

GPT-NAS: Neural Architecture Search Meets Generative
Pre-Trained Transformer Model

Caiyang Yu, Xianggen Liu, Yifan Wang, Yun Liu, Wentao Feng,
Xiong Deng, Chenwei Tang*, and Jiancheng Lv*

Abstract: The pursuit of optimal neural network architectures is foundational to the progression of Neural

Architecture Search (NAS). However, the existing NAS methods suffer from the following problem using

traditional search strategies, i.e., when facing a large and complex search space, it is difficult to mine more

effective architectures within a reasonable time, resulting in inferior search results. This research introduces the

Generative Pre-trained Transformer NAS (GPT-NAS), an innovative approach designed to overcome the

limitations which are inherent in traditional NAS strategies. This approach improves search efficiency and

obtains better architectures by integrating GPT model into the search process. Specifically, we design a

reconstruction strategy that utilizes the trained GPT to reorganize the architectures obtained from the search. In

addition, to equip the GPT model with the design capabilities of neural architecture, we propose the use of the

GPT model for training on a neural architecture dataset. For each architecture, the structural information of its

previous layers is utilized to predict the next layer of structure, iteratively traversing the entire architecture. In

this way, the GPT model can efficiently learn the key features required for neural architectures. Extensive

experimental validation shows that our GPT-NAS approach beats both manually constructed neural

architectures and automatically generated architectures by NAS. In addition, we validate the superiority of

introducing the GPT model in several ways, and find that the accuracy of the neural architecture on the image

dataset obtained from the search after introducing the GPT model is improved by up to about 9%.

Key words: Neural Architecture Search (NAS); Generative Pre-trained Transformer (GPT) model; evolutionary

algorithm; image classification

1　Introduction

In recent years, Deep Neural Networks (DNNs) have
shown impressive fitting power in various tasks,
ranging across computer vision[1], natural language

processing[2], etc. In addition, they have been widely
used in different industries, such as medicine[3–7] and
industry[8]. More recently, the emergence of large
models[9, 10] has provided an extremely effective path
to solving all kinds of tasks. However, the training of

 Caiyang Yu, Xianggen Liu, Yifan Wang, Yun Liu, Wentao Feng, Chenwei Tang, and Jiancheng Lv are with College of Computer
Science, and Engineering Research Center of Machine Learning and Industry Intelligence (affiliated to the Ministry of Education),
Sichuan University, Chengdu 610065, China. E-mail: yucy@scu.edu.cn; liuxianggen@scu.edu.cn; wangyifan5217@scu.edu.cn;
yliu@scu.edu.cn; Wtfeng2021@scu.edu.cn; tangchenwei@scu.edu.cn; lvjiancheng@scu.edu.cn.

 Xiong Deng is with Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA. E-mail:
dxiong@stevens.edu.

* To whom correspondence should be addressed.
 Manuscript received: 2024-02-29; revised: 2024-04-18; accepted: 2024-05-20

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 04/14 pp45−64
DOI: 10.26599/BDMA.2024.9020036
Volume 8, Number 1, February 2025

© The author(s) 2025. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

large models is extremely resource intensive, and in
addition, large models are not suitable for use on some
lightweight devices. Therefore, some small models are
still extremely necessary. In Deep Learning (DL), it is
widely accepted that neural networks with individual
architectures present different inductive biases.
Although multiple advanced architectures have been
designed, the intrinsic principles of the architectural
building remain unclear. As a result, researchers
usually spend a large time manually seeking the neural
architectures that are suitable to the given tasks.

To accelerate the designing process and improve the
quality of the neural architectures, Neural Architecture
Search (NAS)[11] has emerged as one of the effective
methods to design the optimal neural network
architecture automatically. The main advantage of
NAS lies in its ability to automate the tedious and time-
consuming process of designing neural architectures.
Additionally, NAS can improve the quality of neural
architectures by leveraging search strategies to find
architectures that achieve better performance than
human-designed architectures.

Currently, based on different optimization
techniques, the mainstream NAS search strategies
include Reinforcement Learning (RL)[12, 13],
Evolutionary Algorithm (EA)[14], and Gradient
Optimization (GO)[15]. Algorithms, such as NAS-
RL[12], MetaQNN[13], and Block-QNN-S[16], all belong
to the first category. For different RL methods, the key
lies in how to design the agent’s policy and the
corresponding optimization process[17]. For example,
Zoph and Le[12] used the RNN policy to select the basic
information and form the architecture, while the
proximal policy is used for optimization in subsequent
work[18]. Secondly, the EA-based NAS (EA-NAS)
searches for the optimal architecture mainly by the
properties of the algorithm. For example, in Ref. [19],
the Genetic Algorithm (GA) is used as the optimization
strategy to complete the algorithm search process,
while in Ref. [20], the genetic programming strategy is
adopted. Finally, GO-based NAS is a category of
algorithms that do not rely on any strategy. It mainly
implements search in a continuous search space[15].

However, with the rapid growth of the NAS space,
the limitations of traditional search strategies are
becoming increasingly apparent, especially in the
context of an expanding search space. Firstly the
explosive growth in the number of architectures

increases the difficulty of searching with traditional
strategies, e.g., the diversity of network structures and
connections can easily construct millions of
architectures in the search space, which poses a greater
challenge to the efficiency of traditional strategies.
Secondly, traditional search strategies are carried out in
isolation, and the efficiency of the search only relies on
the optimization ability of the strategy itself, which has
a great limitation in the search perspective, and it is
difficult to consider the search problem from multiple
perspectives or a global perspective.

As a result, several improvement efforts have been
generated to optimize the search strategy. For example,
in Ref. [21], Zhang et al. proposed an adaptive scalable
NAS method based on the reinforced I-Ching
divination evolutionary algorithm and a variable-
architecture encoding strategy. It simplifies the
reinforcement learning algorithm and enhances the
search efficiency of evolutionary algorithms,
addressing the nonconvexity problem in NAS. In
addition, Maziarz et al.[22] proposed evolutionary-
neural hybrid agents to blend deep reinforcement
learning with evolutionary algorithms for improved
NAS. This method outperforms both neural and
evolutionary agents in terms of accuracy and search
cost. However, the method described above combining
different search strategies suffers from the following
problems.

(1) Complexity and overfitting. The integration of
multiple strategies often results in increased
complexity, which can lead to models that are highly
specialized to the training data, risking overfitting and
reduced generalizability.

(2) Integration challenges. Effectively combining
different strategies requires careful balance and tuning.
There’s a risk of one strategy overpowering another,
leading to suboptimal outcomes.

To this end, we propose a novel approach, called
GPT-NAS, by introducing the Generative Pre-trained
Transformer (GPT) model in NAS to improve search
efficiency. This simplifies the process and eliminates
the complexity associated with integrating multiple
policies. Additionally, it can compensate for the
limitations of existing strategies instead of competing
with them. Without disturbing the search process of the
original search strategy, we use the GPT model to
reconstruct each architecture obtained from the search.
Specifically, the layer structures in the architecture are

 46 Big Data Mining and Analytics, February 2025, 8(1): 45−64

randomly masked and the GPT model is utilized to
regenerate the masked layers based on the contextual
information in the architecture. However, the use of
regular GPT models suffers from two challenges: (1)
the inability to directly recognize neural architectures;
(2) the lack of specialized neural architecture design
capabilities. To address the above challenges, we first
introduce an encoding strategy to map the neural
architecture into a textual representation to facilitate
the recognition of the GPT model. For the latter, the
GPT model is allowed to be trained on the neural
architecture datasets, so that it can effectively learn
techniques and principles for designing superior neural
architectures.

We evaluate our model on the CIFAR-10, CIFAR-
100[23], and ImageNet-1K[24]. Experimental results
show that GPT-NAS can demonstrate excellent
accuracy on three datasets. Further analysis shows that
after introducing the GPT model, the architecture
accuracy obtained through search can be improved by
up to 9%, and the search efficiency can be significantly
improved. This proves that the introduction of the GPT
model compensates for the insufficient search
performance of traditional search strategies. The
contributions of this article are presented as follows.

(1) For the first time, we propose a new NAS
algorithm, called GPT-NAS, which utilizes the GPT
model to optimize the neural architecture obtained
from the search, compensating for the inadequate
search efficiency of the search strategy.

(2) GPT-NAS allows GPT models to be trained on a
neural architecture dataset to learn the principles of
superior neural architecture design, enabling the
reconstruction of neural architectures.

(3) Extensive experiments have proven that GPT-
NAS demonstrates state-of-the-art experimental results
on three datasets. Furthermore, we demonstrate that the
introduced GPT model improves the efficiency of
traditional search.

2　Related Work

In this section, we aim to describe two key areas
relevant to this study, i.e., NAS and GPT models.

2.1　NAS

NAS is a subfield of machine learning that focuses on
automating the design of neural network architectures.
It involves three key components: a search space that
defines the potential architectures, a search strategy to

explore this space, and a performance estimation
strategy to evaluate the architectures. NAS aims to
discover optimal network structures for specific tasks,
reducing the need for manual design and expertise. In
Section 1, we have introduced the search strategy, and
below we will discuss the search space in detail.

The search space in NAS is a critical aspect that
defines the range of architectures that can be explored.
It typically includes layer-based, block-based, and cell-
based search spaces, each catering to different levels of
architectural granularity. Layer-based search space
focuses on the individual layers of a neural network
and the type, size, and connectivity are variables in the
search. This search space is the simplest and is one of
the most commonly used methods in the early days of
NAS[12]. Block-based search space is defined in terms
of blocks, which are larger structures than individual
layers. Each block can contain multiple layers with
predefined connections. For example, Lu et al.[25]

utilized a conformer-based search space for multi-task
audio separation, where the search involves varying the
number of blocks, heads, and channels to optimize the
architecture. Cell-based search space is a more granular
approach, where the architecture in search space
consists of cells, which are small network, sub-
structures. Cells are repeated to form the final
architecture. Pouy et al.[26] proposed a cell-based
hierarchical search space, aiming to optimize search
time and handle a wide range of state-of-the-art
Convolutional Neural Network (CNN) architectures.
Another study by Jin et al.[27] introduces a dual
attention mechanism in the cell-based search space,
enhancing the interrelationships between layers within
the architecture. Each of these search spaces offers
different levels of flexibility and complexity,
influencing the efficiency and effectiveness of the NAS
process.

2.2　GPT

The advent of GPT has revolutionized various fields by
providing advanced natural language processing
capabilities. The applications of GPT models are
diverse and continually expanding, as they offer
significant improvements in understanding, generating,
and interacting with human language. In the medical
field, GPT-4 has exceeded expectations in competency
examinations, indicating its potential in medical
education and practice[28]. In genomics, GPT models,
like GeneTuring, have been employed to reduce AI

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 47

hallucinations, improving accuracy in genomic data
analysis[29]. Furthermore, in data science and
education, GPT models facilitate model selection and
personalized learning, separately, transforming these
fields with AI-driven solutions[30]. In addition, the
application of GPT to neural networks has been
extensively studied. One notable example is the GPT-
GNN framework, which leverages GPT for the pre-
training of Graph Neural Networks (GNNs),
demonstrating significant improvements in modelling
graph-structured data[31]. Zheng et al.[32] explored the
ability of GPT-4 to conduct NAS through an approach
named GENIUS, which uses GPT-4’s generative
capabilities to navigate the architecture search space
efficiently. Additionally, the integration of GPT-4 in
Graph Neural Architecture Search (GNAS) showcases
the model’s capability to automate and refine the
process of designing graph neural networks, leading to
more accurate and efficient architectures[33]. However,
all of the above approaches use the inherent
capabilities of GPT to optimize the architecture, and do
not make the GPT model train on the neural
architecture dataset, while learning and understanding
the architecture. This study addresses this issue and
proposes to train the GPT model using neural
architecture as a dataset to assist NAS.

3　Proposed Method

In this section, we describe our proposed method in
detail. First, the overview of the algorithm is given in
Section 3.1. Then, in the subsequent sections, we will
describe the encoding approach of the neural
architecture (Section 3.2), the pre-training and fine-
tuning methods of the GPT model (Section 3.3), and
an introduction to the overall NAS framework
(Section 3.4).

3.1　Algorithm overview

To compensate for the limitations of traditional search
strategies in the face of a large and complex search
space, we propose the framework GPT-NAS, which
uses the GPT model to optimize the NAS algorithm. It
is widely accepted that the pre-trained GPT model is
extremely gifted at predicting text, and this study takes
advantage of it. By training GPT models on neural
architecture datasets, the goal is to learn the principles
of neural architecture design and transfer them to
specific tasks. Specifically, we divide the content of the
framework into three procedures, i.e., neural

architecture encoding, pre-training and fine-tuning the
GPT model, and neural architecture search.

Neural architecture encoding. In order for the GPT
model to recognize neural architectures, it is necessary
to encode them. The encoding strategy translates the
neural architecture into the form of characters, where
each character corresponds to a specific operation in
the architecture, such as a convolutional layer, a fully
connected layer, etc.

Pre-Training and fine-tuning the GPT model. Pre-
training and fine-tuning are two critical procedures for
developing high-performance GPT models. Let the
GPT model be pre-trained on a neural architecture
dataset to equip it with the design capabilities of
superior neural architectures and fine-tuned on specific
tasks.

Neural architecture search. The neural architecture
search procedure consists of two parts, namely
architecture search and reconstruction. For the former,
the architectures are sampled, trained, and evaluated
using GA as the search strategy. For the latter, the
sampled architectures are reorganized using GPT. Note
that GA is used as the search strategy in this paper,
but other search strategies can also be used, such as
RL, EA, etc. While the GPT model is used to assist
the search process, it does not affect the original
search strategy.

The core of the GPT-NAS framework, consisting of
the three producers described above, lies in the
optimization of the architecture obtained from the
search using the GPT model. Through continuous
iteration, the optimal architecture is found. In addition,
during the training of the neural architecture, we
propose a strategy to accelerate the training process
and reduce the training time.

3.2　Neural architecture encoding

Effective encoding of neural architectures facilitates
fast recognition of architectures by GPT models. As a
result, designing a general encoding strategy to
accommodate the CNN architecture is necessary.

Inspired by Ref. [34], we divide the structures that
make up the CNN architecture into four categories:
convolutional layer, pooling layer, Fully Connected
(FC) layer, and other layers. Among them, the first
three structures are necessary for almost all CNN
architectures, and the last one is used to represent all
the remaining structures not included in the first three,
such as the activation function.

 48 Big Data Mining and Analytics, February 2025, 8(1): 45−64

(1) Convolutional layer: The convolutional layer is
the most fundamental and vital structure in CNNs. In
convolutional operations, the core technology is the use
of convolutional kernels (filters), which aim to extract
features from the input image. The convolution kernel
is a two-dimensional matrix (height and width) and the
parameters can be learned. In addition, the convolution
kernel slides in the horizontal and vertical directions of
the original image according to the “stride”. In general,
regardless of the value of “stride” (when the size of the
convolution kernel is not 1), the newly obtained feature
map will certainly be smaller than the size of the
original image, and this is also not conducive to the
edge information of the image to work (because the
convolution kernel will compute the central region of
the image several times, while the edge region is
relatively less). Therefore, the surrounding “padding”
of the image is needed to solve the above problem.
Commonly, the convolution kernel convolves on each
channel of the input feature map, which is a channel-
dense connection. In contrast, there is a channel sparse
connection, which groups the input feature map
channels and convolves each group separately. This
process is called “groups” and has the advantage of
effectively reducing the number of parameters. In most
cases, the convolutional kernel size needs to be
enlarged if the respective field of a larger feature map
is desired. However, the consequent drawback is that
the number of parameters increases, so “dilation”
appears, which is an operation that injects space into
the standard convolution kernel. In conclusion, the
properties of the convolution layer are input size,
output size, convolution kernel size, stride size, the
number and value of padding, the space size of the
kernel, the number of groups for the channels in the
input feature map, and whether to use bias term.

(2) Pooling layer: The properties of the pooling
layer are very similar to those of the convolutional
layer, except that the following details need to be
changed. First, the pooling layer contains two types,
i.e., max pooling (MAX) and average pooling (AVG),
so the property “type” needs to be introduced to
indicate which type is chosen. Second, the purpose of
pooling is to reduce the size of the feature map, but this
process has no parameters to learn, so there is no need
for property “groups” to reduce the number of
parameters. Third, as we all know, the purpose of
“padding” is to expand the values in all four directions

of the feature map, so not only the values but also the
quantities need to be defined. However, in the pooling
layer, the value of “padding” is not set manually but
the default value of 0. If not, it will affect the selection
of feature values and make the final result biased. In
summary, compared with the convolutional layer, the
property “groups” is removed and a new property
“type” is added, so the pooling layer still maintains ten
properties.

(3) Fully-connected layer: Compared to the above
two structures of the network, the fully layer is
straightforward to express. The fully-connected layer
has only two properties, i.e., “in_size” and “out_size”.
In many neural architectures for vision-related tasks, a
fully layer is necessary, such as in image classification
tasks, where the final result is output for classification
only through a fully-connected layer. Therefore, the
structure is simple but essential.

(4) Other layers: In the CNN architecture, there are
many structures with different functions, such as
activation function, Batch Normalization (BN) , etc.
These structures play the role of catalysts in the CNN
architecture and enhance the performance of the neural
architecture. Therefore, in this part, all relevant
structures will be described. The common properties of
these structures are the “name”, “in_size”, “out_size”,
and “value”. Among them, “value” denotes the relevant
parameter involved in the corresponding structure.

As shown above, we have described the properties of
different structures in CNN. In our methodology,
encoding the CNN architecture into a textual format is
a crucial step that facilitates the integration of neural
networks with the GPT model. The coding process
converts the architectural specifications of each layer
into a structured string format, allowing for efficient
processing by the GPT model. As detailed in Table 1,
the unique properties of each layer, such as identifier,
type, and dimensionality, are systematically
transformed into a delimited text string that
encapsulates the layer’s configuration. For example,
the first layer of network architecture in Fig. 1, a
convolutional layer, is encoded as follows:
“id:1;in_size:32-32-3;out_size:32-32-3;kernel:1-1;stride:
1-1;padding:0-0-0-0;dilation:1;groups:1;bias_used:
No”. This encoding string begins with a unique
identifier (id:1), followed by input and output sizes
(in_size and out_size), kernel size (kernel), and other
relevant parameters such as stride, padding, dilation,

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 49

groups, and whether a bias is used. By employing
semicolons to delimit properties and hyphens to specify
dimensions or parameter values, we create a
standardized format that the GPT model can readily
interpret and use for further processing tasks such as
architecture reconstruction and optimization. In
addition, the encoding for a max pooling layer is
similarly structured but includes its specific
parameters, such as the pooling type and the relevant
kernel and stride sizes, reflecting its purpose and
design within the overall architecture. The encoded
string ‘id:2;type:Max;in_size:32-32-3; out_size:16-16-
3; kernel:2-2; stride:2-2; padding:1-0-1-0; dilation:1;
bias_used:No’ details a max pooling layer designed to
reduce the spatial dimensions of the preceding
convolutional layer’s output. By precisely encoding
each layer, we can capture the intricate details that
define the structure and behaviour of a CNN. This
meticulous process not only standardizes the

representation of neural architectures, but also paves
the way for the use of GPT models to analyze,
optimize, and ultimately generate neural architecture
designs that are both innovative and effective for a
variety of tasks.

3.3　Pre-training and fine-tuning the GPT model

Providing the ability to design neural architectures for
GPT models is at the heart of this research. Therefore,
pre-training and fine-tuning the GPT model using the
neural architecture as training data can effectively
achieve what is needed in this paper.

The pre-training phase of a GPT model requires
training on a large amount of data to learn the
parameter distribution, followed by a fine-tuning phase
to suit various tasks. As a result, the mainstream
approach will use unsupervised learning for maximum
likelihood estimation in the first phase and use
supervised learning to optimize the model using a

Table 1 Properties of different layers in CNN.
No. Name Conv Pooling FC Others Remark
1 id ✓ ✓ ✓ ✓ An identifier with an integer value
2 type – ✓ – – A string value
3 name – – – ✓ A string value
4 in_size ✓ ✓ ✓ ✓ Input size of a three-element integer tuple
5 out_size ✓ ✓ ✓ ✓ Output size of a three-element integer tuple
6 kernel ✓ ✓ – – A two-element integer tuple
7 stride ✓ ✓ – – A two-element integer tuple
8 padding ✓ ✓ – – A four-element integer tuple
9 dilation ✓ ✓ – – An integer
10 groups ✓ – – – An integer
11 value – – – ✓ A tuple
12 bias_used ✓ ✓ – – A boolean number

id:1;in_size:32-32-3;out_size:32-32-3;kernel:1-1;stride:1-1;padding:0-0-0-0;dilation:1;groups:1;bias used:No

[id
:1

]
C

on
vo

lu
tio

n
la

ye
r

[id
:3

]
C

on
vo

lu
tio

n
la

ye
r

[id
:4

]
Ba

tc
h

no
rm

al
iz

at
io

n

[id
:5

]
Ad

di
tio

n

[id
:6

]
Fu

lly
-c

on
ne

ct
ed

 la
ye

r

[id
:2

]
Po

ol
in

g
la

ye
r

id:2;type:Max;in_size:32-32-3;out_size:16-16-3;kernel:2-2;stride:2-2;padding:1-0-1-0;dilation:1;bias used:No
id:3;in_size:16-16-3;out_size:8-8-64;kernel:2-2;stride:2-2;padding:0-0-0-0;dilation:1;groups:1;bias used:No
id:4;name:BN;in_size:16-16-3;out_size:16-16-3;value:Null
id:5;name:Addition;in_size:16-16-3;out_size:16-16-3;value:Null
id:6;in_size:768;out_size:10

Fig. 1 Description of the CNN architecture.

 50 Big Data Mining and Analytics, February 2025, 8(1): 45−64

cross-entropy loss function in the second phase.
However, in this study, since both the pre-training and
fine-tuning phases are trained on the neural
architectural dataset and ground truth is presented, it
will be a better choice to use a supervised learning
approach for both phases. The specific implementation
process is shown in Fig. 2.

In line with the previously mentioned, we leverage
the GPT model to predict the next data by the previous
information, i.e., the structural information of the
previous layers to predict the structural information of
the next layer (see Section 3.4 for details). Thus, based
on the given layer structures, we will minimize the
following objective function:
 F =L

(
L̂t, Lt

∣∣∣L<t, C
)
,

C = f (θ, S)
(1)

θ

S

F L L̂t Lt

t
L<t = (Lt−k, Lt−k−1, . . . , Lt−1)

L

where C denotes the neural architectures, is the
parameter used in constituting the neural architecture,

 is the corresponding network layer structures, and
f () denotes the combination strategy. In the objective
function , denotes the loss function, and
denote the predicted layer structure and the true layer
structure obtained at layer , respectively, and

 (k is the size of the data
window). The loss function is defined as the cross-
entropy loss function,

L = − 1
T−k

T∑
t=k+1

N∑
i=1

Lt log (L̂t [i]) (2)

where T denotes the total number of layers in C, N
denotes the number of categories in the layer structure,

L̂t [i]

L̂t

and denotes the probability of the i-th category in
the predicted layer structure .

3.4　NAS

Based on the obtained GPT model, in this section, we
will describe in detail how to effectively combine the
GPT model with NAS to improve the optimization
efficiency. The procedure of neural architecture search
consists of two main parts, i.e., network architecture
search and architecture reconstruction, and Fig. 3
shows the flowchart.

(1) NAS: In the first part, we implement the search of
neural architectures with the GA as the search strategy.
Specifically, multiple individuals are initialized
randomly, and each individual is represented as a
neural architecture. Then, each neural architecture is
reconstructed and the performance of the reconstructed
architecture is evaluated. After that, during the iterative
process, the GA is used to perform evolutionary
operations on individuals, including crossover,
mutation, and selection strategies to facilitate the
acquisition of better-performance individuals and form
a new population. In more concrete terms, for the
crossover operation, two individuals are randomly
selected from the population as parents, and the
offspring is obtained by exchanging the information of
the two individuals. For the mutation operation, the
information of the individual is randomly changed to
obtain a new individual (both operations are detailed in
Ref. [35]). Note that the new architectures obtained
after the evolution operation in each iteration still
need to be reconstructed and evaluated. Finally, the
optimal individual will be obtained after reaching the

......

...

...

...

...

...

...

...

...

...

...

Fine-tuned

Task-specific
datasets

Pre-training

Large-scale
datasets

GPT

L4

Input

Output

GPT

L6

GPT

①

②

③

Initial architecture

Masked architecture

Optimized architecture

Masked layer

Predicted layer

Existing layer

Encoding

Neural architecture encoding

Neural
architecture

id:3;in_size:8-8-3;…;bias used:No

...

Layer information

L1

L1

L1

L2

L2

L2 L3

L1 L2 L3

L1 L2 L3

L4 L5

L3 L4

L4

L5

L5 L6

L6

L1 L2 L3 L4 L5 L6 L7 L8 L9 Lt

LtLt−1

Lt−1

Lt−1Lt−2Lt−3 Lt

Lt−2Lt−3

Lt−4 Lt−3 Lt−2

L3

L3

Lt

Lt

id:1;in_size:16-16-3;…;bias used:No

id:t;in_size:768;out_size:10

id:2;type:Max;…;bias used:No

En
co

de
d

ar
ch

ite
ct

ur
e

...

Fig. 2 Pre-training and fine-tuning process for the GPT models. The pre-training and fine-tuning phases are the same
process, with the difference being that the neural architectures are obtained from different datasets. The graph depicts how the
network architecture is integrated with the GPT model during the pre-training and fine-tuning phases. Specifically, for the
masked network architectures, k layers are input, and then the next layer is predicted by the GPT model, and this operation is
repeated until all masked layers are filled.

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 51

maximum number of iterations.
(2) Architecture reconstruction: In the second part,

we will describe how the GPT model can be used to
optimize the architecture obtained from the search.
Note that to reduce the cost and complexity of the
reconstruction, we will build the neural architecture
based on blocks rather than layers. Specifically, we
start choosing one or more layer structures. Then, the
GPT model comes into play and predicts a new layer
structure to replace the masked layer using the pre-
existing structure information as a reference. In the
following, we use a neural architecture as an example
to illustrate the process of reconstruction. As shown at
the bottom half of Fig. 3, randomly selecting a layer for
masking (assuming the layer is in the third block), and
then the fine-tuned GPT model is used to predict the
layer structure based on the layers in first and second
blocks (including layer and location information).
However, since the composition of the neural
architecture is based on blocks and the predictions
obtained by the GPT model are the layer, we introduce
a Fully Connected Network (FCN) to select the fittest
blocks according to the layers and replace the third
block. Specifically, a new layer obtained through the

GPT model is integrated with the previous layers. This
combined set of layers is input into the FCN to obtain
the corresponding block structure. Note that we treat
the process as a classification process, treating different
blocks as different categories. The details can be seen
in the Algorithm 1.

In summary, the neural architecture obtained from
each iteration is optimized using the GPT model, and
performance improvement is achieved by changing its
structure. In this case, we propose the concept of mask
rate to determine, whether a layer of the neural
architecture is selected and whether the corresponding
block is masked. However, according to the law of GA,
the quality of the offspring population will be better
than that of the parent population. Therefore, as the
iteration proceeds, the mask rate of the structures will
be linearly decreasing. The mask rate at the t-th
iteration is as follows:

ratet = rateori−
itert

itermax
× rateori (3)

rateori itert

itermax

where indicates the initialized mask rate,
and denote the t-th iteration and the number of
iterations, respectively.

Predictive model (GPT)

1 2 3 4 5 6

1
2

3
4

5 6

1
2

3
4

5 6

1

3 1
2

4
5 6

3

2

Optimal
architecture

… Crossover

Mutation

Genetic operation

NAS

Evolution

Reconstruction

CLS

CLS

SEP
SEP

···
···

···
···Layer position

SEPCLS L1

L1

P1

Ln

Ln

Pn

Ln+1

Ln+1

Pn+1

Lm

Lm

Pm

Lp··· ···

Mask layer

Reconstruction

Encoding

Fig. 3 Flowchart of neural architecture search. We divide this procedure into two parts, i.e., search and reconstruction. The
former is a generalized neural architecture search method using GA as the search strategy. The latter is a reorganization of the
structure of the neural architecture by the GPT model (where Pi (i=1, 2, ..., m) denotes the layer position).

 52 Big Data Mining and Analytics, February 2025, 8(1): 45−64

3.5　Acceleration strategy

One of the criticisms of NAS development has been the
time-consuming problem. In a recent study, Ref. [36]
proposes that the performance of neural architectures
can be evaluated without training. However, the
method suffers from assumptions and does not
guarantee that the final results are the same as the real
ones. Therefore, an adequate search for each
architecture remains the dominant approach. In this
study, we introduce a new acceleration strategy to
reduce the time cost of the GPT-NAS, as shown below.

Only the structures obtained from the prediction
are trained. Training the entire neural architecture is
time-consuming, but it is more efficient if only the
reconstructed structures of the architecture are trained.
To speed up the training while ensuring that the
performance of the neural architecture is not lost, we
assume that the layer structures obtained from the GPT
model predictions are ‘vital’ structures and propose to
train only these structures (confirmed in Section 5.2.2).
And for neural architectures without predicted
structures, inspired by Ref. [37], we will train BN in
the neural architecture. Finally, if both of the above
rules are not satisfied, the overall neural architecture is
trained.

Only a small number of epochs are trained. This
strategy has been covered in some works[18, 38]. While
in this study, a smaller number of epochs will be used.
The rationale for doing so is motivated by warmup[39],
which makes the learning rate increase in fewer epochs
to alleviate the model overfitting phenomenon and
reach an equilibrium state. If the model stabilizes faster

(i.e., the higher accuracy rate achieved) during this
time, it can be considered a better performance of the
model (confirmed in Section 5.2.2).

4　Experimental Design

To verify the effectiveness of the proposed algorithm,
we conduct a series of experiments. Therefore, this
section will present the design of all the elements
involved in the experiments. First, we introduce the
competitive algorithm for comparison with GPT-NAS
(Section 4.1). Then, the datasets used in this
experiment and the hyper-parameters are introduced
(Section 4.2). Finally, we describe the parameter
settings in the experiment (Section 4.3).

4.1　Peer competitors

To verify the effectiveness of the proposed algorithm,
we selected several competitive algorithms for
comparison in our experiments. We divide the selected
peer competitors into two categories, i.e., algorithms
obtained by manual design and those obtained by
automatic search. Specifically, there are seven
manually designed neural network architectures,
namely EfficientNet-B0[40], GoogLeNet[41], RegNet[42],
ResNet-101[39], ResNeXt-101[43], Shufflenet[44], and
Wide-ResNet[45]. These neural architectures are chosen
for two reasons. One is that they are very popular and
representative in the vision domain, and the other is
that the constituent blocks of the neural architecture are
extracted from these architectures, as described in
Section 4.2. In the second category, we choose fifteen
NAS algorithms based on different strategies to verify
the superiority of GPT-NAS.

4.2　Datasets

Since there are two parts of work in this study, i.e., the
implementation of the GPT-NAS and the training of
the GPT model, two types of datasets are required.
Firstly, image datasets are needed for training the
neural architecture, so the three most popular datasets
are used here, namely CIFAR-10, CIFAR-100[23], and
ImageNet-1K[24]. Second, the neural architecture
dataset is required in the training of the GPT model,
especially in the pre-training phase, which requires a
very large amount of data. Therefore, in the pre-
training phase, we use NAS-Bench-101[46], while in the
fine-tuning phase, the required dataset is randomly
taken from the state-of-the-art neural architectures.

CIFAR-10 and CIFAR-100 are the two most popular

Algorithm 1 Structure prediction
Input: Neural architecture with masked structures cnn_mask
Output: Neural architecture with optimization cnn_new

1 for (1 ≤ L ≤ len (cnn_mask)) do
2 if layer is masked then
3 data ← transform Li into textual data (i∈[index–k,

index); //index denotes serial number of lays
4 new_layer ← prediction layer using GPT based on

data;
5 new_block ← prediction block using FCN based on

data and new layer;
6 cnn_new ← cnn_new∪new_block;
7 else
8 cnn_new ← cnn_new∪L;
9 end

10 end
11 return cnn_new

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 53

image classification datasets. Each contains 60 000
images, of which 50 000 are used for training, and 10 000
are used for testing. The difference between the two is
the number of object classes. On CIFAR-10, 5000
images per category are used for training, while on
CIFAR-100, only 500 images are used for training.
Furthermore, ImageNet-1K is a more challenging
dataset than the previous two, which has 1000 object
classes and contains 1 281 167 training images, 50 000
validation images, and 100 000 test images. Since the
image data in the test set do not give the corresponding
label, only the training and validation sets are used in
this experiment. In addition, it should be noted that the
ImageNet-1K is too large to be realistically applied to
NAS, and there is no good method to deal with it
currently. So, we only take 10% of the training images
to search the architecture (the validation set is
consistent with the original data), but for the optimal
architecture obtained from the search, we still use the
whole dataset for training.

NAS-Bench-101 is a dataset of different neural
architectures obtained by changing the structure of a
cell in a fixed framework. Each cell has at most seven
vertices and nine edges, and each neural architecture is
obtained by stacking randomly composed cell
structures. In the dataset, there are 423 624 neural
architectures, and the corresponding performance is
obtained for multiple runs on the CIFAR-10. To make
the GPT model learn better neural architectures in the
pre-training phase, we do not select all the neural
architectures, but those with the classification accuracy
of 90% or more on the validation set from them as the
training data, and the final amount of neural
architectures is 295 889. The dataset in the fine-tuning
phase adopts the most commonly used neural
architectures. In Table 2, we list the seven neural
architectures and the corresponding blocks (the four
blocks listed in the eighth row are those common to the
neural architectures mentioned above). The number
after each neural architecture in the table indicates the
number of variants we can extend, depending on the
properties of that neural architecture, for example,
ResNet has 18 layers, 34 layers, etc. So the total
number of neural architectures is 36. Note that
although the number of neural architectures in the pre-
training phase is 295 889 and the number of neural
architectures in the fine-tuning phase is 36 when we
train the GPT model, the real input data size is much

larger than the number of architectures since the input
data of the GPT model are layers rather than the whole
architecture information. For example, a neural
architecture has 20 layers, and assuming that the
dimension of the input token for the GPT model is 10,
the architecture can generate 10 input data.

4.3　Parameters settings

The parameter settings in the experiment can be
divided into two parts, one for GPT-NAS and the other
for the GPT model. All experiments are performed on
an Ubuntu 18.04 system with a single NVIDIA 3090
GPU with 24 GB of memory, and the code is
implemented in PyTorch. In the following, we describe
in detail the parameters involved in two parts.

In GPT-NAS, the two critical operations are masking
network structures from each neural architecture and
applying the GPT model to predict and refill the
masked network structures. Therefore, we determine
the initial mask rate of network structures to be 0.4 in
advance in this experiment (confirmed in Section
5.2.1). Second, for the depth of neural architectures, we
set the number of blocks in the range[10, 20]. Then, since
GPT-NAS is optimized based on GA, we set the size of
populations to 30, the number of iterations to 20, and
the crossover and mutation rates to 0.7 and 0.5,
respectively. Finally, for the neural architecture
training, we make the following settings for the
parameters in it. Specifically, we set the number of

Table 2 Neural architecture and the corresponding blocks
used in fine-tuning phase.

Number Neural architecture
(Number of variants) Block

1 EfficientNet (8)
ConvNormActivation

SqueezeExcitation

2 GoogleNet (1)
Inception
Avgpool

3 RegNet (14)
ResBottleneckBlock

Stem

4 ResNet (5)
Bottleneck
Basicblock

5 ResNext (2) Bottleneck
6 ShuffleNet (4) InvertedResidual
7 Wide-ResNet (2) Bottleneck

8 Others

Maxpool
BatchNormal

Relu
Conv

 54 Big Data Mining and Analytics, February 2025, 8(1): 45−64

epochs to 6, and use Stochastic Gradient Descent
(SGD)[47] to optimize the parameters, while the
learning rate is linearly incremented to 0.01. In
addition, due to the different image datasets, we set the
batch size differently. On CIFAR-10 or CIFAR-100,
the batch size is 512, while on ImageNet-1K that is
128. When the running is finished, the neural
architecture with optimal accuracy will be obtained and
retrained. On CIFAR-10 and CIFAR-100, the optimal
neural architecture is trained for 350 epochs, and the
learning rate decays to 1/10 of the original rate every
100 epochs starting from 0.01. While on ImageNet-1K,
we only train the optimal architecture for 120 epochs
due to resource constraints and the learning rate decays
every 30 epochs.

For the GPT model, we mostly use the same
parameter settings as in the seminal paper, with a few
differences as shown below. As we all know, the GPT
model largely follows[48] and trains a 12-layer decoder-
only transformer. However, in our experiments, since
the amount of data is not as large as in the task of the
seminal paper, only 4 layers of decoders are trained
and only 4 attention heads are introduced in each
decoder. After collation, 168 different network layer
structures are finally obtained, such as convolution
layer with kernel size 3, convolution layer with kernel
size 5, etc. In addition, we set the input dimension to
10 and the stride to 1. Finally, we train the model for
300 epochs using the Adam optimizer with a learning
rate of 1×10−4 and a batch size of 128.

5　Experimental Result

In this section, we discuss the experimental results in
detail. The analysis of the experiments is divided into
three parts, the first part is the overall performance
comparison of the proposed algorithm with other state-
of-the-art algorithms, the second part is the ablation
experiment, and the third part is an in-depth analysis of
the influence of the GPT model.

5.1　Performance overview

In this section, we describe the results of comparing
GPT-NAS with other algorithms, and the specific
experimental results are shown in Table 3. In the
experiments, GPT-NAS is compared with four
categories of related neural architectures. In addition,
we also list the accuracy of the optimal neural
architecture with and without the GPT model. The

table shows the experimental results of different
algorithms on different datasets. Two points should be
noted here. The first is that there are no GPU days (a
metric used to measure the time cost of NAS-related
algorithms) for the neural architecture obtained by
manual design, and the second is that “−” denotes null
values. In addition, on CIFAR-10 and CIFAR-100,
only Top1 is selected as the final accuracy due to the
small number of categories, while on ImageNet-1K,
both Top1 and Top5 metrics are selected as the final
accuracies. The best results on each dataset have been
marked in bold.

Results description. On CIFAR-10, the neural
architecture obtained by GPT-NAS achieves the best
result among all algorithms, with 97.69%. Compared to
the manually designed neural architecture, GPT-NAS
improves the classification accuracy by up to nearly
9%. Furthermore, the accuracy has increased by 4.12%
compared to the ResNet-101, which is the most famous
architecture today. Moreover, among the remaining
architectures, the accuracy of GPT-NAS is 0.69%
higher than that of EfficientNet-B0, which is the
smallest accuracy difference, and 4.97%, 1.4%, 6.82%,
and 1.86% higher than those of RegNet, ResNeXt-101,
ShuffleNet, and Wide-ResNet, respectively. The better
performance of GPT-NAS over the manually obtained
neural architecture reflects that the neural architecture
composed of different blocks is efficient and also
demonstrates that the neural architecture learns global
information. After comparing with NAS algorithms
based on different strategies, it can be found that GPT-
NAS also has the best performance, which is 4.61%
higher than that of MetaQNN. Moreover, GPT-NAS is
an algorithm based on EA, when compared with five
listed state-of-the-art EA-NAS algorithms, it still
outperforms more than 0.46% of them. Among all the
algorithms involved in the comparison, the GO-based
algorithm has the best average performance, all above
97%, but GPT-NAS still has a slight edge.

On CIFAR-100, GPT-NAS is second only to
EfficientNet-B0 among all algorithms. Compared to
CIFAR-10, CIFAR-100 is significantly more
challenging, with only seven of all the algorithms
involved in the comparison exceeding 80% in
accuracy. Although the accuracy of GPT-NAS is lower
than that of EfficientNet-B0, its advantage is still
undeniable accuracy is compared with other
algorithms. For example, it is about 20% higher than

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 55

that of GoogLeNet. Furthermore, compared with other
EA-NAS algorithms in the same category, GPT-NAS
is the only one with an accuracy of more than 82%. On
the other hand, regarding the number of parameters, the
neural architecture obtained by searching on either
CIFAR-10 or CIFAR-100 is not significantly superior.
However, it is also in the middle to the upper level.

Finally, GPT-NAS outperforms all other algorithms
on ImageNet-1K and is the only algorithm with a
classification accuracy of over 79% on Top1 and over
95% on Top5. Since ImageNet-1K is more difficult to
classify, fewer algorithms are involved in the
comparison, while the classification accuracy does not
differ significantly among algorithms. Except for
GoogLeNet, all other algorithms have accuracies

between 72% and 78% on Top1. Among the manually
designed neural architectures, the optimal one is Wide-
ResNet with an accuracy of 78.1%, which is 0.98%
lower than GPT-NAS, while among the NAS
algorithms, the optimal one is Block-QNN-S, but its
accuracy is also 1.68% lower than that of GPT-NAS.
The only drawback is that the number of neural
architecture parameters obtained by GPT-NAS is
relatively large, only less than that of GeCNN.

In addition, the time complexity (i.e., GPU days)
results of the different algorithms can be observed in
Table 3. First, for our method, there is no change in the
time with and without the GPT. Secondly, the GPU
days of 1.5 for CIFAR-10 and CIFAR-100 are
significantly improved compared to many other

Table 3 Experimental results of the proposed algorithm and the state-of-the-art algorithms on different datasets (the bolded
indicates the optional value).

Search
method Architecture

CIFAR ImageNet-1K
CIFAR-10
Top1 (%)

CIFAR-100
Top1 (%) ×106

Number of
parameters ()GPU days Top1 (%) Top5 (%) ×106

Number of
parameters ()GPU days

Human

EfficientNet-B0 97.00 86.60 5.3 − 77.69 93.53 5.3 −
GoogLeNet 89.23 62.90 6.6 − 69.78 89.53 6.6 −

RegNet 92.72 70.19 31.3 − 76.57 93.07 31.3 −
ResNet-101 93.57 74.84 44.5 − 77.37 93.55 44.5 −

ResNeXt-101 96.29 82.27 18.1 − 77.80 94.30 18.1 −
ShuffleNet 90.87 77.14 3.5 − 73.70 91.09 3.5 −

Wide-ResNet 95.83 79.50 36.5 − 78.10 93.97 68.9 −

RL

NAS-RL 96.35 − 37.4 22 400 − − − −
MetaQNN 93.08 72.86 11.2 100 − − − −

EAS 95.77 − 23.4 10 − − − −
NASNet-A 96.59 − 3.3 2000 74.00 91.60 5.3 2000

Block-QNN-S 96.46 81.94 39.8 96 77.40 93.50 − 96

EA

Large-scale Evo 94.60 77.00 5.4/40.4 2750 − − − −
GeCNN 94.61 74.88 − 17 72.13 90.26 156.0 17
AE-CNN 95.30 77.60 2.0/5.4 27/36 − − − −
GPCNN 94.02 − 1.7 27 − − − −

MOEA-PS 97.23 81.03 3.0/5.8 3/5 73.60 91.50 4.7 −

GO

SNAS 97.17 82.45 2.8 1.5 72.70 90.80 4.3 1.5
P-DARTS 97.33 − 3.5 0.3 75.30 92.50 5.1 0.3
DARTS 97.14 82.46 3.4 0.4 76.20 93.00 4.9 4.5

ISTA-NAS 97.64 − 3.4 2.3 76.00 92.90 5.7 33.6
U-DARTS 97.47 − 3.3 4.0 73.90 91.90 4.9 3
FP-DARTS 97.56 − 3.8 0.04 75.30 91.80 3.8 0.04

Ours

NAS without
GPT 90.77 75.20 4.6/38.1 1.5 69.53 − 104.7 4

NAS with GPT
(GPT-NAS) 97.69 82.81 7.1/10.5 1.5 79.08 95.92 110.9 4

Note: In Columns “Number of pamameters” and “GPU day” under “CIFAR”, one value is for both CIFAR-10 and CIFAR-100, two
values are for CIFAR-10 and CIFAR-100, respectively.

 56 Big Data Mining and Analytics, February 2025, 8(1): 45−64

methods, especially the RL-based and EA-based
methods. On the ImageNet dataset, our method spent 4
GPU days, which is a relatively large improvement
compared to existing methods, but not particularly
advantageous compared to GO-based methods. This is
because most GO-based algorithms use the method of
constructing a supernet, and the subsequent
subnetworks implement the weight sharing, so the time
consumption is significantly reduced, which is different
from training all neural architectures in this paper. The
results reveal the effectiveness of our proposed two
acceleration strategies. Firstly, the choice to evaluate
each architecture for only a small number of epochs,
which, while reducing the time cost of the evaluation,
significantly lowers the computational burden.
Secondly, training on the predicted structures and
freezing the parameters of the other structures further
decline the computational expense.

In the end, by comparing the performance of the
NAS in this experiment with and without the GPT
model, we can find that the accuracy of the neural
architecture obtained with the introduction of the GPT
model is generally improved on all datasets. On the
three datasets, the accuracy is improved by about 7%,
7%, and 9%, respectively, demonstrating our method’s
effectiveness.

Analyze and discussion. Upon closer examination,
the results for GPT-NAS indicate a distinct advantage
of incorporating GPT into the NAS process. The
significant boost in performance on CIFAR-100 and
ImageNet-1K suggests that the pre-training of the GPT
model on various neural architectures can generate or
predict more appropriate layers. This pre-training likely
equips the GPT with an extensive ‘knowledge’ of
architectural patterns that work well, which traditional
NAS might not explore or might require significantly
more time and computational resources to discover.
The maintained efficiency in terms of GPU days is
particularly noteworthy. It suggests that the integration
of GPT does not introduce a heavier computational
burden, which is often a critical concern in NAS
methodologies. In other words, the GPT-NAS
approach enhances the quality of the search without
negatively impacting the search’s efficiency. This
could be due to the GPT effectively narrowing down
the vast search space to more promising regions,
thereby avoiding futile exploration of suboptimal
architectures.

5.2　Ablation experiments

For the method proposed in this experiment, two
ablation experiments are performed to verify its
effectiveness. In the first part, the influence of different
mask rates on the neural architecture is compared
(Section 5.2.1). In the second part, we test the
effectiveness of the proposed acceleration strategy
(Section 5.2.2). Note that the parameter settings for the
experiments in this section are slightly different from
those in the main experiment (Section 5.1), as
described in each subsection. In addition, ablation
experiments are tested on both CIFAR-10 and CIFAR-
100 datasets.
5.2.1　Validation on different mask rates
The core of this study is to mask the structures in the
neural architecture effectively and to perform
prediction and reconfiguration, so it is important to
choose the appropriate mask rate. In this subsection,
we experiment with different mask rates and choose
the optimal one. For convenience, we only test the
initialized individuals and do not perform genetic
operations. Specifically, we choose 15 initialized
neural architectures and train 90 epochs with mask
rates of 0, 0.2, 0.4, 0.6, and 0.8 to test their
classification accuracy. When the mask rate is 0, it
means that the neural architecture has not changed its
internal structure. The experimental results are shown
in Table 4. In Table 4, the “mean value” indicates the
average accuracy of the 15 neural architectures at the
corresponding mask rates.

Results description. From Table 4, we can obtain
that on CIFAR-10, the effect is the worst when the

Table 4 Experimental results of neural architecture with
different mask rates. “+/=/−” indicates the number of
individual neural architectures with mask rates that are
better, equal, and worse in terms of classification accuracy
than those without mask rates.

Dataset Mask rate Mean value +/=/−

CIFAR-10

0 0.3792 −
0.2 0.4226 10/0/5
0.4 0.5134 15/0/0
0.6 0.5056 15/0/0
0.8 0.4828 13/0/2

CIFAR-100

0 0.0453 −
0.2 0.1257 14/1/0
0.4 0.1392 15/0/0
0.6 0.1278 13/0/2
0.8 0.1261 1/4/10

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 57

mask rate is 0.2, with five neural architectures being
worse than the case without mask rate, and the next is
when the mask rate is 0.8, with two neural architectures
being worse than the case without mask rate. In
addition, on CIFAR-100, only when the mask rate is
0.4, all neural architectures are better than the case
without the mask rate. Furthermore, from the metric of
“mean value”, we can find that the average accuracy of
the neural architecture on CIFAR-10 is improved by at
least 5%, up to 14%, compared to the case without
mask rate. While on CIFAR-100, the average accuracy
of the initialized neural architecture is improved by at
least 8% after the introduction of the mask rate. In
summary, the neural architectures with the introduction
of the mask rate have a huge average performance
improvement, especially with a mask rate is 0.4.
Therefore, in the main experiment, we chose the mask
rate of 0.4 for the network structure as the final
criterion.

Analyze and discussion. These results reveal that an
appropriate mask rate helps to obtain highly accurate
architectures. However, increasing the mask rate leads
to diminishing returns, possibly, because the GPT
model does not have enough guidance to accurately
predict the masked layers. These patterns imply that
GPT models, while robust in predicting architectural
components, do have an uncertainty threshold. If this
threshold is exceeded, their predictive ability does not
translate into improved performance, emphasizing the
need for strategic balance when designing masking
strategies.
5.2.2　Validation on acceleration strategies
In this subsection, we implement two main types of
experiments. Firstly, the neural architecture optimized
by the GPT model is trained in two parts, i.e., only on
the predicted blocks and on all blocks in the neural
architecture, and then the two correlations are
calculated. Secondly, the neural architecture is trained
under different numbers of epochs and the correlation
between them is calculated. Note that for correlation
comparison of accuracy, we mainly use the Pearson
Correlation Coefficient (PCC, between −1 and 1, the
larger the value, the higher the correlation) and p-value
(less than 0.05 means that they are correlated) to show.

Results description. For the first experiment, Fig. 4
shows the accuracy correlation heat map of the neural
architecture for training only the blocks obtained by
prediction and all blocks. The horizontal axis indicates

e6− e30

that all blocks are trained, while the vertical axis
indicates that the predicted blocks are trained. a0, a2,
a4, a6, and a8 mean that the neural architecture is
optimized with the mask rate of 0, 0.2, 0.4, 0.6, and
0.8, respectively, and all blocks are trained, while p0,
p2, p4, p6, and p8 denote the neural architecture is
optimized with the mask rates of 0, 0.2, 0.4, 0.6, and
0.8, respectively, and only the predicted blocks are
trained. In addition, the experimental results in Fig. 4
are obtained by averaging the PCC calculated by each
of the 15 neural architectures. For the second
experiment, Table 5 gives the experimental results on
whether there is a correlation between training only a
small number of epochs versus training multiple
epochs. In addition to the PCC, we also list the
corresponding p-value. In addition, the first column of
Table 5 indicates the comparison between different
epochs, for example, “ ” denotes the linear
correlation between the accuracy values obtained from

0.88 −0.16 0.09 0.17 0.08

−0.13

−0.10

0.08

−0.06

0.90 −0.02 0.20 0.26

−0.25 0.83 −0.17 0.11

0.12 −0.21 0.94 0.35

0.44 −0.04 0.13 0.91

0.88 −0.16 0.09 0.17 0.08

−0.13

−0.10

0.08

−0.06

0.90 −0.02 0.20 0.26

−0.25 0.83 −0.17 0.11

0.12 −0.21 0.94 0.35

0.44 −0.04 0.13 0.91

a0 a2 a4 a6 a8

0.88 −0.16 0.09 0.17 0.08

−0.13

−0.10

0.08

−0.06

0.90 −0.02 0.20 0.26

−0.25 0.83 −0.17 0.11

0.12 −0.21 0.94 0.35

0.44 −0.04 0.13 0.91

(a) CIFAR-10

0.86 −0.2 −0.11 −0.23 −0.03

−0.11

−0.13

−0.11

−0.26

0.87 −0.27 −0.28 −0.32

−0.19 0.97 −0.1 −0.12

−0.12 −0.08 0.95 −0.13

−0.15 0.23 −0.15 0.89

0.86 −0.2 −0.11 −0.23 −0.03

−0.11

−0.13

−0.11

−0.26

0.87 −0.27 −0.28 −0.32

−0.19 0.97 −0.1 −0.12

−0.12 −0.08 0.95 −0.13

−0.15 0.23 −0.15 0.89

p0

p2

p4

p6

p8

a0 a2 a4 a6 a8

0.86 −0.20 −0.11 −0.23 −0.03

−0.11

−0.13

−0.11

−0.26

0.87 −0.27 −0.28 −0.32

−0.19 0.97 −0.10 −0.12

−0.12 −0.08 0.95 −0.13

−0.15 0.23 −0.15 0.89

1.0

0.8

0.6

0.4

0.2

0

−−0.2

(b) CIFAR-100

Trained with all blocks

Trained with all blocks

Tr
ai

ne
d

w
ith

 p
re

di
ct

ed
 b

oc
ks

p0

p2

p4

p6

p8

Tr
ai

ne
d

w
ith

 p
re

di
ct

ed
 b

oc
ks

PC
C

1.0

0.8

0.6

0.4

0.2

0

−−0.2

PC
C

Fig. 4 Comparison of the accuracy correlation results
achieved by training the blocks obtained by prediction and
all blocks in the neural architecture.

 58 Big Data Mining and Analytics, February 2025, 8(1): 45−64

two separately training sessions: one executed 6 epochs
and the other 30 epochs.

As can be obtained from Fig. 4, the color on the
diagonal in the heat map is the darkest regardless of the
dataset, which means that the corresponding correlation
is the highest and the values are above 80%. And the
values on each diagonal line indicate the accuracy of
training only the predicted blocks is relevant to training
all blocks on the same neural architecture. In addition,
in Table 5, we can find that the effect of using a small
number of epochs to train is the same as that of using
most epochs to train. It is expressed as a positive
correlation on PCC, while a linear correlation between
them can be proved by p-value.

Analyze and discussion. The experimental results of
the two acceleration strategies can reveal that both in
terms of the stability of the training and the robustness
of the predicted structures, the architectures obtained
by the search are satisfactory. This is attributed to the
fact that we enable the GPT model to be trained on a
large number of neural architectures, achieving a
global understanding of the neural architecture design.
Secondly, the fine-tuning of specific tasks motivate the
GPT model to better adapt to the features of the tasks,
resulting in further performance improvement of the
searched architectures.

5.3　In-depth analysis

In this section, we verify the effectiveness of the GPT
model, which consists of two main aspects, one is the
exhibition of the training process during the pre-
training and fine-tuning of the GPT model, and the
other is the related ablation experiments.
5.3.1　Training process of GPT
Figure 5 presents two line graphs depicting the loss
across epochs during the pre-training and fine-tuning
phases of the training process.

In Fig. 5a, labeled as the pre-training phase, we find

a sharp decline in loss from the start, quickly leveling
off as the epochs increase. The curve starts at a loss
above 3 and dramatically drops close to 0.5 within the
first few epochs. This indicates an initial phase of rapid
learning, where the model is capturing the fundamental
patterns of the dataset (i.e., architectures). After this
steep descent, the loss continues to decrease at a much
slower rate, indicating that the model is starting to
saturate in terms of learning from the pre-training data.
An inset provides a closer look at the tail of the pre-
training curve, where the loss gently slopes downwards
from around 0.5, showing that the model is still making
incremental improvements even as changes become
more marginal.

In Fig. 5b, the graph for the fine-tuning phase starts
at a loss just below 0.47, which is significantly lower
than the starting point of the pre-training loss,
illustrating that the model enters the fine-tuning stage
with prior knowledge. The curve depicts a consistent
downward trend, with the loss decreasing steadily and
more linearly compared to the pre-training phase. The
loss exhibits minor fluctuations but generally maintains
a downward trajectory, settling just above 0.44 by the
end of 300 epochs. This smooth and consistent decline
suggests that the fine-tuning process is refining the
parameters of the model effectively, making it more

Table 5 Comparison of the correlation between the
accuracy achieved by the neural architecture trained on a
small number of epochs and multiple epochs.

Epoch pair Dataset PCC p-value

e6 − e30
CIFAR-10 0.7247 2.68×10−9

CIFAR-100 0.8657 4.96×10−16

e6 − e60
CIFAR-10 0.6984 1.72×10−8

CIFAR-100 0.8176 4.33×10−13

e6 − e90
CIFAR-10 0.7046 1.13×10−8

CIFAR-100 0.8107 9.66×10−13

(a) Training process in the pre-training phase

(b) Training process in the fine-tuned phase

0.50

4

3

2

Lo
ss

Lo
ss

1

0 50 100 150
Number of epochs

200 250 300

0.44

0.45

0.46

0.47

0 50 100 150
Number of epochs

200 250 300

0.44
50 300

Fig. 5 Training process of the GPT model.

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 59

adept at the specific task at hand.
5.3.2　Ablation experiments of GPT
(1) Consumption of search time

We test the time consumption of different search
strategies. As shown in Table 6, the average time for
the first two strategies (GA and GA + GPT) refers to
the average time after 20 iterations, while the average
search time for the last two strategies (Random and
Random + GPT) is the average time per 30 individuals
(since 30 individuals need to be selected for each
iteration in GA).

From Table 6, we can find the GA strategy, which is
a traditional approach in NAS, takes an average of
35.15 s. This approach typically involves generating a
population of architectures (in this case, 30) and
iteratively evolving them over several generations (20
iterations here) to find the most optimal architecture.
When the GPT model is introduced into the GA (GA +
GPT), the average search time increases to 56.04 s.
This suggests that the integration of GPT into the GA
process adds computational overhead, because the
predictions of the GPT are used to optimize the
architectures, which in turn requires additional
computation beyond the traditional GA operations.
Using the GPT model alone (Random + GPT) for NAS
significantly reduces the search time to 20.05 s, nearly
half the time taken by the traditional GA method. The
random strategy, which serves as a baseline for
comparison, has the lowest average search time of
12.36 s. This is expected as there is no computational
overhead for learning or optimization; architectures are
simply selected at random.

Analyzing these results, it is evident that the GPT
model offers a good balance between efficiency and
potentially guided exploration of the architecture space,
as it does not differ much from traditional GA in terms
of search time while likely providing more directed and
possibly higher quality results than random search. The
GA + GPT strategy, while slower than both Random +

GPT and GA, offers benefits not captured by search
time alone, such as potentially better optimization due
to the combined exploration and exploitation
mechanisms of both GA and GPT, which is
demonstrated in the experiment below.

(2) Performance comparison of neural
architectures with and without GPT

We randomly select 10 neural architectures and
compare their accuracy on two datasets, CIFAR-10 and
CIFAR-100. In Fig. 6, one line indicates the
architecture chosen without using GPT for structural
prediction (blue line), while the other line has GPT
(orange line).

The graph for CIFAR-10 (Fig. 6a) indicates that the
architectures predicted with GPT generally perform
better than those selected without GPT. There is a
notable variation in accuracy across different
architectures, but the trend suggests that GPT provides
a beneficial guide in selecting architectures that yield
higher accuracy. The peaks and troughs indicate that
while GPT improves performance on average, the
degree of improvement varies, which might be due to
the inherent variability in the architectures’ suitability
for CIFAR-10. For CIFAR-100, the architectures with
GPT again outperform those without, although the
margin of difference appears smaller compared to

Table 6 Average search time with different strategies. Note
that only the search time is recorded here, excluding the
training time (because different architectures can lead to
different training times).

Strategy Time (s)
GA 35.15

GA + GPT 56.04
Random 12.36

Random + GPT 20.05

(a) CIFAR-10

(b) CIFAR-100
With GPTWithout GPT

Ac
cu

ra
cy

0.40

0.42

0.30
0 2 4 6 8 10

0 2 4 6 8 10

0.32

0.04

0.06

0.08

0.10

0.12

0.14

0.34

0.36

Ac
cu

ra
cy 0.38

Fig. 6 Accuracy distribution of neural architectures with
and without the GPT model.

 60 Big Data Mining and Analytics, February 2025, 8(1): 45−64

CIFAR10. The variability in accuracy is also present
here, with both lines showing fluctuations across the
ten architectures.

Across both datasets, introducing GPT for structure
prediction has a positive impact on the accuracy of the
selected architectures. This implies that GPT’s
predictive capabilities are effective in guiding the NAS
process towards more successful architectures.

(3) Comparison of search efficiency
In this experiment, we record the GPU days required

to achieve different classification accuracy thresholds
using the strategy combination of GA and GPT (GA +
GPT) to reflect the search efficiency.

Figure 7 comprises two bar graphs representing the
GPU days required to achieve specified accuracy
thresholds using the GA + GPT strategy on two
datasets. Each graph compares the computational time
with and without GPT in the search strategy across
three different accuracy thresholds.

For CIFAR-10, Fig. 7a exhibits a clear trend where
the inclusion of GPT in the architecture search
consistently reduces the GPU days required to reach

the accuracy thresholds. At the 0.8 accuracy threshold,
the “with GPT” strategy consumes slightly more than
0.3 GPU day, whereas “without GPT” consumes
slightly more than half a GPU day. This disparity
widens at the 0.85 threshold, where “with GPT” uses
approximately 0.45 GPU days compared to “without
GPT” nearly 0.8 GPU days. Figure 7b, detailing the
CIFAR-100 dataset, shows a similar pattern. At a
threshold of 0.55, the difference in GPU days between
the two is greater than 0.2, and at a threshold of 0.65,
the difference between the strategies with and without
GPT is even greater.

Figure 7 depicts that incorporating GPT into the
search strategy enhances the efficiency of reaching
higher accuracy levels, indicating that GPT likely
guides the search towards more promising
architectures. In addition, by analyzing the results, we
can deduce that the GPT model provides computational
savings in architecture search. This also means that
with the introduction of the GPT model, the search for
a better architecture becomes more efficient.

6　Conclusion and Future Work

NAS algorithms automate the design of neural
networks, but traditional search strategies become
overwhelmed in the face of a huge and complex search
space. In this case, we propose a new approach called
GPT-NAS, which utilizes the GPT model to optimize
the architecture obtained from the search and
compensate for the shortcomings of traditional search
strategies. The proposed GPT-NAS is compared with
23 competitors on three popular datasets, where the
competitors contain manually designed algorithms and
NAS algorithms. The analysis of the experimental
results shows that the GPT-NAS achieves state-of-the-
art results and proves that the GPT model has a
boosting effect on the algorithm. In future work, we
will study the GPT model in more depth to make it
more fully trained and to have a deeper understanding
of neural architectures. In addition, we will also apply
our current work to different domains, especially in the
medical field. The NAS approach is designed to adapt
to the domain of a particular dataset, and the dataset in
the medical field meets the specificity of the dataset.
By optimizing the neural structure, our GPT-NAS
approach can make breakthroughs in processing
medical images in a way that makes diagnosis more
accurate and timely.

(a) CIFAR-10

(b) CIFAR-100
With GPTWithout GPT

Accuracy threshold

Accuracy threshold

G
PU

 d
ay

s
G

PU
 d

ay
s

1.0

0.8

0.6

0.4

0.2

0

1.2

1.0

0.8

0.6

0.4

0.2

0

1.2

1.4

0.90

0.65

0.80 0.85

0.600.55

Fig. 7 GPU days required for the neural architecture to
reach a certain threshold accuracy with and without the
GPT model.

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 61

Acknowledgment

This work was supported by the National Nature Science
Foundation of China (No. 62106161), the Fundamental
Research Funds for the Central Universities (No.
1082204112364), the Sichuan University Luzhou
Municipal Government Strategic Cooperation Project
(No. 2022CDLZ-8), the Key R&D Program of Sichuan
Province (Nos. 2022YFN0017 and 2023YFG0019), the
Natural Science Foundation of Sichuan (No.
2023NSFSC0474), the Tianfiu Yongxing Laboratory
Organized Research Project Funding (No.
2023CXXM14), and the Digital Media Art, Key
Laboratory of Sichuan Province, Sichuan Conservatory of
Music (No. 22DMAKL04).

References

 Y. Sun, B. Xue, M. Zhang, and G. G. Yen, Evolving deep
convolutional neural networks for image classification,
IEEE Trans. Evol. Comput., vol. 24, no. 2, pp. 394–407,
2020.

[1]

 L. Zhang, S. Wang, F. Yuan, B. Geng, and M. Yang,
Lifelong language learning with adaptive uncertainty
regularization, Inf. Sci., vol. 622, pp. 794–807, 2023.

[2]

 C. Yu, Y. Wang, C. Tang, W. Feng, and J. Lv, EU-Net:
Automatic U-Net neural architecture search with
differential evolutionary algorithm for medical image
segmentation, Comput. Biol. Med., vol. 167, p. 107579,
2023.

[3]

 N. S. Gupta and P. Kumar, Perspective of artificial
intelligence in healthcare data management: A journey
towards precision medicine, Comput. Biol. Med., vol. 162,
p. 107051, 2023.

[4]

 S. Belciug, Learning deep neural networks’ architectures
using differential evolution. Case study: Medical imaging
processing, Comput. Biol. Med., vol. 146, p. 105623,
2022.

[5]

 N. A. Baghdadi, A. Malki, S. F. Abdelaliem, H. M.
Balaha, M. Badawy, and M. Elhosseini, An automated
diagnosis and classification of COVID-19 from chest CT
images using a transfer learning-based convolutional
neural network, Comput. Biol. Med., vol. 144, p. 105383,
2022.

[6]

 J. Mao, X. Yin, G. Zhang, B. Chen, Y. Chang, W. Chen, J.
Yu, and Y. Wang, Pseudo-labeling generative adversarial
networks for medical image classification, Comput. Biol.
Med., vol. 147, p. 105729, 2022.

[7]

 C. Tang, C. Yu, Y. Gao, J. Chen, J. Yang, J. Lang, C. Liu,
L. Zhong, Z. He, and J. Lv, Deep learning in nuclear
industry: A survey, Big Data Mining and Analytics, vol. 5,
no. 2, pp. 140–160, 2022.

[8]

 E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S.
Wang, L. Wang, and W. Chen, LoRA: Low-rank
adaptation of large language models, in Proc. 10th Int.
Conf. Learning Representations, arXiv preprint arXiv:

[9]

2106.09685, 2022.
 Y. Wang, S. Agarwal, S. Mukherjee, X. Liu, J. Gao, A. H.
Awadallah, and J. Gao, AdaMix: Mixture-of-adaptations
for parameter-efficient model tuning, in Proc. Conf.
Empirical Methods in Natural Language Processing, Abu
Dhabi, United Arab Emirates, 2022, pp. 5744–5760.

[10]

 P. Ren, Y. Xiao, X. Chang, P. Y. Huang, Z. Li, X. Chen,
and X. Wang, A comprehensive survey of neural
architecture search: Challenges and solutions, ACM
Comput. Surv., vol. 54, no. 4, p. 76, 2022.

[11]

 B. Zoph and Q. V. Le, Neural architecture search with
reinforcement learning, in Proc. the 5th Int. Conf. Learning
Representations, arXiv preprint arXiv: 1611.01578, 2017.

[12]

 B. Baker, O. Gupta, N. Naik, and R. Raskar, Designing
neural network architectures using reinforcement learning,
in Proc. the 5th Int. Conf. Learning Representations, arXiv
preprint arXiv: 1611.02167, 2017.

[13]

 Y. Sun, X. Sun, Y. Fang, G. G. Yen, and Y. Liu, A novel
training protocol for performance predictors of
evolutionary neural architecture search algorithms, IEEE
Trans. Evol. Comput., vol. 25, no. 3, pp. 524–536, 2021.

[14]

 H. Liu, K. Simonyan, and Y. Yang, DARTS:
Differentiable architecture search, arXiv preprint arXiv:
1806.09055, 2018.

[15]

 Z. Zhong, J. Yan, W. Wu, J. Shao, and C. L. Liu, Practical
block-wise neural network architecture generation, in
Proc. IEEE/CVF Conf. Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 2018, pp.
2423–2432.

[16]

 T. Elsken, J. H. Metzen, and F. Hutter, Neural architecture
search: A survey, J. Mach. Learn. Res., vol. 20, no. 1, pp.
1997–2017, 2019.

[17]

 B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, Learning
transferable architectures for scalable image recognition,
in Proc. IEEE/CVF Conf. Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 2018, pp.
8697–8710.

[18]

 L. Xie and A. Yuille, Genetic CNN, in Proc. IEEE Int.
Conf. Computer Vision, Venice, Italy, 2017, pp.
1388−1397.

[19]

 M. Suganuma, S. Shirakawa, and T. Nagao, A genetic
programming approach to designing convolutional neural
network architectures, in Proc. Genetic and Evolutionary
Computation Conf., Berlin, Germany, 2017, pp. 497–504.

[20]

 T. Zhang, C. Lei, Z. Zhang, X. B. Meng, and C. L. P.
Chen, AS-NAS: Adaptive scalable neural architecture
search with reinforced evolutionary algorithm for deep
learning, IEEE Trans. Evol. Comput., vol. 25, no. 5, pp.
830–841, 2021.

[21]

 K. Maziarz, M. Tan, A. Khorlin, M. Georgiev, and A.
Gesmundo, Evolutionary-neural hybrid agents for
architecture search, arXiv preprint arXiv: 1811.09828,
2018.

[22]

 A. Krizhevsky, Learning Multiple Layers of Features from
Tiny Images, http://www.cs.utoronto.ca/~kriz/learning-
features-2009-TR.pdf, 2023.

[23]

 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.
Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et
al., ImageNet large scale visual recognition challenge, Int.

[24]

 62 Big Data Mining and Analytics, February 2025, 8(1): 45−64

J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.
 S. Lu, Y. Wang, P. Yao, C. Li, J. Tan, F. Deng, X. Wang,
and C. Song, Conformer space neural architecture search
for multi-task audio separation, in Proc. 23rd Annu. Conf.
Int. Speech Communication Association, Incheon, Korea,
2022, pp. 5358–5362.

[25]

 L. Pouy, F. Khenfri, P. Leserf, C. Mhraida, and C.
Larouci, Open-NAS: A customizable search space for
neural architecture search, in Proc. 8th Int. Conf. Machine
Learning Technologies, Stockholm, Sweden, 2023, pp.
102-107.

[26]

 C. Jin, J. Huang, T. Wei, and Y. Chen, Neural architecture
search based on dual attention mechanism for image
classification, Math. Biosci. Eng., vol. 20, no. 2, pp.
2691–2715, 2023.

[27]

 H. Nori, N. King, S. M. McKinney, D. Carignan, and E.
Horvitz, Capabilities of GPT-4 on medical challenge
problems, arXiv preprint arXiv: 2303.13375, 2023.

[28]

 W. Hou and Z. Ji, GeneTuring tests GPT models in
genomics, bioRxiv, doi: 10.1101/2023.03.11.532238.

[29]

 N. Nascimento, C. Tavares, P. Alencar, and D. Cowan,
GPT in data science: A practical exploration of model
selection, in Proc. 2023 IEEE Int. Conf. Big Data,
Sorrento, Italy, 2023, pp. 4325–4334.

[30]

 Z. Hu, Y. Dong, K. Wang, K. W. Chang, and Y. Sun,
GPT-GNN: Generative pre-training of graph neural
networks, in Proc. 26th ACM SIGKDD Int. Conf.
Knowledge Discovery & Data Mining, doi:
10.1145/3394486.3403237.

[31]

 M. Zheng, X. Su, S. You, F. Wang, C. Qian, C. Xu, and S.
Albanie, Can GPT-4 perform neural architecture search?
arXiv preprint arXiv: 2304.10970, 2023.

[32]

 H. Wang, Y. Gao, X. Zheng, P. Zhang, H. Chen, J. Bu,
and P. S. Yu, Graph neural architecture search with GPT-
4, arXiv preprint arXiv: 2310.01436, 2023.

[33]

 Y. Sun, G. G. Yen, B. Xue, M. Zhang, and J. Lv, ArcText:
A unified text approach to describing convolutional neural
network architectures, IEEE Trans. Artif. Intell., vol. 3, no.
4, pp. 526–540, 2022.

[34]

 Y. Sun, B. Xue, M. Zhang, and G. G. Yen, Completely
automated CNN architecture design based on blocks,
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 4, pp.
1242–1254, 2020.

[35]

 J. Mellor, J. Turner, A. J. Storkey, and E. J. Crowley,
Neural architecture search without training, in Proc. 38th

Int. Conf. Machine Learning, https://proceedings.
mlr.press/v139/mellor21a.html, 2023.

[36]

 B. Chen, P. Li, B. Li, C. Lin, C. Li, M. Sun, J. Yan, and
W. Ouyang, BN-NAS: Neural architecture search with
batch normalization, in Proc. IEEE/CVF Int. Conf.
Computer Vision, Montreal, Canada, 2021, pp. 307–316.

[37]

 B. Baker, O. Gupta, R. Raskar, and N. Naik, Accelerating
neural architecture search using performance prediction, in
Proc. Int. Conf. Learning Representations, arXiv preprint
arXiv: 1705.10823, 2018.

[38]

 K. He, X. Zhang, S. Ren, and J. Sun, Deep residual
learning for image recognition, in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 2016, pp. 770–778.

[39]

 M. Tan and Q. V. Le, EfficientNet: Rethinking model
scaling for convolutional neural networks, in Proc. 36th

Int. Conf. Machine Learning, Long Beach, CA, USA,
2019, pp. 6105–6114.

[40]

 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
Going deeper with convolutions, in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, Boston, MA,
USA, 2015, pp. 1–9.

[41]

 I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P.
Dollár, Designing network design spaces, in Proc.
IEEE/CVF Conf. Computer Vision and Pattern
Recognition, Seattle, WA, USA, 2020, pp. 10425–10433.

[42]

 S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He,
Aggregated residual transformations for deep neural
networks, in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 2017, pp.
5987–5995.

[43]

 N. Ma, X. Zhang, H. T. Zheng, and J. Sun, ShuffleNet V2:
Practical guidelines for efficient CNN architecture design,
in Proc. 15th European Conf. Computer Vision, Munich,
Germany, 2018, pp. 122–138.

[44]

 S. Zagoruyko and N. Komodakis, Wide residual networks,
in Proc. the British Machine Vision Conf., arXiv preprint
arXiv: 1605.07146, 2016.

[45]

 C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy,
and F. Hutter, NAS-bench-101: Towards reproducible
neural architecture search, in Proc. 36th Int. Conf. Machine
Learning, Long Beach, CA, USA, 2019, pp. 7105–7114.

[46]

 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-
based learning applied to document recognition, Proc.
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[47]

 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all
you need, in Proc. 31st Int. Conf. Neural Information
Processing Systems, Long Beach, CA, USA, 2017, pp.
6000–6010.

[48]

Caiyang Yu received the MEng degree in
computer architecture from Wenzhou
University, China in 2018. He is currently
a PhD candidate at College of Computer
Science, Sichuan University, China. His
research focuses on the neural network
search and evolutionary computation.

Xianggen Liu received the PhD degree
from Tsinghua University, China in 2021.
He is currently an associate professor at
College of Computer Science, Sichuan
University, China. His current research
interests include machine learning and
nature language processing.

 Caiyang Yu et al.: GPT-NAS: Neural Architecture Search Meets Generative Pre-Trained Transformer Model 63

Yifan Wang received the BEng degree
from Liaoning University, China in 2023.
She is currently a master student at College
of Computer Science, Sichuan University,
China. Her research focuses on computer
vision and object detection.

Yun Liu received the MEng degree from
Wenzhou University, China in 2022. She
is currently a PhD candidate at College of
Computer Science, Sichuan University,
China. Her research focuses on intelligent
manufacturing.

Wentao Feng received the PhD degree in
geothermal engineering from Clausthal
University of Technology (TU Clausthal),
Clausthal-Zellerfeld, Germany. He is
currently a postdoctoral researcher at
College of Computer Science, Sichuan
University, China. His research interests
include artificial intelligence, numerical

simulation, and smart energy.

Xiong Deng received the MEng degree in
computer science from Stevens Institute of
Technology, NJ, USA in 2022, and the
MEng degree in mechanical engineering
from Stevens Institute of Technology, NJ,
USA in 2017, where he serves as both a
teaching assistant and research assistant at
Department of Mechanical Engineering.

His research interests encompass artificial intelligence, big data,
cloud computing, database, robotics, soft materials, and additive
manufacturing.

Chenwei Tang received the PhD degree in
computer science and technology from
Sichuan University, China in 2020. She is
currently an associate professor at College
of Computer Science, Sichuan University,
China. Her research focuses on the neural
network methods for zero-shot learning,
and industrial intelligence.

Jiancheng Lv received the PhD degree in
computer science and engineering from
University of Electronic Science and
Technology of China in 2006. He was a
research fellow at Department of Electrical
and Computer Engineering, National
University of Singapore, Singapore. He is
currently a professor at College of

Computer Science, Sichuan University, China. His research
interests include neural networks, machine learning, and big
data.

 64 Big Data Mining and Analytics, February 2025, 8(1): 45−64

