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Abstract

Spatial transcriptomics enables to study the relationship between gene expression and tissue
organization. Despite many recent advancements, existing sequencing-based methods have
a spatial resolution that limits identification of individual cells. To address this, several cell
type deconvolution methods have been proposed to integrate spatial gene expression with
single-cell and single-nucleus RNA sequencing, producing per spot cell typing. However,
these methods often overlook the contribution of morphology, which means cell identities
are randomly assigned to the nuclei within a spot. In this paper, we introduce MHAST,
a morphology-guided hierarchical permutation-based framework which efficiently reassigns
cell types in spatial transcriptomics. We validate our method on simulated data, synthetic
data, and a use case on the broadly used Tangram cell type deconvolution method with
Visium data. We show that deconvolution-based cell typing using morphological tissue
features from self-supervised deep learning lead to a more accurate annotation of the cells.

Keywords: self-supervised learning, spatial transcriptomics, cell type deconvolution

1. Introduction

Spatial transcriptomics has advanced our ability to understand the interplay between gene
expression and tissue morphology, i.e., the spatial organization of tissue (Bressan et al.,
2023). However, these methods, broadly classified into imaging-based and sequencing-
based, are not without their limitations. Imaging-based methods reach sub-cellular res-
olution, but have limited gene coverage, while sequencing-based approaches, like Visium
HD from 10X Genomics, Stereo-seq (Xia et al., 2022) and Seq-scope (Cho et al., 2021),
compromise spatial resolution, and each sequenced tissue region may contain multiple cell
types. To address this, several studies have proposed integrating spatial transcriptomics
with single cell and single nucleus RNA sequencing (sc/snRNA-seq) by developing cell type
deconvolution methods (Chen et al., 2022; Li et al., 2022, 2023). These methods can be
categorized into probabilistic-based, non-negative matrix factorization-based, graph-based,
deep learning-based and optimal transport-based (Li et al., 2023).
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Benchmark studies show that Tangram (Biancalani et al., 2021), a deep learning-based
method, and Cell2location (Kleshchevnikov et al., 2022), a probabilistic-based method,
consistently outperformed others on various metrics. Interestingly, despite both methods
utilizing nuclei segmentation from hematoxylin and eosin (H&E) for estimating cell density,
they overlook morphology as a guiding factor for cell typing. Instead, Tangram assigns a
cell types to each detected nucleus randomly. Recent efforts, such as SpaDecon (Coleman
et al., 2023), tried to address this limitation by incorporating histology intensity values per
region. However, this approach falls short of leveraging the rich information available in
morphology. Consequently, while deconvolution accuracy at the spot level may be achieved,
arguably the random attribution of cell types to individual nuclei does not allow a real
increase in resolution.

To address this issue, we conceptualize the assignment as a problem of permutation. We
hypothesize that we know the number of cell types within each spot from the deconvolution
method, but that we have a permuted version of the actual composition. Using nuclei mor-
phology as a guide, we conducted efficient hierarchical permutations under the assumption
that similar cell types exhibit comparable nuclear morphology in H&E staining. To capture
morphology we tried both classical morphology features and self-supervised deep represen-
tations. Due to the intrinsic difficulty of evaluating the method without a ground-truth, we
conducted experiments on simulated and synthetic data as well as on a real use-case.

The main contributions of our work can be summarized as follows:

1. We developed a morphology-based cell re-assignment step for single-cell to spatial
transcriptomics deconvolution.

2. We propose a hierarchical permutation method that allows to efficiently improve the
arrangement of cell types in a tissue.

3. We used self-supervised deep learning features as powerful representations of cells.

MHAST (Morphology-guided Hierarchical reAssignment of cell types in Spatial Tran-
scriptomics) can be integrated into any deconvolution method to achieve their full potential
by leveraging the tissue morphology. The code for implementations and demos is available
at https://github.com/eduardchelebian/mhast.

2. Methods

2.1. Mathematical formulation

The proposed approach seeks to efficiently determine the optimal arrangement of cell types
in spatial transcriptomics experiments by addressing the computational challenge associ-
ated with exhaustive permutation calculations (with factorial complexity O(n!)). Instead
of directly computing every possible permutation, the optimization is conducted in two hi-
erarchical steps: first locally at the spot-level, and then globally. This hierarchical strategy
reduces the permutation space, mitigating the complexity of the problem. Figure 1 shows
the intuition behind the method.

Sequencing-based spatial transcriptomics experiments are organized in spots that cap-
ture transcriptome-wide gene expression. Given N cells with L cell type labels and K
morphological features belonging to M spots of different sizes, let A ∈ {0, 1}N×M be the
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one-hot encoded matrix indicating the belonging of each cell to a spot, let B ∈ RN×K be
the matrix indicating the cell features and let X ∈ {0, ..., L}N×M be the matrix indicating
the cell type of each cell. Additionally, let Pm ∈ {0, 1}N×N be the permutation matrix for
rearranging cell type labels within a spot m.

First, we apply the optimization at spot-level locally. We define Pm as the space of
all acceptable permutation matrices Pm for spot m ∈ M based on constraints (1) restrict
permutations to each spot and (2) ensure that two cells of the same type are not permuted:

∀m, Pm ·A = A (1)

∀m, Pm ·X ̸= X (2)

For each spot m, exhaustively find Pm ∈ Pm that maximizes the within-spot Calinski-
Harabasz (CH) score (Caliński and Harabasz, 1974) for spots that have more than one cell
of each type. Note that the choice of the CH score is deliberate, as it effectively balances
between-cluster and within-cluster distributions, contributing to the method’s efficacy.

max
Pm∈Pm

CH(Pm ·Xm, Bm) if ∃ l ∈ Lm : |Xm,l| > 1 (3)

where the CH score for L number of cell types on the dataset B = [b1, b2, ..., bN ] is:

CH(X,B) =

∑L
l=1 |Xl| ∥cl − c∥2

L− 1
/

∑L
l=1

∑|Xl|
i=1 ∥bi − cl∥2

N − L
(4)

where |Xl| is number of cells with the lth label, cl is the centroid of the lth label and c
is the global centroid.

This step results in the arrangement of cells within each spot. However, it does not
optimize arrangements within spots where the number of cells for each cell type is identical
|Xm,i| = |Xm,j | for i ̸= j. In the case where |Xm,i| = |Xm,j | = 1, it is not possible to
calculate the CH score, while if |Xm,i| = |Xm,j | > 1 there are multiple Pm that yield the
same highest CH score.

With thesem spots we define a new space of acceptable permutations P ′
m ⊂ Pm. Having

significantly reduced the permutation space, we can now conduct a global optimization. For
each spot m, exhaustively find Pm ∈ P ′

m that maximizes the across-spot CH score:

max
Pm∈P ′

m

CH(Pm ·X,B) (5)

which will produce the arrangement for the rest of the instances.

2.2. Cell type deconvolution

In order to get a single cell type per detected nucleus in sequencing-based spatial tran-
scriptomics experiments, we need to first segment the cells and then run the deconvolution
methods for inferring the cell type composition.

Nuclei segmentation. For segmenting the nuclei we used the built-in nuclei detection
method in QuPath (Bankhead et al., 2017) on the H&E image. This method has a good
balance between speed and accuracy, enabling the efficient annotation of nuclei within a
specified region of interest. Additionally, it provides measurements associated with the
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Figure 1: UMAP (Becht et al., 2019) dimensionality reduced feature space of (a) randomly
permuted spots, (b) local optimization per spot, (c) result of local optimization,
(d) global optimization and (f) final result. Values in the bottom right correspond
to Calinski-Harabasz (CH) score. Colors represent different cell identities.

detected nuclei, serving as features for subsequent analyses, as presented in Section 2.3.
Once the nuclei are detected, they can be used to measure the relative cell abundance in
each spatial transcriptomic spot, which serves as a surrogate of cell density.

Composition inference. Following nuclei segmentation, the determination of cell type
composition involves the application of deconvolution methods. As established before (Chen
et al., 2022; Li et al., 2022, 2023), Tangram (Biancalani et al., 2021) consistently emerges
as one of the top-performing methods. Given its proven efficacy, Tangram was selected
for validation in our experimental framework. Tangram is a deep learning-based approach
which aligns single-cell gene expression data with spatial gene expression data by mapping
them onto the same anatomical region, using shared genes for the mapping.

2.3. Feature extraction

From the detected nuclei, we extract morphological descriptors which will guide the per-
mutations under the hypothesis that similar cell types share morphological features.

Classical features. Using QuPath (Bankhead et al., 2017), the same software utilized
for detecting the nuclei, we extract per-nucleus descriptors and per-cell descriptors. Cells
are defined by expanding each detected nucleus to a radius of 5 µm until it encounters
another nucleus expansion. This is not the most accurate estimation but serves as a way of
including the context around the nucleus. The classical features extracted from the cells (C:
cells) and nuclei (C: nuclei) include: area, perimeter, circularity maximum and minimum
diameter, eccentricity and H&E-derived intensity features.

Self-supervised learning features. Our dataset was too small to expect the model
to learn relevant features training it from scratch. We therefore started from a publicly
available ResNet18 model trained by self-supervision with SimCLR (Chen et al., 2020) on
57 histopathological datasets (Ciga et al., 2022). We fine-tuned the model using the detected
nuclei as centers, extracted one image patch per cell, and trained by self-supervision with
SimCLR in the same way as in the original model. Experiments included patch sizes of
32 × 32 (DL: 32), 64 × 64 (DL: 64) and 128 × 128 (DL: 128) to test the contribution of
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different contexts. For example patches, see Appendix F. Finally, we used the fine-tuned
model’s last fully connected layer before prediction to define features for each cell patch.

3. Experiments on simulated data

We first evaluated the method using simulated Visium data, enabling generation of ground-
truth for methodological validation under controlled conditions.

3.1. Data generation

We are essentially simulating the relative abundance of cell types per spot, which is the out-
put from deconvolution methods. This output is then randomly assigned to the detected
nuclei and denoted as Xperm, as shown in Figure 2. Subsequently, guided by the morpho-
logical features in the feature matrix B, our objective is to optimally assign cell types to
each morphology, resulting in the actual assignment denoted as X. The details of the data
simulation can be found on Appendix A.

Figure 2: Data simulation workflow. From the output from cell type deconvolution meth-
ods, we simulate the random assignment of cell types (Xperm). Guided by the
simulated morphological features B, we correct the cell assignment to match the
cell identities with their morphology (X). More details on Appendix A.

3.2. Evaluation and results

The evaluation of the simulated data aims to determine the level of feature descriptiveness
required to recover the true cell type arrangement X from its permuted version Xperm.

Appendix B shows how the rearrangement accuracy ofXperm with respect to the original
X changes when increasing the feature overlap. The baseline is established by calculating
the accuracy of the randomly permuted Xperm. With non-overlapping features for each cell
types, we have a perfect rearrangement accuracy. Notably, as feature overlap increases, the
rearrangement still remains valuable, outperforming random allocation.

4. Experiments on synthetic data

One approach to incorporate actual H&E features into the evaluation, while still having a
ground-truth, is to generate a synthetic Visium dataset from other spatial transcriptomics
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methods. Xenium from 10X Genomics is particularly suitable for this purpose. It provides
cell typing information from high-resolution imaging-based spatial transcriptomics, typically
accompanied by DAPI imaging, but also includes H&E staining on the same section.

4.1. Dataset

We use the Xenium In Situ Breast Dataset1, by 10X Genomics (Janesick et al., 2022). We
sample a region with variable density of cells and cell types and generate synthetic Visium
spots including the cell type locations. The details can be found in Appendix C.

4.2. Evaluation and results

The assessment of the synthetic data focuses on identifying the descriptors that yield the
best reconstruction score. To this end, we implemented the method with the different feature
extractors and calculated the macro-averaged F1-score to capture the overall contribution
of all cell types. This evaluation is compared with random permutations, which emulate
the result from deconvolution methods.

The results in Figure 3 reveal that applying the method consistently enhanced the
results, outperforming the majority of random outcomes. In fact, self-supervised features
on 64 × 64 patches surpass every random results and successfully retrieves more of the
original cell types. It is important to note that this task is more challenging than its real
word counterpart, given the higher density and diversity of cell types in comparison to what
one would encounter in a typical Visium experiment.

Figure 3: (a) Region of Xenium cell typing registered on H&E. (b) Region of synthetic
Visium data. (c) Reconstruction F1-score boxplot from random permutations.
DL: 32, DL: 64 and DL: 128 represent self-supervised features with patch sizes of
32, 64 and 128, respectively. C: nuclei and C: cells represent the classical features
in the detected nuclei and on the expanded cells, respectively.

5. Experiments on real data

Having assessed the robustness of the hierarchical permutation method on simulated data,
and confirmed that self-supervised features from 64×64 patches as the most effective within
synthetic data, we applied our method to a real-world use case.

1. https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
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5.1. Dataset

To validate the method, we employed the same datasets from the original Tangram paper
(Biancalani et al., 2021). This dataset is a 10X Genomics Visium experiment on a mouse
brain coronal section2. For annotated scRNA-seq data, we used the mouse cortex dataset
shared by (Tasic et al., 2018). Both the single-cell and spatial datasets are publicly available
in Scanpy (Wolf et al., 2018) and Squidpy (Palla et al., 2022) APIs, ensuring reproducibility.

5.2. Evaluation and results

Using QuPath, we located the nuclei within the H&E image associated with the Visium
mouse brain. Tangram was then applied to two regions (refer to Appendix D) within the
cortex of the mouse brain, utilizing annotated scRNA-seq data for cell type deconvolution.
We employ self-supervised learning to extract morphological features from 64× 64 patches
centered on the nuclei, and our method is then applied to rearrange the cell types based
on these features. Since a ground-truth is not available, evaluating our approach in this
context is not straightforward. Nevertheless, we can assess whether the global score attained
through our two-step optimization surpasses the global score from random permutations.
To accomplish this, we perform 10000 random shuffles within the spots and examine whether
our method shows superior performance. This evaluation is conducted using both the CH
score —the one we are trying to maximize—, and also the Davies-Bouldin score (Davies
and Bouldin, 1979), which we did not try to minimize.

Figure 4 shows the results on region 1. The density plots in Figures 4c and 4d demon-
strate that our two-step optimization indeed maximized the CH score and minimized the
Davies-Bouldin score in comparison with the random rearrangements. This suggests that
our method achieves a rearrangement that ensures consistency in morphology for each cell
type. For the sake of reproducibility, we repeated the analysis on another region of the
cortex, as detailed in Appendix E, obtaining similar results.

6. Discussion and Conclusions

In this paper, we presented MHAST, an efficient permutation method for rearranging the
cell types from spatial transcriptomics-single cell deconvolution guided by self-supervised
morphology features.

Using simulated data and morphological features, we demonstrated the effectiveness
of the method in reconstructing the original arrangement of cell types guided by their
morphology. We additionally established the method’s robustness by progressively reducing
the descriptive power of the features, yet still showing the value of applying the method.

Through the use of synthetic Visium data generated from Xenium, we incorporated
real H&E morphological features alongside a form of ground truth. Despite the challenges
associated with registering one image modality to another and synthesizing the data, the
results indicated that self-supervised features outperformed other descriptors in character-
izing morphology and reconstructing the original arrangement. The differences between
patch sizes can be attributed to the amount of context, as explored in Appendix F.

2. https://support.10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_Adult_Mouse_
Brain
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Figure 4: Results for region 1. (a) Tangram randomly assigned cell types. (b) Corrected
cell types using MHAST. (c) Calinski-Harabasz (higher is better) and (d) Davies-
Bouldin (lower is better) scores for 10000 random bag permutations and our
method. Interactive visualization available in TissUUmaps (Pielawski et al., 2023)
at https://mhast.serve.scilifelab.se/brain_mouse.tmap.

In the practical application of the method to Tangram as a use case, our experiment
revealed that the two-step rearrangement achieved results equivalent to the best possible
global arrangement. Importantly, this was achieved without incurring the computational
costs associated with global permutations.

An inherent limitation of the method lies in the assumption that every cell type pos-
sesses an identifiable morphology that can be leveraged in this problem, which may not
be applicable for every encountered cell type. For instance, non-neuronal cells like oligo-
dendrocytes have an identifiable small and round nucleus surrounded by cytoplasm, while
cells in different neuronal layers can be more challenging to distinguish in H&E. Another
constraint arises when applying the method in large regions, where computational costs
become prohibitive. This issue can be addressed by implementing the global optimization
step in a rolling window manner.

Future lines of work may explore the prediction of cell types also outside the spots, based
on the maximization of the permutation results. This could be done especially for cell types
with a well-documented morphology. Another potential direction involves streamlining
the process by incorporating the permutation step into the workflow of Tangram or other
cell type deconvolution methods. This can be relevant as some of these methods already
incorporate cell segmentation as part of their process.

In conclusion, MHAST is able to enhance the potential of cell type deconvolution meth-
ods such as Tangram by improving the attribution of cell types in low-resolution sequencing-
based methods like Visium. The ideas of using self-supervised learning-based morphology
and cluster tightness metrics to complement the information provided by molecular data
could be extended further to applications beyond spatial transcriptomics.
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Appendix A. Generating simulated data

For generating simulated Visium data, we need to define the number of spatial transcrip-
tomics spots M , the range of cells per spot Nm, the number of cell types L and the number
of features K.

Given the number of spatial transcriptomics spotsM and a range of cells per spot Nm we
generate matrix A ∈ {0, 1}N×M that indicates the belonging of each nucleus to a spot. Given
the relative proportion of cell types pl for l ∈ L we can define matrix X ∈ {0, ..., L}N×M

which indicates the belonging of each nucleus to a cell type (our ground truth). Finally,
specifying the number of features K, we can define the features matrix B ∈ RN×K . We
work under the assumption that cell types have descriptive morphological features, thus we
model this by sampling values from different distributions for each cell type. Features for
each cell type l are generated by adjusting the standard deviation based on an overlap d
sampled from Bl ∼ N (l, d). This will further allow to compare also how different do the
morphological features per cell type be for the method to work.

Finally, we apply random permutations per bag to matrix X to generate Xperm. The
synthetic problem then would be to find the permutation matrices Pm per bag m that allows
to recover X from Xperm.

Specifically, for the example in Figure 2 we used M = 12, Nm = [2, 6], L = 4 and
K = 10. We chose the proportion of cells pl such that the first row contains a higher
percentage of cell type C3, the second C1 and the third C4, with C2 being only marginally
present, simulating different layers.

To give an idea of the efficiency gain even on this simulated dataset, if one were to
exhaustively calculate the global optimal arrangement from all the possible permutations
within every spot it would take, from left to right and from top to bottom, 1 · 2 · 20 · 12 · 5 ·
12 · 10 · 1 · 1 · 3 · 6 · 6 = 31104000 operations. Using our proposed hierarchical approach it
takes 1 · 2 · 2 · 2 · 1 · 2 · 1 · 1 · 1 · 1 · 6 · 2 = 192 operations, due to many spots having one or
two local optima that are then included in the reduced permutation space.
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Appendix B. Results of simulated data

Figure 5 shows the reconstruction F1-score from applying the method with increasingly
overlapping, and thus, decreasingly descriptive features.

Figure 5: Reconstruction F1-score from random shuffling and applying the hierarchical per-
mutation method with different levels of feature overlap. Shaded areas correspond
to the 95% confidence interval from 10 initializations.

Appendix C. Generating synthetic Visium data from Xenium

Xenium from 10X Genomics includes cell typing per cell along with H&E images. The first
step involves cell typing on cells detected in another image stained with DAPI, requiring
the registration of the DAPI image to the H&E image. Utilizing the scale-invariant fea-
ture transform (SIFT), we achieved this registration, although obtaining perfect cell-to-cell
alignment between two different modalities proved challenging. Following H&E to DAPI
image registration, QuPath was utilized to detect nuclei in the H&E images. Using the
nuclei locations in H&E and the registered locations in DAPI, we mapped the closest cell
types from the registered to the detected ones. This process inherently poses a challenge, as
certain cell types may not be accurately mapped if another entity is closer, adding complex-
ity to our subsequent task. With cell typing established on the H&E, the next step involves
synthesizing Visium spots based on their distribution in real-life scenarios and discarding
cells falling outside these spots.

The Xenium cell type annotations, DAPI image and H&E image used to generate the
synthesize the Visium data are available at https://www.10xgenomics.com/products/

xenium-in-situ/preview-dataset-human-breast.
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Appendix D. Extracted regions from full image

Figure 6: (a) Original Visium image with regions 1 and 2. (b) and (c) Regions 1 and
2 annotated spots. Interactive full resolution visualization available in Tis-
sUUmaps (Pielawski et al., 2023) at https://mhast.serve.scilifelab.se/

brain_mouse.tmap.
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Appendix E. Analysis on region 2

Figure 7: Results for region 2. (a) Tangram randomly assigned cell types. (b) Cor-
rected cell types using MHAST. (c) Calinski-Harabasz (higher is better) and
(d) Davies-Bouldin (lower is better) scores for 10000 random bag permuta-
tions and our method. Interactive full resolution visualization available in Tis-
sUUmaps (Pielawski et al., 2023) at https://mhast.serve.scilifelab.se/

brain_mouse.tmap.

Appendix F. Effect of patch size

Figure 8 shows the different patch sizes extracted with the same neighboring nuclei as
centers. We hypothesize 32×32 patches do not include enough context for the self-supervised
method to learn meaningful representations, while 128 × 128 patches include too much
context and nuclei that are close start having similar features, hindering their separation
per type.

Figure 8: Comparison of patch sizes for two neighboring cells.
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