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Abstract: The  pursuit  of  optimal  neural  network  architectures  is  foundational  to  the  progression  of  Neural

Architecture  Search  (NAS).  However,  the  existing  NAS  methods  suffer  from  the  following  problem  using

traditional  search  strategies,  i.e.,  when  facing  a  large  and  complex  search  space,  it  is  difficult  to  mine  more

effective architectures within a reasonable time, resulting in inferior search results. This research introduces the

Generative  Pre-trained  Transformer  NAS  (GPT-NAS),  an  innovative  approach  designed  to  overcome  the

limitations  which  are  inherent  in  traditional  NAS  strategies.  This  approach  improves  search  efficiency  and

obtains  better  architectures  by  integrating  GPT  model  into  the  search  process.  Specifically,  we  design  a

reconstruction strategy that utilizes the trained GPT to reorganize the architectures obtained from the search. In

addition, to equip the GPT model with the design capabilities of neural architecture, we propose the use of the

GPT model for training on a neural architecture dataset. For each architecture, the structural information of its

previous layers is utilized to predict the next layer of structure, iteratively traversing the entire architecture. In

this  way,  the  GPT  model  can  efficiently  learn  the  key  features  required  for  neural  architectures.  Extensive

experimental  validation  shows  that  our  GPT-NAS  approach  beats  both  manually  constructed  neural

architectures  and  automatically  generated  architectures  by  NAS.  In  addition,  we  validate  the  superiority  of

introducing the GPT model in several ways, and find that the accuracy of the neural architecture on the image

dataset obtained from the search after introducing the GPT model is improved by up to about 9%.

Key words:  Neural  Architecture  Search  (NAS); Generative  Pre-trained  Transformer  (GPT)  model; evolutionary

algorithm; image classification

1　Introduction

In  recent  years,  Deep  Neural  Networks  (DNNs)  have
shown  impressive  fitting  power  in  various  tasks,
ranging  across  computer  vision[1],  natural  language

processing[2],  etc.  In  addition,  they  have  been  widely
used  in  different  industries,  such  as  medicine[3–7] and
industry[8].  More  recently,  the  emergence  of  large
models[9, 10] has  provided  an  extremely  effective  path
to  solving  all  kinds  of  tasks.  However,  the  training  of 
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large  models  is  extremely  resource  intensive,  and  in
addition, large models are not suitable for use on some
lightweight devices. Therefore, some small models are
still  extremely necessary. In Deep Learning (DL), it  is
widely  accepted  that  neural  networks  with  individual
architectures  present  different  inductive  biases.
Although  multiple  advanced  architectures  have  been
designed,  the  intrinsic  principles  of  the  architectural
building  remain  unclear.  As  a  result,  researchers
usually spend a large time manually seeking the neural
architectures that are suitable to the given tasks.

To accelerate the designing process and improve the
quality of the neural architectures, Neural Architecture
Search  (NAS)[11] has  emerged  as  one  of  the  effective
methods  to  design  the  optimal  neural  network
architecture  automatically.  The  main  advantage  of
NAS lies in its ability to automate the tedious and time-
consuming  process  of  designing  neural  architectures.
Additionally,  NAS  can  improve  the  quality  of  neural
architectures  by  leveraging  search  strategies  to  find
architectures  that  achieve  better  performance  than
human-designed architectures.

Currently,  based  on  different  optimization
techniques,  the  mainstream  NAS  search  strategies
include  Reinforcement  Learning  (RL)[12, 13],
Evolutionary  Algorithm  (EA)[14],  and  Gradient
Optimization  (GO)[15].  Algorithms,  such  as  NAS-
RL[12],  MetaQNN[13],  and Block-QNN-S[16],  all belong
to the first category. For different RL methods, the key
lies  in  how  to  design  the  agent’s  policy  and  the
corresponding  optimization  process[17].  For  example,
Zoph and Le[12] used the RNN policy to select the basic
information  and  form  the  architecture,  while  the
proximal policy is used for optimization in subsequent
work[18].  Secondly,  the  EA-based  NAS  (EA-NAS)
searches  for  the  optimal  architecture  mainly  by  the
properties of the algorithm. For example,  in Ref.  [19],
the Genetic Algorithm (GA) is used as the optimization
strategy  to  complete  the  algorithm  search  process,
while in Ref. [20], the genetic programming strategy is
adopted.  Finally,  GO-based  NAS  is  a  category  of
algorithms  that  do  not  rely  on  any  strategy.  It  mainly
implements search in a continuous search space[15].

However,  with  the  rapid  growth  of  the  NAS  space,
the  limitations  of  traditional  search  strategies  are
becoming  increasingly  apparent,  especially  in  the
context  of  an  expanding  search  space.  Firstly  the
explosive  growth  in  the  number  of  architectures

increases  the  difficulty  of  searching  with  traditional
strategies,  e.g.,  the diversity  of  network structures  and
connections  can  easily  construct  millions  of
architectures in the search space, which poses a greater
challenge  to  the  efficiency  of  traditional  strategies.
Secondly, traditional search strategies are carried out in
isolation, and the efficiency of the search only relies on
the optimization ability of the strategy itself, which has
a  great  limitation  in  the  search  perspective,  and  it  is
difficult  to  consider  the  search  problem from multiple
perspectives or a global perspective.

As  a  result,  several  improvement  efforts  have  been
generated to optimize the search strategy. For example,
in Ref. [21], Zhang et al. proposed an adaptive scalable
NAS  method  based  on  the  reinforced  I-Ching
divination  evolutionary  algorithm  and  a  variable-
architecture  encoding  strategy.  It  simplifies  the
reinforcement  learning  algorithm  and  enhances  the
search  efficiency  of  evolutionary  algorithms,
addressing  the  nonconvexity  problem  in  NAS.  In
addition,  Maziarz  et  al.[22] proposed  evolutionary-
neural  hybrid  agents  to  blend  deep  reinforcement
learning  with  evolutionary  algorithms  for  improved
NAS.  This  method  outperforms  both  neural  and
evolutionary  agents  in  terms  of  accuracy  and  search
cost. However, the method described above combining
different  search  strategies  suffers  from  the  following
problems.

(1)  Complexity  and  overfitting. The  integration  of
multiple  strategies  often  results  in  increased
complexity,  which  can  lead  to  models  that  are  highly
specialized to the training data,  risking overfitting and
reduced generalizability.

(2)  Integration  challenges. Effectively  combining
different strategies requires careful balance and tuning.
There’s  a  risk  of  one  strategy  overpowering  another,
leading to suboptimal outcomes.

To  this  end,  we  propose  a  novel  approach,  called
GPT-NAS,  by  introducing  the  Generative  Pre-trained
Transformer  (GPT)  model  in  NAS  to  improve  search
efficiency.  This  simplifies  the  process  and  eliminates
the  complexity  associated  with  integrating  multiple
policies.  Additionally,  it  can  compensate  for  the
limitations  of  existing  strategies  instead  of  competing
with them. Without disturbing the search process of the
original  search  strategy,  we  use  the  GPT  model  to
reconstruct each architecture obtained from the search.
Specifically, the layer structures in the architecture are
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randomly  masked  and  the  GPT  model  is  utilized  to
regenerate  the  masked  layers  based  on  the  contextual
information  in  the  architecture.  However,  the  use  of
regular  GPT  models  suffers  from  two  challenges:  (1)
the  inability  to  directly  recognize  neural  architectures;
(2)  the  lack  of  specialized  neural  architecture  design
capabilities.  To  address  the  above  challenges,  we  first
introduce  an  encoding  strategy  to  map  the  neural
architecture  into  a  textual  representation  to  facilitate
the  recognition  of  the  GPT  model.  For  the  latter,  the
GPT  model  is  allowed  to  be  trained  on  the  neural
architecture  datasets,  so  that  it  can  effectively  learn
techniques and principles for designing superior neural
architectures.

We  evaluate  our  model  on  the  CIFAR-10,  CIFAR-
100[23],  and  ImageNet-1K[24].  Experimental  results
show  that  GPT-NAS  can  demonstrate  excellent
accuracy on three datasets. Further analysis shows that
after  introducing  the  GPT  model,  the  architecture
accuracy obtained through search  can  be  improved by
up to 9%, and the search efficiency can be significantly
improved. This proves that the introduction of the GPT
model  compensates  for  the  insufficient  search
performance  of  traditional  search  strategies.  The
contributions of this article are presented as follows.

(1)  For  the  first  time,  we  propose  a  new  NAS
algorithm,  called  GPT-NAS,  which  utilizes  the  GPT
model  to  optimize  the  neural  architecture  obtained
from  the  search,  compensating  for  the  inadequate
search efficiency of the search strategy.

(2) GPT-NAS allows GPT models to be trained on a
neural  architecture  dataset  to  learn  the  principles  of
superior  neural  architecture  design,  enabling  the
reconstruction of neural architectures.

(3)  Extensive  experiments  have  proven  that  GPT-
NAS demonstrates state-of-the-art experimental results
on three datasets. Furthermore, we demonstrate that the
introduced  GPT  model  improves  the  efficiency  of
traditional search.

2　Related Work

In  this  section,  we  aim  to  describe  two  key  areas
relevant to this study, i.e., NAS and GPT models.

2.1　NAS

NAS is a subfield of machine learning that focuses on
automating the design of neural network architectures.
It  involves  three  key  components:  a  search  space  that
defines the potential  architectures,  a  search strategy to

explore  this  space,  and  a  performance  estimation
strategy  to  evaluate  the  architectures.  NAS  aims  to
discover  optimal  network  structures  for  specific  tasks,
reducing the  need for  manual  design  and expertise.  In
Section 1, we have introduced the search strategy, and
below we will discuss the search space in detail.

The  search  space  in  NAS  is  a  critical  aspect  that
defines the range of architectures that can be explored.
It typically includes layer-based, block-based, and cell-
based search spaces, each catering to different levels of
architectural  granularity.  Layer-based  search  space
focuses  on  the  individual  layers  of  a  neural  network
and the type, size, and connectivity are variables in the
search. This search space is the simplest and is one of
the most commonly used methods in the early days of
NAS[12].  Block-based search space is  defined in  terms
of  blocks,  which  are  larger  structures  than  individual
layers.  Each  block  can  contain  multiple  layers  with
predefined  connections.  For  example,  Lu et  al.[25]

utilized a  conformer-based search space for  multi-task
audio separation, where the search involves varying the
number of blocks, heads, and channels to optimize the
architecture. Cell-based search space is a more granular
approach,  where  the  architecture  in  search  space
consists  of  cells,  which  are  small  network,  sub-
structures.  Cells  are  repeated  to  form  the  final
architecture.  Pouy  et  al.[26] proposed  a  cell-based
hierarchical  search  space,  aiming  to  optimize  search
time  and  handle  a  wide  range  of  state-of-the-art
Convolutional  Neural  Network  (CNN)  architectures.
Another  study  by  Jin  et  al.[27] introduces  a  dual
attention  mechanism  in  the  cell-based  search  space,
enhancing the  interrelationships  between layers  within
the  architecture.  Each  of  these  search  spaces  offers
different  levels  of  flexibility  and  complexity,
influencing the efficiency and effectiveness of the NAS
process.

2.2　GPT

The advent of GPT has revolutionized various fields by
providing  advanced  natural  language  processing
capabilities.  The  applications  of  GPT  models  are
diverse  and  continually  expanding,  as  they  offer
significant improvements in understanding, generating,
and  interacting  with  human  language.  In  the  medical
field, GPT-4 has exceeded expectations in competency
examinations,  indicating  its  potential  in  medical
education  and  practice[28].  In  genomics,  GPT  models,
like  GeneTuring,  have  been  employed  to  reduce  AI
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hallucinations,  improving  accuracy  in  genomic  data
analysis[29].  Furthermore,  in  data  science  and
education,  GPT  models  facilitate  model  selection  and
personalized  learning,  separately,  transforming  these
fields  with  AI-driven  solutions[30].  In  addition,  the
application  of  GPT  to  neural  networks  has  been
extensively  studied.  One  notable  example  is  the  GPT-
GNN  framework,  which  leverages  GPT  for  the  pre-
training  of  Graph  Neural  Networks  (GNNs),
demonstrating  significant  improvements  in  modelling
graph-structured  data[31].  Zheng  et  al.[32] explored  the
ability of GPT-4 to conduct NAS through an approach
named  GENIUS,  which  uses  GPT-4’s  generative
capabilities  to  navigate  the  architecture  search  space
efficiently.  Additionally,  the  integration  of  GPT-4  in
Graph Neural  Architecture  Search (GNAS) showcases
the  model’s  capability  to  automate  and  refine  the
process of designing graph neural networks, leading to
more accurate and efficient  architectures[33].  However,
all  of  the  above  approaches  use  the  inherent
capabilities of GPT to optimize the architecture, and do
not  make  the  GPT  model  train  on  the  neural
architecture  dataset,  while  learning  and  understanding
the  architecture.  This  study  addresses  this  issue  and
proposes  to  train  the  GPT  model  using  neural
architecture as a dataset to assist NAS.

3　Proposed Method

In  this  section,  we  describe  our  proposed  method  in
detail.  First,  the  overview of  the  algorithm is  given in
Section  3.1.  Then,  in  the  subsequent  sections,  we  will
describe  the  encoding  approach  of  the  neural
architecture  (Section  3.2),  the  pre-training  and  fine-
tuning  methods  of  the  GPT  model  (Section  3.3),  and
an  introduction  to  the  overall  NAS  framework
(Section 3.4).

3.1　Algorithm overview

To compensate for the limitations of traditional search
strategies  in  the  face  of  a  large  and  complex  search
space,  we  propose  the  framework  GPT-NAS,  which
uses the GPT model to optimize the NAS algorithm. It
is  widely  accepted  that  the  pre-trained  GPT  model  is
extremely gifted at predicting text, and this study takes
advantage  of  it.  By  training  GPT  models  on  neural
architecture datasets, the goal is to learn the principles
of  neural  architecture  design  and  transfer  them  to
specific tasks. Specifically, we divide the content of the
framework  into  three  procedures,  i.e.,  neural

architecture  encoding,  pre-training  and  fine-tuning  the
GPT model, and neural architecture search.

Neural architecture encoding. In order for the GPT
model to recognize neural architectures, it is necessary
to  encode  them.  The  encoding  strategy  translates  the
neural  architecture  into  the  form  of  characters,  where
each  character  corresponds  to  a  specific  operation  in
the  architecture,  such  as  a  convolutional  layer,  a  fully
connected layer, etc.

Pre-Training and fine-tuning the GPT model. Pre-
training and fine-tuning are two critical procedures for
developing  high-performance  GPT  models.  Let  the
GPT  model  be  pre-trained  on  a  neural  architecture
dataset  to  equip  it  with  the  design  capabilities  of
superior neural architectures and fine-tuned on specific
tasks.

Neural architecture search. The neural architecture
search  procedure  consists  of  two  parts,  namely
architecture search and reconstruction.  For the former,
the  architectures  are  sampled,  trained,  and  evaluated
using  GA  as  the  search  strategy.  For  the  latter,  the
sampled architectures are reorganized using GPT. Note
that GA is used as the search strategy in this paper,
but other search strategies can also be used, such as
RL, EA, etc. While the GPT model is used to assist
the  search  process,  it  does  not  affect  the  original
search strategy.

The core of the GPT-NAS framework,  consisting of
the  three  producers  described  above,  lies  in  the
optimization  of  the  architecture  obtained  from  the
search  using  the  GPT  model.  Through  continuous
iteration, the optimal architecture is found. In addition,
during  the  training  of  the  neural  architecture,  we
propose  a  strategy  to  accelerate  the  training  process
and reduce the training time.

3.2　Neural architecture encoding

Effective  encoding  of  neural  architectures  facilitates
fast  recognition of  architectures  by GPT models.  As a
result,  designing  a  general  encoding  strategy  to
accommodate the CNN architecture is necessary.

Inspired  by  Ref.  [34],  we  divide  the  structures  that
make  up  the  CNN  architecture  into  four  categories:
convolutional  layer,  pooling  layer,  Fully  Connected
(FC)  layer,  and  other  layers.  Among  them,  the  first
three  structures  are  necessary  for  almost  all  CNN
architectures,  and  the  last  one  is  used  to  represent  all
the remaining structures not included in the first three,
such as the activation function.

    48 Big Data Mining and Analytics, February 2025, 8(1): 45−64

 



(1)  Convolutional  layer:  The convolutional  layer  is
the  most  fundamental  and  vital  structure  in  CNNs.  In
convolutional operations, the core technology is the use
of convolutional  kernels  (filters),  which aim to extract
features from the input  image.  The convolution kernel
is a two-dimensional matrix (height and width) and the
parameters can be learned. In addition, the convolution
kernel slides in the horizontal and vertical directions of
the original image according to the “stride”. In general,
regardless of the value of “stride” (when the size of the
convolution kernel is not 1), the newly obtained feature
map  will  certainly  be  smaller  than  the  size  of  the
original  image,  and  this  is  also  not  conducive  to  the
edge  information  of  the  image  to  work  (because  the
convolution  kernel  will  compute  the  central  region  of
the  image  several  times,  while  the  edge  region  is
relatively  less).  Therefore,  the  surrounding “padding”
of  the  image  is  needed  to  solve  the  above  problem.
Commonly,  the  convolution  kernel  convolves  on  each
channel  of  the  input  feature  map,  which  is  a  channel-
dense connection. In contrast, there is a channel sparse
connection,  which  groups  the  input  feature  map
channels  and  convolves  each  group  separately.  This
process  is  called “groups” and  has  the  advantage  of
effectively reducing the number of parameters. In most
cases,  the  convolutional  kernel  size  needs  to  be
enlarged if  the respective field of a larger feature map
is  desired.  However,  the  consequent  drawback  is  that
the  number  of  parameters  increases,  so “dilation”
appears,  which  is  an  operation  that  injects  space  into
the  standard  convolution  kernel.  In  conclusion,  the
properties  of  the  convolution  layer  are  input  size,
output  size,  convolution  kernel  size,  stride  size,  the
number  and  value  of  padding,  the  space  size  of  the
kernel,  the  number  of  groups  for  the  channels  in  the
input feature map, and whether to use bias term.

(2)  Pooling  layer:  The  properties  of  the  pooling
layer  are  very  similar  to  those  of  the  convolutional
layer,  except  that  the  following  details  need  to  be
changed.  First,  the  pooling  layer  contains  two  types,
i.e.,  max pooling (MAX) and average pooling (AVG),
so  the  property “type” needs  to  be  introduced  to
indicate  which  type  is  chosen.  Second,  the  purpose  of
pooling is to reduce the size of the feature map, but this
process has no parameters to learn, so there is no need
for  property “groups” to  reduce  the  number  of
parameters.  Third,  as  we  all  know,  the  purpose  of
“padding” is to expand the values in all four directions

of the feature map, so not only the values but also the
quantities need to be defined. However, in the pooling
layer,  the  value  of “padding” is  not  set  manually  but
the default value of 0. If not, it will affect the selection
of  feature  values  and  make  the  final  result  biased.  In
summary,  compared  with  the  convolutional  layer,  the
property “groups” is  removed  and  a  new  property
“type” is added, so the pooling layer still maintains ten
properties.

(3)  Fully-connected  layer:  Compared  to  the  above
two  structures  of  the  network,  the  fully  layer  is
straightforward  to  express.  The  fully-connected  layer
has only two properties,  i.e., “in_size” and “out_size”.
In many neural architectures for vision-related tasks, a
fully layer is necessary, such as in image classification
tasks, where the final result  is output for classification
only  through  a  fully-connected  layer.  Therefore,  the
structure is simple but essential.

(4) Other layers: In the CNN architecture, there are
many  structures  with  different  functions,  such  as
activation  function,  Batch  Normalization  (BN)  ,  etc.
These structures  play the  role  of  catalysts  in  the  CNN
architecture and enhance the performance of the neural
architecture.  Therefore,  in  this  part,  all  relevant
structures will be described. The common properties of
these  structures  are  the “name”, “in_size”, “out_size”,
and “value”. Among them, “value” denotes the relevant
parameter involved in the corresponding structure.

As shown above, we have described the properties of
different  structures  in  CNN.  In  our  methodology,
encoding the CNN architecture into a textual format is
a  crucial  step  that  facilitates  the  integration  of  neural
networks  with  the  GPT  model.  The  coding  process
converts  the  architectural  specifications  of  each  layer
into  a  structured  string  format,  allowing  for  efficient
processing by the GPT model.  As detailed in Table 1,
the  unique  properties  of  each  layer,  such  as  identifier,
type,  and  dimensionality,  are  systematically
transformed  into  a  delimited  text  string  that
encapsulates  the  layer’s  configuration.  For  example,
the  first  layer  of  network  architecture  in Fig.  1,  a
convolutional  layer,  is  encoded  as  follows:
“id:1;in_size:32-32-3;out_size:32-32-3;kernel:1-1;stride:
1-1;padding:0-0-0-0;dilation:1;groups:1;bias_used:
No”.  This  encoding  string  begins  with  a  unique
identifier  (id:1),  followed  by  input  and  output  sizes
(in_size  and  out_size),  kernel  size  (kernel),  and  other
relevant  parameters  such  as  stride,  padding,  dilation,
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groups,  and  whether  a  bias  is  used.  By  employing
semicolons to delimit properties and hyphens to specify
dimensions  or  parameter  values,  we  create  a
standardized  format  that  the  GPT  model  can  readily
interpret  and  use  for  further  processing  tasks  such  as
architecture  reconstruction  and  optimization.  In
addition,  the  encoding  for  a  max  pooling  layer  is
similarly  structured  but  includes  its  specific
parameters,  such  as  the  pooling  type  and  the  relevant
kernel  and  stride  sizes,  reflecting  its  purpose  and
design  within  the  overall  architecture.  The  encoded
string ‘id:2;type:Max;in_size:32-32-3;  out_size:16-16-
3;  kernel:2-2;  stride:2-2;  padding:1-0-1-0;  dilation:1;
bias_used:No’ details  a max pooling layer designed to
reduce  the  spatial  dimensions  of  the  preceding
convolutional  layer’s  output.  By  precisely  encoding
each  layer,  we  can  capture  the  intricate  details  that
define  the  structure  and  behaviour  of  a  CNN.  This
meticulous  process  not  only  standardizes  the

representation  of  neural  architectures,  but  also  paves
the  way  for  the  use  of  GPT  models  to  analyze,
optimize,  and  ultimately  generate  neural  architecture
designs  that  are  both  innovative  and  effective  for  a
variety of tasks.

3.3　Pre-training and fine-tuning the GPT model

Providing the ability  to  design neural  architectures  for
GPT models is at the heart of this research. Therefore,
pre-training  and  fine-tuning  the  GPT  model  using  the
neural  architecture  as  training  data  can  effectively
achieve what is needed in this paper.

The  pre-training  phase  of  a  GPT  model  requires
training  on  a  large  amount  of  data  to  learn  the
parameter distribution, followed by a fine-tuning phase
to  suit  various  tasks.  As  a  result,  the  mainstream
approach will use unsupervised learning for maximum
likelihood  estimation  in  the  first  phase  and  use
supervised  learning  to  optimize  the  model  using  a

 

Table 1    Properties of different layers in CNN.
No. Name Conv Pooling FC Others Remark
1 id ✓ ✓ ✓ ✓ An identifier with an integer value
2 type – ✓ – – A string value
3 name – – – ✓ A string value
4 in_size ✓ ✓ ✓ ✓ Input size of a three-element integer tuple
5 out_size ✓ ✓ ✓ ✓ Output size of a three-element integer tuple
6 kernel ✓ ✓ – – A two-element integer tuple
7 stride ✓ ✓ – – A two-element integer tuple
8 padding ✓ ✓ – – A four-element integer tuple
9 dilation ✓ ✓ – – An integer
10 groups ✓ – – – An integer
11 value – – – ✓ A tuple
12 bias_used ✓ ✓ – – A boolean number
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Fig. 1    Description of the CNN architecture.
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cross-entropy  loss  function  in  the  second  phase.
However, in this study, since both the pre-training and
fine-tuning  phases  are  trained  on  the  neural
architectural  dataset  and  ground  truth  is  presented,  it
will  be  a  better  choice  to  use  a  supervised  learning
approach for both phases. The specific implementation
process is shown in Fig. 2.

In  line  with  the  previously  mentioned,  we  leverage
the GPT model to predict the next data by the previous
information,  i.e.,  the  structural  information  of  the
previous layers to predict  the structural  information of
the next layer (see Section 3.4 for details). Thus, based
on  the  given  layer  structures,  we  will  minimize  the
following objective function:
  F =L

(
L̂t, Lt

∣∣∣L<t, C
)
,

C = f (θ, S)
(1)

θ

S

F L L̂t Lt

t
L<t = (Lt−k, Lt−k−1, . . . , Lt−1)

L

where C denotes  the  neural  architectures,  is  the
parameter  used  in  constituting  the  neural  architecture,

 is  the  corresponding  network  layer  structures,  and
f ( ) denotes the combination strategy. In the objective
function ,  denotes  the  loss  function,  and 
denote  the  predicted  layer  structure  and  the  true  layer
structure  obtained  at  layer ,  respectively,  and

 (k is  the  size  of  the  data
window).  The loss  function  is  defined as  the  cross-
entropy loss function,
 

L = − 1
T−k

T∑
t=k+1

N∑
i=1

Lt log (L̂t [i]) (2)

where T denotes  the  total  number  of  layers  in C, N
denotes the number of categories in the layer structure,

L̂t [i]

L̂t

and  denotes the probability of the i-th category in
the predicted layer structure .

3.4　NAS

Based on the obtained GPT model,  in this  section,  we
will  describe  in  detail  how to  effectively  combine  the
GPT  model  with  NAS  to  improve  the  optimization
efficiency. The procedure of neural architecture search
consists  of  two  main  parts,  i.e.,  network  architecture
search  and  architecture  reconstruction,  and Fig.  3
shows the flowchart.

(1) NAS: In the first part, we implement the search of
neural architectures with the GA as the search strategy.
Specifically,  multiple  individuals  are  initialized
randomly,  and  each  individual  is  represented  as  a
neural  architecture.  Then,  each  neural  architecture  is
reconstructed and the performance of the reconstructed
architecture is evaluated. After that, during the iterative
process,  the  GA  is  used  to  perform  evolutionary
operations  on  individuals,  including  crossover,
mutation,  and  selection  strategies  to  facilitate  the
acquisition of better-performance individuals and form
a  new  population.  In  more  concrete  terms,  for  the
crossover  operation,  two  individuals  are  randomly
selected  from  the  population  as  parents,  and  the
offspring is obtained by exchanging the information of
the  two  individuals.  For  the  mutation  operation,  the
information  of  the  individual  is  randomly  changed  to
obtain a new individual (both operations are detailed in
Ref. [35]). Note that the new architectures obtained
after  the  evolution  operation  in  each  iteration  still
need to be reconstructed and evaluated. Finally, the
optimal  individual  will  be  obtained  after  reaching  the
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Fig. 2    Pre-training  and  fine-tuning  process  for  the  GPT  models.  The  pre-training  and  fine-tuning  phases  are  the  same
process, with the difference being that the neural architectures are obtained from different datasets. The graph depicts how the
network  architecture  is  integrated  with  the  GPT model  during  the  pre-training  and  fine-tuning  phases.  Specifically,  for  the
masked network architectures, k layers are input, and then the next layer is predicted by the GPT model, and this operation is
repeated until all masked layers are filled.
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maximum number of iterations.
(2) Architecture reconstruction: In the second part,

we  will  describe  how  the  GPT  model  can  be  used  to
optimize  the  architecture  obtained  from  the  search.
Note  that  to  reduce  the  cost  and  complexity  of  the
reconstruction,  we  will  build  the  neural  architecture
based  on  blocks  rather  than  layers.  Specifically,  we
start  choosing  one  or  more  layer  structures.  Then,  the
GPT  model  comes  into  play  and  predicts  a  new  layer
structure  to  replace  the  masked  layer  using  the  pre-
existing  structure  information  as  a  reference.  In  the
following,  we use  a  neural  architecture  as  an  example
to illustrate the process of reconstruction. As shown at
the bottom half of Fig. 3, randomly selecting a layer for
masking (assuming the layer is in the third block), and
then  the  fine-tuned  GPT  model  is  used  to  predict  the
layer  structure  based  on  the  layers  in  first  and  second
blocks  (including  layer  and  location  information).
However,  since  the  composition  of  the  neural
architecture  is  based  on  blocks  and  the  predictions
obtained by the GPT model are the layer, we introduce
a Fully  Connected Network (FCN) to  select  the  fittest
blocks  according  to  the  layers  and  replace  the  third
block.  Specifically,  a  new  layer  obtained  through  the

GPT model is integrated with the previous layers. This
combined set of layers is input into the FCN to obtain
the  corresponding  block  structure.  Note  that  we  treat
the process as a classification process, treating different
blocks  as  different  categories.  The  details  can  be  seen
in the Algorithm 1.

In  summary,  the  neural  architecture  obtained  from
each  iteration  is  optimized  using  the  GPT  model,  and
performance improvement  is  achieved by changing its
structure. In this case, we propose the concept of mask
rate  to  determine,  whether  a  layer  of  the  neural
architecture  is  selected and whether  the  corresponding
block is masked. However, according to the law of GA,
the  quality  of  the  offspring  population  will  be  better
than  that  of  the  parent  population.  Therefore,  as  the
iteration  proceeds,  the  mask rate  of  the  structures  will
be  linearly  decreasing.  The  mask  rate  at  the t-th
iteration is as follows:
 

ratet = rateori−
itert

itermax
× rateori (3)

rateori itert

itermax

where  indicates  the  initialized  mask  rate, 
and  denote the t-th iteration and the number of
iterations, respectively.
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Fig. 3    Flowchart of neural architecture search. We divide this procedure into two parts, i.e., search and reconstruction. The
former is a generalized neural architecture search method using GA as the search strategy. The latter is a reorganization of the
structure of the neural architecture by the GPT model (where Pi (i=1, 2, ..., m) denotes the layer position).
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3.5　Acceleration strategy

One of the criticisms of NAS development has been the
time-consuming  problem.  In  a  recent  study,  Ref.  [36]
proposes  that  the  performance  of  neural  architectures
can  be  evaluated  without  training.  However,  the
method  suffers  from  assumptions  and  does  not
guarantee that the final results are the same as the real
ones.  Therefore,  an  adequate  search  for  each
architecture  remains  the  dominant  approach.  In  this
study,  we  introduce  a  new  acceleration  strategy  to
reduce the time cost of the GPT-NAS, as shown below.

Only the  structures  obtained from the  prediction
are  trained. Training  the  entire  neural  architecture  is
time-consuming,  but  it  is  more  efficient  if  only  the
reconstructed structures of the architecture are trained.
To  speed  up  the  training  while  ensuring  that  the
performance  of  the  neural  architecture  is  not  lost,  we
assume that the layer structures obtained from the GPT
model  predictions are ‘vital’ structures  and propose to
train only these structures (confirmed in Section 5.2.2).
And  for  neural  architectures  without  predicted
structures,  inspired  by  Ref.  [37],  we  will  train  BN  in
the  neural  architecture.  Finally,  if  both  of  the  above
rules are not satisfied, the overall neural architecture is
trained.

Only  a  small  number  of  epochs  are  trained. This
strategy  has  been  covered  in  some works[18, 38].  While
in this study, a smaller number of epochs will be used.
The rationale for doing so is motivated by warmup[39],
which makes the learning rate increase in fewer epochs
to  alleviate  the  model  overfitting  phenomenon  and
reach an equilibrium state. If the model stabilizes faster

(i.e.,  the  higher  accuracy  rate  achieved)  during  this
time,  it  can  be  considered  a  better  performance  of  the
model (confirmed in Section 5.2.2).

4　Experimental Design

To verify  the  effectiveness  of  the  proposed  algorithm,
we  conduct  a  series  of  experiments.  Therefore,  this
section  will  present  the  design  of  all  the  elements
involved  in  the  experiments.  First,  we  introduce  the
competitive  algorithm  for  comparison  with  GPT-NAS
(Section  4.1).  Then,  the  datasets  used  in  this
experiment  and  the  hyper-parameters  are  introduced
(Section  4.2).  Finally,  we  describe  the  parameter
settings in the experiment (Section 4.3).

4.1　Peer competitors

To verify  the  effectiveness  of  the  proposed  algorithm,
we  selected  several  competitive  algorithms  for
comparison in our experiments. We divide the selected
peer  competitors  into  two  categories,  i.e.,  algorithms
obtained  by  manual  design  and  those  obtained  by
automatic  search.  Specifically,  there  are  seven
manually  designed  neural  network  architectures,
namely EfficientNet-B0[40], GoogLeNet[41], RegNet[42],
ResNet-101[39],  ResNeXt-101[43],  Shufflenet[44],  and
Wide-ResNet[45]. These neural architectures are chosen
for two reasons. One is that they are very popular and
representative  in  the  vision  domain,  and  the  other  is
that the constituent blocks of the neural architecture are
extracted  from  these  architectures,  as  described  in
Section 4.2.  In the second category,  we choose fifteen
NAS algorithms based on different strategies to verify
the superiority of GPT-NAS.

4.2　Datasets

Since there are two parts of work in this study, i.e., the
implementation  of  the  GPT-NAS  and  the  training  of
the  GPT  model,  two  types  of  datasets  are  required.
Firstly,  image  datasets  are  needed  for  training  the
neural  architecture,  so  the  three  most  popular  datasets
are  used  here,  namely  CIFAR-10,  CIFAR-100[23],  and
ImageNet-1K[24].  Second,  the  neural  architecture
dataset  is  required  in  the  training  of  the  GPT  model,
especially  in  the  pre-training  phase,  which  requires  a
very  large  amount  of  data.  Therefore,  in  the  pre-
training phase, we use NAS-Bench-101[46], while in the
fine-tuning  phase,  the  required  dataset  is  randomly
taken from the state-of-the-art neural architectures.

CIFAR-10 and CIFAR-100 are the two most popular

 

Algorithm 1    Structure prediction
Input: Neural architecture with masked structures cnn_mask
Output: Neural architecture with optimization cnn_new

1 for (1 ≤ L ≤ len (cnn_mask)) do
2 if layer is masked then
3 data ← transform Li into textual data (i∈[index–k,

index); //index denotes serial number of lays
4 new_layer ← prediction layer using GPT based on

data;
5 new_block ← prediction block using FCN based on

data and new layer;
6 cnn_new ← cnn_new∪new_block;
7 else
8 cnn_new ← cnn_new∪L;
9 end

10 end
11 return cnn_new
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image  classification  datasets.  Each  contains 60 000
images, of which 50 000 are used for training, and 10 000
are used for testing. The difference between the two is
the  number  of  object  classes.  On  CIFAR-10,  5000
images  per  category  are  used  for  training,  while  on
CIFAR-100,  only  500  images  are  used  for  training.
Furthermore,  ImageNet-1K  is  a  more  challenging
dataset  than  the  previous  two,  which  has  1000  object
classes and contains 1 281 167 training images, 50 000
validation  images,  and 100 000 test  images.  Since  the
image data in the test set do not give the corresponding
label,  only  the  training  and  validation  sets  are  used  in
this experiment. In addition, it should be noted that the
ImageNet-1K is  too large to be realistically applied to
NAS,  and  there  is  no  good  method  to  deal  with  it
currently. So, we only take 10% of the training images
to  search  the  architecture  (the  validation  set  is
consistent  with  the  original  data),  but  for  the  optimal
architecture  obtained  from the  search,  we  still  use  the
whole dataset for training.

NAS-Bench-101  is  a  dataset  of  different  neural
architectures  obtained  by  changing  the  structure  of  a
cell in a fixed framework. Each cell has at most seven
vertices and nine edges, and each neural architecture is
obtained  by  stacking  randomly  composed  cell
structures.  In  the  dataset,  there  are 423 624 neural
architectures,  and  the  corresponding  performance  is
obtained for multiple runs on the CIFAR-10. To make
the  GPT model  learn  better  neural  architectures  in  the
pre-training  phase,  we  do  not  select  all  the  neural
architectures, but those with the classification accuracy
of 90% or more on the validation set from them as the
training  data,  and  the  final  amount  of  neural
architectures is 295 889. The dataset in the fine-tuning
phase  adopts  the  most  commonly  used  neural
architectures.  In Table  2,  we  list  the  seven  neural
architectures  and  the  corresponding  blocks  (the  four
blocks listed in the eighth row are those common to the
neural  architectures  mentioned  above).  The  number
after each neural  architecture in the table indicates the
number  of  variants  we  can  extend,  depending  on  the
properties  of  that  neural  architecture,  for  example,
ResNet  has  18  layers,  34  layers,  etc.  So  the  total
number  of  neural  architectures  is  36.  Note  that
although the number of neural architectures in the pre-
training  phase  is 295 889 and  the  number  of  neural
architectures  in  the  fine-tuning  phase  is  36  when  we
train  the  GPT  model,  the  real  input  data  size  is  much

larger than the number of architectures since the input
data of the GPT model are layers rather than the whole
architecture  information.  For  example,  a  neural
architecture  has  20  layers,  and  assuming  that  the
dimension of the input token for the GPT model is 10,
the architecture can generate 10 input data.

4.3　Parameters settings

The  parameter  settings  in  the  experiment  can  be
divided into two parts, one for GPT-NAS and the other
for the GPT model.  All  experiments are performed on
an  Ubuntu  18.04  system  with  a  single  NVIDIA  3090
GPU  with  24  GB  of  memory,  and  the  code  is
implemented in PyTorch. In the following, we describe
in detail the parameters involved in two parts.

In GPT-NAS, the two critical operations are masking
network  structures  from  each  neural  architecture  and
applying  the  GPT  model  to  predict  and  refill  the
masked  network  structures.  Therefore,  we  determine
the initial  mask rate of network structures to be 0.4 in
advance  in  this  experiment  (confirmed  in  Section
5.2.1). Second, for the depth of neural architectures, we
set the number of blocks in the range[10, 20]. Then, since
GPT-NAS is optimized based on GA, we set the size of
populations  to  30,  the  number  of  iterations  to  20,  and
the  crossover  and  mutation  rates  to  0.7  and  0.5,
respectively.  Finally,  for  the  neural  architecture
training,  we  make  the  following  settings  for  the
parameters  in  it.  Specifically,  we  set  the  number  of

 

Table 2    Neural  architecture  and  the  corresponding  blocks
used in fine-tuning phase.

Number Neural architecture
(Number of variants) Block

1 EfficientNet (8)
ConvNormActivation

SqueezeExcitation

2 GoogleNet (1)
Inception
Avgpool

3 RegNet (14)
ResBottleneckBlock

Stem

4 ResNet (5)
Bottleneck
Basicblock

5 ResNext (2) Bottleneck
6 ShuffleNet (4) InvertedResidual
7 Wide-ResNet (2) Bottleneck

8 Others

Maxpool
BatchNormal

Relu
Conv
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epochs  to  6,  and  use  Stochastic  Gradient  Descent
(SGD)[47] to  optimize  the  parameters,  while  the
learning  rate  is  linearly  incremented  to  0.01.  In
addition, due to the different image datasets, we set the
batch  size  differently.  On  CIFAR-10  or  CIFAR-100,
the  batch  size  is  512,  while  on  ImageNet-1K  that  is
128.  When  the  running  is  finished,  the  neural
architecture with optimal accuracy will be obtained and
retrained.  On  CIFAR-10  and  CIFAR-100,  the  optimal
neural  architecture  is  trained  for  350  epochs,  and  the
learning  rate  decays  to  1/10  of  the  original  rate  every
100 epochs starting from 0.01. While on ImageNet-1K,
we  only  train  the  optimal  architecture  for  120  epochs
due to resource constraints and the learning rate decays
every 30 epochs.

For  the  GPT  model,  we  mostly  use  the  same
parameter  settings as  in  the seminal  paper,  with a  few
differences as shown below. As we all know, the GPT
model largely follows[48] and trains a 12-layer decoder-
only  transformer.  However,  in  our  experiments,  since
the amount of data is not as large as in the task of the
seminal  paper,  only  4  layers  of  decoders  are  trained
and  only  4  attention  heads  are  introduced  in  each
decoder.  After  collation,  168  different  network  layer
structures  are  finally  obtained,  such  as  convolution
layer with kernel size 3, convolution layer with kernel
size  5,  etc.  In  addition,  we  set  the  input  dimension  to
10 and the  stride  to  1.  Finally,  we train  the  model  for
300  epochs  using  the  Adam optimizer  with  a  learning
rate of 1×10−4 and a batch size of 128.

5　Experimental Result

In  this  section,  we  discuss  the  experimental  results  in
detail.  The  analysis  of  the  experiments  is  divided  into
three  parts,  the  first  part  is  the  overall  performance
comparison of the proposed algorithm with other state-
of-the-art  algorithms,  the  second  part  is  the  ablation
experiment, and the third part is an in-depth analysis of
the influence of the GPT model.

5.1　Performance overview

In  this  section,  we  describe  the  results  of  comparing
GPT-NAS  with  other  algorithms,  and  the  specific
experimental  results  are  shown  in Table  3.  In  the
experiments,  GPT-NAS  is  compared  with  four
categories  of  related  neural  architectures.  In  addition,
we  also  list  the  accuracy  of  the  optimal  neural
architecture  with  and  without  the  GPT  model.  The

table  shows  the  experimental  results  of  different
algorithms on different datasets. Two points should be
noted  here.  The  first  is  that  there  are  no  GPU days  (a
metric  used  to  measure  the  time  cost  of  NAS-related
algorithms)  for  the  neural  architecture  obtained  by
manual design, and the second is that “−” denotes null
values.  In  addition,  on  CIFAR-10  and  CIFAR-100,
only  Top1  is  selected  as  the  final  accuracy  due  to  the
small  number  of  categories,  while  on  ImageNet-1K,
both  Top1  and  Top5  metrics  are  selected  as  the  final
accuracies.  The best  results  on each dataset  have been
marked in bold.

Results  description. On  CIFAR-10,  the  neural
architecture  obtained  by  GPT-NAS  achieves  the  best
result among all algorithms, with 97.69%. Compared to
the  manually  designed  neural  architecture,  GPT-NAS
improves  the  classification  accuracy  by  up  to  nearly
9%. Furthermore, the accuracy has increased by 4.12%
compared to the ResNet-101, which is the most famous
architecture  today.  Moreover,  among  the  remaining
architectures,  the  accuracy  of  GPT-NAS  is  0.69%
higher  than  that  of  EfficientNet-B0,  which  is  the
smallest accuracy difference, and 4.97%, 1.4%, 6.82%,
and 1.86% higher than those of RegNet, ResNeXt-101,
ShuffleNet, and Wide-ResNet, respectively. The better
performance of GPT-NAS over the manually obtained
neural  architecture  reflects  that  the  neural  architecture
composed  of  different  blocks  is  efficient  and  also
demonstrates  that  the  neural  architecture  learns  global
information.  After  comparing  with  NAS  algorithms
based on different strategies, it can be found that GPT-
NAS  also  has  the  best  performance,  which  is  4.61%
higher than that of MetaQNN. Moreover, GPT-NAS is
an  algorithm  based  on  EA,  when  compared  with  five
listed  state-of-the-art  EA-NAS  algorithms,  it  still
outperforms more than 0.46% of  them. Among all  the
algorithms  involved  in  the  comparison,  the  GO-based
algorithm has  the  best  average performance,  all  above
97%, but GPT-NAS still has a slight edge.

On  CIFAR-100,  GPT-NAS  is  second  only  to
EfficientNet-B0  among  all  algorithms.  Compared  to
CIFAR-10,  CIFAR-100  is  significantly  more
challenging,  with  only  seven  of  all  the  algorithms
involved  in  the  comparison  exceeding  80% in
accuracy. Although the accuracy of GPT-NAS is lower
than  that  of  EfficientNet-B0,  its  advantage  is  still
undeniable  accuracy  is  compared  with  other
algorithms.  For  example,  it  is  about  20% higher  than
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that of GoogLeNet. Furthermore, compared with other
EA-NAS  algorithms  in  the  same  category,  GPT-NAS
is the only one with an accuracy of more than 82%. On
the other hand, regarding the number of parameters, the
neural  architecture  obtained  by  searching  on  either
CIFAR-10 or CIFAR-100 is not significantly superior.
However, it is also in the middle to the upper level.

Finally,  GPT-NAS  outperforms  all  other  algorithms
on  ImageNet-1K  and  is  the  only  algorithm  with  a
classification accuracy of over 79% on Top1 and over
95% on Top5. Since ImageNet-1K is more difficult  to
classify,  fewer  algorithms  are  involved  in  the
comparison, while the classification accuracy does not
differ  significantly  among  algorithms.  Except  for
GoogLeNet,  all  other  algorithms  have  accuracies

between 72% and 78% on Top1. Among the manually
designed neural architectures, the optimal one is Wide-
ResNet  with  an  accuracy  of  78.1%,  which  is  0.98%
lower  than  GPT-NAS,  while  among  the  NAS
algorithms,  the  optimal  one  is  Block-QNN-S,  but  its
accuracy  is  also  1.68% lower  than  that  of  GPT-NAS.
The  only  drawback  is  that  the  number  of  neural
architecture  parameters  obtained  by  GPT-NAS  is
relatively large, only less than that of GeCNN.

In  addition,  the  time  complexity  (i.e.,  GPU  days)
results  of  the  different  algorithms  can  be  observed  in
Table 3. First, for our method, there is no change in the
time  with  and  without  the  GPT.  Secondly,  the  GPU
days  of  1.5  for  CIFAR-10  and  CIFAR-100  are
significantly  improved  compared  to  many  other

 

Table 3    Experimental results of the proposed algorithm and the state-of-the-art algorithms on different datasets (the bolded
indicates the optional value).

Search
method Architecture

CIFAR ImageNet-1K
CIFAR-10
Top1 (%)

CIFAR-100
Top1 (%) ×106

Number of
parameters ( )GPU days Top1 (%) Top5 (%) ×106

Number of
parameters ( )GPU days

Human

EfficientNet-B0 97.00 86.60 5.3 − 77.69 93.53 5.3 −
GoogLeNet 89.23 62.90 6.6 − 69.78 89.53 6.6 −

RegNet 92.72 70.19 31.3 − 76.57 93.07 31.3 −
ResNet-101 93.57 74.84 44.5 − 77.37 93.55 44.5 −

ResNeXt-101 96.29 82.27 18.1 − 77.80 94.30 18.1 −
ShuffleNet 90.87 77.14 3.5 − 73.70 91.09 3.5 −

Wide-ResNet 95.83 79.50 36.5 − 78.10 93.97 68.9 −

RL

NAS-RL 96.35 − 37.4 22 400 − − − −
MetaQNN 93.08 72.86 11.2 100 − − − −

EAS 95.77 − 23.4 10 − − − −
NASNet-A 96.59 − 3.3 2000 74.00 91.60 5.3 2000

Block-QNN-S 96.46 81.94 39.8 96 77.40 93.50 − 96

EA

Large-scale Evo 94.60 77.00 5.4/40.4 2750 − − − −
GeCNN 94.61 74.88 − 17 72.13 90.26 156.0 17
AE-CNN 95.30 77.60 2.0/5.4 27/36 − − − −
GPCNN 94.02 − 1.7 27 − − − −

MOEA-PS 97.23 81.03 3.0/5.8 3/5 73.60 91.50 4.7 −

GO

SNAS 97.17 82.45 2.8 1.5 72.70 90.80 4.3 1.5
P-DARTS 97.33 − 3.5 0.3 75.30 92.50 5.1 0.3
DARTS 97.14 82.46 3.4 0.4 76.20 93.00 4.9 4.5

ISTA-NAS 97.64 − 3.4 2.3 76.00 92.90 5.7 33.6
U-DARTS 97.47 − 3.3 4.0 73.90 91.90 4.9 3
FP-DARTS 97.56 − 3.8 0.04 75.30 91.80 3.8 0.04

Ours

NAS without
GPT 90.77 75.20 4.6/38.1 1.5 69.53 − 104.7 4

NAS with GPT
(GPT-NAS) 97.69 82.81 7.1/10.5 1.5 79.08 95.92 110.9 4

Note: In Columns “Number of pamameters” and “GPU day” under “CIFAR”, one value is for both CIFAR-10 and CIFAR-100, two
values are for CIFAR-10 and CIFAR-100, respectively.
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methods,  especially  the  RL-based  and  EA-based
methods. On the ImageNet dataset, our method spent 4
GPU  days,  which  is  a  relatively  large  improvement
compared  to  existing  methods,  but  not  particularly
advantageous compared to GO-based methods. This is
because  most  GO-based algorithms use  the  method of
constructing  a  supernet,  and  the  subsequent
subnetworks implement the weight sharing, so the time
consumption is significantly reduced, which is different
from training all neural architectures in this paper. The
results  reveal  the  effectiveness  of  our  proposed  two
acceleration  strategies.  Firstly,  the  choice  to  evaluate
each  architecture  for  only  a  small  number  of  epochs,
which,  while  reducing the  time cost  of  the  evaluation,
significantly  lowers  the  computational  burden.
Secondly,  training  on  the  predicted  structures  and
freezing  the  parameters  of  the  other  structures  further
decline the computational expense.

In  the  end,  by  comparing  the  performance  of  the
NAS  in  this  experiment  with  and  without  the  GPT
model,  we  can  find  that  the  accuracy  of  the  neural
architecture obtained with the introduction of the GPT
model  is  generally  improved  on  all  datasets.  On  the
three  datasets,  the  accuracy is  improved by about  7%,
7%, and 9%, respectively, demonstrating our method’s
effectiveness.

Analyze  and  discussion. Upon  closer  examination,
the  results  for  GPT-NAS indicate  a  distinct  advantage
of  incorporating  GPT  into  the  NAS  process.  The
significant  boost  in  performance  on  CIFAR-100  and
ImageNet-1K suggests that the pre-training of the GPT
model  on  various  neural  architectures  can  generate  or
predict more appropriate layers. This pre-training likely
equips  the  GPT  with  an  extensive ‘knowledge’ of
architectural  patterns that  work well,  which traditional
NAS  might  not  explore  or  might  require  significantly
more  time  and  computational  resources  to  discover.
The  maintained  efficiency  in  terms  of  GPU  days  is
particularly noteworthy. It suggests that the integration
of  GPT  does  not  introduce  a  heavier  computational
burden,  which  is  often  a  critical  concern  in  NAS
methodologies.  In  other  words,  the  GPT-NAS
approach  enhances  the  quality  of  the  search  without
negatively  impacting  the  search’s  efficiency.  This
could  be  due  to  the  GPT  effectively  narrowing  down
the  vast  search  space  to  more  promising  regions,
thereby  avoiding  futile  exploration  of  suboptimal
architectures.

5.2　Ablation experiments

For  the  method  proposed  in  this  experiment,  two
ablation  experiments  are  performed  to  verify  its
effectiveness. In the first part, the influence of different
mask  rates  on  the  neural  architecture  is  compared
(Section  5.2.1).  In  the  second  part,  we  test  the
effectiveness  of  the  proposed  acceleration  strategy
(Section 5.2.2). Note that the parameter settings for the
experiments  in  this  section  are  slightly  different  from
those  in  the  main  experiment  (Section  5.1),  as
described  in  each  subsection.  In  addition,  ablation
experiments are tested on both CIFAR-10 and CIFAR-
100 datasets.
5.2.1　Validation on different mask rates
The core  of  this  study is  to  mask the  structures  in  the
neural  architecture  effectively  and  to  perform
prediction  and  reconfiguration,  so  it  is  important  to
choose  the  appropriate  mask  rate.  In  this  subsection,
we  experiment  with  different  mask  rates  and  choose
the  optimal  one.  For  convenience,  we  only  test  the
initialized  individuals  and  do  not  perform  genetic
operations.  Specifically,  we  choose  15  initialized
neural  architectures  and  train  90  epochs  with  mask
rates  of  0,  0.2,  0.4,  0.6,  and  0.8  to  test  their
classification  accuracy.  When  the  mask  rate  is  0,  it
means  that  the  neural  architecture  has  not  changed  its
internal  structure.  The  experimental  results  are  shown
in Table 4.  In Table 4,  the “mean value” indicates the
average  accuracy  of  the  15  neural  architectures  at  the
corresponding mask rates.

Results  description. From Table  4,  we  can  obtain
that  on  CIFAR-10,  the  effect  is  the  worst  when  the
 

Table 4    Experimental  results  of  neural  architecture  with
different  mask  rates. “+/=/−” indicates  the  number  of
individual  neural  architectures  with  mask  rates  that  are
better,  equal,  and  worse  in  terms  of  classification  accuracy
than those without mask rates.

Dataset Mask rate Mean value +/=/−

CIFAR-10

0 0.3792 −
0.2 0.4226 10/0/5
0.4 0.5134 15/0/0
0.6 0.5056 15/0/0
0.8 0.4828 13/0/2

CIFAR-100

0 0.0453 −
0.2 0.1257 14/1/0
0.4 0.1392 15/0/0
0.6 0.1278 13/0/2
0.8 0.1261 1/4/10
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mask  rate  is  0.2,  with  five  neural  architectures  being
worse than the case without mask rate, and the next is
when the mask rate is 0.8, with two neural architectures
being  worse  than  the  case  without  mask  rate.  In
addition,  on  CIFAR-100,  only  when  the  mask  rate  is
0.4,  all  neural  architectures  are  better  than  the  case
without the mask rate. Furthermore, from the metric of
“mean value”, we can find that the average accuracy of
the neural architecture on CIFAR-10 is improved by at
least  5%,  up  to  14%,  compared  to  the  case  without
mask rate. While on CIFAR-100, the average accuracy
of  the  initialized neural  architecture  is  improved by at
least  8% after  the  introduction  of  the  mask  rate.  In
summary, the neural architectures with the introduction
of  the  mask  rate  have  a  huge  average  performance
improvement,  especially  with  a  mask  rate  is  0.4.
Therefore, in the main experiment, we chose the mask
rate  of  0.4  for  the  network  structure  as  the  final
criterion.

Analyze and discussion. These results reveal that an
appropriate  mask  rate  helps  to  obtain  highly  accurate
architectures.  However,  increasing the mask rate leads
to  diminishing  returns,  possibly,  because  the  GPT
model  does  not  have  enough  guidance  to  accurately
predict  the  masked  layers.  These  patterns  imply  that
GPT  models,  while  robust  in  predicting  architectural
components,  do  have  an  uncertainty  threshold.  If  this
threshold is  exceeded,  their  predictive  ability  does  not
translate  into  improved  performance,  emphasizing  the
need  for  strategic  balance  when  designing  masking
strategies.
5.2.2　Validation on acceleration strategies
In  this  subsection,  we  implement  two  main  types  of
experiments.  Firstly,  the  neural  architecture  optimized
by the GPT model is trained in two parts, i.e., only on
the  predicted  blocks  and  on  all  blocks  in  the  neural
architecture,  and  then  the  two  correlations  are
calculated.  Secondly,  the  neural  architecture  is  trained
under  different  numbers  of  epochs  and  the  correlation
between  them  is  calculated.  Note  that  for  correlation
comparison  of  accuracy,  we  mainly  use  the  Pearson
Correlation  Coefficient  (PCC,  between −1  and  1,  the
larger the value, the higher the correlation) and p-value
(less than 0.05 means that they are correlated) to show.

Results description. For the first experiment, Fig. 4
shows the accuracy correlation heat  map of  the neural
architecture  for  training  only  the  blocks  obtained  by
prediction and all blocks. The horizontal axis indicates

e6− e30

that  all  blocks  are  trained,  while  the  vertical  axis
indicates  that  the  predicted  blocks  are  trained.  a0,  a2,
a4,  a6,  and  a8  mean  that  the  neural  architecture  is
optimized  with  the  mask  rate  of  0,  0.2,  0.4,  0.6,  and
0.8,  respectively,  and  all  blocks  are  trained,  while  p0,
p2,  p4,  p6,  and  p8  denote  the  neural  architecture  is
optimized  with  the  mask  rates  of  0,  0.2,  0.4,  0.6,  and
0.8,  respectively,  and  only  the  predicted  blocks  are
trained.  In  addition,  the  experimental  results  in Fig.  4
are obtained by averaging the PCC calculated by each
of  the  15  neural  architectures.  For  the  second
experiment, Table  5 gives  the  experimental  results  on
whether  there  is  a  correlation  between  training  only  a
small  number  of  epochs  versus  training  multiple
epochs.  In  addition  to  the  PCC,  we  also  list  the
corresponding p-value. In addition, the first column of
Table  5 indicates  the  comparison  between  different
epochs,  for  example, “ ” denotes  the  linear
correlation between the accuracy values obtained from
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Fig. 4    Comparison  of  the  accuracy  correlation  results
achieved  by  training  the  blocks  obtained  by  prediction  and
all blocks in the neural architecture.
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two separately training sessions: one executed 6 epochs
and the other 30 epochs.

As  can  be  obtained  from Fig.  4,  the  color  on  the
diagonal in the heat map is the darkest regardless of the
dataset, which means that the corresponding correlation
is  the  highest  and  the  values  are  above  80%.  And  the
values  on  each  diagonal  line  indicate  the  accuracy  of
training only the predicted blocks is relevant to training
all blocks on the same neural architecture. In addition,
in Table 5, we can find that the effect of using a small
number of epochs to train is  the same as that  of  using
most  epochs  to  train.  It  is  expressed  as  a  positive
correlation on PCC, while a linear correlation between
them can be proved by p-value.

Analyze and discussion. The experimental results of
the  two  acceleration  strategies  can  reveal  that  both  in
terms of the stability of the training and the robustness
of  the  predicted  structures,  the  architectures  obtained
by the  search are  satisfactory.  This  is  attributed to  the
fact  that  we  enable  the  GPT model  to  be  trained  on  a
large  number  of  neural  architectures,  achieving  a
global understanding of the neural architecture design.
Secondly, the fine-tuning of specific tasks motivate the
GPT model to better adapt to the features of the tasks,
resulting  in  further  performance  improvement  of  the
searched architectures.

5.3　In-depth analysis

In this section, we verify the effectiveness of the GPT
model,  which consists  of  two main aspects,  one is  the
exhibition  of  the  training  process  during  the  pre-
training  and  fine-tuning  of  the  GPT  model,  and  the
other is the related ablation experiments.
5.3.1　Training process of GPT
Figure  5 presents  two  line  graphs  depicting  the  loss
across  epochs  during  the  pre-training  and  fine-tuning
phases of the training process.

In Fig. 5a, labeled as the pre-training phase, we find

a sharp decline in  loss  from the start,  quickly leveling
off  as  the  epochs  increase.  The  curve  starts  at  a  loss
above 3 and dramatically drops close to 0.5 within the
first few epochs. This indicates an initial phase of rapid
learning, where the model is capturing the fundamental
patterns  of  the  dataset  (i.e.,  architectures).  After  this
steep descent, the loss continues to decrease at a much
slower  rate,  indicating  that  the  model  is  starting  to
saturate in terms of learning from the pre-training data.
An  inset  provides  a  closer  look  at  the  tail  of  the  pre-
training curve, where the loss gently slopes downwards
from around 0.5, showing that the model is still making
incremental  improvements  even  as  changes  become
more marginal.

In Fig.  5b,  the graph for the fine-tuning phase starts
at  a  loss  just  below 0.47,  which  is  significantly  lower
than  the  starting  point  of  the  pre-training  loss,
illustrating  that  the  model  enters  the  fine-tuning  stage
with  prior  knowledge.  The  curve  depicts  a  consistent
downward trend,  with the loss decreasing steadily and
more linearly  compared to  the  pre-training phase.  The
loss exhibits minor fluctuations but generally maintains
a  downward trajectory,  settling just  above 0.44 by the
end of 300 epochs. This smooth and consistent decline
suggests  that  the  fine-tuning  process  is  refining  the
parameters  of  the  model  effectively,  making  it  more

 

Table 5    Comparison  of  the  correlation  between  the
accuracy  achieved  by  the  neural  architecture  trained  on  a
small number of epochs and multiple epochs.

Epoch pair Dataset PCC p-value

e6 − e30
CIFAR-10 0.7247 2.68×10−9

CIFAR-100 0.8657 4.96×10−16

e6 − e60
CIFAR-10 0.6984 1.72×10−8

CIFAR-100 0.8176 4.33×10−13

e6 − e90
CIFAR-10 0.7046 1.13×10−8

CIFAR-100 0.8107 9.66×10−13

 

(a) Training process in the pre-training phase

(b) Training process in the fine-tuned phase
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Fig. 5    Training process of the GPT model.
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adept at the specific task at hand.
5.3.2　Ablation experiments of GPT
(1) Consumption of search time

We  test  the  time  consumption  of  different  search
strategies.  As  shown  in Table  6,  the  average  time  for
the  first  two  strategies  (GA and  GA + GPT)  refers  to
the  average  time after  20  iterations,  while  the  average
search  time  for  the  last  two  strategies  (Random  and
Random + GPT) is the average time per 30 individuals
(since  30  individuals  need  to  be  selected  for  each
iteration in GA).

From Table 6, we can find the GA strategy, which is
a  traditional  approach  in  NAS,  takes  an  average  of
35.15 s.  This  approach typically  involves generating a
population  of  architectures  (in  this  case,  30)  and
iteratively  evolving  them over  several  generations  (20
iterations  here)  to  find  the  most  optimal  architecture.
When the GPT model is introduced into the GA (GA +
GPT),  the  average  search  time  increases  to 56.04  s.
This  suggests  that  the  integration of  GPT into the  GA
process  adds  computational  overhead,  because  the
predictions  of  the  GPT  are  used  to  optimize  the
architectures,  which  in  turn  requires  additional
computation  beyond  the  traditional  GA  operations.
Using the GPT model alone (Random + GPT) for NAS
significantly reduces the search time to 20.05 s, nearly
half the time taken by the traditional GA method. The
random  strategy,  which  serves  as  a  baseline  for
comparison,  has  the  lowest  average  search  time  of
12.36  s.  This  is  expected  as  there  is  no  computational
overhead for learning or optimization; architectures are
simply selected at random.

Analyzing  these  results,  it  is  evident  that  the  GPT
model  offers  a  good  balance  between  efficiency  and
potentially guided exploration of the architecture space,
as it does not differ much from traditional GA in terms
of search time while likely providing more directed and
possibly higher quality results than random search. The
GA + GPT strategy, while slower than both Random +

GPT  and  GA,  offers  benefits  not  captured  by  search
time alone,  such as potentially better  optimization due
to  the  combined  exploration  and  exploitation
mechanisms  of  both  GA  and  GPT,  which  is
demonstrated in the experiment below.

(2)  Performance  comparison  of  neural
architectures with and without GPT

We  randomly  select  10  neural  architectures  and
compare their accuracy on two datasets, CIFAR-10 and
CIFAR-100.  In Fig.  6,  one  line  indicates  the
architecture  chosen  without  using  GPT  for  structural
prediction  (blue  line),  while  the  other  line  has  GPT
(orange line).

The graph for CIFAR-10 (Fig.  6a) indicates that  the
architectures  predicted  with  GPT  generally  perform
better  than  those  selected  without  GPT.  There  is  a
notable  variation  in  accuracy  across  different
architectures, but the trend suggests that GPT provides
a  beneficial  guide  in  selecting  architectures  that  yield
higher  accuracy.  The  peaks  and  troughs  indicate  that
while  GPT  improves  performance  on  average,  the
degree  of  improvement  varies,  which  might  be  due  to
the  inherent  variability  in  the  architectures’ suitability
for  CIFAR-10.  For  CIFAR-100,  the  architectures  with
GPT  again  outperform  those  without,  although  the
margin  of  difference  appears  smaller  compared  to

 

Table 6    Average search time with different strategies. Note
that  only  the  search  time  is  recorded  here,  excluding  the
training  time  (because  different  architectures  can  lead  to
different training times).

Strategy Time (s)
GA 35.15

GA + GPT 56.04
Random 12.36

Random + GPT 20.05
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Fig. 6    Accuracy  distribution  of  neural  architectures  with
and without the GPT model.
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CIFAR10.  The  variability  in  accuracy  is  also  present
here,  with  both  lines  showing  fluctuations  across  the
ten architectures.

Across  both  datasets,  introducing  GPT  for  structure
prediction has a positive impact on the accuracy of the
selected  architectures.  This  implies  that  GPT’s
predictive capabilities are effective in guiding the NAS
process towards more successful architectures.

(3) Comparison of search efficiency
In this experiment, we record the GPU days required

to  achieve  different  classification  accuracy  thresholds
using the strategy combination of GA and GPT (GA +
GPT) to reflect the search efficiency.

Figure  7 comprises  two  bar  graphs  representing  the
GPU  days  required  to  achieve  specified  accuracy
thresholds  using  the  GA + GPT  strategy  on  two
datasets.  Each graph compares the computational  time
with  and  without  GPT  in  the  search  strategy  across
three different accuracy thresholds.

For  CIFAR-10, Fig.  7a  exhibits  a  clear  trend  where
the  inclusion  of  GPT  in  the  architecture  search
consistently  reduces  the  GPU  days  required  to  reach

the accuracy thresholds. At the 0.8 accuracy threshold,
the “with  GPT” strategy  consumes  slightly  more  than
0.3  GPU  day,  whereas “without  GPT” consumes
slightly  more  than  half  a  GPU  day.  This  disparity
widens  at  the  0.85  threshold,  where “with  GPT” uses
approximately  0.45  GPU  days  compared  to “without
GPT” nearly  0.8  GPU  days. Figure  7b,  detailing  the
CIFAR-100  dataset,  shows  a  similar  pattern.  At  a
threshold of 0.55, the difference in GPU days between
the two is  greater  than 0.2,  and at  a  threshold of 0.65,
the difference between the strategies  with and without
GPT is even greater.

Figure  7 depicts  that  incorporating  GPT  into  the
search  strategy  enhances  the  efficiency  of  reaching
higher  accuracy  levels,  indicating  that  GPT  likely
guides  the  search  towards  more  promising
architectures.  In  addition,  by analyzing the  results,  we
can deduce that the GPT model provides computational
savings  in  architecture  search.  This  also  means  that
with the introduction of the GPT model, the search for
a better architecture becomes more efficient.

6　Conclusion and Future Work

NAS  algorithms  automate  the  design  of  neural
networks,  but  traditional  search  strategies  become
overwhelmed in the face of a huge and complex search
space.  In this  case,  we propose a new approach called
GPT-NAS,  which  utilizes  the  GPT  model  to  optimize
the  architecture  obtained  from  the  search  and
compensate  for  the  shortcomings  of  traditional  search
strategies.  The  proposed  GPT-NAS  is  compared  with
23  competitors  on  three  popular  datasets,  where  the
competitors contain manually designed algorithms and
NAS  algorithms.  The  analysis  of  the  experimental
results shows that the GPT-NAS achieves state-of-the-
art  results  and  proves  that  the  GPT  model  has  a
boosting  effect  on  the  algorithm.  In  future  work,  we
will  study  the  GPT  model  in  more  depth  to  make  it
more fully trained and to have a deeper understanding
of neural  architectures.  In addition, we will  also apply
our current work to different domains, especially in the
medical field. The NAS approach is designed to adapt
to the domain of a particular dataset, and the dataset in
the  medical  field  meets  the  specificity  of  the  dataset.
By  optimizing  the  neural  structure,  our  GPT-NAS
approach  can  make  breakthroughs  in  processing
medical  images  in  a  way  that  makes  diagnosis  more
accurate and timely.
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Fig. 7    GPU  days  required  for  the  neural  architecture  to
reach  a  certain  threshold  accuracy  with  and  without  the
GPT model.
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