable
6.9% decrease in accuracy compared to a HELPER model with a specialized prompt and customized
example memory specifically for ALFRED, and vice versa when doing the same on TEACh (3.2%

2

Published at 2024 ICLR 2024 Workshop on LLM Agents

decrease), as shown in Figure 1 (right). To further address the question of whether a single agent
with an expanded prompt and example memory can effectively operate across multiple benchmarks,

we introduce HELPER-X, an embodied agent capable of executing plans from dialogue, following
natural language instructions, asking questions actively, and organizing rooms, using spatial common-
sense reasoning. HELPER-X extends the capabilities of HELPER, by expanding its memory with
a wider array of examples and prompts, and by integrating a additional APIs for asking questions.
Specifically, we introduce two HELPER-X variants: HELPER-XP , which retrieves domain-specific
prompt templates and related in-context examples for the LLM, and HELPER-XS , which retrieves
in-context examples from a shared memory under a single prompt template.

We evaluate HELPER-X across four domains that include dialogue-based task completion on
TEACh (Padmakumar, 2021), following instructions from natural language on ALFRED (Shridhar,
2020), engaging in instruction following with active question asking on DialFRED (Gao, 2022), and
organizing rooms using spatial commonsense reasoning in the Tidy Task (Sarch, 2022). HELPER-X
demonstrates state-of-the-art performance in the few-shot example domain, that is, without in-domain
training. Extending the language-program memory does not cause interference and does not hinder
performance. In fact, HELPER-X matches, and sometimes even exceeds, the performance of agents
prompted with a single-domain in mind.

HELPER inherits the key advantages of prompting and memory-augmentation: 1) generality, as it
unifies many embodied agent tasks into one system; 2) training-free, as it does not require re-training
(or fine-tuning) a new model for every new task; 3) interpretability, as the planning is explicit code
and the retrieval system identifies the examples and prompts used for planning; 4) adaptability, by
being able to continually add to the memory and APIs to incorporate new inputs, skills, and tasks;
5) flexibility, as the architecture is modular, improvements in any of the used vision and language
modules will result in direct improvement in HELPER-X’s performance.

2 RELATED WORK

2.1 MEMORY-AUGMENTED PROMPTING OF LARGE LANGUAGE MODELS

Recently, external memories have been instrumental in scaling language models Borgeaud (2021);
Khandelwal (2019), overcoming the constraints of limited context windows in parametric transformers
Wu (2022). They also facilitate knowledge storage in various forms such as entity mentions de Jong
(2021), knowledge graphs Das (2022), and question-answer pairs Chen (2022). Retrieval-augmented
generation (RAG) (Lewis, 2020; Mao, 2021) has been shown to significantly improve response
quality in large language models (LLMs) by integrating external knowledge sources with the model’s
internal representations. In agent-based domains, memory-augmented prompting has enhanced task
planning in embodied instructional contexts (Song, 2023; Sarch, 2023) and open-world gaming
(Wang, 2023b;a; Majumder, 2023). Our model, HELPER-X, employs memory-augmented prompting
across four benchmarks, demonstrating that memory expansion across related domains can maintain
performance.

2.2 INSTRUCTABLE EMBODIED AGENTS THAT INTERACT WITH THEIR ENVIRONMENTS

Numerous benchmarks assess embodied vision-and-language tasks, with significant advancements
in learning-based embodied AI agents across tasks like scene rearrangement Gan (2022); Weihs
(2021); Batra (2020); Sarch (2022); Trabucco (2022), object-goal navigation Anderson (2018); Yang
(2019); Wortsman (2019); Chaplot (2020); Gupta (2017); Chang (2020); Gervet (2023); Chang
(2023), point-goal navigation and exploration Anderson (2018); Savva (2019); Wijmans (2020);
Ramakrishnan (2020); Gupta (2017); Chen (2019); Chaplot (2019); Kumar (2021), embodied ques-
tion answering Gordon (2018); Das (2018); Zhu (2023); Datta (2022); Das (2020); Gao (2022),
instructional and image navigation (Ku, 2020; Krantz, 2023), audio-visual navigation (Chen, 2020),
interactive dialogue and natural language instruction following (Yenamandra, 2023; Shridhar, 2020;
Padmakumar, 2021; Gao, 2023), and embodied commonsense reasoning (Kant, 2022; Sarch, 2022;
Wu, 2023). Interactive instruction benchmarks (e.g., ALFRED (Shridhar, 2020) and TEACh (Pad-
makumar, 2021)) require agents to follow natural language directives and dialogue, identifying
objects in scenes via interaction masks. Variants like DialFRED (Gao, 2022) allow agent inquiries
about objects and locations. Benchmarks such as TIDEE (Sarch, 2022) and HouseKeep (Kant, 2022)

3

Published at 2024 ICLR 2024 Workshop on LLM Agents

test agents’ ability to tidy rooms using commonsense, without explicit object placement directives.
Unlike most methods confined to a single domain, our work focuses on creating a multi-domain agent
adept in dialogue-based task planning, natural language instruction following, asking questions for
disambiguation of instructions, and tidying up scenes. Our method shows competitive performance
across the four domains with a few task-specific demonstrations and without domain-specific weights,
beyond the single image object detector.

Interactive vision-language embodied agent methods train distinct agents for each language-defined
task, using large datasets from expert demonstrations (Min, 2021; Inoue, 2022; Zhang, 2022; Kim,
2023; Pashevich, 2021). Some approaches use these demonstrations for end-to-end network training
to directly predict actions from observations (Pashevich, 2021; Gao, 2022; Zhang, 2021). Others
employ modular methods, training planners to generate subgoals handled by specialized perception,
manipulation, and obstacle avoidance modules (Min, 2021; Inoue, 2022; Blukis, 2022; Zheng, 2022;
Kim, 2023; Bhambri, 2023; Liu, 2022a; Murray, 2022; Liu, 2023). However, these methods often
over-specialize to specific datasets and tasks, limited by the training domain’s language and task
structure. In contrast, our method performs competitively across multiple benchmarks with minimal
task-specific demonstrations and without needing domain-specific networks.

3 OUR METHOD: HELPER-X

We extend HELPER (Sarch, 2023) to work across four domains. We propose two versions to
extend the memory-augmented prompting of LLMs in HELPER: 1) HELPER-XP that retrieves
from a memory of domain-tailored prompt templates and associated domain-specific examples
(Section 3.2.1), and 2) HELPER-XS that expands the memory of HELPER into a shared memory of in-
context examples across domains combined with a domain-agnostic prompt template (Section 3.2.2).
Additionally, we extend the capabilities of HELPER for question asking, by appending a question API
with functions defining possible questions and their arguments to the LLM prompt (Section 3.2.3).
We use HELPER (Sarch, 2023) for execution of the generated program using standard perception
modules.

3.1 BACKGROUND: HELPER

We build on HELPER (Sarch, 2023) for memory-augmented prompting of LLMs and program
execution. Here, we give an account of HELPER to make the paper self-contained.

HELPER prompts an LLM, namely GPT-4 (gpt, 2023), to generate plans as Python programs. It
assumes that the agent has access to a set of action skills S (e.g., go_to(X), pickup(X), etc.).
HELPER adds these skills to the prompt in the form of a Python API. The LLM is instructed only
to call these pre-defined skill functions in its generated programs. HELPER considers a key-value
memory of language inputs and successful program pairs. It retrieves a set of in-context examples
relevant to the current input language to add to the prompt to assist program generation. Each key
is encoded into a language embedding. The top-k language-program pairs are retrieved based on
their euclidean distance to the encoding of the language input I encoding.The HELPER prompt also
contains a role description ("You are a helpful assistant with expertise in..."), a task description ("Your
task is to ...") and guidelines to follow for program generation ("You should only use functions in the
API..."), that are commonly tailored to the domain-of-interest.

HELPER (Sarch, 2023), using RGB input, estimates depth maps, object masks, and agent egomotion
at each timestep. This facilitates the creation and upkeep of a 3D occupancy map and an object
memory database, essential for obstacle navigation and object tracking. Object detection in each
frame leads to instance aggregation based on 3D centroid proximity, with each instance characterized
by dynamic state attributes (e.g., cooked, sliced, dirty). When an action fails, a Vision-Language
Model (CLIP (Radford, 2021)) provides feedback, prompting the LLM to re-plan. For objects not
present in the map, the LLM suggests areas for HELPER to search (e.g., “near the sink").

3.2 UNIFIED MEMORY-AUGMENTED PROMPTING

We explore two ways to expand HELPER to work across four domains, either through prompt
retrieval (Section 3.2.1) or through a shared example memory (Section 3.2.2).

4

Published at 2024 ICLR 2024 Workshop on LLM Agents

Figure 2: Illustration of the shared example memory (HELPER-XS ; top) and the prompt retrieval
(HELPER-XP ; bottom). The memory is shared across domains in both versions, allowing language
and task inputs from any of the domains.

3.2.1 PROMPT RETRIEVAL

Given an input language instruction I , the prompt retrieval agent HELPER-XP retrieves a specialized
prompt template P and an associated set of specialized examples E. Each specialized prompt
template contains role descriptions, task instructions and guidelines tailored to each domain, namely,
dialogue-based task completion (based on TEACh (Padmakumar, 2021)), instruction following from
natural language (based on ALFRED (Shridhar, 2020)), instruction following with active question
asking (based on DialFRED (Gao, 2022)), or tidying up rooms (based on Tidy Task (Sarch, 2022)).
For retrieval, a query is generated from the input instruction by encoding the instruction into an
embedding vector using a pre-trained language model (Greene, 2022). The query retrieves the closest
key from memory, where each key represents the language encodings of each prompt template and
example text , as shown in Figure 2. The top-k in-context examples are further retrieved from the
specialized set of examples associated with the retrieved prompt and added to the retrieved prompt
template, and the resulting prompt is used for LLM’s program generation.

3.2.2 SHARED EXAMPLE MEMORY

Given an input language instruction I , the shared example memory agent HELPER-XS retrieves a
set of in-context examples from a shared memory that includes in-context examples from all domains
considered. These examples are added to a domain-agnostic prompt template that does not have
a specialized role description, task instructions or guidelines for any single domain. A query is
generated from the input instruction by encoding it into an embedding vector using a pre-trained
language model (Greene, 2022). The keys represent encodings of each in-context example language
in the shared memory. The query embedding retrieves the top-k nearest neighbors keys and their
values. These are added to the prompt as relevant in-context examples for LLM program generation,
as shown in Figure 2.

3.2.3 QUESTION ASKING API

A natural limitation of asking questions in a simulator is that only certain types of questions can
be understood and answered. We constrained the set of possible questions asked by the agent
by defining an API of available questions in the DialFRED (Gao, 2022) benchmark and their
arguments that HELPER-X can call on to gather more information. These include questions in
three categories—Location, Appearance, and Direction—pertaining to the agent’s next interaction
object. Importantly, this API can be continuously expanded by adding an additional function to the
question-asking API.

5

Published at 2024 ICLR 2024 Workshop on LLM Agents

Implementation details. We follow the network implementation of HELPER (Sarch, 2023). We use
GPT-4-0613 (gpt, 2023) for text generation and text-embedding-ada-002 (Greene, 2022) for text
embeddings. We use the SOLQ object detector (Dong, 2021) and ZoeDepth network (Bhat, 2023) for
depth estimation from RGB input. We use k = 3 for example retrieval.

4 EXPERIMENTS

We test HELPER-X in the following benchmarks: 1. Inferring and executing action plans from
dialogue (TEACh (Padmakumar, 2021)), 2. Inferring and executing action plans from instructions
(ALFRED (Shridhar, 2020)), 3. Active question asking for seeking help during instruction execution
(DialFRED (Gao, 2022)), and 4. Tidying up rooms (Tidy Task (Sarch, 2022)).

4.1 INFERRING AND EXECUTING ACTION PLANS FROM DIALOGUE

Inferring and executing task plans from dialogue involves understanding dialogue segments and
executing related instructions using the provided information in the dialogue. This task evaluates the
agent’s ability in understanding noisy and free-form conversations between two humans discussing
about a household task.

Dataset We use the TEACh benchmark (Padmakumar, 2021), which consists of over 3,000 di-
alogues focused on household tasks in the AI2-THOR environment Kolve (2017). We use the
Trajectory from Dialogue (TfD) variant, where an agent, given a dialogue segment, must infer action
sequences to fulfill tasks like making a coffee or preparing a salad. The training dataset contains 1482
expert demonstrations with associated dialogues. The evaluation includes 181 ’seen’ and 612 ’unseen’
episodes, with ’seen’ having different object placements and states than in training, and ’unseen’ also
having different object instances and room environments. The agent receives an egocentric image at
each step and selects actions to execute, such as pickup(X), turn_left(), etc.

Baselines We consider two kinds of baselines: 1. Methods that supervise low-level or high-level
action prediction from language and visual input using expert demonstrations in the training set (1482
in number) (Pashevich, 2021; Zheng, 2022; Min, 2021; Zhang, 2022), and 2. Methods that use a
small amount of expert demonstrations for prompting pretrained LLM (Sarch, 2023). Specifically,
HELPER and HELPER-X use 11 domain-specific examples. We additionally include a comparison
to HELPER-ALF, which uses specialized prompts and examples for ALFRED.

Evaluation Metrics We follow the TEACh evaluation metrics. Task success rate (SR) is a binary
metric of whether all subtasks were successfully completed. Goal condition success rate (GC)
quantifies the proportion of achieved goal conditions across all sessions. Both SR and GC have
path-length weighted variants weighted by (path length of the expert trajectory) / (path length taken
by the agent).

Results are reported in Table 1. On validation unseen, HELPER-XS and HELPER-XP demon-
strate performance on-par with HELPER, with HELPER-XS even slightly outperforming
HELPER, despite HELPER-X being shared across four domains. HELPER-X also outperforms the
best supervised baselines trained in-domain with many demonstrations. On validation seen, both
HELPER-X variants outperform HELPER, with the best model HELPER-XP outperforming
HELPER by 2.7% in success rate..

4.2 FOLLOWING NATURAL LANGUAGE INSTRUCTIONS

Natural language instruction following evaluates the agent’s ability to carry out high-level instructions
(“Rinse off a mug and place it in the coffee maker") and low-level ones (“Walk to the coffee maker
on the right") provided by a human user. Importantly, the language and tasks in this evaluation differ
from the ones in the TEACh benchmark (Section 4.1).

Dataset Te ALFRED (Shridhar, 2020) is a vision-and-language navigation benchmark designed for
embodied agents to execute tasks in domestic settings from RGB sensory input. It includes seven
task types across 207 environments, that involve 115 object types in 4,703 task instances, varying
from simple object relocation to placing a heated item in a receptacle. The dataset includes detailed

6

Published at 2024 ICLR 2024 Workshop on LLM Agents

Table 1: Trajectory from Dialogue (TfD) evaluation on the TEACh validation set. Trajectory
length weighted metrics are included in (parentheses). FS = few shot. Sup. = supervised. G =
generalist; shared across benchmarks. GC = goal-condition success.

Unseen Seen
Success GC Success GC

Su
p.

E.T. (Pashevich, 2021) 0.5 (0.1) 0.4 (0.6) 1.0 (0.2) 1.4 (4.8)
JARVIS (Zheng, 2022) 1.8 (0.3) 3.1 (1.6) 1.7 (0.2) 5.4 (4.5)
FILM (Min, 2022) 2.9 (1.0) 6.1 (2.5) 5.5 (2.6) 5.8 (11.6)
DANLI (Zhang, 2022) 8.0 (3.2) 6.8 (6.6) 5.0 (1.9) 10.5 (10.3)
ECLAIR (Kim, 2023) 13.2 – – –

FS

HELPER-ALF 10.5 (1.8) 10.3 (4.5) 13.3 (2.8) 14.2 (7.5)
HELPER (Sarch, 2023) 13.7 (1.6) 14.2 (4.6) 12.2 (1.8) 18.6 (9.3)

G
+F

S HELPER-XP 13.6 (2.0) 13.6 (5.6) 14.9 (3.6) 20.3 (11.0)
HELPER-XS 14.5 (2.1) 14.0 (5.4) 14.4 (3.5) 19.9 (11.0)

human-authored instructions and high-level goals, based on 21,023 expert demonstrations. It also
comprises 820 ’seen’ and 821 ’unseen’ validation episodes. Agents receive egocentric RGB images
at each step and select actions from a predefined set to progress, such as pickup(X), turn_left(),
etc.

Baselines Again, we consider two sets of baselines: those that supervise low-level or high-level action
prediction using the expert demonstrations in the training set (Pashevich, 2021; Zheng, 2022; Min,
2021; Zhang, 2022; 2021; Song, 2022a; Blukis, 2022; Bhambri, 2023; Liu, 2022a; Murray, 2022;
Inoue, 2022), and those that use a small amount of demonstrations (<= 100) (few-shot) (Sarch,
2023; Song, 2023; Brohan, 2023; Liu, 2023). The SayCan (Brohan, 2023), FILM (Min, 2021) (FS),
and HLSM (Blukis, 2022) (FS) few shot baselines are adapted for the few-shot ALFRED setting by
the authors of Song (2023), where the planning modules in FILM and HLSM are re-trained using
only 100 demonstrations. We adapt HELPER (Sarch, 2023) as a baseline with specialized prompts
and examples for ALFRED, as well as a comparison to HELPER-TEACh, which uses specialized
prompts and examples for TEACh. HELPER and our HELPER-X model each use 7 domain-specific
examples in their memory.

Evaluation Metrics We follow the ALFRED evaluation metrics: 1. Task success rate (SR) and 2.
Goal condition success rate (GC). These are defined the same as in TEACh (Section 4.1).

Results are reported in Table 2. Our conclusions are similar to Section 4.1. On validation unseen,
HELPER-XS and HELPER-XP demonstrate performance on-par with HELPER, with HELPER-XP

marginally outperforming HELPER by 1.0%, despite. HELPER-X is also competitive with the best
supervised baselines, despite only requiring a few in-domain demonstrations. On validation seen, we
observe both HELPER-X models marginally outperforming HELPER. We additionally show that
using HELPER-TEACh which has prompts and examples for a different domain (TEACh) causes a
significant 6.9% drop in performance.

4.3 INSTRUCTION FOLLOWING WITH ASKING QUESTIONS

Question asking instruction following allows the agent to choose to ask questions to an oracle to gain
additional information to help it complete a task defined by an initial natural language instruction.

Dataset The DialFRED benchmark (Gao, 2022) enables an agent to query users while executing
language instructions, utilizing user responses for task improvement. It features a human-annotated
dataset with 53K relevant questions and answers, plus an oracle for responding to agent queries.
Agents can ask questions in three categories—Location, Appearance, and Direction—pertaining to
their next interaction object. The dataset covers 25 task types across 207 environments, 115 object
types, and includes ’seen’ and ’unseen’ episodes. The agent receives egocentric RGB images at each
step and selects actions from a set, like pickup(X), turn_left(), etc. This benchmark’s instructions
and tasks are distinct from TEACh and partially overlap with ALFRED, with significant modifications
and 18 new task types.

7

Published at 2024 ICLR 2024 Workshop on LLM Agents

Table 2: Evaluation on the ALFRED validation unseen set. Trajectory length weighted metrics
are included in (parentheses). FS = few shot. Sup. = supervised. G = generalist; shared across
benchmarks.

Unseen Seen
Success GC Success GC

Su
p.

E.T. (Pashevich, 2021) 7.3 (3.3) 20.9 (11.3) 46.6 (32.3) 52.9 (42.2)
HiTUT (Zhang, 2021) 12.4 (6.9) 23.7 (12.0) 25.2 (12.2) 34.9 (18.5)
M-TRACK(Song, 2022a) 17.29 28.98 26.70 33.21
HLSM (Blukis, 2022) 18.3 31.2 29.6 38.7
FILM (Min, 2021) 20.1 32.5 24.6 37.2
MCR-Agent (Bhambri, 2023) 20.1 (10.8) – 34.4 (23.0) –
LEBP (Liu, 2022a) 22.36 29.58 27.63 35.76
LGS-RPA (Murray, 2022) 33.18 44.68 43.86 52.51
EPA (Liu, 2023) 40.11 44.14 45.78 51.03
Prompter (Inoue, 2022) 53.3 (19.6) 63.0 (21.7) – –

FS

HLSM (Blukis, 2022) (FS) 0.00 1.86 0.1 2.8
FILM (Min, 2021) (FS) 0.00 9.65 0.0 0.0
SayCan (Brohan, 2023) 9.9 22.5 12.3 24.5
LLM-Planner (Song, 2023) 15.4 23.4 16.5 30.1
HELPER-TEACh 27.5 (5.9) 44.3 (10.1) 24.5 (6.3) 38.2 (11.2)
HELPER (Sarch, 2023) 34.4 (7.6) 51.5 (11.9) 27.6 (7.4) 42.0 (12.7)

G
+F

S HELPER-XP 35.4 (7.9) 52.9 (12.3) 28.2 (7.5) 42.5 (12.9)
HELPER-XS 34.0 (7.5) 51.1 (11.9) 28.0 (7.4) 42.1 (12.8)

Questioning Implementation To ask questions in the DialFRED task, we add to the question asking
API functions to query the oracle in DialFRED (see Section 3.2.3). HELPER-X asks questions when
it does not know the location of an object required for the task at hand. Unlike ALFRED, success
in DialFRED requires interacting with a specific instance of an object class. To account for this,
HELPER-X also asks questions to help disambiguate when it has seen multiple instances of the same
object.

Baselines We compare with the baselines in the DialFRED paper (Gao, 2022), which includes a
sequence-to-sequence architecture for choosing to ask a question, trained with reinforcement learning,
and the Episodic Transformer architecture (Pashevich, 2021), trained with behavioral cloning. We
adapt HELPER (Sarch, 2023) as a baseline with specialized prompts and examples for DialFRED, as
well as our question asking API. We consider a few shot setting with each few shot model receiving 7
domain-specific examples.

Evaluation Metrics We follow the conventions of the DialFRED benchmark. We use the Task
success rate (SR) metric. This is defined the same as TEACh (Section 4.1).

Results are reported in Table 3. On validation unseen, we observe HELPER-XS marginally outper-
forming HELPER by 0.38 points in success rate, despite HELPER-X being shared across all domains.
While HELPER-X is outperformed by the best supervised baselines, HELPER-X only requires a few
in-domain demonstrations compared to the thousands of language-action demonstrations and RL
interactions needed to train the baseline models. Most importantly, we see the addition of question-
asking in HELPER-X improves success rate by 2.48 points, highlighting its efficiency in question
selection and response utilization.

4.4 TIDYING UP USING SPATIAL COMMONSENSE REASONING

Tidying up involves figuring out where to place items without explicit instructions, relying on spatial
commonsense to infer a proper location for an object. This task tests the agent’s ability to use
commonsense reasoning regarding contextual, object-object, and object-room spatial relations.

Dataset We evaluate on the Tidy Task (Sarch, 2022) benchmark, where the agent is spawned in
a disorganized room, and must reposition objects to bring them to an organized tidy state. The
dataset consists of 8000 training, 200 validation, and 100 testing messy configurations in 120 distinct

8

Published at 2024 ICLR 2024 Workshop on LLM Agents

Table 3: Evaluation on the DialFRED
validation unseen set. FS = few shot.
Sup. = supervised. G = generalist;
shared across benchmarks.

Success

Su
p.

Instructions Only (Gao, 2022) 18.3
All QAs (Gao, 2022) 32.0
RL Anytime (Gao, 2022) 33.6

FS HELPER (Sarch, 2023) 19.62

G
+F

S HELPER-XP 18.96
without QA 16.48

HELPER-XS 19.99

Table 4: Evaluation on the Tidy Task test set. Trajec-
tory length weighted metrics are included in (parenthe-
ses). FS = few shot. S = supervised. G = generalist;
shared across benchmarks. CM = Correctly Moved. IM
= Incorrectly Moved.

CM ↑ IM ↓ Energy% ↓ Steps

S TIDEE (Sarch, 2022) 2.7 0.3 64.9 437.6

FS

Random Receptacle 2.0 0.3 95.5 329.3
HELPER (Sarch, 2023) 2.1 0.2 83.9 348.3

G
+F

S HELPER-XP 2.1 0.3 86.9 368.2
HELPER-XS 2.2 0.2 83.4 333.9

scenes of bedrooms, living rooms, kitchens and bathrooms. At each time step, the agent obtains
an egocentric RGB and depth image and must choose an action from a specified set to transition
to the next step, such as pickup(X), turn_left(), etc. In this setup, the models are prompted to
tidy up the room, given a set of objects that are out of place obtained using the visual detector from
TIDEE (Sarch, 2022).

Baselines We compare against TIDEE (Sarch, 2022), which includes a graph neural network encoding
common object arrangements. This is supervised in the training set of the Tidy Task to predict where
a target object should be re-positioned to in the current scene. We adapt HELPER (Sarch, 2023) as a
baseline with specialized prompts and examples for the Tidy Task. We additionally include a random
receptacle baseline which chooses random receptacle placement locations for the out of place objects.
We consider a few shot setting with each few shot model receiving 3 domain-specific examples.

Evaluation Metrics We use the following evaluation metrics for the Tidy Task: Correctly Moved
(CM) Average number of correctly moved objects that are out of place in the scene, and moved by
the agent. Higher is better. Incorrectly Moved (IM) Average number of incorrectly moved objects
that are not out of place, but were moved by the agent. Lower is better. Energy The "cleaniness"
energy, where lower energy represents a higher likelihood of the room object configuration aligning
with the configurations in the organized AI2THOR rooms. Following ProcThor (Deitke, 2022), for
each receptacle object, the probability that each object type appears on its surface is computed across
the AI2THOR scenes. See the Appendix for more details.

Results are in Table 4. On the Tidy Task, HELPER-XS and HELPER-XP demonstrates performance
on-par with HELPER. HELPER-X does significantly better than if object locations are randomly
placed (Random Receptacle). We find that the supervised baseline, TIDEE, outperforms HELPER-X,
especially in the Energy metric, revealing that in-domain training on this benchmark is helpful for
learning the common object configurations within the AI2THOR environments. However, we find
that HELPER-X accomplishes the task in significantly fewer steps compared to TIDEE.

5 CONCLUSION

We introduce HELPER-X, an embodied agent that executes tasks from dialogue or language in-
structions, ask questions, and tides up rooms. HELPER-X has two variants, HELPER-XP and
HELPER-XS , enhancing HELPER’s memory capabilities. HELPER-XP retrieves domain-specific
templates and examples for large language models, while HELPER-XS retrieves only examples for
a domain-agnostic prompt template through a shared memory. Evaluation of HELPER-X in four
domains: TEACh, ALFRED, DialFRED, and the Tidy Task, yields state-of-the-art performance in
the few-shot example setting. Memory and API expansions we considered maintained or improved
performance for the LLM, highlighting the effectiveness of memory-enhanced LLMs in building
versatile, instructable agents.

9

Published at 2024 ICLR 2024 Workshop on LLM Agents

6 ACKNOWLEDGEMENTS

This material is based upon work supported by National Science Foundation grants GRF DGE1745016
& DGE2140739 (GS), a DARPA Young Faculty Award, a NSF CAREER award, an AFOSR Young
Investigator Award, AFOSR FA9550-20-1-0423 award, a DARPA Machine Common Sense, and an
ONR award N000142312415. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the United States
Army, the National Science Foundation, or the United States Air Force.

This research project has benefitted from the Microsoft Accelerate Foundation Models Research
(AFMR) grant program through which leading foundation models hosted by Microsoft Azure along
with access to Azure credits were provided to conduct the research.

The authors thank William W. Cohen for discussions and useful feedback over the course of this
project.

10

Published at 2024 ICLR 2024 Workshop on LLM Agents

REFERENCES

Openai. gpt-4 technical report. arXiv preprint arxiv:2303.08774, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On evaluation of
embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018.

Dhruv Batra, Angel Xuan Chang, S. Chernova, Andrew J. Davison, Jun Deng, Vladlen Koltun,
Sergey Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mottaghi, Manolis Savva, and Hao Su.
Rearrangement: A challenge for embodied ai. ArXiv, abs/2011.01975, 2020.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions, 2023.

Suvaansh Bhambri, Byeonghwi Kim, and Jonghyun Choi. Multi-level compositional reasoning for
interactive instruction following. Interaction, 3:4, 2023.

Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth:
Zero-shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288, 2023.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. A persistent spatial semantic
representation for high-level natural language instruction execution. In Conference on Robot
Learning, pp. 706–717. PMLR, 2022.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren
Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Improv-
ing language models by retrieving from trillions of tokens. CoRR, abs/2112.04426, 2021. URL
https://arxiv.org/abs/2112.04426.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding language
in robotic affordances. In Conference on Robot Learning, pp. 287–318. PMLR, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Matthew Chang, Arjun Gupta, and Saurabh Gupta. Semantic visual navigation by watching youtube
videos. Advances in Neural Information Processing Systems, 33:4283–4294, 2020.

Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv Shah, So Yeon Min,
Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra, Roozbeh Mottaghi, Jitendra Malik, and
Devendra Singh Chaplot. Goat: Go to any thing, 2023.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdi-
nov. Learning to explore using active neural slam. In International Conference on Learning
Representations, 2019.

Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R Salakhutdinov.
Object goal navigation using goal-oriented semantic exploration. Advances in Neural Information
Processing Systems, 33, 2020.

Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vicenc Amengual Gari, Ziad Al-Halah, Vamsi Kr-
ishna Ithapu, Philip Robinson, and Kristen Grauman. Soundspaces: Audio-visual navigation in
3d environments. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part VI 16, pp. 17–36. Springer, 2020.

11

https://arxiv.org/abs/2112.04426

Published at 2024 ICLR 2024 Workshop on LLM Agents

Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for navigation. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
pdf?id=SyMWn05F7.

Wenhu Chen, Pat Verga, Michiel de Jong, John Wieting, and William Cohen. Augmenting pre-
trained language models with qa-memory for open-domain question answering, 2022. URL
https://arxiv.org/abs/2204.04581.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied
question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–10, 2018.

Abhishek Das, Federico Carnevale, Hamza Merzic, Laura Rimell, Rosalia Schneider, Josh Abramson,
Alden Hung, Arun Ahuja, Stephen Clark, Gregory Wayne, et al. Probing emergent semantics in
predictive agents via question answering. In Proceedings of the 37th International Conference on
Machine Learning, pp. 2376–2391, 2020.

Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot Tower, Robin Jia, Manzil Zaheer, Hannaneh
Hajishirzi, and Andrew McCallum. Knowledge base question answering by case-based reasoning
over subgraphs, 2022. URL https://arxiv.org/abs/2202.10610.

Samyak Datta, Sameer Dharur, Vincent Cartillier, Ruta Desai, Mukul Khanna, Dhruv Batra, and Devi
Parikh. Episodic memory question answering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19119–19128, 2022.

Michiel de Jong, Yury Zemlyanskiy, Nicholas FitzGerald, Fei Sha, and William Cohen. Mention
memory: incorporating textual knowledge into transformers through entity mention attention.
CoRR, abs/2110.06176, 2021. URL https://arxiv.org/abs/2110.06176.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson Han,
Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied ai
using procedural generation. Advances in Neural Information Processing Systems, 35:5982–5994,
2022.

Bin Dong, Fangao Zeng, Tiancai Wang, Xiangyu Zhang, and Yichen Wei. Solq: Segmenting objects
by learning queries. Advances in Neural Information Processing Systems, 34:21898–21909, 2021.

Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter, Abhishek Bhandwaldar, Dan Gutfre-
und, Daniel L.K. Yamins, James J. DiCarlo, Josh McDermott, Antonio Torralba, and Joshua B.
Tenenbaum. The threedworld transport challenge: A visually guided task-and-motion planning
benchmark towards physically realistic embodied ai. In 2022 International Conference on Robotics
and Automation (ICRA), pp. 8847–8854, 2022. doi: 10.1109/ICRA46639.2022.9812329.

Qiaozi Gao, Govind Thattai, Xiaofeng Gao, Suhaila Shakiah, Shreyas Pansare, Vasu Sharma, Gaurav
Sukhatme, Hangjie Shi, Bofei Yang, Desheng Zheng, et al. Alexa arena: A user-centric interactive
platform for embodied ai. arXiv preprint arXiv:2303.01586, 2023.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

Xiaofeng Gao, Qiaozi Gao, Ran Gong, Kaixiang Lin, Govind Thattai, and Gaurav S Sukhatme.
DialFRED: Dialogue-enabled agents for embodied instruction following. IEEE Robotics and
Automation Letters, 7(4):10049–10056, 2022.

Theophile Gervet, Soumith Chintala, Dhruv Batra, Jitendra Malik, and Devendra Singh Chaplot.
Navigating to objects in the real world. Science Robotics, 8(79):eadf6991, 2023.

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. Iqa: Visual question answering in interactive environments. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4089–4098, 2018.

Ryan Greene, Ted Sanders, Lilian Weng, and Arvind Neelakantan. Openai. new and improved
embedding model. 2022.

12

https://openreview.net/pdf?id=SyMWn05F7
https://openreview.net/pdf?id=SyMWn05F7
https://arxiv.org/abs/2204.04581
https://arxiv.org/abs/2202.10610
https://arxiv.org/abs/2110.06176

Published at 2024 ICLR 2024 Workshop on LLM Agents

Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive
mapping and planning for visual navigation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

SU Hongjin, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari
Ostendorf, Luke Zettlemoyer, Noah A Smith, et al. Selective annotation makes language models
better few-shot learners. In The Eleventh International Conference on Learning Representations,
2022.

Yuki Inoue and Hiroki Ohashi. Prompter: Utilizing large language model prompting for a data
efficient embodied instruction following. arXiv preprint arXiv:2211.03267, 2022.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.

Yash Kant, Arun Ramachandran, Sriram Yenamandra, Igor Gilitschenski, Dhruv Batra, Andrew Szot,
and Harsh Agrawal. Housekeep: Tidying virtual households using commonsense reasoning. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXIX, pp. 355–373. Springer, 2022.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models, 2019. URL https://arxiv.org/
abs/1911.00172.

Byeonghwi Kim, Jinyeon Kim, Yuyeong Kim, Cheolhong Min, and Jonghyun Choi. Context-aware
planning and environment-aware memory for instruction following embodied agents. In ICCV,
2023.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017.

Jacob Krantz, Theophile Gervet, Karmesh Yadav, Austin Wang, Chris Paxton, Roozbeh Mottaghi,
Dhruv Batra, Jitendra Malik, Stefan Lee, and Devendra Singh Chaplot. Navigating to objects
specified by images. arXiv preprint arXiv:2304.01192, 2023.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
Multilingual vision-and-language navigation with dense spatiotemporal grounding. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4392–4412, 2020.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. 2021.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Haoyu Liu, Yang Liu, Hongkai He, and Hangfang Yang. Lebp–language expectation & binding
policy: A two-stream framework for embodied vision-and-language interaction task learning
agents. arXiv preprint arXiv:2203.04637, 2022a.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? DeeLIO 2022, pp. 100, 2022b.

13

https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172

Published at 2024 ICLR 2024 Workshop on LLM Agents

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? In Proceedings of Deep Learning Inside Out
(DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, pp. 100–114, 2022c.

Xiaotian Liu, Hector Palacios, and Christian Muise. Egocentric planning for scalable embodied task
achievement. arXiv preprint arXiv:2306.01295, 2023.

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra, Peter Jansen, Oyvind Tafjord, Niket Tandon,
Li Zhang, Burch Callison-Burch, and Peter Clark. Clin: A continually learning language agent for
rapid task adaptation and generalization. arXiv, 2023.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, and Weizhu
Chen. Generation-augmented retrieval for open-domain question answering. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4089–4100, 2021.

So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar, Yonatan Bisk, and Ruslan Salakhutdinov.
Film: Following instructions in language with modular methods, 2021.

So Yeon Min, Hao Zhu, Ruslan Salakhutdinov, and Yonatan Bisk. Don’t copy the teacher: Data and
model challenges in embodied dialogue. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 9361–9368, 2022.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 3470–3487, 2022.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
thought. arXiv preprint arXiv:2305.15021, 2023.

Michael Murray and Maya Cakmak. Following natural language instructions for household tasks
with landmark guided search and reinforced pose adjustment. IEEE Robotics and Automation
Letters, 7(3):6870–6877, 2022.

OpenAI. Gpt-4 technical report, 2023.

Aishwarya Padmakumar, Jesse Thomason, Ayush Shrivastava, Patrick Lange, Anjali Narayan-Chen,
Spandana Gella, Robinson Piramuthu, Gokhan Tur, and Dilek Hakkani-Tur. Teach: Task-driven
embodied agents that chat, 2021.

Alexander Pashevich, Cordelia Schmid, and Chen Sun. Episodic transformer for vision-and-language
navigation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
15942–15952, 2021.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
Advances in neural information processing systems, 34:11054–11070, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Santhosh K Ramakrishnan, Ziad Al-Halah, and Kristen Grauman. Occupancy anticipation for efficient
exploration and navigation. In European Conference on Computer Vision, pp. 400–418. Springer,
2020.

Gabriel Sarch, Zhaoyuan Fang, Adam W Harley, Paul Schydlo, Michael J Tarr, Saurabh Gupta, and
Katerina Fragkiadaki. Tidee: Tidying up novel rooms using visuo-semantic commonsense priors.
In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXXIX, pp. 480–496. Springer, 2022.

14

Published at 2024 ICLR 2024 Workshop on LLM Agents

Gabriel Sarch, Yue Wu, Michael Tarr, and Katerina Fragkiadaki. Open-ended instructable embodied
agents with memory-augmented large language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, 2023.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9339–9347, 2019.

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118, 2020.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222–4235, 2020.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10740–10749, 2020.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 11523–11530. IEEE, 2023.

Chan Hee Song, Jihyung Kil, Tai-Yu Pan, Brian M Sadler, Wei-Lun Chao, and Yu Su. One step
at a time: Long-horizon vision-and-language navigation with milestones. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15482–15491, 2022a.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models, 2023.

Haoyu Song, Li Dong, Weinan Zhang, Ting Liu, and Furu Wei. Clip models are few-shot learners:
Empirical studies on vqa and visual entailment. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 6088–6100, 2022b.

Brandon Trabucco, Gunnar A Sigurdsson, Robinson Piramuthu, Gaurav S Sukhatme, and Ruslan
Salakhutdinov. A simple approach for visual room rearrangement: 3d mapping and semantic
search. In The Eleventh International Conference on Learning Representations, 2022.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv: Arxiv-2305.16291, 2023a.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yitao Liang. Jarvis-1: Open-world multi-task
agents with memory-augmented multimodal language models. arXiv preprint arXiv: 2311.05997,
2023b.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and Roozbeh Mottaghi. Visual room rearrangement.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021.

Erik Wijmans, Abhishek Kadian, Ari S. Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames. In
ICLR, 2020.

15

Published at 2024 ICLR 2024 Workshop on LLM Agents

Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi.
Learning to learn how to learn: Self-adaptive visual navigation using meta-learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6750–6759, 2019.

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette Bohg,
Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot assistance with large
language models. arXiv preprint arXiv:2305.05658, 2023.

Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers,
2022. URL https://arxiv.org/abs/2203.08913.

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Chencheng Jiang, Haoran Tan, Jiamu
Kang, Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied vision-language programmer
from environmental feedback. arXiv preprint arXiv:2310.08588, 2023.

Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Visual semantic
navigation using scene priors. In Proceedings of (ICLR) International Conference on Learning
Representations, May 2019.

Sriram Yenamandra, Arun Ramachandran, Karmesh Yadav, Austin Wang, Mukul Khanna, Theophile
Gervet, Tsung-Yen Yang, Vidhi Jain, Alexander William Clegg, John Turner, et al. Homerobot:
Open-vocabulary mobile manipulation. arXiv preprint arXiv:2306.11565, 2023.

Yichi Zhang and Joyce Chai. Hierarchical task learning from language instructions with unified
transformers and self-monitoring. In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 4202–4213, 2021.

Yichi Zhang, Jianing Yang, Jiayi Pan, Shane Storks, Nikhil Devraj, Ziqiao Ma, Keunwoo Yu, Yuwei
Bao, and Joyce Chai. Danli: Deliberative agent for following natural language instructions. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
1280–1298, 2022.

Kaizhi Zheng, Kaiwen Zhou, Jing Gu, Yue Fan, Jialu Wang, Zonglin Li, Xuehai He, and Xin Eric
Wang. Jarvis: A neuro-symbolic commonsense reasoning framework for conversational embodied
agents. 2022.

Hao Zhu, Raghav Kapoor, So Yeon Min, Winson Han, Jiatai Li, Kaiwen Geng, Graham Neubig,
Yonatan Bisk, Aniruddha Kembhavi, and Luca Weihs. Excalibur: Encouraging and evaluating
embodied exploration. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14931–14942, 2023.

16

https://arxiv.org/abs/2203.08913

Published at 2024 ICLR 2024 Workshop on LLM Agents

S1 LIMITATIONS

Our model has the following limitations:

1. Task planning from multimodal input: Currently, our LLM receives the environment’s state
only in case of a failure, through VLM feedback. Integrating the visual state of the environment in a
more direct way may dramatically increase the accuracy of predicted plans. This direction aligns
with recent work (Wang, 2023b; Mu, 2023; Yang, 2023) that uses visual features as input to language
models.

2. Cost of GPT-4: While GPT-4 is the most accurate Large Language Model, its high cost necessitates
exploring alternatives such as open-source models, hardware optimization, model compression or
distillation of its knowledge to smaller models, to reduce expenses.

3. Manual Addition of Domains: Our model supports four domains with shared examples and
prompts, but manual intervention is needed for adding significantly different domains and tasks.
Future developments should focus on automating the detection and integration of out-of-domain
inputs.

S2 PROMPTS

S2.1 PROMPTS FOR EACH MODULE

We provide our full API (Listing S2), corrective API (Listing S3), prompt (Listing S4), re-planning
prompt (Listing S5), and Locator prompt (Listing S6).

S2.2 PROMPT TEMPLATES FOR PROMPT RETRIEVAL

In the prompt retrieval experiments, we include four prompt templates to be retrieved. These templates
are shown for TEACh, ALFRED, Dialfred, and the Tidy Task in Listing S11, Listing S12, Listing S13,
Listing S14, respectively.

S2.3 IN-CONTEXT EXAMPLES

Samples of the in-context examples are shown for TEACh, ALFRED, Dialfred, and the Tidy Task in
Listing S15, Listing S16, Listing S17, Listing S18, respectively.

S3 QUESTION ASKING

S3.1 OVERVIEW

In the DialFRED benchmark, when HELPER-X is unable to find an object, it is able to ask one of
three question types in order to aid itself. In a real-world scenario, HELPER-X could take advantage
of the LLM’s capability to ask many types of questions, but the DialFRED benchmark limits us to
three: direction, location, and appearance.

S3.2 QUESTION ASKING PIPELINE

When HELPER-X does not have an object’s location already in its memory or multiple instances of
an objects exist in the memory, it forms a prompt with its current context and the API of available
questions, as in Listing S19. Based on the context, HELPER-X then chooses and asks the most
appropriate question. The returned answer and an API of search related actions, alongside the context
and question, are then formed into another prompt, seen in Listing S20. Finally, this prompt is parsed
by HELPER-X into an action script to search for the object. Examples of this full pipeline for if an
object does not exist in the memory are in Listing S21 and Listing S22.

17

Published at 2024 ICLR 2024 Workshop on LLM Agents

S4 PRE-CONDITIONS

An example of a pre-condition check for a macro-action is provided in Listing S7.

S5 EXAMPLE LLM INPUTS & OUTPUTS

We provide examples of dialogue input, retrieved examples, and LLM output for a TEACh sample in
Listing S8, Listing S9, and Listing S10.

S6 SIMULATION ENVIRONMENT

The TEACh dataset builds on the Ai2thor simulation environment (Kolve, 2017). At each time step
the agent may choose from the following actions: Forward(), Backward(), Turn Left(), Turn Right(),
Look Up(), Look Down(), Strafe Left(), Strafe Right(), Pickup(X), Place(X), Open(X), Close(X),
ToggleOn(X), ToggleOff(X), Slice(X), and Pour(X), where X refers an object specified via a relative
coordinate (x, y) on the egocentric RGB frame. Navigation actions move the agent in discrete steps.
We rotate in the yaw direction by 90 degrees, and rotate in the pitch direction by 30 degrees. The
RGB and depth sensors are at a resolution of 480x480, a field of view of 90 degrees, and lie at a
height of 0.9015 meters. The agent’s coordinates are parameterized by a single (x, y, z) coordinate
triplet with x and z corresponding to movement in the horizontal plane and y reserved for the vertical
direction. The TEACh benchmark allows a maximum of 1000 steps and 30 API failures per episode.

S7 Executor DETAILS

S7.1 SEMANTIC MAPPING AND PLANNING

Obstacle map HELPER-X maintains a 2D overhead occupancy map of its environment ∈ RH×W

that it updates at each time step from the input RGB-D stream. The map is used for exploration and
navigation in the environment.

At every time step t, we unproject the input depth maps using intrinsic and extrinsic information of
the camera to obtain a 3D occupancy map registered to the coordinate frame of the agent, similar
to earlier navigation agents Chaplot (2019). The 2D overhead maps of obstacles and free space are
computed by projecting the 3D occupancy along the height direction at multiple height levels and
summing. For each input RGB image, we run a SOLQ object segmentor (Dong, 2021) (pretrained
on COCO Lin (2014) then finetuned on TEACh rooms) to localize each of 116 semantic object
categories. For failure detection, we use a simple matching approach from Min (2021) to compare
RGB pixel values before and after taking an action.

Object location and state tracking We maintain an object memory as a list of object detection 3D
centroids and their predicted semantic labels {[(X,Y, Z)i, ℓi ∈ {1...N}], i = 1..K}, where K is the
number of objects detected thus far. The object centroids are expressed with respect to the coordinate
system of the agent, and, similar to the semantic maps, updated over time using egomotion. We track
previously detected objects by their 3D centroid C ∈ R3. We estimate the centroid by taking the 3D
point corresponding to the median depth within the segmentation mask and bring it to a common
coordinate frame. We do a simple form of non-maximum suppression on the object memory, by
comparing the euclidean distance of centroids in the memory to new detected centroids of the same
category, and keep the one with the highest score if they fall within a distance threshold.

For each object in the object memory, we maintain an object state dictionary with a pre-defined list
of attributes. These attributes include: category label, centroid location, holding, detection score,
can use, sliced, toasted, clean, cooked. For the binary attributes, these are initialized by sending the
object crop, defined by the detector mask, to the VLM model, and checking its match to each of
[f"The {object_category} is {attribute}", f"The {object_category} is not {attribute}"]. We found
that initializing these attributes with the VLM gave only a marginal difference to initializing them to
default values in the TEACh benchmark, so we do not use it for the TEACh evaluations. However,
we anticipate a general method beyond dataset biases of TEACh would much benefit from such
vision-based attribute classification.

18

Published at 2024 ICLR 2024 Workshop on LLM Agents

Table S1: Alternative TEACh Execution from Dialog History (EDH) evaluation split. Trajectory
length weighted metrics are included in (parentheses). SR = success rate. GC = goal condition
success rate. Note that Test Seen and Unseen are not the true TEACh test sets, but an alternative split
of the validation set used until the true test evaluation is released, as mentioned in the TEACh github
README, and also reported by DANLI (Zhang, 2022).

Validation Test

Unseen Seen Unseen Seen
SR GC SR GC SR GC SR GC

E.T. 8.35 (0.86) 6.34 (3.69) 8.28 (1.13) 8.72 (3.82) 7.38 (0.97) 6.06 (3.17) 8.82 (0.29) 9.46 (3.03)
DANLI 17.25 (7.16) 23.88 (19.38) 16.89 (9.12) 25.10 (22.56) 16.71 (7.33) 23.00 (20.55) 18.63 (9.41) 24.77 (21.90)
HELPER 17.25 (3.22) 25.24 (8.12) 19.21 (4.72) 33.54 (10.95) 17.55 (2.59) 26.49 (7.67) 17.97 (3.44) 30.81 (8.93)

Exploration and path planning HELPER−X explores the scene using a classical mapping
method. We take the initial position of the agent to be the center coordinate in the map. We rotate the
agent in-place and use the observations to instantiate an initial map. Second, the agent incrementally
completes the maps by randomly sampling an unexplored, traversible location based on the 2D
occupancy map built so far, and then navigates to the sampled location, accumulating the new
information into the maps at each time step. The number of observations collected at each point in
the 2D occupancy map is thresholded to determine whether a given map location is explored or not.
Unexplored positions are sampled until the environment has been fully explored, meaning that the
number of unexplored points is fewer than a predefined threshold.

To navigate to a goal location, we compute the geodesic distance to the goal from all map locations
using graph search Inoue (2022) given the top-down occupancy map and the goal location in the map.
We then simulate action sequences and greedily take the action sequence which results in the largest
reduction in geodesic distance.

S7.2 2D-TO-3D UNPROJECTION

For the i-th view, a 2D pixel coordinate (u, v) with depth z is unprojected and transformed to its
coordinate (X,Y, Z)T in the reference frame:

(X,Y, Z, 1) = G−1
i

(
z
u− cx
fx

, z
v − cy
fy

, z, 1

)T

(1)

where (fx, fy) and (cx, cy) are the focal lengths and center of the pinhole camera model and
Gi ∈ SE(3) is the camera pose for view i relative to the reference view. This module unprojects
each depth image Ii ∈ RH×W×3 into a pointcloud in the reference frame Pi ∈ RMi×3 with Mi

being the number of pixels with an associated depth value.

S8 ADDITIONAL DETAILS OF THE TIDY TASK

S8.1 METRIC DEFINITIONS IN THE TIDY TASK

The metrics in the original TIDEE paper (Sarch, 2022) require separate human evaluations on Amazon
Mechanical Turk. We define a new set of metrics that does not require expensive annotations from
humans for every evaluation. Below are detailed descriptions of each of the new metrics:

1. Correctly Moved (CM) Average number of correctly moved objects that are out of place in
the scene, and moved by the agent. Higher is better.

2. Incorrectly Moved (IM) Average number of incorrectly moved objects that are not out of
place, but were moved by the agent. Lower is better.

3. Energy Following ProcThor (Deitke, 2022), for each receptacle object, the probability that
each object type appears on its surface is computed across the AI2THOR scenes. Here, we
compute the total number of times each object type is on the receptacle type and divide it by
the total number of times the receptacle type appears across the scenes. The energy metric
in the Tidy Task is defined as follows:

(Pcleanup − Poriginal)/(Pdirty − Poriginal) (2)

19

Published at 2024 ICLR 2024 Workshop on LLM Agents

where Pcleanup, Pdirty , and Poriginal represent the sum of the object location probabilities
for the cleaned up state of the room, the dirty/messy state of the room, and the original state
of the room with objects put in-place by human designers, respectively. Lower is better.

4. Steps Average number of steps taken by the agent per episode.

S8.2 LANGAUGE INSTRUCTIONS FOR THE TIDY TASK

Since the Tidy Task does not include natural language instruction annotations, we formulate the
language instruction as the following to give to the HELPER baseline and HELPER-X: “Tidy up the
house. These are the out of place objects: {detected_out_of_place_objects}. These are the receptacles
in the current scene: {detected_receptacles}”, where {detected_out_of_place_objects} are the objects
classified as out of place, and {detected_receptacles} are any receptacle detected in the scene by the
agent.

To obtain the list of out of place objects, we allow the agents use of the TIDEE (Sarch, 2022) visual
detector to determine whether each object detected during the mapping phase is out of place. We
found that out of place detection benefits significantly from visual detection in the Tidy Task, and
thus we do not use an LLM for detecting the out of place attribute. Notably, adding the additional out
of place attribute to the objects in the object memory can be shared across all benchmarks.

20

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S1: Full list of user personalization requests for the user personalization evaluation.

original input to LLM:
[['Driver', 'What is my task?'], ['Commander', "Make me a sandwich. The name of this

sandwich is called the Larry sandwich. The sandwich has two slices of toast, 3
slices of tomato, and 3 slice of lettuce on a clean plate."]]

[['Driver', 'What is my task?'], ['Commander', 'Make me a salad. The name of this salad
is called the David salad. The salad has two slices of tomato and three slices of
lettuce on a clean plate.']]

[['Driver', 'What is my task?'], ['Commander', "Make me a salad. The name of this salad
is called the Dax salad. The salad has two slices of cooked potato. You'll need to
cook the potato on the stove. The salad also has a slice of lettuce and a slice of
tomato. Put all components on a clean plate."]]

[['Driver', 'What is my task?'], ['Commander', 'Make me breakfast. The name of this
breakfast is called the Mary breakfast. The breakfast has a mug of coffee, and two
slices of toast on a clean plate.']]

[['Driver', 'What is my task?'], ['Commander', 'Make me breakfast. The name of this
breakfast is called the Lion breakfast. The breakfast has a mug of coffee, and
four slices of tomato on a clean plate.']]

[['Driver', 'What is my task?'], ['Commander', 'Rearrange some objects. The name of
this rearrangement is called the Lax rearrangement. Place three pillows on the
sofa.']]

[['Driver', 'What is my task?'], ['Commander', 'Rearrange some objects. The name of
this rearrangement is called the Pax rearrangement. Place two pencils and two pens
on the desk.']]

[['Driver', 'What is my task?'], ['Commander', 'Clean some objects. The name of this
cleaning is called the Gax cleaning. Clean two plates and two cups.']]

[['Driver', 'What is my task?'], ['Commander', "Make me a sandwich. The name of this
sandwich is called the Gabe sandwich. The sandwich has two slices of toast, 2
slices of tomato, and 1 slice of lettuce on a clean plate."]]

[['Driver', 'What is my task?'], ['Commander', 'Clean some objects. The name of this
cleaning is called the Kax cleaning. Clean a mug and a pan.']]

No change:
"Make me the Larry sandwich"
"Make me the David salad"
"Make me the Dax salad"
"Make me the Mary breakfast"
"Make me the Lion breakfast"
"Complete the Lax rearrangement"
"Complete the Pax rearrangement"
"Perform the Gax cleaning"
"Make me the Gabe sandwich"
"Perform the Kax cleaning"

One change:
"Make me the Larry sandwich with four slices of lettuce"
"Make me the David salad with a slice of potato"
"Make me the Dax salad without lettuce"
"Make me the Mary breakfast with no coffee"
"Make me the Lion breakfast with three slice of tomato"
"Complete the Lax rearrangement with two pillows"
"Complete the Pax rearrangement but use one pencil instead of the the two pencils"
"Perform the Gax cleaning with three plates instead of two"
"Make me the Gabe sandwich with only 1 slice of tomato"
"Perform the Kax cleaning with only a mug"

Two changes:
"Make me the Larry sandwich with four slices of lettuce and two slices of tomato"
"Make me the David salad but add a slice of potato and add one slice of egg"
"Make me the Dax salad without lettuce and without potato"
"Make me the Mary breakfast with no coffee and add an egg"
"Make me the Lion breakfast with three slice of tomato and two mugs of coffee"
"Complete the Lax rearrangement with two pillows and add a remote"

21

Published at 2024 ICLR 2024 Workshop on LLM Agents

"Complete the Pax rearrangement but use one pencil instead of the two pencils and add a
book"

"Perform the Gax cleaning with three plates instead of the two plates and include a
fork"

"Make me the Gabe sandwich with only 1 slice of tomato and two slices of lettuce"
"Perform the Kax cleaning without the pan and include a spoon"

Three changes:
"Make me the Larry sandwich with four slices of lettuce, two slices of tomato, and

place all components directly on the countertop"
"Make me the David salad and add a slice of potato, add one slice of egg, and bring a

fork with it"
"Make me the Dax salad without lettuce, without potato, and add an extra slice of

tomato"
"Make me the Mary breakfast with no coffee, add an egg, and add a cup filled with water"
"Make me the Lion breakfast with three slice of tomato, two mugs of coffee, and add a

fork"
"Complete the Lax rearrangement with two pillows, a remote, and place it on the arm

chair instead"
"Complete the Pax rearrangement but use one pencil instead of the two pencils and

include a book and a baseball bat"
"Perform the Gax cleaning with three plates instead of the two plates, include a fork,

and do not clean any cups"
"Make me the Gabe sandwich with only 1 slice of tomato, two slices of lettuce, and add

a slice of egg"
"Perform the Kax cleaning without the pan, include a spoon, and include a pot"

22

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S2: Full API for the parametrized macro-actions G used in the prompts.

class InteractionObject:
"""
This class represents an expression that uniquely identifies an object in the house.
"""
def __init__(self, object_class: str, landmark: str = None, attributes: list = []):

'''
object_class: object category of the interaction object (e.g., "Mug", "Apple")
landmark: (optional if mentioned) landmark object category that the interaction

object is in relation to (e.g., "CounterTop" for "apple is on the
countertop")

attributes: (optional) list of strings of desired attributes for the object.
These are not necessarily attributes that currently exist, but ones that
the object should eventually have. Attributes can only be from the
following: "toasted", "clean", "cooked"

'''
self.object_class = object_class
self.landmark = landmark
self.attributes = attributes

def pickup(self):
"""pickup the object.

This function assumes the object is in view.

Example:
dialogue: <Commander> Go get the lettuce on the kitchen counter.
Python script:
target_lettuce = InteractionObject("Lettuce", landmark = "CounterTop")
target_lettuce.go_to()
target_lettuce.pickup()
"""
pass

def place(self, landmark_name):
"""put the interaction object on the landmark_name object.

landmark_name must be a class InteractionObject instance

This function assumes the robot has picked up an object and the landmark object
is in view.

Example:
dialogue: <Commander> Put the lettuce on the kitchen counter.
Python script:
target_lettuce = InteractionObject("Lettuce", landmark = "CounterTop")
target_lettuce.go_to()
target_lettuce.pickup()
target_countertop = InteractionObject("CounterTop")
target_countertop.go_to()
target_lettuce.place(target_countertop)
"""
pass

def slice(self):
"""slice the object into pieces.

This function assumes the agent is holding a knife and the agent has navigated
to the object using go_to().

Example:
dialogue: <Commander> Cut the apple on the kitchen counter.
Python script:

23

Published at 2024 ICLR 2024 Workshop on LLM Agents

target_knife = InteractionObject("Knife") # first we need a knife to slice the
apple with

target_knife.go_to()
target_knife.pickup()
target_apple = InteractionObject("Apple", landmark = "CounterTop")
target_apple.go_to()
target_apple.slice()
"""
pass

def toggle_on(self):
"""toggles on the interaction object.

This function assumes the interaction object is already off and the agent has
navigated to the object.

Only some landmark objects can be toggled on. Lamps, stoves, and microwaves are
some examples of objects that can be toggled on.

Example:
dialogue: <Commander> Turn on the lamp.
Python script:
target_floorlamp = InteractionObject("FloorLamp")
target_floorlamp.go_to()
target_floorlamp.toggle_on()
"""
pass

def toggle_off(self):
"""toggles off the interaction object.

This function assumes the interaction object is already on and the agent has
navigated to the object.

Only some objects can be toggled off. Lamps, stoves, and microwaves are some
examples of objects that can be toggled off.

Example:
dialogue: <Commander> Turn off the lamp.
Python script:
target_floorlamp = InteractionObject("FloorLamp")
target_floorlamp.go_to()
target_floorlamp.toggle_off()
"""
pass

def go_to(self):
"""Navigate to the object

"""
pass

def open(self):
"""open the interaction object.

This function assumes the landmark object is already closed and the agent has
already navigated to the object.

Only some objects can be opened. Fridges, cabinets, and drawers are some example
of objects that can be closed.

Example:
dialogue: <Commander> Get the lettuce in the fridge.
Python script:
target_fridge = InteractionObject("Fridge")
target_lettuce = InteractionObject("Lettuce", landmark = "Fridge")
target_fridge.go_to()
target_fridge.open()

24

Published at 2024 ICLR 2024 Workshop on LLM Agents

target_lettuce.pickup()
"""
pass

def close(self):
"""close the interaction object.

This function assumes the object is already open and the agent has already
navigated to the object.

Only some objects can be closed. Fridges, cabinets, and drawers are some example
of objects that can be closed.

"""
pass

def clean(self):
"""wash the interaction object to clean it in the sink.

This function assumes the object is already picked up.

Example:
dialogue: <Commander> Clean the bowl
Python script:
target_bowl = InteractionObject("Bowl", attributes = ["clean"])
target_bowl.clean()
"""
pass

def put_down(self):
"""puts the interaction object currently in the agent's hand on the nearest

available receptacle

This function assumes the object is already picked up.
This function is most often used when the holding object is no longer needed,

and the agent needs to pick up another object
"""
pass

def pour(self, landmark_name):
"""pours the contents of the interaction object into the landmark object

specified by the landmark_name argument

landmark_name must be a class InteractionObject instance

This function assumes the object is already picked up and the object is filled
with liquid.

"""
pass

def fill_up(self):
"""fill up the interaction object with water

This function assumes the object is already picked up. Note that only container
objects can be filled with liquid.

"""
pass

def pickup_and_place(self, landmark_name):
"""go_to() and pickup() this interaction object, then go_to() and place() the

interaction object on the landmark_name object.

landmark_name must be a class InteractionObject instance
"""
pass

def empty(self):

25

Published at 2024 ICLR 2024 Workshop on LLM Agents

"""Empty the object of any other objects on/in it to clear it out.

Useful when the object is too full to place an object inside it.

Example:
dialogue: <Commander> Clear out the sink.
Python script:
target_sink = InteractionObject("Sink")
target_sink.empty()
"""
pass

def cook(self):
"""Cook the object

Example:
dialogue: <Commander> Cook the potato.
Python script:
target_potato = InteractionObject("Potato", attributes = ["cooked"])
target_potato.cook()
"""
pass

def toast(self):
"""Toast a bread slice in a toaster

Toasting is only supported with slices of bread

Example:
dialogue: <Commander> Get me a toasted bread slice.
Python script:
target_breadslice = InteractionObject("BreadSliced", attributes = ["toasted"])
target_breadslice.toast()
"""
pass

26

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S3: Full Corrective API for the parametrized corrective macro-actions Gcorrective used in the
prompts.
class AgentCorrective:

'''
This class represents agent corrective actions that can be taken to fix a subgoal

error
Example usage:
agent = AgentCorrective()
agent.move_back()
'''

def move_back(self):
"""Step backwards away from the object

Useful when the object is too close for the agent to interact with it
"""
pass

def move_closer(self):
"""Step forward to towards the object to get closer to it

Useful when the object is too far for the agent to interact with it
"""
pass

def move_alternate_viewpoint(self):
"""Move to an alternate viewpoint to look at the object

Useful when the object is occluded or an interaction is failing due to collision
or occlusion.

"""
pass

27

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S4: Full Prompt for the . {} indicates areas that are replaced in the prompt.
You are an adept at translating human dialogues into sequences of actions for household

robots. Given a dialogue between a <Driver> and a <Commander>, you convert the
conversation into a Python program to be executed by a robot.

{API}

Write a script using Python and the InteractionObject class and functions defined above
that could be executed by a household robot.

{RETRIEVED_EXAMPLES}

Adhere to these stringent guidelines:
1. Use only the classes and functions defined previously. Do not create functions that

are not provided above.
2. Make sure that you output a consistent plan. For example, opening of the same object

should not occur in successive steps.
3. Make sure the output is consistent with the proper affordances of objects. For

example, a couch cannot be opened, so your output should never include the open()
function for this object, but a fridge can be opened.

4. The input is dialogue between <Driver> and <Commander>. Interpret the dialogue into
robot actions. Do not output any dialogue.

5. Object categories should only be chosen from the following classes: ShowerDoor,
Cabinet, CounterTop, Sink, Towel, HandTowel, TowelHolder, SoapBar, ToiletPaper,
ToiletPaperHanger, HandTowelHolder, SoapBottle, GarbageCan, Candle, ScrubBrush,
Plunger, SinkBasin, Cloth, SprayBottle, Toilet, Faucet, ShowerHead, Box, Bed,
Book, DeskLamp, BasketBall, Pen, Pillow, Pencil, CellPhone, KeyChain, Painting,
CreditCard, AlarmClock, CD, Laptop, Drawer, SideTable, Chair, Blinds, Desk,
Curtains, Dresser, Watch, Television, WateringCan, Newspaper, FloorLamp,
RemoteControl, HousePlant, Statue, Ottoman, ArmChair, Sofa, DogBed, BaseballBat,
TennisRacket, VacuumCleaner, Mug, ShelvingUnit, Shelf, StoveBurner, Apple,
Lettuce, Bottle, Egg, Microwave, CoffeeMachine, Fork, Fridge, WineBottle, Spatula,
Bread, Tomato, Pan, Cup, Pot, SaltShaker, Potato, PepperShaker, ButterKnife,
StoveKnob, Toaster, DishSponge, Spoon, Plate, Knife, DiningTable, Bowl,
LaundryHamper, Vase, Stool, CoffeeTable, Poster, Bathtub, TissueBox, Footstool,
BathtubBasin, ShowerCurtain, TVStand, Boots, RoomDecor, PaperTowelRoll, Ladle,
Kettle, Safe, GarbageBag, TeddyBear, TableTopDecor, Dumbbell, Desktop,
AluminumFoil, Window, LightSwitch, AppleSliced, BreadSliced, LettuceSliced,
PotatoSliced, TomatoSliced

6. You can only pick up one object at a time. If the agent is holding an object, the
agent should place or put down the object before attempting to pick up a second
object.

7. Each object instance should instantiate a different InteractionObject class even if
two object instances are the same object category.

Follow the output format provided earlier. Think step by step to carry out the
instruction.

Write a Python script that could be executed by a household robot for the following:
dialogue: {command}
Python script:

28

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S5: Full Prompt for the . {} indicates areas that are replaced in the prompt.

You are an excellent interpreter of human instructions for household tasks. Given a
failed action subgoal by a household robot, dialogue instructions between robot
<Driver> and user <Commander>, and information about the environment and failure,
you provide a sequence of robotic subgoal actions to overcome the failure.

{API}

{API_CORRECTIVE}

Information about the failure and environment are given as follows:
Failed subgoal: The robotic subgoal for which the failure occured.
Execution error: feedback as to why the failed subgoal occurred.
Input dialogue: full dialogue instructions between robot <Driver> and user <Commander>

for the complete task. This may or may not be useful.

I will give you examples of the input and output you will generate.
{retrieved_plans}

Fix the subgoal exectuion error using only the InteractionObject class and functions
defined above that could be executed by a household robot. Follow these rules very
strictly:

1. Important! Use only the classes and functions defined previously. Do not create
functions or additional code that are not provided in the above API. Do not
include if-else statements.

2. Important! Make sure that you output a consistent plan. For example, opening of the
same object should not occur in successive steps.

3. Important! Make sure the output is consistent with the proper affordances of
objects. For example, a couch cannot be opened, so your output should never
include the open() function for this object, but a fridge can be opened.

4. Important! The dialogue is between <Driver> and <Commander>. The dialogue may or may
not be helpful. Do not output any dialogue.

5. Important! Object classes should only be chosen from the following classes:
ShowerDoor, Cabinet, CounterTop, Sink, Towel, HandTowel, TowelHolder, SoapBar,
ToiletPaper, ToiletPaperHanger, HandTowelHolder, SoapBottle, GarbageCan, Candle,
ScrubBrush, Plunger, SinkBasin, Cloth, SprayBottle, Toilet, Faucet, ShowerHead,
Box, Bed, Book, DeskLamp, BasketBall, Pen, Pillow, Pencil, CellPhone, KeyChain,
Painting, CreditCard, AlarmClock, CD, Laptop, Drawer, SideTable, Chair, Blinds,
Desk, Curtains, Dresser, Watch, Television, WateringCan, Newspaper, FloorLamp,
RemoteControl, HousePlant, Statue, Ottoman, ArmChair, Sofa, DogBed, BaseballBat,
TennisRacket, VacuumCleaner, Mug, ShelvingUnit, Shelf, StoveBurner, Apple,
Lettuce, Bottle, Egg, Microwave, CoffeeMachine, Fork, Fridge, WineBottle, Spatula,
Bread, Tomato, Pan, Cup, Pot, SaltShaker, Potato, PepperShaker, ButterKnife,
StoveKnob, Toaster, DishSponge, Spoon, Plate, Knife, DiningTable, Bowl,
LaundryHamper, Vase, Stool, CoffeeTable, Poster, Bathtub, TissueBox, Footstool,
BathtubBasin, ShowerCurtain, TVStand, Boots, RoomDecor, PaperTowelRoll, Ladle,
Kettle, Safe, GarbageBag, TeddyBear, TableTopDecor, Dumbbell, Desktop,
AluminumFoil, Window, LightSwitch, AppleSliced, BreadSliced, LettuceSliced,
PotatoSliced, TomatoSliced

6. Important! You can only pick up one object at a time. If the agent is holding an
object, the agent should place or put down the object before attempting to pick up
a second object.

7. Important! Each object instance should instantiate a different InteractionObject
class even if two object instances are the same object category.

8. Important! Your plan should ONLY fix the failed subgoal. Do not include plans for
other parts of the dialogue or future plan that are irrelevant to the execution
error and failed subgoal.

9. Important! output "do_nothing()" if the agent should not take any corrective actions.
Adhere to the output format I defined above. Think step by step to carry out the

instruction.

Make use of the following information to help you fix the failed subgoal:
Failed subgoal: ...
Execution error: ...

29

Published at 2024 ICLR 2024 Workshop on LLM Agents

Input dialogue: ...

You should respond in the following format:
Explain: Are there any steps missing to complete the subgoal? Why did the failed

subgoal occur? What does the execution error imply for how to fix your future plan?
Plan (Python script): A Python script to only fix the execution error.

Explain:

30

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S6: Full Prompt for the Locator. {} indicates areas that are replaced in the prompt.
You are a household robot trying to locate objects within a house.
You will be given a target object category, your task is to output the top 3 most

likely object categories that the target object category is likely to be found
near: {OBJECT_CLASSES}

For your answer, take into account commonsense co-occurances of objects within a house
and (if relevant) any hints given by the instruction dialogue between the robot
<Driver> and user <Commander>.

For example, if given the target object category is "Knife" and the following dialogue:
"<Commander> hi, make a slice of tomato. <Driver> where is the tomato? <Driver>
where is the knife? <Commander> in the sink.", you might output the following top
3 most likely object categories: "answer: Sink, CounterTop, Cabinet". Important:
Your output should ONLY a list (3 words seperated by commas) of three object
categories from the list above.

What are the top 3 most likely object categories for where to find the target category
{INPUT_TARGET_OBJECT} near? Here is the dialogue that may or may not contain
relevant information for your answer: {INPUT_DIALOGUE}

answer:

31

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S7: Example of a precondition check for the slice macro-action
if subgoal=="Slice":

contraint check for "slice" macro-action
if object_tracker.get_label_of_holding()!="Knife":

first need to be holding a knife to slice
program_to_add = [

'target_knife = InteractionObject("Knife")',
'target_knife.go_to()',
'target_knife.pickup()',

]

32

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S8: Example of dialogue input, retrieved examples, and LLM output for a TEACh sample

Dialogue input:
<Driver> how can I help you today?<Commander> can you please make me a salad on a clean

plate with tomato and cooked potato?<Driver> does the salad require chopped
lettuce?<Commander> nope!<Driver> is that all?<Commander> can you place them on a
plate?<Driver> are they not already on a plate?

Retrieved Examples:
Example 1:
dialogue: <Driver> What should I do today? <Commander> hi, make a slice of tomato.

<Driver> where is the tomato? <Driver> where is the knife? <Commander> in the sink.
<Driver> Tomato sliced. What next? <Commander> slice the potato. <Driver> Where is
the potato? <Commander> in the microwave. <Commander> place all salad components on
a plate. <Driver> How many slices of potato? <Commander> all salad components need
to be place on a plate. <Driver> Where is the plate? <Commander> plate. <Commander>
try the tomato piece. <Driver> done. <Commander> we are finished.

Python script:
target_tomato = InteractionObject("Tomato")
target_knife = InteractionObject("Knife") # need knife to slice tomato
target_knife.go_to() # first get knife
target_knife.pickup()
target_tomato.go_to()
target_tomato.slice()
target_tomato_slice1 = InteractionObject("TomatoSliced") # instantiate a tomato slice

object after slicing tomato
target_potato = InteractionObject("Potato", landmark = "Microwave")
target_potato.go_to()
target_potato.slice()
target_potato_slice1 = InteractionObject("PotatoSliced") # instantiate a potato slice

object after slicing potato
target_knife.put_down() # put down the knife to free up the agent's hand
target_plate = InteractionObject("Plate")
target_tomato_slice1.pickup_and_place(target_plate) # pick up the tomato slice and

place it on the plate
target_potato_slice1.pickup_and_place(target_plate) # pick up the potato slice and

place it on the plate

Example 2:
dialogue: <Driver> how can I help? <Commander> please serve 4 slices of tomato on a plate.

<Driver> sure. <Driver> where can i find the tomato? <Driver> an knife. <Commander>
Tomato on countertop and knife in fridge. <Commander> there should be a plate on the
right cupboard by the sink. <Driver> completed. <Commander> great work thanks.

Python script:
target_tomato = InteractionObject("Tomato")
target_knife = InteractionObject("Knife") # need knife to slice tomato
target_knife.go_to() # first get knife
target_knife.pickup()
target_tomato.go_to()
target_tomato.slice()
target_plate = InteractionObject("Plate", landmark = "Sink")
place 4 slices of the cut tomato on the plate
target_tomato_slice1 = InteractionObject("TomatoSliced") # instantiate first slice of

tomato
target_tomato_slice2 = InteractionObject("TomatoSliced") # instantiate second slice of

tomato
target_tomato_slice3 = InteractionObject("TomatoSliced") # instantiate third slice of

tomato
target_tomato_slice4 = InteractionObject("TomatoSliced") # instantiate fourth slice of

tomato
target_tomato_slice1.pickup_and_place(target_plate) # pick up the first tomato slice

and place it on the plate
target_tomato_slice2.pickup_and_place(target_plate) # pick up the second tomato slice

and place it on the plate
target_tomato_slice3.pickup_and_place(target_plate) # pick up the third tomato slice

and place it on the plate

33

Published at 2024 ICLR 2024 Workshop on LLM Agents

target_tomato_slice4.pickup_and_place(target_plate) # pick up the fourth tomato slice
and place it on the plate

Example 3:
dialogue: <Driver> hi, what is task. <Commander> make a plate of toast. <Commander>

bread in the sink. <Driver> knife. <Commander> on the chair beside the table.
<Commander> clean the plate. <Driver> there is a clean one, do i need to clean the
other one. <Commander> you can use the clean one. <Driver> done. <Commander> good
job. <Driver> :).

Python script:
target_bread = InteractionObject("Bread", landmark = "Sink")
target_knife = InteractionObject("Knife", landmark = "Chair")
target_toaster = InteractionObject("Toaster") # need knife to slice bread
target_knife.go_to() # first get knife
target_knife.pickup()
target_bread.go_to()
target_bread.slice() # slice bread using knife
target_knife.put_down() # put down the knife to free up the agent's hand
target_bread_slice1 = InteractionObject("BreadSliced") # instantiate a bread slice

object after slicing bread
target_bread_slice1.pickup_and_place(target_toaster) # pick up the bread slice and

place it in the toaster
target_toaster.toggle_on() # turn on toaster to toast bread
target_toaster.toggle_off() # turn off toaster to complete toasting process
place toast on plate
target_plate = InteractionObject("Plate")
target_plate.clean()
target_plate.put_down()
target_bread_slice1.pickup_and_place(target_plate) # pick up the toasted bread slice

and place it on the plate

LLM output:
target_tomato = InteractionObject("Tomato")
target_potato = InteractionObject("Potato")
target_plate = InteractionObject("Plate")
target_stove = InteractionObject("StoveBurner")

Clean the plate
target_plate.go_to()
target_plate.clean()

Cook the potato
target_potato.go_to()
target_potato.pickup()
target_stove.go_to()
target_potato.place(target_stove)
target_stove.toggle_on()
target_stove.toggle_off()

Place the cooked potato on the plate
target_potato = InteractionObject("Potato")
target_potato.pickup()
target_plate.go_to()
target_potato.place(target_plate)

Place the tomato on the plate
target_tomato.go_to()
target_tomato.pickup()
target_plate.go_to()
target_tomato.place(target_plate)

34

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S9: Example of dialogue input, retrieved examples, and LLM output for a TEACh sample

Dialogue input:
<Driver> what do i do today<Commander> Hi. Please place two tissue boxes on a table. One

is on the gray chair in the corner.<Commander> The other is under the tv<Commander>
tv*<Driver> where is the other one

Retrieved Examples:
Example 1:
dialogue: <Driver> hi, what is task. <Commander> make a plate of toast. <Commander>

bread in the sink. <Driver> knife. <Commander> on the chair beside the table.
<Commander> clean the plate. <Driver> there is a clean one, do i need to clean the
other one. <Commander> you can use the clean one. <Driver> done. <Commander> good
job. <Driver> :).

Python script:
target_bread = InteractionObject("Bread", landmark = "Sink")
target_knife = InteractionObject("Knife", landmark = "Chair")
target_toaster = InteractionObject("Toaster") # need knife to slice bread
target_knife.go_to() # first get knife
target_knife.pickup()
target_bread.go_to()
target_bread.slice() # slice bread using knife
target_knife.put_down() # put down the knife to free up the agent's hand
target_bread_slice1 = InteractionObject("BreadSliced") # instantiate a bread slice

object after slicing bread
target_bread_slice1.pickup_and_place(target_toaster) # pick up the bread slice and

place it in the toaster
target_toaster.toggle_on() # turn on toaster to toast bread
target_toaster.toggle_off() # turn off toaster to complete toasting process
place toast on plate
target_plate = InteractionObject("Plate")
target_plate.clean()
target_plate.put_down()
target_bread_slice1.pickup_and_place(target_plate) # pick up the toasted bread slice

and place it on the plate

Example 2:
dialogue: <Driver> how can I help? <Commander> please serve 4 slices of tomato on a plate.

<Driver> sure. <Driver> where can i find the tomato? <Driver> an knife. <Commander>
Tomato on countertop and knife in fridge. <Commander> there should be a plate on the
right cupboard by the sink. <Driver> completed. <Commander> great work thanks.

Python script:
target_tomato = InteractionObject("Tomato", landmark = "CounterTop")
target_knife = InteractionObject("Knife", landmark = "Fridge") # need knife to slice

tomato
target_knife.go_to() # first get knife
target_knife.pickup()
target_tomato.go_to()
target_tomato.slice()
target_plate = InteractionObject("Plate", landmark = "Sink")
place 4 slices of the cut tomato on the plate
target_tomato_slice1 = InteractionObject("TomatoSliced") # instantiate first slice of

tomato
target_tomato_slice2 = InteractionObject("TomatoSliced") # instantiate second slice of

tomato
target_tomato_slice3 = InteractionObject("TomatoSliced") # instantiate third slice of

tomato
target_tomato_slice4 = InteractionObject("TomatoSliced") # instantiate fourth slice of

tomato
target_tomato_slice1.pickup_and_place(target_plate) # pick up the first tomato slice

and place it on the plate
target_tomato_slice2.pickup_and_place(target_plate) # pick up the second tomato slice

and place it on the plate
target_tomato_slice3.pickup_and_place(target_plate) # pick up the third tomato slice

and place it on the plate
target_tomato_slice4.pickup_and_place(target_plate) # pick up the fourth tomato slice

and place it on the plate

35

Published at 2024 ICLR 2024 Workshop on LLM Agents

Example 3:
dialogue: <Driver> How can I help? <Commander> put all the scrub brushes on the counter

top. <Driver> where can I find them? <Commander> one is on top of the toilet.
<Driver> there is only a cloth. <Driver> I put it on the counter top. <Driver> are
there more? <Commander> can you try with the brush to the side of the toilet please?
<Driver> okay.

Python script:
target_scrub_brush1 = InteractionObject("ScrubBrush", landmark = "Toilet")
target_counter_top = InteractionObject("CounterTop")
target_scrub_brush1.pickup_and_place(target_counter_top) # pick up the first ScrubBrush

and place it on the CounterTop
target_scrub_brush2 = InteractionObject("ScrubBrush", landmark = "Toilet")
target_scrub_brush2.pickup_and_place(target_counter_top) # pick up the second

ScrubBrush and place it on the CounterTop

LLM output:
target_tissue_box1 = InteractionObject("TissueBox", landmark = "Chair")
target_table = InteractionObject("Table")
target_tissue_box1.pickup_and_place(target_table) # pick up the first TissueBox and

place it on the Table
target_tissue_box2 = InteractionObject("TissueBox", landmark = "TVStand")
target_tissue_box2.pickup_and_place(target_table) # pick up the second TissueBox and

place it on the Table

36

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S10: Example of dialogue input, retrieved examples, and LLM output for a TEACh sample

Dialogue input:
<Driver> hi how can i help<Commander> Can you prepare me a coffee in a clean

mug<Commander> There should be a mug on the white table<Commander> it might need
cleaning first<Commander> that’s great<Driver> are they not already on a plate?

Retrieved Examples:
Example 1:
dialogue: <Commander> Prepare coffee in a clean mug.
Python script:
target_mug = InteractionObject("Mug")
target_mug.go_to()
target_mug.pickup()
clean mug in the sink
target_mug.clean()
target_coffee_machine = InteractionObject("CoffeeMachine")
target_coffee_machine.go_to()
target_mug.place(target_coffee_machine)
target_coffee_machine.toggle_on() # turn on coffee machine to make coffee
target_coffee_machine.toggle_off() # turn off coffee machine after done

Example 2:
dialogue: <Driver> what can i for you today? <Commander> could you boil a potato?

<Driver> sure thing! <Driver> are there any pots? <Commander> pots for boiling
potato? <Driver> yes. <Commander> just the one that you were holding earlier and a
couple others of the same size. <Commander> does it not fit in the sink? <Driver> no.
<Commander> see that mug of water next to the pot? <Driver> yes. <Commander> pour
the mugs water into the pot. <Driver> thanks. <Commander> you’re welcome!
<Commander> excellent thank you!

Python script:
target_pot = InteractionObject("Pot")
target_mug = InteractionObject("Mug", landmark = "Pot")
target_mug.go_to()
target_mug.pickup()
target_mug.pour(target_pot)
target_mug.put_down() # put down mug on any location to free up agent's hand
target_potato = InteractionObject("Potato")
target_potato.pickup_and_place(target_pot) # pick up the potato and place it in the pot
target_stove_knob = InteractionObject("StoveKnob") # turn on the stove to boil potato

by turning on the stove
target_stove_knob.go_to()
target_stove_knob.toggle_on() # boil water
target_stove_knob.toggle_off() # complete boiling process by turning off

Example 3:
dialogue: <Driver> hi, what is task. <Commander> make a plate of toast. <Commander>

bread in the sink. <Driver> knife. <Commander> on the chair beside the table.
<Commander> clean the plate. <Driver> there is a clean one, do i need to clean the
other one. <Commander> you can use the clean one. <Driver> done. <Commander> good
job. <Driver> :).

Python script:
target_bread = InteractionObject("Bread", landmark = "Sink")
target_knife = InteractionObject("Knife", landmark = "Chair")
target_toaster = InteractionObject("Toaster", "Toaster") # need knife to slice bread
target_knife.go_to() # first get knife
target_knife.pickup()
target_bread.go_to()
target_bread.slice() # slice bread using knife
target_knife.put_down() # put down the knife to free up the agent's hand
target_bread_slice1 = InteractionObject("BreadSliced") # instantiate a bread slice

object after slicing bread
target_bread_slice1.pickup_and_place(target_toaster) # pick up the bread slice and

place it in the toaster
target_toaster.toggle_on() # turn on toaster to toast bread
target_toaster.toggle_off() # turn off toaster to complete toasting process
place toast on plate

37

Published at 2024 ICLR 2024 Workshop on LLM Agents

target_plate = InteractionObject("Plate")
target_plate.clean()
target_plate.put_down()
target_bread_slice1.pickup_and_place(target_plate) # pick up the toasted bread slice

and place it on the plate

LLM output:
target_table = InteractionObject("Table")
target_mug = InteractionObject("Mug", landmark = "Table")
target_mug.go_to()
target_mug.pickup()
clean mug in the sink
target_sink = InteractionObject("Sink")
target_mug.place(target_sink)
target_mug.clean()
target_mug.pickup()
target_coffee_machine = InteractionObject("CoffeeMachine")
target_coffee_machine.go_to()
target_mug.place(target_coffee_machine)
target_coffee_machine.toggle_on() # turn on coffee machine to make coffee
target_coffee_machine.toggle_off() # turn off coffee machine after done

38

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S11: Prompt template for TEACh
You are an adept at translating human dialogues into sequences of actions for household

robots. Given a dialogue between a <Driver> and a <Commander>, you convert the
conversation into a Python program to be executed by a robot.

{API}

Write a script using Python and the InteractionObject class and functions defined above
that could be executed by a household robot.

Here are a few examples of typical inputs and outputs (only for in-context reference):
{RETRIEVED_EXAMPLES}

Adhere to these stringent guidelines:
1. Use only the classes and functions defined previously. Do not create functions that

are not provided above.
2. Make sure that you output a consistent plan. For example, opening of the same object

should not occur in successive steps.
3. Make sure the output is consistent with the proper affordances of objects. For

example, a couch cannot be opened, so your output should never include the open()
function for this object, but a fridge can be opened.

4. The input is dialogue between <Driver> and <Commander>. Interpret the dialogue into
robot actions. Do not output any dialogue.

5. Object categories should only be chosen from the following classes: {OBJECT_CLASSES}
6. You can only pick up one object at a time. If the agent is holding an object, the

agent should place or put down the object before attempting to pick up a second
object.

7. Each object instance should instantiate a different InteractionObject class even if
two object instances are the same object category.

Follow the output format provided earlier. Think step by step to carry out the
instruction.

Write a Python script that could be executed by a household robot for the following:
dialogue: {command}
Python script:

39

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S12: Prompt template for ALFRED
You are an excellent interpreter of instructions for household tasks. Given a task

overview <High Level Goal> and step to perform <Low Level Goal>, you break the
instructions down into a sequence of robotic actions.

{API}

Write a script using Python and the InteractionObject class and functions defined above
that could be executed by a household robot.

Here are a few examples of typical inputs and outputs (only for in-context reference):
{RETRIEVED_EXAMPLES}

Adhere to these stringent guidelines:
1. Use only the classes and functions defined previously. Do not create functions that

are not provided above.
2. Make sure that you output a consistent plan. For example, opening of the same object

should not occur in successive steps.
3. Make sure the output is consistent with the proper affordances of objects. For

example, a couch cannot be opened, so your output should never include the open()
function for this object, but a fridge can be opened.

4. The input is high level task description and low level subgoals to perform the high
level task. Interpret the instructions into robot actions.

5. Object categories should only be chosen from the following classes: {OBJECT_CLASSES}
6. You can only pick up one object at a time. If the agent is holding an object, the

agent should place or put down the object before attempting to pick up a second
object.

7. Each object instance should instantiate a different InteractionObject class even if
two object instances are the same object category.

8. Always focus on solving the high level goal. Low level instructions should only be
used to guide and plan better.

9. Before performing each action, check if that action is allowed for a particular
receptacle class. A few examples have been given in API documentation.

10. Check if the receptacle needs to be opened before placing the object. If yes, then
open the receptacle before placing the object.

Follow the output format provided earlier. Think step by step to carry out the
instruction.

Write a Python script that could be executed by a household robot for the following:
{command}
Python script:

40

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S13: Prompt template for the Dialfred
You are an excellent interpreter of instructions for household tasks. Given a task

overview <High Level Goal> and step to perform <Low Level Goal>, you break the
instructions down into a sequence of robotic actions.

{API}

Write a script using Python and the InteractionObject class and functions defined above
that could be executed by a household robot.

Here are a few examples of typical inputs and outputs (only for in-context reference):
{RETRIEVED_EXAMPLES}

Adhere to these stringent guidelines:
1. Use only the classes and functions defined previously. Do not create functions that

are not provided above.
2. Make sure that you output a consistent plan. For example, opening of the same object

should not occur in successive steps.
3. Make sure the output is consistent with the proper affordances of objects. For

example, a couch cannot be opened, so your output should never include the open()
function for this object, but a fridge can be opened.

4. The input is high level task description and low level subgoals to perform the high
level task. Interpret the instructions into robot actions.

5. Object categories should only be chosen from the following classes: {OBJECT_CLASSES}
6. You can only pick up one object at a time. If the agent is holding an object, the

agent should place or put down the object before attempting to pick up a second
object.

7. Each object instance should instantiate a different InteractionObject class even if
two object instances are the same object category.

8. Make sure that you are solving both the high level goal and the low level goals.
Some instructions may only be present in one or the other, so address everything
from both.

9. Before performing each action, check if that action is allowed for a particular
receptacle class. A few examples have been given in API documentation.

Follow the output format provided earlier. Think step by step to carry out the
instruction.

Write a Python script that could be executed by a household robot for the following:
{command}
Python script:

41

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S14: Prompt template for the Tidy Task
Task: As an AI-driven cleaning robot, you are tasked with employing commonsense

reasoning to identify where to place out of place objects that aren't situated
appropriately. Given a list of out of place objects, you are to write a Python
program to be executed by a robot that will bring the out of place objects to a
suitable location.

{API}

Write a script using Python and the InteractionObject class and functions defined above
that could be executed by a household robot.

Here are a few examples of typical inputs and outputs (only for in-context reference):
{RETRIEVED_EXAMPLES}

Adhere to these stringent guidelines:
1. Use only the classes and functions defined previously. Do not create functions that

are not provided above.
2. Make sure that you output a consistent plan. For example, opening of the same object

should not occur in successive steps.
3. Make sure the output is consistent with the proper affordances of objects. For

example, a couch cannot be opened, so your output should never include the open()
function for this object, but a fridge can be opened.

4. Object categories should only be chosen from the following classes: {OBJECT_CLASSES}
5. You can only pick up one object at a time. If the agent is holding an object, the

agent should place or put down the object before attempting to pick up a second
object.

6. Each object instance should instantiate a different InteractionObject class even if
two object instances are the same object category.

7. Address each item systematically, one by one.
8. Base your decisions on your ingrained knowledge about the typical placement of

day-to-day objects.
Follow the output format provided earlier. Think step by step to carry out the

instruction.

Write a Python script that could be executed by a household robot for the following:
input: {command}
Python script:

42

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S15: Sample in-context example for TEACh
Dialogue input:

<Driver> what shall I do today? <Commander> clean all the bowls. <Driver> where are the
bowls? <Commander> start with the one by the stove. <Commander> left. <Commander>
rinse it with water. <Commander> great. <Driver> what next? <Commander> the next
one is in the fridge. <Commander> you need to rinse it with water also.
<Commander> great job. we are finished.

Python script:
target_bowl1 = InteractionObject("Bowl", landmark = "Stove", attributes = ["clean"])
target_bowl1.go_to()
target_bowl1.pickup()
target_bowl1.clean()
target_bowl1.put_down()
target_bowl2 = InteractionObject("Bowl", landmark = "Fridge", attributes = ["clean"])
target_bowl2.go_to()
target_bowl2.pickup()
target_bowl2.clean()
target_bowl2.put_down()

43

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S16: Sample in-context example for ALFRED
High Level Goal: To heat an apple and place in the black bin.
Low Level Goal:
(1) Turn around and walk to the kitchen island.
(2) Pick up the apple in front of the gold colored plate.
(3) Walk around the kitchen island and to the stove on the right, look above the stove to
face the microwave.
(4) Place the apple inside the microwave, heat up/cook the apple, take the apple out of

the
microwave.
(5) Turn left, turn left at the fridge, turn left to face the kitchen island, and look

down
at the black bin.
(6) Place the apple in the bin on the right side.
Python script:
target_apple = InteractionObject("Apple", landmark = "CounterTop")
target_apple.go_to()
target_apple.pickup()
target_microwave = InteractionObject("Microwave")
target_microwave.go_to()
target_microwave.open() # open microwave before placing
target_apple.place(target_microwave)
target_microwave.close() # close microwave before toggle on
target_microwave.toggle_on() # toggle on to heat up & cook
target_microwave.toggle_off() # Important! toggle off to end heating. Do not try to

open microwave without toggle off!
target_microwave.open() # open microwave before picking
target_apple.pickup()
target_trashcan = InteractionObject("GarbageCan")
target_trashcan.go_to()
target_apple.place(target_trashcan)

44

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S17: Sample in-context example for Dialfred
High Level Goal: Put the watch in the bowl on the nightstand.
Low Level Goal:
(1) Turn around, walk around the bookshelf, turn to the desk.
(2) Pick the watch up off of the desk.
(3) Put the watch in the bowl on the desk.
(4) Pick up the bowl off of the desk.
(5) Walk back around the bookshelf, walk over between the two beds.
(6) Put the bowl on the nightstand.
Python script:
target_watch = InteractionObject("Watch", landmark = "Desk")
target_watch.go_to()
target_watch.pickup()
target_bowl = InteractionObject("Bowl", landmark = "Desk")
target_bowl.go_to()
target_watch.place(target_bowl)
target_bowl.go_to()
target_bowl.pickup()
target_nightstand = InteractionObject("SideTable", landmark = "Bed")
target_nightstand.go_to()
target_bowl.place(target_nightstand)

45

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S18: Sample in-context example for the Tidy Task
input: Tidy up the house. These are the out of place objects: Potato, Knife. These are
the receptacles in the current scene: DiningTable, Microwave, CoffeeMachine, CounterTop.
Python script:
initialize the out of place objects
target_potato = InteractionObject("Potato")
target_knife = InteractionObject("Knife")
initialize the placement objects to place the out of place object on
target_countertop = InteractionObject("CounterTop") # The best, commonsense location

for both the potato and knife is on the countertop.
re-position potato to the countertop to tidy it up
target_potato.go_to()
target_potato.pickup()
target_countertop.go_to()
target_potato.place(target_countertop)
re-position knife to the countertop to tidy it up
target_knife.go_to()
target_knife.pickup()
target_countertop.go_to()
target_knife.place(target_countertop)

46

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S19: Prompt template for Question Selection
You are an excellent interpreter of human instructions for household tasks. Given a

list of questions you can ask and information about the current environment and
context, you provide a question that should be asked in order to give the agent
useful information.

{API}

Write a script using Python using the class and functions defined above that could be
executed by a household robot.

Adhere to these stringent guidelines:
1. Use only the classes and functions defined previously. Do not create functions that

are not provided above.
2. Make sure you choose the question that provides the most information and is most

relevant for the situation at hand.
3. Object categories should only be chosen from the following classes: {OBJECT_CLASSES}
Follow the output format provided earlier. Think step by step to carry out the

instruction.

Write a Python script that asks questions to help a household robot in the following
situation:

{context}
Python script:

47

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S20: Prompt template for Answer Parsing
You are an excellent interpreter of human instructions for household tasks. Given the

current context of the agent, a question that was asked, and an answer that was
given, you must write code for actions the agent should take based on the answer
provided.

{API}

Write a script using Python using the class and functions defined above that could be
executed by a household robot.

Adhere to these stringent guidelines:
1. Use only the classes and functions defined previously. Do not create functions that

are not provided above.
2. Make sure you plan the most simple and direct interpretation of the answer given.
3. Prioritize the most specific information given. For example, an actual object name

should be deemed more important than a region.
4. If multiple pieces of information are given, ensure you incorporate all of them into

the script.
5. Object categories should only be chosen from the following classes: {OBJECT_CLASSES}

Write a Python script that asks questions to help a household robot in the following
situation:

{context}
{question}
{answer}
Python script:

48

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S21: Sample in-context example 1 for Question Asking
Question Selection Input:
Context: The agent does not know where the ButterKnife is.
Questioning Script:
askForLocation('ButterKnife')

Answer Parsing Input:
Context: The agent does not know where the ButterKnife is.
Question Asked: askForLocation(’ButterKnife’)
Answer Returned: The ButterKnife is to your left on the countertop.

Parsed Answer:
Turn to the left as per the instruction
turn('left')
Search for the butterknife on the counter top
search_near_other_object('ButterKnife', 'CounterTop')

49

Published at 2024 ICLR 2024 Workshop on LLM Agents

Listing S22: Sample in-context example 2 for Question Asking
Question Selection Input:
Context: The agent does not know where the SoapBar is.
Questioning Script:
askForLocation('SoapBar')

Answer Parsing Input:
Context: The agent does not know where the SoapBar is.
Question Asked: askForLocation(’SoapBar’)
Answer Returned: The SoapBar is to your front right in the garbage can.
Parsed Answer:
Turn right as the SoapBar is to the front right
turn('right')
Move forward to reach the garbage can
move('forward')
Search for the SoapBar near the garbage can
search_near_other_object('SoapBar', 'GarbageCan')

50

	Introduction
	Related Work
	Memory-Augmented Prompting of Large Language Models
	Instructable Embodied Agents that Interact with their Environments

	Our Method: HELPER-X
	Background: HELPER
	Unified Memory-Augmented Prompting
	Prompt Retrieval
	Shared Example Memory
	Question Asking API

	Experiments
	Inferring and Executing Action Plans from Dialogue
	Following Natural Language Instructions
	Instruction Following with Asking Questions
	Tidying Up using Spatial Commonsense Reasoning

	Conclusion
	Acknowledgements
	Limitations
	Prompts
	Prompts for each module
	Prompt templates for prompt retrieval
	In-Context Examples

	Question Asking
	Overview
	Question asking pipeline

	Pre-conditions
	Example LLM inputs & Outputs
	Simulation environment
	Executor details
	Semantic mapping and planning
	2D-to-3D unprojection

	Additional details of the Tidy Task
	Metric Definitions in the Tidy Task
	Langauge Instructions for the Tidy Task

