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ABSTRACT

Diffusion models have recently emerged as powerful generative priors for solv-
ing inverse problems, achieving state-of-the-art results across various imaging
tasks. A central challenge in this setting lies in balancing the contribution of
the prior with the data fidelity term: overly aggressive likelihood updates may
introduce artifacts, while conservative updates can slow convergence or yield sub-
optimal reconstructions. In this work, we propose an adaptive likelihood step-
size strategy to guide the diffusion process for inverse-problem formulations.
Specifically, we develop an observation-dependent weighting scheme based on
the agreement between two different approximations of the intractable interme-
diate likelihood gradients, that adapts naturally to the diffusion schedule, time
re-spacing, and injected stochasticity. The resulting approach, Adaptive Posterior
diffusion Sampling (APS), is hyperparameter-free and improves reconstruction
quality across diverse imaging tasks—including super-resolution, Gaussian de-
blurring, and motion deblurring—on CelebA-HQ and ImageNet-256 validation
sets. APS consistently surpasses existing diffusion-based baselines in percep-
tual quality without any task-specific tuning. Extensive ablation studies further
demonstrate its robustness to the number of diffusion steps, observation noise lev-
els, and varying stochasticity.

1 INTRODUCTION

Image restoration arises in numerous applications, where the goal is to recover a high-quality image
x ∈ Rn from a degraded observation y ∈ Rm that may be noisy, blurry, low-resolution, or otherwise
corrupted. In many cases, the relationship between y and x can be modeled as

y = A(x) + ε, (1)

where A : Rn → Rm is a measurement operator, and ε denotes additive noise (typically modeled
as white Gaussian noise N (0, σ2

yI)). For instance, in image denoising A is the identity operator;
in deblurring, A represents a blur kernel; and in super-resolution, A consists of a composition of
sub-sampling and anti-aliasing filtering.

Inverse problems of the form Eq. 1 are typically ill-posed: the solution may be nonunique (e.g.,
when A is not injective), unstable to perturbations in y (e.g., when A is ill-conditioned), or may
not exist without additional regularity assumptions. These challenges are particularly pronounced
in underdetermined settings with m ≪ n, where no exact inverse exists, and in the presence of
measurement noise. Consequently, simply fitting the observation model does not guarantee accurate
recovery, and incorporating prior knowledge about the structure of x is essential.

A widely adopted paradigm is to train deep neural networks (DNNs) for each specific observa-
tion model. That is, synthetic training pairs {(yi, xi)} are generated using Eq. 1, and a DNN is
trained to approximate the inverse map (Dong et al., 2015; Lim et al., 2017; Sun et al., 2015; Zhang
et al., 2017a). However, these task-specific networks typically suffer severe performance degrada-
tion when the test-time observations deviate, even slightly, from the training assumptions (Hussein
et al., 2020; Shocher et al., 2018; Tirer & Giryes, 2019), limiting their practicality.

An alternative line of work leverages pretrained DNNs that capture only the signal prior, while con-
sistency with the observations is enforced during inference in a “zero-shot” manner. A particularly
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successful choice has been Gaussian denoisers, employed in “plug-and-play” (PnP) and “regulariza-
tion by denoising” (RED) frameworks (Romano et al., 2017; Tirer & Giryes, 2018; Venkatakrishnan
et al., 2013; Zhang et al., 2017b). The recent emergence of diffusion/score-based generative mod-
els (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020b) has further popularized iterative
denoising for general-purpose restoration. In diffusion models, inference involves reversing a diffu-
sion process by iteratively removing Gaussian noise until a clean sample is obtained. Explicit data
fidelity terms have been integrated into this iterative sampling to ensure reconstructions that both ap-
pear natural and conform to the measurements (Abu-Hussein et al., 2022; Chung et al., 2022; 2023;
Kawar et al., 2022; Mardani et al., 2023; Song et al., 2023; 2021; Wang et al., 2023; Zhu et al., 2023;
Garber & Tirer, 2024).

Although utilizing the strong data prior offered by diffusion models has shown great results, forcing
the data fidelity for guiding the diffusion trajectory to a reconstruction that agrees with the obser-
vation is usually performed by incorporating an approximation of the likelihood gradient into the
sampling scheme, while compensating for the inaccuracy introduced to the sampling by carefully
fine-tuning certain hyperparameters or imposing an additional projection onto the diffusion mani-
fold (Kawar et al., 2022; Chung et al., 2023; Zhu et al., 2023; Garber & Tirer, 2024; Yang et al.,
2024). Furthermore, this data fidelity step usually has fixed or pre-defined step sizes that depend on
the diffusion noise scheduling parameters.

In this work, we introduce Adaptive Posterior diffusion Sampling (APS), which addresses the core
challenge of balancing prior and data fidelity contributions. Overly aggressive likelihood updates
may introduce artifacts, while conservative updates can lead to slow convergence or suboptimal re-
constructions. To overcome this, APS employs a novel weighting strategy that adaptively tunes the
step size based on the agreement between two complementary approximations of the intractable in-
termediate likelihood gradients. This adaptive mechanism allows the sampling trajectory to flexibly
adjust to the ill-posedness of the observation model, measurement noise level, and characteristics of
the diffusion process, improving both robustness and reconstruction quality.

We evaluate APS on a variety of inverse problems, including super-resolution, Gaussian deblurring,
and motion deblurring, across the popular CelebA-HQ and ImageNet-256 datasets. Our experiments
demonstrate that APS consistently outperforms existing diffusion-based approaches in terms of re-
construction quality and scalability. Extensive ablation studies further confirm the effectiveness of
the adaptive guidance mechanism with respect to the number of diffusion steps, observation noise
level, and the stochasticity of the diffusion process.

Our main contributions are summarized as follows:

(1) DDIM reformulation for conditional guidance. We provide a principled way to incorpo-
rate likelihood gradients into an existing DDIM sampler via a conditional noise estimator.
The resulting update preserves DDIM’s scheduling and therefore naturally scales with the
number of steps, time re-spacing, and the level of stochasticity.

(2) Adaptive, hyperparameter-free guidance scaling. Viewing posterior sampling through
the lens of step-size selection, we introduce a data-dependent, hyperparameter-free rule
that modulates the guidance by the agreement between two complementary surrogates.
This yields robust, alignment-aware updates at negligible runtime cost.

(3) Perceptually leading performance with competitive distortion. APS achieves best or
second-best LPIPS across tasks while maintaining strong PSNR—contrasting with base-
lines that optimize one metric at the expense of the other.

2 BACKGROUND

2.1 INVERSE PROBLEMS

In this work we focus on the widely studied linear–Gaussian case. The forward operator is linear,
A(x) = Ax with A ∈ Rm×n, and the noise is modeled as zero-mean i.i.d. Gaussian with known
variance σ2

y , i.e., ε ∼ N (0, σ2
yIm), where Im ∈ Rm×m is the identity matrix.

From a Bayesian perspective, we treat x ∼ p(x) as a random unknown vector to be estimated from
the observation y. A natural first step is to maximize the likelihood probability density function,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

which has the form
p(y|x) ∝ exp

(
− 1

2σ2
y
∥Ax− y∥22

)
. (2)

However, relying solely on the likelihood often yields unsatisfactory reconstructions due to the in-
herent instability and non-uniqueness of the solution. A more effective strategy is to maximize the
posterior distribution,

p(x|y) ∝ p(y|x)p(x), (3)
which combines the likelihood with a prior p(x). The inclusion of the prior greatly improves recon-
struction quality, but also raises a central challenge: designing a suitable prior. The more accurately
p(x) captures the structure of the true signal, the more reliable the reconstruction will be.

2.2 DIFFUSION MODELS

Diffusion models are a class of generative models that synthesize data by reversing a gradual nois-
ing process (Ho et al., 2020; Song et al., 2020b). Both the forward (noising) and reverse (denois-
ing) dynamics can be formalized with stochastic differential equations (SDEs). The forward pro-
cess progressively corrupts clean data so that, at a terminal time t = T , the distribution becomes
tractable—typically close to Gaussian. Thus, generating a novel data point amounts to solving the
corresponding reverse-time dynamics to transport noise back to the data distribution.

Forward and reverse dynamics. For t ∈ [0, T ], let x(t) ∈ Rn evolve under the forward SDE

dx = f(x, t) dt+ g(t) dw, (4)

where f is the drift, g(t) ≥ 0 is a scalar diffusion schedule, and w is standard Brownian motion.
The schedule is chosen such that, approximately, x(T ) ∼ N (0, I). The corresponding reverse-time
SDE (Anderson, 1982), which shares the same time-marginals, is given by

dx =
[
f(x, t)− g(t)2 ∇x log pt(x)

]
dt+ g(t) dw̄, (5)

where pt is the probability density function of x(t) and w̄ is a reverse-time Brownian motion. Solv-
ing Eq. 5 with respect to x(t) requires access to the score function ∇x log pt(x), which is unknown
and must be approximated.

VP–DDPM. A widely used choice is f(x, t) := − 1
2β(t)x and g(t) :=

√
β(t), known as the

variance-preserving (VP) parameterization in DDPM (Ho et al., 2020). In practical discrete settings,
we denote x(t) := xt and β(t) := βt. The forward diffusion kernel is then

p(xt | x0) = N
(
xt;

√
ᾱt x0, (1− ᾱt)I

)
, αt := 1− βt, ᾱt :=

t∏
s=1

αs.

Equivalently,
xt =

√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). (6)

We follow this framework and notation throughout the paper.

Evaluating the score. Diffusion models are trained to denoise the degraded signal xt by predict-
ing either the clean signal x̂0 or the noise. In the latter case, let ϵθ(xt, t) denote the predicted noise
at time t using a DNN with parameters θ. Prior works show that this predictor yields a score esti-
mate. Specifically, for the VP–DDPM parameterization (Eq. 6) we have (Efron, 2011; Hyvärinen
& Dayan, 2005; Vincent, 2011; Song et al., 2020b):

∇xt
log pt(xt) ≈ − 1√

1− ᾱt
ϵθ(xt, t), (7)

which follows from ∇xt
log pt(xt) = 1

1−ᾱt
(E[

√
ᾱt x0|xt] − xt) = − 1√

1−ᾱt
E[ϵ|xt], given by

Tweedie’s formula (Efron, 2011). Based on the relation in Eq. 6, the denoised signal can be obtained
by

x̂0(xt, t) =
xt −

√
1− ᾱt ϵθ(xt, t)√

ᾱt
. (8)
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Sampling. Given ϵθ(xt, t), samples can be generated by numerically solving Eq. 5 using the ap-
proximation in Eq. 7. A common sampling algorithm is DDIM (Song et al., 2020a), where each
intermediate sample xt−1 is obtained by

xt−1 =
√
ᾱt−1 x̂0(xt, t) +

√
1− ᾱt−1 − σ2

t ϵθ(xt, t) + σt ϵt, ϵt ∼ N (0, I). (9)

The stochasticity of the update is governed by σt, which is commonly parameterized by η ∈ [0, 1],

as σt = η
√
1− αt

√
1−ᾱt−1

1−ᾱt
. Thus, η represents the level of stochasticity of the diffusion process.

2.3 POSTERIOR SAMPLING

Posterior sampling methods aim to draw samples from the conditional distribution p(x0|y) by con-
structing the conditional score ∇xt log pt(xt|y) and integrating the reverse dynamics using it. From
Bayes’ rule,

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt), (10)

where the left-hand side is the posterior score, the first term on the right is the prior score, and the
second is the likelihood score.

While the prior term can be obtained using an unconditional score network similar to Eq. 7, the like-
lihood term ∇xt

log pt(y|xt) is generally intractable. Specifically, using the law of total probability
with y ⊥ xt given x0, we have

p(y|xt) =

∫
p(y|x0) p(x0|xt) dx0. (11)

The measurement model p(y|x0) is available from Eq. 2, but p(x0|xt) is unknown. We next describe
two common approximations to p(x0|xt) that yield practical likelihood-score surrogates.

DPS. Chung et al. (2023) suggests to approximate p(x0|xt) ≈ δ(x0 − x̂0), where δ(·) is the Dirac
delta distribution. By Eq. 11, the likelihood score is then approximated by ∇xt log pt(y|xt) ≈
∇xt

log p
(
y|x̂0(xt, t)

)
= −σ−2

y (∂x̂0

∂xt
)⊤A⊤(y −Ax̂0) which can be obtained via backpropagation.

ΠGDM. Alternatively, Song et al. (2023) suggest to approximate p(x0|xt) as Gaussian of the
form p(x0|xt) ≈ N

(
x̂0, r

2
t I
)
, with r2t = 1− ᾱt (in VP-DDPM parameterization), which yields the

surrogate likelihood score ∇xt log pt(y|xt) ≈ (∂x̂0

∂xt
)⊤A⊤(r2t AA⊤ + σ2

yI)
−1(y −Ax̂0).

Most posterior sampling methods incorporate these score terms into the DDIM update in Eq. 9 and
weight them either heuristically (Song et al., 2023) or by tuning additional hyperparameters (Chung
et al., 2023; 2022). In this work, we address the challenge of integrating the likelihood score into
DDIM update in a balanced, scalable and robust way.

3 METHOD

3.1 REFORMULATING DDIM FOR CONDITIONAL SETTINGS

Substituting Eq. 8 into the DDIM update Eq. 9, we can write it in a Markovian form:

xt−1 =
1

√
αt

xt −

(√
1− ᾱt√
αt

−
√
1− ᾱt−1 − σ2

t

)
︸ ︷︷ ︸

γt

ϵθ(xt, t) + σt ϵt =: DDIM(xt), (12)

where ϵt ∼ N (0, I) and γt collects time-dependent coefficients.

Building on the identity E[ϵ|xt, y] = −
√
1− ᾱt ∇xt log pt(xt|y), which is a straightforward gen-

eralization of Tweedie’s formula to the conditional case (see, e.g., Lemma A.2 in Peng et al.
(2024)), we introduce a posterior surrogate ϵ̃θ(xt, t, y) related in the same way to the posterior
score ∇xt

log pt(xt|y). Using Eq. 10,

ϵ̃θ(xt, t, y) := ϵθ(xt, t) + ξt g(y, xt), (13)

4
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where g(y, xt) is any tractable estimator of the likelihood-score term ∇xt
log pt(y|xt) and ξt ∈

R balances the (approximate) likelihood and prior scores and encapsulates all derived constants.
Plugging Eq. 13 into Eq. 12 (in lieu of ϵθ) yields the conditional DDIM step

xt−1 =
1

√
αt

xt − γt ϵθ(xt, t)− γt ξt g(y, xt) + σt ϵt

= DDIM(xt)− γt ξt g(y, xt).

(14)

This formulation makes explicit that posterior information affects both the intermediate estimate
x̂0(xt, t) (implicitly, through ϵθ) and the projection back to t−1 via an effective noise that interpo-
lates the predicted noise and fresh randomness. In contrast, most methods directly add ξt g(y, xt) to
DDIM, without explicitly accounting for the factor γt (Chung et al., 2023; Song et al., 2023), while
others heuristically modify DDIM’s injected noise estimate (Garber & Tirer, 2024; Zhu et al., 2023).

3.2 ADAPTIVE POSTERIOR SAMPLING (APS)

Denoising

Likelihood Approx.

+

+

Heuristic,  task-specific
weighting

APS (Ours)
Adaptive, robust and
hyperparameter-free

Unconditional

MAP Estimation

Observation model

Figure 1: Schematic overview of our method. We introduce a principled, hyperparameter-free rule
for balancing likelihood guidance with the prior in diffusion-based posterior sampling.

3.2.1 APS UPDATE

Let ϵ∗t := E[ϵ | xt, y] denote the MMSE estimate of the posterior noise at time t. For brevity, write
ϵθ,t := ϵθ(xt, t), gt := g(y, xt), and ϵ̃θ,t := ϵ̃θ(xt, t, y).

We choose ξt so that ϵ̃θ = ϵθ,t + ξt gt (Eq. 13) best approximates ϵ∗t in least squares:

ξ∗t := argmin
ξt

∥∥ϵ∗t − ϵθ,t − ξt gt
∥∥2
2

=⇒ ξ∗t =
⟨dt, gt⟩
∥gt∥22

, dt := ϵ∗t − ϵθ,t, (15)

with ⟨·, ·⟩ the Euclidean inner product (if ∥gt∥2 = 0, set ξ∗t = 0). Substituting ξ∗t into Eq. 14 yields
the APS update:

xt−1 = DDIM(xt)− γt
⟨dt, gt⟩
∥gt∥22

gt. (16)

Equivalently, in norm–alignment form,

xt−1 = DDIM(xt)− γt ∥dt∥2
〈
d̂t, ĝt

〉
ĝt, d̂t := dt/∥dt∥2, ĝt := gt/∥gt∥2. (17)

Thus, APS scales the likelihood step by the residual magnitude ∥dt∥2 and the alignment be-
tween d̂t and the chosen likelihood direction ĝt. In practice, we regularize the step size using the
measurement-consistent residual noise ϵ∗t − ϵθ,t: when alignment is strong, the two likelihood sur-
rogates agree and larger steps are warranted; when misaligned, moving along ĝt risks injecting
erroneous guidance, so the step is attenuated. Importantly, the DDIM schedule coefficient γt is
preserved, ensuring guidance scales appropriately under time re-spacing and stochasticity.

5
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However, because dt and gt are distinct surrogates of the likelihood update, perfect alignment is
unlikely; the projection coefficient ⟨d̂t, ĝt⟩ ≤ 1 therefore systematically shrinks the update step,
even when the directions largely agree. To counter this, we apply a simple, data-agnostic bias
correction, scaling by 2 ≈ 1/E[⟨d̂t, ĝt⟩] (empirically ≈ 0.5 at mid-trajectory), which restores the
intended step magnitude. This yields our final update:

xt−1 = DDIM(xt)− γt
2⟨dt, gt⟩
∥gt∥22

gt = DDIM(xt)− 2γt ∥dt∥2
〈
d̂t, ĝt

〉
ĝt (18)

Because computing gt already requires backpropagation through the denoiser, we next show how
to evaluate dt directly in noise space without the denoiser’s Jacobian. We discuss this approach in
detail in Section A.1.2 of the appendix.

3.2.2 EFFICIENT MAP SURROGATE FOR dt

Because ϵ∗t is unknown, we approximate it via a maximum a posteriori (MAP) estimate for x0

conditional on (xt, y). From Bayes’ rule,

Φ(x0) := − log p(x0|xt, y) = − log p(x0|xt)− log p(y|x0) + C, (19)

where C encapsulate terms that do not depend on x0. Following prior work (Song et al., 2023; Boys
et al., 2023), we adopt

p(x0|xt) ≈ N
(
x̂0, r

2
t I
)
, r2t = 1− ᾱt, (20)

and the linear-Gaussian likelihood Eq. 2. Under these assumptions, the negative log-posterior obeys

Φ(x0) ∝
1

2σ2
y

∥y −Ax0∥22 +
1

2r2t
∥x0 − x̂0∥22. (21)

In the linear-Gaussian setting, the posterior mean is the MAP minimizer. Since Φ is strictly convex,
the optimum x∗

0 satisfies ∇Φ(x∗
0) = 0, giving

x∗
0 = x̂0 −A⊤

(
AA⊤ +

σ2
y

r2t
I
)−1(

Ax̂0 − y
)
. (22)

See full derivation in Section A.1.1 of the appendix. Mapping x∗
0 back to the VP noise variable via

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ yields

dt = ϵ∗t − ϵθ,t =

√
ᾱt√

1− ᾱt
A⊤

(
AA⊤ +

σ2
y

r2t
I
)−1 (

Ax̂0 − y
)
. (23)

Remark 1 For many linear operators A, the operator
(
AA⊤ +

σ2
y

r2t
I
)−1

can be implemented effi-
ciently: exactly via SVD (for small dense A), via FFT diagonalization for circulant models (e.g., in
super-resolution and deblurring), or via conjugate gradients in the general case.

The construction of dt is reminiscent of the residual-based likelihood approximation of (Li & Wang,
2025), but under our Gaussian assumptions and linear A, the objective in 21 is minimized exactly.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Tasks and datasets. We test our method on the CelebA-HQ and ImageNet-256 validation sets,
with backbone denoisers trained by Lugmayr et al. (2022) and Dhariwal & Nichol (2021), respec-
tively. Our evaluation is performed by conducting several key image restoration tasks, used also in
previous works (Kawar et al., 2022; Zhu et al., 2023): (i) Super-resolution ×4 with a bicubic down-
sampling kernel, in both noiseless and noisy settings; (ii) Gaussian deblurring with a 5×5 Gaussian
kernel (standard deviation 10); and (iii) Motion deblurring with randomized 61×61 kernels of in-
tensity 0.5, generated using the public implementation.1 Unless noted otherwise, we add zero-mean
i.i.d. Gaussian noise with σy = 0.05, conventionally expressed in [0, 1] intensity units. Since we
normalize images to the range [−1, 1], we accordingly multiply the noise level by a factor of two.

1https://github.com/LeviBorodenko/motionblur
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Baselines. We compare against DDRM (Kawar et al., 2022), DPS (Chung et al., 2023), Diff-
PIR (Zhu et al., 2023), DDPG (Garber & Tirer, 2024), ΠGDM (Song et al., 2023), and DSG (Yang
et al., 2024). All evaluations use the same datasets, seeds, and implementations of the measure-
ment operators. We report PSNR and LPIPS (distortion and perceptual quality), averaged over 1K
samples per dataset; for LPIPS, we use the AlexNet variant. To fully assess our step-size strategy
(APS), we report results when APS computes the likelihood score using either ΠGDM or DPS (i.e.,
different choices for gt).

Sampling details. We use a DDIM sampler with η = 1 (i.e., DDPM-equivalent) and 100 diffusion
steps. Unless noted otherwise, all baselines also use 100 steps. Exceptions are DPS, which requires
1,000 steps, and DSG, which likewise uses 1,000 steps for ImageNet-256. Although DDRM (Kawar
et al., 2022) typically operates with ∼20 steps, we run it with 100 for a fair comparison.

4.2 COMPARISON WITH OTHER METHODS

Table 1 compares APS with representative posterior samplers built on unconditional diffusion priors
(see Section 4.1). Across both datasets, APS delivers near state-of-the-art perceptual quality, attain-
ing best or second-best LPIPS in all settings. At the same time, it maintains strong PSNR, incurring
only a modest distortion cost, consistent with the perception–distortion trade-off (Blau & Michaeli,
2018). Notably, several PSNR-oriented baselines sharply sacrifice LPIPS, especially on noisy tasks,
yielding visibly blurrier reconstructions (e.g., DDPG on SR×4 with σy = 0.05). In contrast, APS
remains competitive on both metrics across tasks and datasets.

Table 1: Super-resolution / deblurring on CelebA-HQ and ImageNet-256: PSNR [dB] (↑) / LPIPS
(↓). Best results are in bold; second-best are underlined. N/A = DDRM inapplicable for non-SVD
tasks. Values in gray are excluded as they were obtained with a larger number of sampling steps.

CelebA-HQ ImageNet-256

Method Bicub. SR×4
σy = 0

Bicub. SR×4
σy = 0.05

Gauss. Deb.
σy = 0.05

Motion Deb.
σy = 0.05

Bicub. SR×4
σy = 0

Bicub. SR×4
σy = 0.05

Gauss. Deb.
σy = 0.05

Motion Deb.
σy = 0.05

DDRM 31.64 / 0.054 29.26 / 0.090 30.53 / 0.074 N/A 27.38 / 0.270 25.54 / 0.333 27.71 / 0.243 N/A

DiffPIR 30.26 / 0.051 27.44 / 0.085 28.89 / 0.074 27.96 / 0.102 26.99 / 0.225 24.65 / 0.318 26.64 / 0.240 25.34 / 0.284

DDPG 31.60 / 0.052 29.39 / 0.105 30.41 / 0.068 29.02 / 0.082 27.41 / 0.255 25.55 / 0.354 27.73 / 0.205 25.94 / 0.249

DSG† 30.40 / 0.051 27.57 / 0.072 30.29 / 0.051 27.57 / 0.079 26.08 / 0.198 24.33 / 0.203 26.69 / 0.153 24.33 / 0.197

DPS† 29.39 / 0.065 27.49 / 0.086 27.75 / 0.084 19.63 / 0.227 25.56 / 0.236 24.05 / 0.271 23.59 / 0.294 17.52 / 0.468

ΠGDM 30.93 / 0.038 27.23 / 0.078 27.67 / 0.087 26.15 / 0.104 26.72 / 0.122 22.83 / 0.227 22.85 / 0.268 20.97 / 0.292

APS-DPS (Ours) 30.83 / 0.042 28.10 / 0.064 30.03 / 0.056 27.41 / 0.077 27.23 / 0.202 25.13 / 0.259 26.38 / 0.259 23.61 / 0.298

APS-ΠGDM (Ours) 30.91 / 0.040 28.00 / 0.065 29.39 / 0.054 28.00 / 0.067 27.24 / 0.181 25.04 / 0.240 27.14 / 0.147 25.36 / 0.193

† Methods evaluated with 1K NFEs. On CelebA-HQ, DSG was applied with 100 steps.

4.3 ABLATION STUDIES

In this section, we analyze various aspects in our proposed approach. Experiments in this section
are carried out by solving SR×4 with σy = 0.05 on 100 samples from the ImageNet-256 validation
set, unless specified otherwise.

Isolating the impact of our adaptive ξt. We assess the
contribution of the adaptive factor by freezing it to con-
stants: ξt = 1 (replacing 2 ⟨dt,gt⟩

∥gt∥2
2

) and ξt = 2 to decouple
the factor-of-two bias correction from true adaptivity. As
shown in Table 2, the adaptive ξt consistently outperforms
either choice for both APS–ΠGDM and APS–DPS, indicat-
ing that alignment-aware step-size modulation is essential.

ξt APS–PGDM APS–DPS

1 24.40 / 0.356 23.48 / 0.342
2 22.54 / 0.500 20.90 / 0.460

Ours 24.64 / 0.246 24.74 / 0.266

Table 2: Impact of ξt (PSNR / LPIPS).

Direct Comparison to DPS. Across both CelebA-HQ and ImageNet-256, DPS uses ten times
more sampling steps than its APS counterpart yet underperforms, even though both use the same
likelihood-gradient surrogate gt(y, xt) (compare DPS and APS-DPS in Table 1).
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Task Input DDPG ΠGDM APS-DPS APS-ΠGDM Ground
Truth

SR×4
σy = 0

SR×4
σy = 0.05

Gauss.
Deb.

σy = 0.05

Motion
Deb.

σy = 0.05

Figure 2: Qualitative comparison of APS and representative methods. Best viewed in zoom-in.

Comparison to ΠGDM. Beyond the likelihood ap-
proximation, Song et al. (2023) introduce a time-
decaying multiplicative step size equal to (1−ᾱt). While
this choice performs well at 100 sampling steps, it does
not account for the diffusion schedule’s discretization
(i.e., changing the number of steps). Consequently—and
counter-intuitively—increasing the number of steps de-
grades performance in both PSNR and LPIPS, rather
than improving it, as was also observed by Mardani
et al. (2023). In contrast, our method explicitly incorpo-
rates step spacing through γt, yielding a scalable sampler
whose perceptual quality improves with more steps, with
only negligible PSNR deterioration (Figs. 3, 4).

15

20

25

PS
NR

 [d
B]

50 100 200 300 400 500
Diffusion steps

0.25

0.50

0.75

LP
IP

S

APS- GDM GDM

Figure 3: Comparison of APS vs.
ΠGDM as a function of sampling steps.

Method 100 Steps 200 Steps 300 Steps 400 Steps 500 Steps

ΠGDM

APS
ΠGDM

Figure 4: Qualitative comparison of APS vs. ΠGDM. SR×4 with σy = 0.05. Reconstructions
of the same image using varying numbers of sampling steps. As the step count increases, Π-GDM
deteriorates due to measurement-noise leakage into the reconstructions, whereas APS improves.
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Measurement noise level. In many posterior sam-
pling schemes, increasing the observation noise not
only removes information but can also leak through
the measurement-consistency gradients into the recon-
struction. We evaluate SR×4 across increasing σy and
compare APS to ΠGDM using PSNR and LPIPS. Fig-
ure 5 shows that APS mitigates the inevitable degrada-
tion, with quality declining roughly linearly as the noise
grows, whereas ΠGDM exhibits a markedly sharper
drop. We exclude other baselines from this ablation
because they require retuning hyperparameters for each
noise level (e.g., DDPG (Garber & Tirer, 2024)).

20

25

PS
NR

 [d
B]

0.000 0.025 0.050 0.075 0.100 0.125
y

0.2

0.4

LP
IP

S

APS- GDM GDM

Figure 5: Response to increasing mea-
surement noise.

Design choices for gt and dt. Beyond our default role split (direction from gt, magnitude from
dt), we also evaluate alternative pairings, including settings with dt = gt and a symmetric variant
that averages the two, (gt + dt) / 2, as detailed in Appendix A.2.2. Our ablations show that using
the MAP-based surrogate for dt is not only negligible in runtime but also outperforms competing
choices. We find that omitting the Jacobian in the MAP-based magnitude yields more stable step
sizes, whereas incorporating Jacobian information in the direction is crucial. Further discussion
appears in Appendix A.1.2.

5 CONCLUSION

This paper introduces APS, a robust, task-agnostic and hyperparameter-free strategy for setting the
guidance scale of the likelihood term when combined with a pretrained unconditional diffusion
prior. Our method surpasses leading approaches in perceptual quality and provides high PSNR,
while remaining scalable and adaptive across settings and diffusion schedules.

Limitations. Our current derivation entails several limitations that motivate further research. First,
the analysis assumes a linear forward model, which guarantees that the posterior mean minimizes
Eq. 19 and enables fast evaluation of dt via Eq. 23. Extending APS to nonlinear operators will
require principled surrogates or approximations of the posterior update under nonlinearity. Second,
diffusion in high-resolution pixel space is resource-intensive, which has motivated the use of latent
diffusion models (LDMs) that operate in a compressed latent space. However, posterior sampling
becomes challenging when measurements live in the image domain, as the latent decoder must be
involved in the measurement-consistency term (see, e.g., (Rout et al., 2023; Song et al., 2024)).
Adapting APS to latent spaces is therefore an important direction for future work.

Outlook. Despite these limitations, APS achieves state-of-the-art reconstructions on prominent
imaging tasks by providing a principled recipe for setting the likelihood step size in posterior sam-
plers, building on existing likelihood approximations. Our derivations reduce reliance on ad hoc
hyperparameter tuning while preserving proper scaling with respect to the number of steps, re-
spacing, and stochasticity in the diffusion process. We believe APS offers a solid foundation for
broader posterior-guided sampling methods in both pixel and latent domains.

Our code will be released upon acceptance.

USE OF LARGE LANGUAGE MODELS FOR WRITING

We acknowledge the use of large language models to assist with typographical corrections, phrasing,
and self-review aimed at improving the clarity and structure of this manuscript.

REPRODUCIBILITY STATEMENT

All of our work is reproducible: we detail all parameters and use publicly available datasets. An
additional section on reproducibility appears in the appendix. Furthermore, we will release our code
upon acceptance.
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A APPENDIX

A.1 ADDITIONAL METHOD DETAILS

A.1.1 PROOF OF EQ. 22

Let Φ(x0) be as in Eq. 19. Since Φ is convex, the optimum x∗
0 satisfies

∇x0
Φ(x∗

0) = 0 ⇐⇒ σ−2
y A⊤(Ax∗

0 − y) + r−2
t (x∗

0 − x̂0) = 0.

Proceeding step by step,

σ−2
y A⊤(Ax∗

0 − y) + r−2
t (x∗

0 − x̂0) = 0

⇐⇒ x∗
0 − x̂0 =

r2t
σ2
y

A⊤(y −Ax∗
0

)
⇐⇒

(
r2t
σ2
y
A⊤A+ In

)
x∗
0 = x̂0 +

r2t
σ2
y
A⊤y

⇐⇒
(
A⊤A+

σ2
y

r2t
In

)
x∗
0 =

σ2
y

r2t
x̂0 + A⊤y

⇐⇒
(
A⊤A+

σ2
y

r2t
In

)
x∗
0 = A⊤A x̂0 +

σ2
y

r2t
x̂0 + A⊤y − A⊤A x̂0

⇐⇒
(
A⊤A+

σ2
y

r2t
In

)
x∗
0 =

(
A⊤A+

σ2
y

r2t
In

)
x̂0 + A⊤(y −Ax̂0

)
⇐⇒ x∗

0 = x̂0 +
(
A⊤A+

σ2
y

r2t
In

)−1

A⊤(y −Ax̂0

)
. (24)

Using the “push-through” identity(
A⊤A+ λIn

)−1
A⊤ = A⊤(AA⊤ + λIm

)−1 ∀λ > 0,

Eq. 24 is equivalently

x∗
0 = x̂0 + A⊤

(
AA⊤ +

σ2
y

r2t
Im

)−1(
y −Ax̂0

)
, (25)

which can be preferable in memory when m < n (e.g. super-resolution).

A.1.2 ON JACOBIAN–FREE APPROXIMATIONS

In Section 3.2.2 we proposed a MAP-based likelihood surrogate computed with respect to the prior
mean x̂0, thereby obviating the need to evaluate the Jacobian Jt := ∂x̂0/∂xt, which would other-
wise require backpropagating through the denoiser at every step. This design trades exactness for
efficiency: strictly speaking, the correct conditional score with respect to xt does involve Jt via the
chain rule. Indeed, for any differentiable functional L(x̂0),

∇xt
L(x̂0) = J⊤

t ∇x̂0
L(x̂0). (26)

The impact of neglecting Jt has been examined in prior work. For example, Chung et al. (2024) iden-
tify conditions under which Jt can be replaced by a low-cost operation, while Poole et al. (2022)
observed that omitting Jt can simplify and stabilize optimization, particularly in low-noise regimes
(both findings are consistent with our experience). From a geometric standpoint, Jt may induce an
anisotropic linear transform that can rotate and rescale the vector ∇x̂0L(x̂0); including it every-
where may unintentionally overweight directions amplified by Jt, whereas discarding it everywhere
can underrepresent how changes in xt influence the measurement-consistency objective.

Our scheme strikes a practical balance. APS cleanly separates magnitude and direction: the step
size is governed by dt (a MAP-based residual that is computed in x̂0-space without Jt), while the
direction is provided by gt, which may incorporate Jt when a Jacobian-aware likelihood surrogate is
used (e.g., DPS or ΠGDM). In other words, we avoid injecting the anisotropy of Jt into the scale of
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the update—mitigating over/under-shoot due to ill-conditioning—yet we still allow Jt to influence
the direction through gt when this is available and beneficial.

A further benefit is architectural agnosticism: the MAP-based dt depends only on the measurement
model and on x̂0, not on the particular score-parameterization. Consequently, the same construction
applies across Variance–Preserving (VP), Variance–Exploding (VE), or probability-flow/flow-based
samplers, and is thus future-compatible with alternative priors.

In summary, while omitting Jt is theoretically inexact, using a Jacobian-free magnitude (dt) together
with a potentially Jacobian-aware direction (gt) yields an effective and stable compromise that pre-
serves computational tractability at high resolution and integrates cleanly with existing likelihood
surrogates ((Chung et al., 2024; Poole et al., 2022)).

For completeness, we include an ablation in Section A.2.2 that examines the impact of alternative
surrogate choices for both dt and gt.

A.2 ADDITIONAL RESULTS

A.2.1 ADDITIONAL ABLATIONS

Stochasticity. Many posterior samplers set η = 1 (see Section 2.2), allowing fresh noise to mitigate
artifacts that arise when enforcing consistency with noisy observations. We evaluate APS across
a range of η values and compare against ΠGDM. Figure 6 shows that, whereas ΠGDM benefits
primarily from highly stochastic updates (large η), APS exhibits markedly weaker dependence on η,
maintaining similar performance across stochasticity levels.

0.00 0.25 0.50 0.75 1.00

22
24

PSNR [dB] ( ) vs. 

0.00 0.25 0.50 0.75 1.00
0.25
0.30
0.35

LPIPS ( ) vs. 

APS- GDM GDM

Figure 6: Sensitivity to stochasticity (η). PSNR/LPIPS for SR×4 as a function of η. APS maintains
similar performance across stochasticity levels, whereas ΠGDM is more sensitive to the amount of
injected noise.

A.2.2 DIFFERENT CHOICES FOR gt AND dt

Our method combines two complementary surrogates to regularize posterior updates: the direction
is set by gt, and the magnitude by dt, with a correlation-based correction that attenuates risky steps
when the two disagree. It is nevertheless natural to consider alternative assignments. In this section
we vary both ingredients by choosing

(gt, dt) ∈ {dps, pgdm, map} × {dps, pgdm, map},
and, in addition, evaluate a symmetric variant that steps along the average direction (gt + dt)/2
(thereby sharing both role and responsibility between the two surrogates). We evaluate each combi-
nation on 100 images from the ImageNet-256 validation set for SR×4 with σy = 0.05.

The results of our experiments are given in Table 3.
For clarity, the three surrogates used to instantiate ϵ̃θ(xt, t, y) are:

ϵ̃ΠGDM
θ (xt, t, y) = ϵθ(xt, t) +

ᾱt

r2t

(
∂x̂0

∂xt

)⊤
A⊤
(
AA⊤ +

σ2
y

r2t
I
)−1(

y −Ax̂0

)
, (27)

ϵ̃DPS
θ (xt, t, y) = ϵθ(xt, t) + ᾱt

(
∂x̂0

∂xt

)⊤
A⊤(y −Ax̂0

)
, (28)

ϵ̃MAP
θ (xt, t, y) = ϵθ(xt, t) +

√
ᾱt√

1− ᾱt
A⊤
(
AA⊤ +

σ2
y

r2t
I
)−1(

Ax̂0 − y
)
. (29)
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gt dt PSNR [dB] (↑) LPIPS (↓) Time/Image [s]†

DPS DPS 23.43 0.340 9.4
DPS ΠGDM 22.63 0.501 17.8
DPS MAP 24.72 0.266 9.5

ΠGDM DPS 20.42 0.445 18.0
ΠGDM ΠGDM 24.43 0.354 9.4
ΠGDM MAP 24.65 0.249 9.5
MAP DPS 20.42 0.445 9.8
MAP ΠGDM 21.04 0.576 9.5
MAP MAP 22.14 0.399 5.3

(gt + dt)/2 PSNR [dB] (↑) LPIPS (↓) Time/Image [s]†

ΠGDM , DPS 24.02 0.335 18.0
MAP , ΠGDM 22.84 0.426 9.5

DPS , MAP 22.16 0.435 9.7

Table 3: Ablation over pairings of direction (gt) and magnitude (dt), and the averaged.
† Experiments were run on NVIDIA L40S GPUs. Runtimes depend on hardware and settings, so values should be interpreted comparatively rather than absolutely.

A.3 REPRODUCIBILITY

ΠGDM implementation details. As no official implementation of ΠGDM is publicly available,
we reimplemented it based on the description in (Song et al., 2023) and the publicly released RED-
diff code (Mardani et al., 2023)2. Note that our notation (and code) follow the VP–DDPM param-
eterization, whereas both Song et al. (2023) and Mardani et al. (2023) use a Variance–Exploding
(VE) formulation. To verify correctness, we cross-validated our reimplementation against results
reported in Song et al. (2023) on overlapping setups. In particular, both implementations yield an
LPIPS of 0.122 on clean bicubic SR×4, confirming consistency. Notice that when using any likeli-
hood surrogate for gt, it is normalized, removing any time-constants scaling.

Our code will be released upon acceptance.

2https://github.com/NVlabs/RED-diff/blob/master/algos/pgdm.py
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A.4 ADDITIONAL VISUAL RESULTS

Task Input DDPG DPS APS-DPS ΠGDM APS-
ΠGDM

Ground
Truth

SR×4
σy = 0

SR×4
σy = 0

SR×4
σy = 0.05

SR×4
σy = 0.05

Gauss. Deb.
σy = 0.05

Gauss. Deb.
σy = 0.05

Motion Deb.
σy = 0.05

Motion Deb.
σy = 0.05

Figure 7: Additional visual results on ImageNet-256 validation set. Best viewed in zoom-in.
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