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Abstract001

Question-Answering (QA) models for low-002
resource languages like Bangla face challenges003
due to limited annotated data and linguistic004
complexity. A key issue is determining whether005
models rely more on pre-encoded (parametric)006
knowledge or contextual input during answer007
generation, as existing Bangla QA datasets008
lack the structure required for such analysis.009
We introduce BanglaCQA, the first Counter-010
factual QA dataset in Bangla, by extending011
a Bangla dataset while integrating counterfac-012
tual passages and answerability annotations. In013
addition, we propose fine-tuned pipelines for014
encoder-decoder language-specific and multi-015
lingual baseline models, and prompting-based016
pipelines for decoder-only LLMs to disentangle017
parametric and contextual knowledge in both018
factual and counterfactual scenarios. Further-019
more, we apply LLM-based and human evalu-020
ation techniques that measure answer quality021
based on semantic similarity. We also present022
a detailed analysis of how models perform023
across different QA settings in low-resource024
languages, and show that Chain-of-Thought025
(CoT) prompting reveals a uniquely effective026
mechanism for extracting parametric knowl-027
edge in counterfactual scenarios, particularly in028
decoder-only LLMs. Our work not only intro-029
duces a novel framework for analyzing knowl-030
edge sources in Bangla QA but also uncovers031
critical findings that open up broader directions032
for counterfactual reasoning in low-resource033
language settings.034

1 Introduction and Related Work035

The domain of Question Answering (QA) is a036

fundamental area within Natural Language Pro-037

cessing, which aims to train models that emulate038

human reasoning by mimicking human compre-039

hension and response generation. With the arrival040

of transformer-based models, this emulation has041

reached new heights for high-resource languages,042

specifically for Large Language Models (LLMs),043

Figure 1: Parametric vs Contextual Question Answering
(QA) in Factual and Counterfactual Settings

as these models demonstrate competitive perfor- 044

mance based solely on their pre-encoded knowl- 045

edge. However, challenges arise in generating ac- 046

curate responses in contextual QA settings, par- 047

ticularly in counterfactual contexts, due to the in- 048

terplay of two distinct “knowledge sources”: (i) 049

Parametric knowledge, embedded within model pa- 050

rameters through pretraining and (ii) Contextual 051

knowledge, derived from input contexts at execu- 052

tion time (Neeman et al., 2023). Previous work in 053

English QA models has shown that prioritization 054

of parametric knowledge can lead to the genera- 055

tion of hallucinated answers, which occurs because 056

of the imbalance between extensive pre-encoded 057

data and limited contextual input (Krishna et al., 058

2021). Some work further shows that contextual 059

questions that contain incorrect assumptions dis- 060

rupt generation performance (Kim et al., 2021). 061

Although some studies show that integrating coun- 062

terfactual or random contexts into factual datasets 063

improves robustness by disentangling knowledge 064

sources (Hwang et al., 2023), such methods re- 065

main largely unexplored for Bangla, a widely spo- 066

ken yet under-resourced language. Although mod- 067

els evaluated on BanglaRQA (Ekram et al., 2022) 068

and Squad-BN (Bhattacharjee et al., 2022) achieve 069

strong factual QA scores, key challenges remain un- 070

solved: the absence of benchmarks for evaluating 071

1



parametric and contextual biases as distinct factors,072

limited insight into counterfactual contexts and un-073

clear methods for tracing knowledge sources.074

To address these issues, we present the075

first Bangla Counterfactual Question-Answering076

dataset, BanglaCQA, by extending an existing077

BanglaRQA (Ekram et al., 2022) dataset with an-078

swerability, random and counterfactual contexts079

to analyze the internal or contextual knowledge080

prioritization. Moreover, we introduce disentan-081

glement pipelines by leveraging multiple encoder-082

decoder models (BanglaT5-small (Bhattacharjee083

et al., 2023), BanglaT5-base (Bhattacharjee et al.,084

2023), mt5 (Xue et al., 2020)) with fine-tuning and085

decoder-only open-sourced LLMs (LLaMA-3.3-086

72B (Touvron et al., 2023), DeepSeek-R1-Distill-087

Qwen-32B (DeepSeek-AI et al., 2025), Qwen2.5-088

32B (Yang et al., 2024), Mistral-3-small (Mistral089

AI, 2025)) with few-shot (Brown et al., 2020) and090

Chain-of-Thought (CoT) (Wei et al., 2022) prompt-091

ing to differentiate parametric and contextual rea-092

soning. To evaluate the results, we use Gemini-2.0-093

Flash (Hassabis et al., 2024) and GPT-4.1 (Ope-094

nAI et al., 2024) for semantic similarity scoring,095

which outperforms traditional metrics to evaluate096

the semantic accuracy of Bangla QA responses.097

Moreover, we applied human evaluation for both098

the dataset and model’s generated answer to main-099

tain accuracy and transparency. Our analysis re-100

veals that integrating counterfactual contexts ex-101

hibits strong performance in multiple segments.102

These findings not only establish a blueprint for103

low-resource languages and advanced QA systems104

for Bangla, but also emphasize transparency in105

knowledge utilization in counterfactual scenarios.106

2 BanglaCQA Dataset107

We introduce BanglaCQA, the first Bengali QA108

dataset designed to disentangle parametric and con-109

textual knowledge in language models. For this,110

we expand the existing BanglaRQA (Ekram et al.,111

2022) dataset by adding 6.3K counterfactual con-112

texts, an increase of 42.28% specifically crafted to113

challenge models on whether they rely on context114

or fall back on memorized information.1115

2.1 Counterfactual Context Generation116

Counterfactual contexts are derived from factual117

examples by modifying key named entities using118

an automated NER pipeline (Sarker, 2020). The119

1https://anonymous.4open.science/r/banglacqa/

script identifies standard named entity types, such 120

as PER (person), LOC (location), ORG (organiza- 121

tion), GPE (geo-political entity), DATE or NUM 122

(temporal and numeric expressions) and applies 123

type-consistent substitutions. For example, person 124

names are replaced with other plausible names, lo- 125

cations with alternative locations and organizations 126

with different entities of the same category while 127

ensuring semantic coherence. When named enti- 128

ties appear in both the context and answer fields, 129

replacements are applied consistently. For temporal 130

expressions, if the entity represents a year, only the 131

final digit is altered to preserve plausibility while 132

introducing subtle factual contradictions. In other 133

numerical cases, values are substituted using reg- 134

ular expressions. Each modified row is assigned a 135

unique ID to prevent duplication. These controlled 136

modifications construct hypothetical contradictions 137

while retaining the original sentence structure and 138

allow us to test whether models truly ground their 139

answers in the input context or default to memo- 140

rized (parametric) knowledge.

Dataset Attribute Setting
Total QA pairs 21,211
Factual Contexts 14,900
Counterfactual Contexts 6,303
Average Question Word Count 8.26
Average Context Word Count 215.27

Table 1: Summary statistics of the BanglaCQA dataset.
These statistics highlight the dataset’s scale and the
relative complexity of its contexts.

141

2.2 Annotation Quality Assurance 142

After generating counterfactual passages using the 143

NER script, examples were reviewed by two of 144

the authors of the paper separately. Moreover, to 145

ensure objectivity, two independent paid annota- 146

tors, who were not involved in the construction of 147

counterfactual dataset, further reviewed the dataset 148

for semantic correctness. Disagreements were re- 149

solved by consensus and the process yielded a Co- 150

hen’s Kappa score of 0.73 which indicates sub- 151

stantial inter-annotator agreement. Additionally, 152

factual rows that were labeled answerable despite 153

lacking valid contextual answers were removed to 154

reduce label noise and enhance overall quality. Fur- 155

ther details on annotator roles, requirements are 156

included in the Appendix A.2. 157
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Figure 2: Evaluation pipeline for disentangling parametric and contextual knowledge in QA. Left: Prompt-based
inference using large language models (LLMs) to generate both parametric and contextual answers. Right: Fine-
tuning-based evaluation using T5 variants finetuned on BanglaCQA. Both paradigms are evaluated via automated
LLM-based and human evaluations to measure answer similarity with respect to both knowledge types.

3 Implementation Pipeline158

To identify the most effective model architecture159

for BanglaCQA, we fine-tuned multiple variants160

of the T5 (Raffel et al., 2019) framework, namely161

BanglaT5 (small, base) and mT5, under two config-162

urations: Factual + Answerability (F+A) and Fac-163

tual + Counterfactual + Answerability (F+CF+A).164

This dual-configuration strategy enables a focused165

comparison of how language-specific and multilin-166

gual models adapt when exposed to both factual167

and counterfactual contexts. As shown in Figure 2,168

each model was trained using a consistent pipeline169

that emphasizes reproducibility and transparency.170

Data pre-processing included systematic tokeniza-171

tion and formatting, followed by splitting into train-172

ing and validation subsets to ensure unbiased eval-173

uation. We adopted a standardized set of hyper-174

parameters: 30 epochs, batch size of 2, learning175

rate of 5e-5 and 10 warmup steps across all exper-176

iments. Early stopping was employed based on177

validation loss to mitigate overfitting; most models178

converged by the 15th epoch, optimizing both per-179

formance and training efficiency. BanglaT5 models180

were sourced from the Hugging Face repository of181

CSEBUET NLP group, while mT5 was obtained182

from Google’s official collection, ensuring credible183

and community-recognized model baselines.184

Model Type Training Hardware GPU VRAM
Encoder-decoder Nvidia RTX 4090 GPU 24GB
Decoder-only 4x Nvidia L4 GPUs 90GB

Table 2: Training hardware and GPU VRAM used for
models.

For decoder-only LLMs, we developed a uni- 185

fied inference framework to probe parametric vs. 186

contextual reasoning using few-shot and Chain-of- 187

Thought (CoT) prompting. Each prompt combined 188

a factual or counterfactual context with instruction 189

and a question, structured to stimulate reasoning 190

patterns aligned with the internal knowledge of the 191

model and the external input. To ensure consis- 192

tency of the evaluation, all models were decoded 193

using the same hyperparameters: temperature = 194

0.1, top-p = 0.1, repetition penalty = 1.02 and maxi- 195

mum tokens = 1500. We deployed Qwen-2.5 (32B), 196

DeepSeek-R1 (32B), Mistral-3 Small (24B) and 197

LLaMA-3.3 (70B). Due to resource constraints, 198

the LLaMA-3.3 model was quantized using FP16 199

precision. Crucially, each model produced two sep- 200

arate outputs: one reflecting internal knowledge 201

(parametric) and the other derived from context 202

(contextual). Any non-Bangla output was auto- 203

matically normalized into Bangla using the Gem- 204

ini API, enabling cross-lingual evaluation without 205

bias. Semantic alignment was assessed in a zero- 206

shot setting using Gemini 2.0 Flash and GPT-4.1, 207

which we found to be more reliable for Bangla than 208

traditional metrics. We report parametric similar- 209

ity and contextual similarity separately, offering 210

fine-grained insights into how models interpret and 211

reason across both factual and counterfactual con- 212

texts. All encoder-decoder and decoder-only model 213

experiments training hardware and GPU VRAM 214

configurations are shown in Table 2. 215
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Models Trained on
F Contextual

Similarity
F Parametric

Similarity
CF Contextual

Similarity
CF Parametric

Similarity
BanglaT5 Small F+A 0.77 0.70 0.69 0.11
BanglaT5 Base F+A 0.82 0.81 0.72 0.13

mT5 Small F+A 0.84 0.79 0.79 0.09
BanglaT5 Small F+CF+A 0.83 0.72 0.83 0.19
BanglaT5 Base F+CF+A 0.86 0.84 0.87 0.23

mT5 Small F+CF+A 0.87 0.81 0.84 0.15

Table 3: Performance of different models under Factual (F) and Counterfactual (CF) settings, evaluated with
parametric and contextual similarity using Gemini-2.0 Flash as an evaluator. Here, "A" stands for answerability
denotes whether the model can generate a grounded response based on the provided context. All reported scores are
mean values. "F" denotes Factual contexts and "CF" denotes Counterfactual contexts.

Models Trained on
F Contextual

Similarity
F Parametric

Similarity
CF Contextual

Similarity
CF Parametric

Similarity
BanglaT5 Small F+A 0.79 0.74 0.76 0.16
BanglaT5 Base F+A 0.83 0.80 0.75 0.14

mT5 Small F+A 0.84 0.79 0.79 0.13
BanglaT5 Small F+CF+A 0.85 0.79 0.79 0.21
BanglaT5 Base F+CF+A 0.87 0.82 0.84 0.27

mT5 Small F+CF+A 0.88 0.80 0.88 0.20

Table 4: Performance of different models under Factual (F) and Counterfactual (CF) settings, evaluated with
parametric and contextual similarity using GPT-4.1 as an evaluator. Here, "A" stands for answerability denotes
whether the model can generate a grounded response based on the provided context. All reported scores are mean
values."F" denotes Factual contexts and "CF" denotes Counterfactual contexts.

4 Results216

We evaluated the performance of the models in both217

factual and counterfactual contexts by computing218

the mean semantic similarity score between gener-219

ated outputs and target answers. Similarity scores220

(ranging from 0 to 1) were calculated using Gemini221

2.0 Flash and GPT-4.1, which provide more reli-222

able assessments for Bangla text than traditional223

metrics. For encoder-decoder models, we observed224

how fine-tuning with counterfactual data influenced225

performance by comparing the two training con-226

figurations. Decoder-only models, evaluated under227

few-shot and Chain-of-Thought prompting, demon-228

strated distinct reasoning behaviors reflected in229

their parametric and contextual outputs. To capture230

these differences, we separately analyzed paramet-231

ric responses, which reflect the internal knowledge232

of the model and contextual responses, which rely233

on the provided input. This dual evaluation reveals234

how different architectures and training strategies235

leverage internal and external information when236

handling factual and counterfactual queries, offer-237

ing fine-grained insights into model reasoning and238

adaptability. We present our findings by discussing239

the following research questions:240

RQ1: What factors contribute to the under- 241

performance of Bangla encoder-decoder models 242

in parametric answer generation in counterfac- 243

tual contexts, and how can decoder-only LLMs 244

mitigate these challenges? We observe a notable 245

decline in mean parametric similarity scores for 246

counterfactual contexts compared to factual ones 247

across all evaluated encoder-decoder T5 variant 248

models. For instance, using Gemini-2.0-Flash as 249

the evaluator (Table 3), BanglaT5 Small drops from 250

0.70 (F Parametric) to 0.11 (CF Parametric), while 251

BanglaT5 Base declines from 0.83 to 0.14, both in 252

(F+A) settings clearly illustrating the model’s diffi- 253

culty in generalizing to counterfactual knowledge. 254

The reason is that these models are fine-tuned only 255

on Factual+ Answerability settings, and so their 256

lack of understanding of counterfactual scenarios 257

resulted in such manner. Fine-tuning on both fac- 258

tual and counterfactual data (F+CF+A) improves 259

contextual scores, as seen in BanglaT5 Base rising 260

to 0.86 (F Contextual) and 0.87 (CF Contextual), 261

but this does not sufficiently enhance parametric 262

similarity in CF settings (0.23), reinforcing that 263

fine-tuning aids context understanding more than 264

guides the models to understand the parametric 265
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Models Prompting
F Contextual

Similarity
F Parametric

Similarity
CF Contextual

Similarity
CF Parametric

Similarity
Qwen-2.5 Few-Shot 0.88 0.35 0.79 0.27

DeepSeek-R1 Few-Shot 0.88 0.32 0.81 0.31
LLAMA-3.3 Few-shot 0.84 0.27 0.77 0.24

Mistral-3-small Few-shot 0.85 0.34 0.79 0.25
Qwen-2.5 COT 0.92 0.81 0.86 0.74

DeepSeek-R1 COT 0.94 0.79 0.89 0.70
LLAMA-3.3 COT 0.91 0.69 0.83 0.55

Mistral-3-small COT 0.90 0.74 0.86 0.64

Table 5: Performance of different decoder-only LLMs under Factual (F) and Counterfactual (CF) settings, evaluated
with parametric and contextual similarity using Gemini-2.0 Flash as an evaluator. All reported scores are mean
values. "F" denotes Factual contexts and "CF" denotes Counterfactual contexts.

Models Prompting
F Contextual

Similarity
F Parametric

Similarity
CF Contextual

Similarity
CF Parametric

Similarity
Qwen-2.5 Few-Shot 0.89 0.39 0.78 0.31

DeepSeek-R1 Few-Shot 0.83 0.36 0.79 0.30
LLAMA-3.3 Few-shot 0.86 0.29 0.75 0.27

Mistral-3-small Few-shot 0.87 0.37 0.81 0.26
Qwen-2.5 COT 0.93 0.84 0.88 0.78

DeepSeek-R1 COT 0.95 0.81 0.91 0.68
LLAMA-3.3 COT 0.90 0.70 0.84 0.59

Mistral-3-small COT 0.91 0.73 0.85 0.63

Table 6: Performance of different decoder-only LLMs under Factual (F) and Counterfactual (CF) settings, evaluated
with parametric and contextual similarity using GPT-4.1 as an evaluator. All reported scores are mean values. "F"
denotes Factual contexts and "CF" denotes Counterfactual contexts.

knowledge. For this reason, when required to pro-266

duce parametric answers relying on internal knowl-267

edge, models tend to hallucinate or conflate con-268

textual cues with facts. In contrast, decoder-only269

large language models (LLMs), utilize prompting270

to access a broader and more comprehensive pre-271

encoded knowledge base. As these models are not272

fine-tuned, but prompted to complete their tasks, it273

enables LLMs to better generate accurate paramet-274

ric answers, particularly in counterfactual contexts.275

These results highlight a fundamental limitation276

of Bangla encoder-decoder models: despite fine-277

tuning improvements in contextual extraction, their278

constrained internal knowledge restricts general-279

ization to counterfactual reasoning, a gap partially280

addressed by decoder-only LLMs extensive pre-281

encoded knowledge.282

RQ2: Why does the prompting strategy (CoT283

vs. Few-shot) affect the parametric and contex-284

tual performance of language models in Bangla285

across factual and counterfactual settings? Our286

results in Tables 5 and 6 demonstrate that Chain-of-287

Thought (CoT) prompting leads to statistically sig-288

nificant and practically large improvements in para- 289

metric similarity for both factual (+0.42–>0.44) 290

and counterfactual (+0.38–>0.39) settings. Paired 291

t-tests confirm these gains (p < 0.01) with ex- 292

tremely large effect sizes (Cohen’s d > 5), estab- 293

lishing that the improvements are not due to chance 294

but are practically meaningful (see Table 7). Few- 295

shot prompting inherently lacks an intermediate 296

reasoning phase: models directly predict an answer 297

without explicitly reasoning through the problem. 298

As a result, in counterfactual settings, few-shot 299

models fail to verify the plausibility of the context 300

and default to answers derived from the modified 301

passages, leading to poor parametric similarity. In 302

contrast, CoT prompts explicitly instruct the mod- 303

els to first generate a detailed reasoning chain be- 304

fore producing the final answer (Wei et al., 2022). 305

This structured reasoning step enables the models 306

to differentiate between information derived from 307

the counterfactual context and their encoded para- 308

metric knowledge. 309

These findings align with recent theoretical work 310

showing that transformers without intermediate 311
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Model Metric Mean ∆(COT – Few) t-value p-value Cohen’s d
Gemini-2.0 F Parametric +0.44 26.48 0.00012 13.24
Gemini-2.0 CF Parametric +0.39 11.94 0.00126 5.97
GPT-4.1 F Parametric +0.42 19.55 0.00029 9.77
GPT-4.1 CF Parametric +0.38 12.33 0.00115 6.16

Table 7: Parametric similarity evaluation of decoder-only LLMs under Factual (F) and Counterfactual (CF)
contexts, using Gemini-2.0 and GPT-4.1 as the evaluator. All scores reflect mean differences between Chain-of-
Thought (COT) and Few-shot prompting. Positive ∆ values indicate improved performance under COT prompting.
Statistical significance is shown via t-tests and effect size (d).

reasoning steps are restricted to low-complexity312

function classes (e.g., AC0/TC0 A.1) and fail to313

solve inherently sequential problems unless their314

depth or size scales super-polynomially (Peng et al.,315

2024). By generating intermediate reasoning steps,316

CoT effectively increases the model’s computa-317

tional depth, allowing it to simulate larger circuits318

and solve tasks such as arithmetic evaluation and319

dynamic programming that are otherwise inexpress-320

ible for bounded-depth transformers. Recent find-321

ings also reveal that CoT benefits arise not only322

from correct intermediate reasoning but also from323

structural inductive bias: models achieve up to324

90% of CoT gains even with imperfect reasoning if325

the steps are structurally relevant and correctly or-326

dered (Jin et al., 2024). Furthermore, CoT provides327

a mechanism for latent state tracking, where each328

reasoning step encodes an intermediate computa-329

tion that can be referenced in subsequent steps (Xu330

et al., 2025). These theoretical insights explain331

the dramatic gains observed in our results. Bangla332

question answering requires reasoning over mor-333

phologically rich, long contexts (average length334

= 215 tokens; see Table 1) and counterfactual335

entity substitutions. Few-shot prompting fails to336

guide models toward structured inference, resulting337

in low parametric similarity. CoT enforces a univer-338

sal reasoning template that bridges the gap caused339

by the lack of Bangla-specific reasoning supervi-340

sion during pre-training. Decoder-only models341

(e.g., Qwen-2.5, DeepSeek-R1) particularly benefit342

because their training has exposed them to CoT-like343

reasoning formats. As a result, CoT increases para-344

metric similarity in both factual and counterfactual345

settings, validating that the gains are statistically346

significant and theoretically grounded in the ex-347

panded expressivity and state-tracking capabilities348

of CoT-augmented transformers.349

RQ3: How do architectural differences350

among language models affect their ability to351

integrate contextual and parametric knowledge352

across factual and counterfactual tasks in 353

Bangla? Qwen-2.5 achieves high similarity scores 354

across both dimensions (F parametric : 0.81, 355

CF parametric : 0.74; F contextual: 0.92, CF 356

contextual: 0.86). This is likely aided by its 357

design for handling long-sequences processing, 358

which aligns well with Bangla’s complex and frag- 359

mented tokenization. DeepSeek-R1 shows similar 360

improved performance. However, LLAMA-3.3 361

exhibits a steep decline in CF contextual similarity 362

(0.55) despite a strong factual similarity score 363

(0.91). These findings suggest that architectures 364

optimized for longer contexts are better suited for 365

Bangla’s linguistic structure. Details of prompts 366

are shown on Appendix A.3. 367

368

4.1 Error Analysis through Human 369

Evaluation 370

Although Gemini-2.0-Flash and ChatGPT-4.1 pro- 371

vide a scalable and efficient approximation of para- 372

metric answer similarity, they exhibit notable limi- 373

tations in counterfactual QA for Bangla. To assess 374

metric reliability and analyze potential sources of 375

error introduced by the dataset or evaluation metric, 376

we applied human evaluation. Two independent 377

annotators, who were not involved in the dataset 378

creation process, were tasked with evaluating a ran- 379

dom subset of 200 model-generated answers. Com- 380

paring these human judgments, widely regarded as 381

the gold standard in QA (Clark et al., 2021), with 382

model outputs revealed some discrepancies: 383

I) Temporal Mismatch (Outdated Targets): 384

Figure 3 presents a counterfactual context, where 385

the numeric value was automatically modified us- 386

ing a Python script and regular expressions as part 387

of the dataset generation pipeline. However, in this 388

instance, the dataset’s Target Parametric Answer 389

5.5 million is factually outdated or incorrect. De- 390

spite being given a counterfactual input, the model 391

(Qwen-2.5) successfully generates the correct para- 392
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Figure 3: Example of temporal mismatch where a
model-generated answer is penalized for being more
up-to-date than the reference

metric answer: approximately 10 million or more.393

Due to the dataset’s reliance on fixed parametric394

targets, this correct response is unjustly penalized395

in automated evaluations. Approximately 4% of396

the generations were found to be factually superior397

to the dataset references, particularly in temporally398

sensitive questions such as population figures or po-399

litical terms. While this percentage may vary across400

other subsets, the findings underline a key limita-401

tion: static parametric references can fail to reward402

accurate model behavior, especially when LLMs403

draw upon up-to-date parametric knowledge.404

II) Solution Variation (Multiple Valid An-405

swers): Figure 4 illustrates a case where the model406

predicts 23.5°, while the dataset target is 66.5°.407

Both values are scientifically correct as they repre-408

sent complementary angles of the Earth’s axial tilt.409

However, since the evaluator models compare each410

answer against a single reference from the dataset’s411

answer, they tend to assign a lower score due to412

the absence of lexical or numerical overlap. Im-413

portantly, in such cases there is no inherent “right”414

or “wrong” between the model-generated answer415

and the dataset’s reference; both are valid solutions.416

As LLM-based evaluators rely heavily on textual417

similarity unless they are explicitly prompted to418

account for semantic equivalence. Around 7% of419

the randomly selected 200 inputs exhibited such420

cases, where multiple valid answers were unfairly421

penalized because the evaluation relied on a single422

static reference. This percentage is likely to vary423

across different data segments, depending on the424

diversity of valid solutions.425

Figure 4: Example showing multiple valid answers
due to variations in model interpretation and reference
grounding.

5 Conclusion 426

We presented BanglaCQA, the first counterfactual 427

question answering dataset for Bangla, designed 428

to disentangle parametric and contextual knowl- 429

edge in large language models. By extending the 430

BanglaRQA dataset with controlled counterfac- 431

tual contexts, we created a benchmark that enables 432

fine-grained evaluation of how models rely on pre- 433

encoded knowledge versus contextual information. 434

Our experiments with encoder-decoder models and 435

decoder-only LLMs show that Chain-of-Thought 436

prompting substantially improves parametric simi- 437

larity in both factual and counterfactual scenarios, 438

with Qwen-2.5 achieving the best overall perfor- 439

mance. These findings highlight the importance 440

of prompting strategies for enhancing parametric 441

reasoning in low-resource settings. BanglaCQA 442

lays the groundwork for future research on robust 443

QA systems in under-resourced languages and mo- 444

tivates the development of multi-reference and tem- 445

porally adaptive evaluation frameworks to better 446

reflect real-world knowledge dynamics. 447

Limitations 448

While our work contributes a novel dataset and eval- 449

uation framework, it has several limitations. First, 450

evaluation relied on a single reference answer per 451

instance, which may penalize semantically correct 452

but lexically different outputs. Future work should 453

investigate multi-reference evaluation or human-in- 454

the-loop scoring to better capture valid answer vari- 455

ations. Second, our dataset includes time-sensitive 456

entities such as population or political terms, yet 457
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the reference answers are static. Models producing458

up-to-date information may still be unfairly penal-459

ized, highlighting the need for temporally adaptive460

references. Third, experiments with decoder-only461

LLMs were conducted using quantized weights462

for resource efficiency; results may differ for full-463

precision inference. Finally, our analysis focused464

on few-shot and Chain-of-Thought prompting, but465

further exploration of other prompting strategies466

and fine-tuned reasoning templates could provide467

additional gains in parametric reasoning.468

Ethics Statement469

This study followed ethical guidelines for dataset470

creation, annotation and evaluation. The ini-471

tial version of the dataset was generated through472

Named Entity Recognition (NER)-based substitu-473

tion. Specifically, entities labeled as Person, Loca-474

tion, and Organization were replaced with alterna-475

tive synthetic but semantically appropriate names476

within the same category to construct counterfac-477

tual contexts. After this automated process, one478

of the authors manually reviewed all altered rows.479

If any question-answer pair exhibited semantically480

problematic or implausible meanings due to the481

substitutions, the author revised or discarded the482

example to maintain contextual integrity. Subse-483

quently, a second author independently reviewed484

the dataset, providing feedback on the initial re-485

visions. Based on their mutual discussions and486

careful iterative refinement, the final dataset was487

curated to uphold high standards for counterfactual488

question answering (CQA).489

For evaluation, two independent annotators, na-490

tive bengali, who were not involved in dataset cre-491

ation, reviewed a representative subset of model492

outputs for semantic correctness. Annotators were493

fairly compensated (26 USD), and no personal494

or sensitive information was used throughout the495

study. The dataset contains no personally identifi-496

able information, and all entity substitutions were497

synthetic. Large language models (Gemini-2.0-498

Flash and ChatGPT-4.1) were used strictly for eval-499

uation purposes, with outputs manually verified to500

ensure correctness and safety. Our work adheres to501

ACL’s ethical standards for responsible dataset con-502

struction, human annotation, and the deployment503
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A Appendix 795

A.1 Details of AC0/TC0 796

AC0 (Alternating Circuit of depth 0): Refers to a 797

class of constant-depth, polynomial-size Boolean 798

circuits with unbounded fan-in AND, OR, and NOT 799

gates. AC0 circuits cannot compute certain func- 800

tions such as parity or majority. 801
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TC0 (Threshold Circuits): Similar to AC0, but802

includes majority (threshold) gates, which are more803

powerful. These circuits are still constant-depth804

and polynomial-size, and are slightly more pow-805

erful than AC0, but remain limited in expressive806

power.807

Few-shot prompting lacks intermediate reason-808

ing steps, so LLMs behave like AC0/TC0 circuits,809

i.e., they are limited in reasoning power and cannot810

solve complex, sequential tasks (e.g., multi-step811

logic or arithmetic). In contrast, Chain-of-Thought812

(CoT) prompting introduces intermediate reason-813

ing, increasing the model’s effective computational814

depth. This allows it to simulate more powerful815

circuits and perform more complex reasoning tasks,816

thereby escaping AC0/TC0-like limitations.817

A.2 Annotator Information818

Annotation Guidelines for Parametric and819

Contextual Answers820

Two independent annotators participated in validat-821

ing the dataset. Both were fairly compensated for822

their effort. The annotators are students from dif-823

ferent universities and represent diverse academic824

backgrounds: one majoring in a STEM discipline825

and the other in a non-STEM field. Despite these826

differences, both are actively involved in research827

aligned with their respective domains. Notably,828

neither annotator is an author of this paper. In addi-829

tion to the external annotators, two of the paper’s830

authors also contributed to the validation process.831

Each annotator was provided with the following de-832

tailed instructions to ensure consistency and high-833

quality validation across all examples.834

Objective. Each example in the dataset includes:835

• A question836

• A context paragraph837

• Two types of answers:838

– Parametric Answer – A fact-based an-839

swer that reflects general world knowl-840

edge.841

– Contextual Answer – An answer de-842

rived specifically from the given context.843

Annotators must independently label the correct-844

ness of each answer using one of three categories:845

Valid, Invalid, or Confused.846

Figure 5: Details of annotator instructor mail.

Instructions. 847

1. Carefully read the context, question, and both 848

answers. 849

2. For the Parametric Answer: 850

• Ask: “Is this factually correct regardless 851

of the context?” 852

3. For the Contextual Answer: 853

• Ask: “Is this answer supported and infer- 854

able from the context?” 855

4. Label each answer independently as: 856

• Valid – Answer is correct as per the cri- 857

teria. 858

• Invalid – Answer is incorrect or irrele- 859

vant. 860

• Confused – Answer is hard to evaluate 861

due to ambiguity in question or context. 862
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Additional Notes.863

• Base your judgment only on the content pro-864

vided (context, question, answers).865

• Do not use external knowledge to validate the866

contextual answer.867

• If unsure, select Confused and move on, do868

not guess.869

• Apply labels consistently across all examples.870

Ethical Reminder. Annotators are expected to871

maintain confidentiality and follow ethical stan-872

dards throughout the validation process. Your care-873

ful effort contributes to building a reliable and fair874

evaluation dataset.875

Moreover, Each example in the dataset was anno-876

tated by all four reviewers, and the inter-annotator877

agreement was measured using Cohen’s Kappa878

score. The results of the vote distribution and agree-879

ment analysis are shown below.880

Vote Pattern Analysis:881

• Unanimous (4-0-0): 5960 rows (94.6%)882

• Strong Majority (3-1-0): 309 rows (4.9%)883

• Weak Majority (2-2-0): 13 rows (0.2%)884

• Mixed (2-1-1): 21 rows (0.3%)885

• Other: 0 rows (0.0%)886

Dataset Summary:887

• Total rows: 6,303888

• Each row was annotated by 4 reviewers889

• Each row contains a vote for one of the fol-890

lowing categories: Valid, Invalid, or Confused891

• All vote counts per row sums to 4892

Metric Achieved
Cohen’s Kappa Score 0.7212

Table 8: Inter-annotator agreement for the dataset.

A.3 System and User Prompts893

Figure 6: The system prompt that defines task objectives,
answer types, and response structure, guiding the model
to differentiate between responses based on knowledge
versus context for COT technique

Figure 7: An example user prompt showing how a Ben-
gali context and question are provided to the model for
generating structured answers for COT technique
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Figure 8: Output output of QwQ-2.5-32B, displaying
the full reasoning process along with the final answers,
produced according to the prompt format.

Figure 9: The system prompt that defines task objectives,
answer types, and response structure, guiding the model
to differentiate between responses based on knowledge
versus context for few-shot technique.

Figure 10: An example of user prompt showing how a
Bengali context and question are provided to the model
for generating structured answers in few-shot technique
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