ADAPTIVE GUIDANCE SCALING FOR POSTERIOR DIFFUSION-BASED SAMPLING

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have recently emerged as powerful generative priors for solving inverse problems, achieving state-of-the-art results across various imaging tasks. A central challenge in this setting lies in balancing the contribution of the prior with the data fidelity term: overly aggressive likelihood updates may introduce artifacts, while conservative updates can slow convergence or yield suboptimal reconstructions. In this work, we propose an adaptive likelihood stepsize strategy to guide the diffusion process for inverse-problem formulations. Specifically, we develop an observation-dependent weighting scheme based on the agreement between two different approximations of the intractable intermediate likelihood gradients, that adapts naturally to the diffusion schedule, time re-spacing, and injected stochasticity. The resulting approach, Adaptive Posterior diffusion Sampling (APS), is hyperparameter-free and improves reconstruction quality across diverse imaging tasks—including super-resolution, Gaussian deblurring, and motion deblurring—on CelebA-HQ and ImageNet-256 validation sets. APS consistently surpasses existing diffusion-based baselines in perceptual quality without any task-specific tuning. Extensive ablation studies further demonstrate its robustness to the number of diffusion steps, observation noise levels, and varying stochasticity.

1 Introduction

Image restoration arises in numerous applications, where the goal is to recover a high-quality image $x \in \mathbb{R}^n$ from a degraded observation $y \in \mathbb{R}^m$ that may be noisy, blurry, low-resolution, or otherwise corrupted. In many cases, the relationship between y and x can be modeled as

$$y = \mathcal{A}(x) + \varepsilon,\tag{1}$$

where $\mathcal{A}:\mathbb{R}^n\to\mathbb{R}^m$ is a measurement operator, and ε denotes additive noise (typically modeled as white Gaussian noise $\mathcal{N}(0,\sigma_y^2I)$). For instance, in image denoising \mathcal{A} is the identity operator; in deblurring, \mathcal{A} represents a blur kernel; and in super-resolution, \mathcal{A} consists of a composition of sub-sampling and anti-aliasing filtering.

Inverse problems of the form Eq. 1 are typically *ill-posed*: the solution may be nonunique (e.g., when \mathcal{A} is not injective), unstable to perturbations in y (e.g., when \mathcal{A} is ill-conditioned), or may not exist without additional regularity assumptions. These challenges are particularly pronounced in underdetermined settings with $m \ll n$, where no exact inverse exists, and in the presence of measurement noise. Consequently, simply fitting the observation model does not guarantee accurate recovery, and incorporating prior knowledge about the structure of x is essential.

A widely adopted paradigm is to train deep neural networks (DNNs) for each specific observation model. That is, synthetic training pairs $\{(y_i,x_i)\}$ are generated using Eq. 1, and a DNN is trained to approximate the inverse map (Dong et al., 2015; Lim et al., 2017; Sun et al., 2015; Zhang et al., 2017a). However, these task-specific networks typically suffer severe performance degradation when the test-time observations deviate, even slightly, from the training assumptions (Hussein et al., 2020; Shocher et al., 2018; Tirer & Giryes, 2019), limiting their practicality.

An alternative line of work leverages pretrained DNNs that capture only the signal prior, while consistency with the observations is enforced during inference in a "zero-shot" manner. A particularly

successful choice has been Gaussian denoisers, employed in "plug-and-play" (PnP) and "regularization by denoising" (RED) frameworks (Romano et al., 2017; Tirer & Giryes, 2018; Venkatakrishnan et al., 2013; Zhang et al., 2017b). The recent emergence of diffusion/score-based generative models (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020b) has further popularized iterative denoising for general-purpose restoration. In diffusion models, inference involves reversing a diffusion process by iteratively removing Gaussian noise until a clean sample is obtained. Explicit data fidelity terms have been integrated into this iterative sampling to ensure reconstructions that both appear natural and conform to the measurements (Abu-Hussein et al., 2022; Chung et al., 2022; 2023; Kawar et al., 2022; Mardani et al., 2023; Song et al., 2023; 2021; Wang et al., 2023; Zhu et al., 2023; Garber & Tirer, 2024).

Although utilizing the strong data prior offered by diffusion models has shown great results, forcing the data fidelity for guiding the diffusion trajectory to a reconstruction that agrees with the observation is usually performed by incorporating an approximation of the likelihood gradient into the sampling scheme, while compensating for the inaccuracy introduced to the sampling by carefully fine-tuning certain hyperparameters or imposing an additional projection onto the diffusion manifold (Kawar et al., 2022; Chung et al., 2023; Zhu et al., 2023; Garber & Tirer, 2024; Yang et al., 2024). Furthermore, this data fidelity step usually has fixed or pre-defined step sizes that depend on the diffusion noise scheduling parameters.

In this work, we introduce Adaptive Posterior diffusion Sampling (APS), which addresses the core challenge of balancing prior and data fidelity contributions. Overly aggressive likelihood updates may introduce artifacts, while conservative updates can lead to slow convergence or suboptimal reconstructions. To overcome this, APS employs a novel weighting strategy that adaptively tunes the step size based on the agreement between two complementary approximations of the intractable intermediate likelihood gradients. This adaptive mechanism allows the sampling trajectory to flexibly adjust to the ill-posedness of the observation model, measurement noise level, and characteristics of the diffusion process, improving both robustness and reconstruction quality.

We evaluate APS on a variety of inverse problems, including super-resolution, Gaussian deblurring, and motion deblurring, across the popular CelebA-HQ and ImageNet-256 datasets. Our experiments demonstrate that APS consistently outperforms existing diffusion-based approaches in terms of reconstruction quality and scalability. Extensive ablation studies further confirm the effectiveness of the adaptive guidance mechanism with respect to the number of diffusion steps, observation noise level, and the stochasticity of the diffusion process.

Our main contributions are summarized as follows:

- (1) **DDIM reformulation for conditional guidance.** We provide a principled way to incorporate likelihood gradients into an existing DDIM sampler via a conditional noise estimator. The resulting update preserves DDIM's scheduling and therefore naturally scales with the number of steps, time re-spacing, and the level of stochasticity.
- (2) Adaptive, hyperparameter-free guidance scaling. Viewing posterior sampling through the lens of step-size selection, we introduce a data-dependent, hyperparameter-free rule that modulates the guidance by the agreement between two complementary surrogates. This yields robust, alignment-aware updates at negligible runtime cost.
- (3) Perceptually leading performance with competitive distortion. APS achieves best or second-best LPIPS across tasks while maintaining strong PSNR—contrasting with baselines that optimize one metric at the expense of the other.

2 Background

2.1 INVERSE PROBLEMS

In this work we focus on the widely studied *linear–Gaussian* case. The forward operator is linear, $\mathcal{A}(x) = Ax$ with $A \in \mathbb{R}^{m \times n}$, and the noise is modeled as zero-mean i.i.d. Gaussian with known variance σ_y^2 , i.e., $\varepsilon \sim \mathcal{N}(0, \sigma_y^2 I_m)$, where $I_m \in \mathbb{R}^{m \times m}$ is the identity matrix.

From a Bayesian perspective, we treat $x \sim p(x)$ as a random unknown vector to be estimated from the observation y. A natural first step is to maximize the likelihood probability density function,

which has the form

$$p(y|x) \propto \exp\left(-\frac{1}{2\sigma_y^2} \|Ax - y\|_2^2\right).$$
 (2)

However, relying solely on the likelihood often yields unsatisfactory reconstructions due to the inherent instability and non-uniqueness of the solution. A more effective strategy is to maximize the posterior distribution,

$$p(x|y) \propto p(y|x)p(x),$$
 (3)

which combines the likelihood with a prior p(x). The inclusion of the prior greatly improves reconstruction quality, but also raises a central challenge: designing a suitable prior. The more accurately p(x) captures the structure of the true signal, the more reliable the reconstruction will be.

2.2 DIFFUSION MODELS

Diffusion models are a class of generative models that synthesize data by *reversing* a gradual noising process (Ho et al., 2020; Song et al., 2020b). Both the forward (noising) and reverse (denoising) dynamics can be formalized with stochastic differential equations (SDEs). The forward process progressively corrupts clean data so that, at a terminal time t=T, the distribution becomes tractable—typically close to Gaussian. Thus, generating a novel data point amounts to solving the corresponding reverse-time dynamics to transport noise back to the data distribution.

Forward and reverse dynamics. For $t \in [0,T]$, let $x(t) \in \mathbb{R}^n$ evolve under the forward SDE

$$dx = f(x,t) dt + g(t) dw,$$
(4)

where f is the drift, $g(t) \ge 0$ is a scalar diffusion schedule, and w is standard Brownian motion. The schedule is chosen such that, approximately, $x(T) \sim \mathcal{N}(0, I)$. The corresponding reverse-time SDE (Anderson, 1982), which shares the same time-marginals, is given by

$$dx = \left[f(x,t) - g(t)^2 \nabla_x \log p_t(x) \right] dt + g(t) d\bar{w}, \tag{5}$$

where p_t is the probability density function of x(t) and \bar{w} is a reverse-time Brownian motion. Solving Eq. 5 with respect to x(t) requires access to the score function $\nabla_x \log p_t(x)$, which is unknown and must be approximated.

VP–DDPM. A widely used choice is $f(x,t) := -\frac{1}{2}\beta(t)\,x$ and $g(t) := \sqrt{\beta(t)}$, known as the variance-preserving (VP) parameterization in DDPM (Ho et al., 2020). In practical discrete settings, we denote $x(t) := x_t$ and $\beta(t) := \beta_t$. The forward diffusion kernel is then

$$p(x_t \mid x_0) = \mathcal{N}\left(x_t; \sqrt{\bar{\alpha}_t} x_0, (1 - \bar{\alpha}_t)I\right), \qquad \alpha_t := 1 - \beta_t, \quad \bar{\alpha}_t := \prod_{s=1}^t \alpha_s.$$

Equivalently,

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \qquad \epsilon \sim \mathcal{N}(0, I).$$
 (6)

We follow this framework and notation throughout the paper.

Evaluating the score. Diffusion models are trained to denoise the degraded signal x_t by predicting either the clean signal \hat{x}_0 or the noise. In the latter case, let $\epsilon_{\theta}(x_t,t)$ denote the predicted noise at time t using a DNN with parameters θ . Prior works show that this predictor yields a score estimate. Specifically, for the VP–DDPM parameterization (Eq. 6) we have (Efron, 2011; Hyvärinen & Dayan, 2005; Vincent, 2011; Song et al., 2020b):

$$\nabla_{x_t} \log p_t(x_t) \approx -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t), \tag{7}$$

which follows from $\nabla_{x_t} \log p_t(x_t) = \frac{1}{1-\bar{\alpha}_t} (\mathbb{E}[\sqrt{\bar{\alpha}_t} \, x_0 | x_t] - x_t) = -\frac{1}{\sqrt{1-\bar{\alpha}_t}} \, \mathbb{E}[\epsilon | x_t]$, given by Tweedie's formula (Efron, 2011). Based on the relation in Eq. 6, the denoised signal can be obtained by

$$\hat{x}_0(x_t, t) = \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \,\epsilon_\theta(x_t, t)}{\sqrt{\bar{\alpha}_t}}.$$
(8)

Sampling. Given $\epsilon_{\theta}(x_t, t)$, samples can be generated by numerically solving Eq. 5 using the approximation in Eq. 7. A common sampling algorithm is DDIM (Song et al., 2020a), where each intermediate sample x_{t-1} is obtained by

$$x_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \,\hat{x}_0(x_t, t) + \sqrt{1 - \bar{\alpha}_{t-1} - \sigma_t^2} \,\epsilon_\theta(x_t, t) + \sigma_t \,\epsilon_t, \qquad \epsilon_t \sim \mathcal{N}(0, I). \tag{9}$$

The stochasticity of the update is governed by σ_t , which is commonly parameterized by $\eta \in [0,1]$, as $\sigma_t = \eta \sqrt{1 - \alpha_t} \sqrt{\frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}}$. Thus, η represents the level of stochasticity of the diffusion process.

2.3 Posterior Sampling

Posterior sampling methods aim to draw samples from the conditional distribution $p(x_0|y)$ by constructing the *conditional score* $\nabla_{x_t} \log p_t(x_t|y)$ and integrating the reverse dynamics using it. From Bayes' rule,

$$\nabla_{x_t} \log p_t(x_t|y) = \nabla_{x_t} \log p_t(x_t) + \nabla_{x_t} \log p_t(y|x_t), \tag{10}$$

where the left-hand side is the *posterior score*, the first term on the right is the *prior score*, and the second is the *likelihood score*.

While the prior term can be obtained using an unconditional score network similar to Eq. 7, the likelihood term $\nabla_{x_t} \log p_t(y|x_t)$ is generally intractable. Specifically, using the law of total probability with $y \perp x_t$ given x_0 , we have

$$p(y|x_t) = \int p(y|x_0) \, p(x_0|x_t) \, \mathrm{d}x_0. \tag{11}$$

The measurement model $p(y|x_0)$ is available from Eq. 2, but $p(x_0|x_t)$ is unknown. We next describe two common approximations to $p(x_0|x_t)$ that yield practical likelihood-score surrogates.

DPS. Chung et al. (2023) suggests to approximate $p(x_0|x_t) \approx \delta(x_0 - \hat{x}_0)$, where $\delta(\cdot)$ is the Dirac delta distribution. By Eq. 11, the likelihood score is then approximated by $\nabla_{x_t} \log p_t(y|x_t) \approx \nabla_{x_t} \log p(y|\hat{x}_0(x_t,t)) = -\sigma_y^{-2} (\frac{\partial \hat{x}_0}{\partial x_t})^\top A^\top (y-A\hat{x}_0)$ which can be obtained via backpropagation.

ΠGDM. Alternatively, Song et al. (2023) suggest to approximate $p(x_0|x_t)$ as Gaussian of the form $p(x_0|x_t) \approx \mathcal{N}(\hat{x}_0, r_t^2 I)$, with $r_t^2 = 1 - \bar{\alpha}_t$ (in VP-DDPM parameterization), which yields the surrogate likelihood score $\nabla_{x_t} \log p_t(y|x_t) \approx (\frac{\partial \hat{x}_0}{\partial x_t})^\top A^\top (r_t^2 A A^\top + \sigma_y^2 I)^{-1} (y - A\hat{x}_0)$.

Most posterior sampling methods incorporate these score terms into the DDIM update in Eq. 9 and weight them either heuristically (Song et al., 2023) or by tuning additional hyperparameters (Chung et al., 2023; 2022). In this work, we address the challenge of integrating the likelihood score into DDIM update in a balanced, scalable and robust way.

3 METHOD

3.1 Reformulating DDIM for Conditional Settings

Substituting Eq. 8 into the DDIM update Eq. 9, we can write it in a Markovian form:

$$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} x_t - \underbrace{\left(\frac{\sqrt{1-\bar{\alpha}_t}}{\sqrt{\alpha_t}} - \sqrt{1-\bar{\alpha}_{t-1} - \sigma_t^2}\right)}_{\gamma_t} \epsilon_{\theta}(x_t, t) + \sigma_t \epsilon_t =: \text{DDIM}(x_t), \quad (12)$$

where $\epsilon_t \sim \mathcal{N}(0, I)$ and γ_t collects time-dependent coefficients.

Building on the identity $\mathbb{E}[\epsilon|x_t,y] = -\sqrt{1-\bar{\alpha}_t}\,\nabla_{x_t}\log p_t(x_t|y)$, which is a straightforward generalization of Tweedie's formula to the conditional case (see, e.g., Lemma A.2 in Peng et al. (2024)), we introduce a *posterior* surrogate $\tilde{\epsilon}_{\theta}(x_t,t,y)$ related in the same way to the *posterior* score $\nabla_{x_t}\log p_t(x_t|y)$. Using Eq. 10,

$$\tilde{\epsilon}_{\theta}(x_t, t, y) := \epsilon_{\theta}(x_t, t) + \xi_t \ g(y, x_t), \tag{13}$$

where $g(y,x_t)$ is any tractable estimator of the likelihood-score term $\nabla_{x_t} \log p_t(y|x_t)$ and $\xi_t \in \mathbb{R}$ balances the (approximate) likelihood and prior scores and encapsulates all derived constants. Plugging Eq. 13 into Eq. 12 (in lieu of ϵ_{θ}) yields the conditional DDIM step

$$x_{t-1} = \frac{1}{\sqrt{\alpha_t}} x_t - \gamma_t \, \epsilon_\theta(x_t, t) - \gamma_t \, \xi_t \, g(y, x_t) + \sigma_t \, \epsilon_t$$

$$= \text{DDIM}(x_t) - \gamma_t \, \xi_t \, g(y, x_t). \tag{14}$$

This formulation makes explicit that posterior information affects both the intermediate estimate $\hat{x}_0(x_t,t)$ (implicitly, through ϵ_θ) and the projection back to t-1 via an effective noise that interpolates the predicted noise and fresh randomness. In contrast, most methods directly add $\xi_t g(y,x_t)$ to DDIM, without explicitly accounting for the factor γ_t (Chung et al., 2023; Song et al., 2023), while others heuristically modify DDIM's injected noise estimate (Garber & Tirer, 2024; Zhu et al., 2023).

3.2 Adaptive Posterior Sampling (APS)

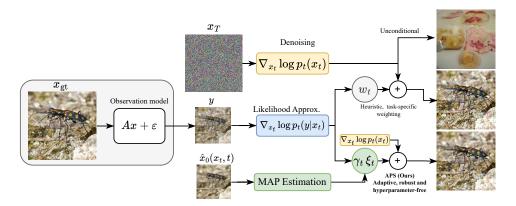


Figure 1: **Schematic overview of our method.** We introduce a principled, hyperparameter-free rule for balancing likelihood guidance with the prior in diffusion-based posterior sampling.

3.2.1 APS UPDATE

Let $\epsilon_t^* := \mathbb{E}[\epsilon \mid x_t, y]$ denote the MMSE estimate of the posterior noise at time t. For brevity, write $\epsilon_{\theta,t} := \epsilon_{\theta}(x_t,t), g_t := g(y,x_t), \text{ and } \tilde{\epsilon}_{\theta,t} := \tilde{\epsilon}_{\theta}(x_t,t,y).$

We choose ξ_t so that $\tilde{\epsilon}_{\theta} = \epsilon_{\theta,t} + \xi_t g_t$ (Eq. 13) best approximates ϵ_t^* in least squares:

$$\xi_t^* := \arg\min_{\xi_t} \left\| \epsilon_t^* - \epsilon_{\theta,t} - \xi_t g_t \right\|_2^2 \quad \Longrightarrow \quad \xi_t^* = \frac{\langle d_t, g_t \rangle}{\|g_t\|_2^2}, \qquad d_t := \epsilon_t^* - \epsilon_{\theta,t}, \tag{15}$$

with $\langle \cdot, \cdot \rangle$ the Euclidean inner product (if $||g_t||_2 = 0$, set $\xi_t^* = 0$). Substituting ξ_t^* into Eq. 14 yields the APS update:

$$x_{t-1} = \text{DDIM}(x_t) - \gamma_t \frac{\langle d_t, g_t \rangle}{\|q_t\|_2^2} g_t.$$
 (16)

Equivalently, in norm-alignment form,

$$x_{t-1} = \text{DDIM}(x_t) - \gamma_t \|d_t\|_2 \langle \hat{d}_t, \hat{g}_t \rangle \hat{g}_t, \qquad \hat{d}_t := d_t / \|d_t\|_2, \quad \hat{g}_t := g_t / \|g_t\|_2. \tag{17}$$

Thus, APS scales the likelihood step by the residual magnitude $\|d_t\|_2$ and the *alignment* between \hat{d}_t and the chosen likelihood direction \hat{g}_t . In practice, we regularize the step size using the measurement-consistent residual noise $\epsilon_t^* - \epsilon_{\theta,t}$: when alignment is strong, the two likelihood surrogates agree and larger steps are warranted; when misaligned, moving along \hat{g}_t risks injecting erroneous guidance, so the step is attenuated. Importantly, the DDIM schedule coefficient γ_t is preserved, ensuring guidance scales appropriately under time re-spacing and stochasticity.

271

272

273

274

275

276

277 278

279

281 282

283 284

285

287

288

289

290 291

292 293 294

295

296

297

298

299

300

301

302 303

304

306

307

308

309 310 311

312 313

314

315

316

317

318

319

320

321

322

323

However, because d_t and g_t are distinct surrogates of the likelihood update, perfect alignment is unlikely; the projection coefficient $\langle \hat{d}_t, \hat{g}_t \rangle \leq 1$ therefore systematically shrinks the update step, even when the directions largely agree. To counter this, we apply a simple, data-agnostic bias correction, scaling by $2 \approx 1/\mathbb{E}[\langle d_t, \hat{g}_t \rangle]$ (empirically ≈ 0.5 at mid-trajectory), which restores the intended step magnitude. This yields our final update:

$$x_{t-1} = DDIM(x_t) - \gamma_t \frac{2\langle d_t, g_t \rangle}{\|g_t\|_2^2} g_t = DDIM(x_t) - 2\gamma_t \|d_t\|_2 \langle \hat{d}_t, \hat{g}_t \rangle \hat{g}_t$$
(18)

Because computing g_t already requires backpropagation through the denoiser, we next show how to evaluate d_t directly in noise space without the denoiser's Jacobian. We discuss this approach in detail in Section A.1.2 of the appendix.

3.2.2 EFFICIENT MAP SURROGATE FOR d_t

Because ϵ_t^* is unknown, we approximate it via a maximum a posteriori (MAP) estimate for x_0 conditional on (x_t, y) . From Bayes' rule,

$$\Phi(x_0) := -\log p(x_0|x_t, y) = -\log p(x_0|x_t) - \log p(y|x_0) + C, \tag{19}$$

where C encapsulate terms that do not depend on x_0 . Following prior work (Song et al., 2023; Boys et al., 2023), we adopt

$$p(x_0|x_t) \approx \mathcal{N}(\hat{x}_0, r_t^2 I), \qquad r_t^2 = 1 - \bar{\alpha}_t, \tag{20}$$

 $p(x_0|x_t) \approx \mathcal{N}(\hat{x}_0, r_t^2 I), \qquad r_t^2 = 1 - \bar{\alpha}_t,$ (20) and the linear-Gaussian likelihood Eq. 2. Under these assumptions, the negative log-posterior obeys

$$\Phi(x_0) \propto \frac{1}{2\sigma_y^2} \|y - Ax_0\|_2^2 + \frac{1}{2r_t^2} \|x_0 - \hat{x}_0\|_2^2. \tag{21}$$

In the linear-Gaussian setting, the posterior mean is the MAP minimizer. Since Φ is strictly convex, the optimum x_0^* satisfies $\nabla \Phi(x_0^*) = 0$, giving

$$x_0^* = \hat{x}_0 - A^{\top} \left(A A^{\top} + \frac{\sigma_y^2}{r_t^2} I \right)^{-1} \left(A \hat{x}_0 - y \right).$$
 (22)

See full derivation in Section A.1.1 of the appendix. Mapping x_0^* back to the VP noise variable via $x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$ yields

$$d_t = \epsilon_t^* - \epsilon_{\theta,t} = \frac{\sqrt{\bar{\alpha}_t}}{\sqrt{1 - \bar{\alpha}_t}} A^{\top} \left(A A^{\top} + \frac{\sigma_y^2}{r_t^2} I \right)^{-1} \left(A \hat{x}_0 - y \right). \tag{23}$$

Remark 1 For many linear operators A, the operator $(AA^{\top} + \frac{\sigma_y^2}{\sigma^2}I)^{-1}$ can be implemented efficiently: exactly via SVD (for small dense A), via FFT diagonalization for circulant models (e.g., in super-resolution and deblurring), or via conjugate gradients in the general case.

The construction of d_t is reminiscent of the residual-based likelihood approximation of (Li & Wang, 2025), but under our Gaussian assumptions and linear A, the objective in 21 is minimized exactly.

EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Tasks and datasets. We test our method on the CelebA-HQ and ImageNet-256 validation sets, with backbone denoisers trained by Lugmayr et al. (2022) and Dhariwal & Nichol (2021), respectively. Our evaluation is performed by conducting several key image restoration tasks, used also in previous works (Kawar et al., 2022; Zhu et al., 2023): (i) Super-resolution ×4 with a bicubic downsampling kernel, in both noiseless and noisy settings; (ii) Gaussian deblurring with a 5×5 Gaussian kernel (standard deviation 10); and (iii) Motion deblurring with randomized 61×61 kernels of intensity 0.5, generated using the public implementation. Unless noted otherwise, we add zero-mean i.i.d. Gaussian noise with $\sigma_y=0.05$, conventionally expressed in [0,1] intensity units. Since we normalize images to the range [-1, 1], we accordingly multiply the noise level by a factor of two.

¹https://github.com/LeviBorodenko/motionblur

Baselines. We compare against DDRM (Kawar et al., 2022), DPS (Chung et al., 2023), Diff-PIR (Zhu et al., 2023), DDPG (Garber & Tirer, 2024), Π GDM (Song et al., 2023), and DSG (Yang et al., 2024). All evaluations use the same datasets, seeds, and implementations of the measurement operators. We report PSNR and LPIPS (distortion and perceptual quality), averaged over 1K samples per dataset; for LPIPS, we use the AlexNet variant. To fully assess our step-size strategy (APS), we report results when APS computes the likelihood score using either Π GDM or DPS (i.e., different choices for g_t).

Sampling details. We use a DDIM sampler with $\eta=1$ (i.e., DDPM-equivalent) and 100 diffusion steps. Unless noted otherwise, all baselines also use 100 steps. Exceptions are DPS, which requires 1,000 steps, and DSG, which likewise uses 1,000 steps for ImageNet-256. Although DDRM (Kawar et al., 2022) typically operates with \sim 20 steps, we run it with 100 for a fair comparison.

4.2 Comparison with Other Methods

Table 1 compares APS with representative posterior samplers built on unconditional diffusion priors (see Section 4.1). Across both datasets, APS delivers near state-of-the-art perceptual quality, attaining best or second-best LPIPS in all settings. At the same time, it maintains strong PSNR, incurring only a modest distortion cost, consistent with the perception–distortion trade-off (Blau & Michaeli, 2018). Notably, several PSNR-oriented baselines sharply sacrifice LPIPS, especially on noisy tasks, yielding visibly blurrier reconstructions (e.g., DDPG on SR×4 with $\sigma_y=0.05$). In contrast, APS remains competitive on *both* metrics across tasks and datasets.

Table 1: Super-resolution / deblurring on **CelebA-HQ** and **ImageNet-256**: PSNR [dB] (\uparrow) / LPIPS (\downarrow). Best results are in **bold**; second-best are <u>underlined</u>. N/A = DDRM inapplicable for non-SVD tasks. Values in gray are excluded as they were obtained with a larger number of sampling steps.

	CelebA-HQ			ImageNet-256				
Method	Bicub. SR×4 $\sigma_y = 0$	Bicub. SR \times 4 $\sigma_y = 0.05$				Bicub. SR \times 4 $\sigma_y = 0.05$	Gauss. Deb. $\sigma_y = 0.05$	
DDRM	31.64 / 0.054	<u>29.26</u> / 0.090	30.53 / 0.074	N/A	<u>27.38</u> / 0.270	<u>25.54</u> / 0.333	27.71 / 0.243	N/A
DiffPIR	30.26 / 0.051	27.44 / 0.085	28.89 / 0.074	27.96 / 0.102	26.99 / 0.225	24.65 / 0.318	26.64 / 0.240	25.34 / 0.284
DDPG	31.60 / 0.052	29.39 / 0.105	30.41 / 0.068	29.02 / 0.082	27.41 / 0.255	25.55 / 0.354	27.73 / <u>0.205</u>	25.94 / <u>0.249</u>
DSG^{\dagger}	30.40 / 0.051	27.57 / 0.072	30.29 / 0.051	27.57 / 0.079	26.08 / 0.198	24.33 / 0.203	26.69 / 0.153	24.33 / 0.197
DPS^{\dagger}	29.39 / 0.065	27.49 / 0.086	27.75 / 0.084	19.63 / 0.227	25.56 / 0.236	24.05 / 0.271	23.59 / 0.294	17.52 / 0.468
ПСОМ	30.93 / 0.038	27.23 / 0.078	27.67 / 0.087	26.15 / 0.104	26.72 / 0.122	22.83 / 0.227	22.85 / 0.268	20.97 / 0.292
APS-DPS (Ours)	30.83 / 0.042	28.10 / 0.064	30.03 / 0.056	27.41 / <u>0.077</u>	27.23 / 0.202	25.13 / 0.259	26.38 / 0.259	23.61 / 0.298
$APS\text{-}\Pi GDM \ (Ours)$	30.91 / <u>0.040</u>	$28.00 / \underline{0.065}$	29.39 / <u>0.054</u>	<u>28.00</u> / 0.067	27.24 / <u>0.181</u>	$25.04 / \underline{0.240}$	27.14 / 0.147	<u>25.36</u> / 0.193

[†] Methods evaluated with 1K NFEs. On CelebA-HQ, DSG was applied with 100 steps.

4.3 ABLATION STUDIES

In this section, we analyze various aspects in our proposed approach. Experiments in this section are carried out by solving SR×4 with $\sigma_y = 0.05$ on 100 samples from the ImageNet-256 validation set, unless specified otherwise.

Isolating the impact of our adaptive ξ_t . We assess the contribution of the adaptive factor by freezing it to constants: $\xi_t=1$ (replacing $\frac{2 \langle d_t,g_t \rangle}{\|g_t\|_2^2}$) and $\xi_t=2$ to decouple the factor-of-two bias correction from true adaptivity. As shown in Table 2, the adaptive ξ_t consistently outperforms either choice for both APS– Π GDM and APS–DPS, indicating that alignment-aware step-size modulation is essential.

ξ_t	APS-PGDM	APS-DPS
1	24.40 / 0.356	23.48 / 0.342
2	22.54 / 0.500	20.90 / 0.460
Ours	24.64 / 0.246	24.74 / 0.266

Table 2: Impact of ξ_t (PSNR / LPIPS).

Direct Comparison to DPS. Across both CelebA-HQ and ImageNet-256, DPS uses ten times more sampling steps than its APS counterpart yet underperforms, even though both use the same likelihood-gradient surrogate $g_t(y,x_t)$ (compare DPS and APS-DPS in Table 1).

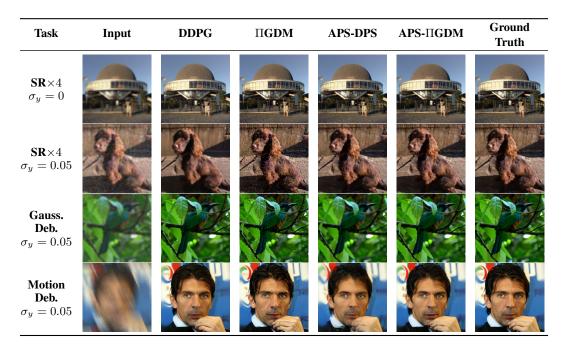


Figure 2: Qualitative comparison of APS and representative methods. Best viewed in zoom-in.

Comparison to Π GDM. Beyond the likelihood approximation, Song et al. (2023) introduce a time-decaying multiplicative step size equal to $(1-\bar{\alpha}_t)$. While this choice performs well at 100 sampling steps, it does not account for the diffusion schedule's discretization (i.e., changing the number of steps). Consequently—and counter-intuitively—increasing the number of steps degrades performance in both PSNR and LPIPS, rather than improving it, as was also observed by Mardani et al. (2023). In contrast, our method explicitly incorporates step spacing through γ_t , yielding a scalable sampler whose perceptual quality improves with more steps, with only negligible PSNR deterioration (Figs. 3, 4).

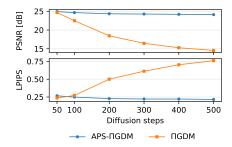


Figure 3: Comparison of APS vs. IIGDM as a function of sampling steps.

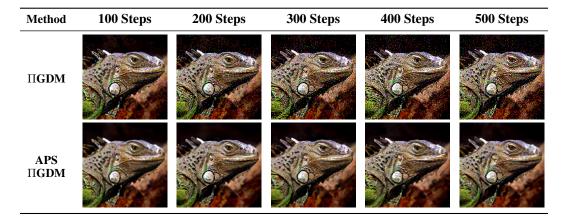


Figure 4: Qualitative comparison of APS vs. Π GDM. $SR \times 4$ with $\sigma_y = 0.05$. Reconstructions of the same image using varying numbers of sampling steps. As the step count increases, Π -GDM deteriorates due to measurement-noise leakage into the reconstructions, whereas APS improves.

Measurement noise level. In many posterior sampling schemes, increasing the observation noise not only removes information but can also *leak* through the measurement-consistency gradients into the reconstruction. We evaluate $SR \times 4$ across increasing σ_y and compare APS to ΠGDM using PSNR and LPIPS. Figure 5 shows that APS mitigates the inevitable degradation, with quality declining roughly linearly as the noise grows, whereas ΠGDM exhibits a markedly sharper drop. We exclude other baselines from this ablation because they require retuning hyperparameters for each noise level (e.g., DDPG (Garber & Tirer, 2024)).

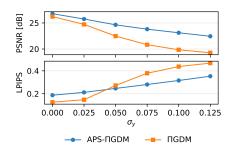


Figure 5: Response to increasing measurement noise.

Design choices for g_t **and** d_t . Beyond our default role split (direction from g_t , magnitude from d_t), we also evaluate alternative pairings, including settings with $d_t = g_t$ and a symmetric variant that averages the two, $(g_t + d_t)/2$, as detailed in Appendix A.2.2. Our ablations show that using the MAP-based surrogate for d_t is not only negligible in runtime but also outperforms competing choices. We find that omitting the Jacobian in the MAP-based magnitude yields more stable step sizes, whereas incorporating Jacobian information in the *direction* is crucial. Further discussion appears in Appendix A.1.2.

5 CONCLUSION

This paper introduces **APS**, a robust, task-agnostic and hyperparameter-free strategy for setting the guidance scale of the likelihood term when combined with a pretrained unconditional diffusion prior. Our method surpasses leading approaches in perceptual quality and provides high PSNR, while remaining scalable and adaptive across settings and diffusion schedules.

Limitations. Our current derivation entails several limitations that motivate further research. First, the analysis assumes a linear forward model, which guarantees that the posterior mean minimizes Eq. 19 and enables fast evaluation of d_t via Eq. 23. Extending APS to *nonlinear* operators will require principled surrogates or approximations of the posterior update under nonlinearity. Second, diffusion in high-resolution pixel space is resource-intensive, which has motivated the use of latent diffusion models (LDMs) that operate in a compressed latent space. However, posterior sampling becomes challenging when measurements live in the image domain, as the latent decoder must be involved in the measurement-consistency term (see, e.g., (Rout et al., 2023; Song et al., 2024)). Adapting APS to latent spaces is therefore an important direction for future work.

Outlook. Despite these limitations, APS achieves state-of-the-art reconstructions on prominent imaging tasks by providing a principled recipe for setting the likelihood step size in posterior samplers, building on existing likelihood approximations. Our derivations reduce reliance on ad hoc hyperparameter tuning while preserving proper scaling with respect to the number of steps, respacing, and stochasticity in the diffusion process. We believe APS offers a solid foundation for broader posterior-guided sampling methods in both pixel and latent domains.

Our code will be released upon acceptance.

USE OF LARGE LANGUAGE MODELS FOR WRITING

We acknowledge the use of large language models to assist with typographical corrections, phrasing, and self-review aimed at improving the clarity and structure of this manuscript.

REPRODUCIBILITY STATEMENT

All of our work is reproducible: we detail all parameters and use publicly available datasets. An additional section on reproducibility appears in the appendix. Furthermore, we will release our code upon acceptance.

REFERENCES

- Shady Abu-Hussein, Tom Tirer, and Raja Giryes. Adir: Adaptive diffusion for image reconstruction. *arXiv preprint arXiv:2212.03221*, 2022.
- Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12(3):313–326, 1982.
- Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6228–6237. IEEE, June 2018. doi: 10.1109/cvpr.2018.00652. URL http://dx.doi.org/10.1109/CVPR.2018.00652.
- Benjamin Boys, Mark Girolami, Jakiw Pidstrigach, Sebastian Reich, Alan Mosca, and O Deniz Akyildiz. Tweedie moment projected diffusions for inverse problems. *arXiv* preprint arXiv:2310.06721, 2023.
- Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*, 35:25683–25696, 2022.
- Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion posterior sampling for general noisy inverse problems. In *International Conference on Learning Representations*, 2023.
- Hyungjin Chung, Suhyeon Lee, and Jong Chul Ye. Decomposed diffusion sampler for accelerating large-scale inverse problems, 2024. URL https://arxiv.org/abs/2303.05754.
- Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.
- Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep convolutional networks. *IEEE transactions on pattern analysis and machine intelligence*, 38(2): 295–307, 2015.
- Bradley Efron. Tweedie's formula and selection bias. *Journal of the American Statistical Association*, 106(496):1602–1614, 2011.
- Tomer Garber and Tom Tirer. Image restoration by denoising diffusion models with iteratively preconditioned guidance. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 25245–25254, 2024.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- Shady Abu Hussein, Tom Tirer, and Raja Giryes. Correction filter for single image super-resolution: Robustifying off-the-shelf deep super-resolvers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1428–1437, 2020.
- Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(4), 2005.
- Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models. *Advances in neural information processing systems*, 35:23593–23606, 2022.
- Ji Li and Chao Wang. Efficient diffusion posterior sampling for noisy inverse problems. *SIAM Journal on Imaging Sciences*, 18(2):1468–1492, 2025. doi: 10.1137/24M1688321. URL https://doi.org/10.1137/24M1688321.
- Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks for single image super-resolution. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pp. 136–144, 2017.
- Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

- Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving inverse problems with diffusion models. *arXiv* preprint arXiv:2305.04391, 2023.
 - Xinyu Peng, Ziyang Zheng, Wenrui Dai, Nuoqian Xiao, Chenglin Li, Junni Zou, and Hongkai Xiong. Improving diffusion models for inverse problems using optimal posterior covariance. In *International Conference on Machine Learning*, pp. 40347–40370. PMLR, 2024.
 - Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. *arXiv preprint arXiv:2209.14988*, 2022.
 - Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that could: Regularization by denoising (red). *SIAM journal on imaging sciences*, 10(4):1804–1844, 2017.
 - Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alexandros G. Dimakis, and Sanjay Shakkottai. Solving linear inverse problems provably via posterior sampling with latent diffusion models, 2023. URL https://arxiv.org/abs/2307.00619.
 - Assaf Shocher, Nadav Cohen, and Michal Irani. "zero-shot" super-resolution using deep internal learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3118–3126, 2018.
 - Bowen Song, Soo Min Kwon, Zecheng Zhang, Xinyu Hu, Qing Qu, and Liyue Shen. Solving inverse problems with latent diffusion models via hard data consistency, 2024. URL https://arxiv.org/abs/2307.08123.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv:2010.02502*, October 2020a. URL https://arxiv.org/abs/2010.02502.
 - Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion models for inverse problems. In *International Conference on Learning Representations*, 2023.
 - Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances in neural information processing systems*, 32, 2019.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020b.
 - Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging with score-based generative models. *arXiv preprint arXiv:2111.08005*, 2021.
 - Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. Learning a convolutional neural network for non-uniform motion blur removal. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 769–777, 2015.
 - Tom Tirer and Raja Giryes. Image restoration by iterative denoising and backward projections. *IEEE Transactions on Image Processing*, 28(3):1220–1234, 2018.
 - Tom Tirer and Raja Giryes. Super-resolution via image-adapted denoising cnns: Incorporating external and internal learning. *IEEE Signal Processing Letters*, 26(7):1080–1084, 2019.
 - Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-play priors for model based reconstruction. In *2013 IEEE global conference on signal and information processing*, pp. 945–948. IEEE, 2013.
 - Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 23(7):1661–1674, 2011.
 - Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion null-space model. In *International Conference on Learning Representations*, 2023.
 - Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with spherical gaussian constraint for conditional diffusion. In *International Conference on Machine Learning*, pp. 56071–56095. PMLR, 2024.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. *IEEE transactions on image processing*, 26 (7):3142–3155, 2017a.

Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. Learning deep cnn denoiser prior for image restoration. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3929–3938, 2017b.

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc Van Gool. Denoising diffusion models for plug-and-play image restoration. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1219–1229, 2023.

A APPENDIX

A.1 ADDITIONAL METHOD DETAILS

A.1.1 Proof of Eq. 22

Let $\Phi(x_0)$ be as in Eq. 19. Since Φ is convex, the optimum x_0^* satisfies

$$\nabla_{x_0} \Phi(x_0^*) \ = \ 0 \ \iff \ \sigma_y^{-2} A^\top (A x_0^* - y) \ + \ r_t^{-2} (x_0^* - \hat{x}_0) \ = \ 0.$$

Proceeding step by step,

$$\sigma_{y}^{-2} A^{\top} (Ax_{0}^{*} - y) + r_{t}^{-2} (x_{0}^{*} - \hat{x}_{0}) = 0$$

$$\iff x_{0}^{*} - \hat{x}_{0} = \frac{r_{t}^{2}}{\sigma_{y}^{2}} A^{\top} (y - Ax_{0}^{*})$$

$$\iff \left(\frac{r_{t}^{2}}{\sigma_{y}^{2}} A^{\top} A + I_{n}\right) x_{0}^{*} = \hat{x}_{0} + \frac{r_{t}^{2}}{\sigma_{y}^{2}} A^{\top} y$$

$$\iff \left(A^{\top} A + \frac{\sigma_{y}^{2}}{r_{t}^{2}} I_{n}\right) x_{0}^{*} = \frac{\sigma_{y}^{2}}{r_{t}^{2}} \hat{x}_{0} + A^{\top} y$$

$$\iff \left(A^{\top} A + \frac{\sigma_{y}^{2}}{r_{t}^{2}} I_{n}\right) x_{0}^{*} = A^{\top} A \hat{x}_{0} + \frac{\sigma_{y}^{2}}{r_{t}^{2}} \hat{x}_{0} + A^{\top} y - A^{\top} A \hat{x}_{0}$$

$$\iff \left(A^{\top} A + \frac{\sigma_{y}^{2}}{r_{t}^{2}} I_{n}\right) x_{0}^{*} = \left(A^{\top} A + \frac{\sigma_{y}^{2}}{r_{t}^{2}} I_{n}\right) \hat{x}_{0} + A^{\top} (y - A\hat{x}_{0})$$

$$\iff x_{0}^{*} = \hat{x}_{0} + \left(A^{\top} A + \frac{\sigma_{y}^{2}}{r_{t}^{2}} I_{n}\right)^{-1} A^{\top} (y - A\hat{x}_{0}).$$
(24)

Using the "push-through" identity

$$(A^{\top}A + \lambda I_n)^{-1}A^{\top} = A^{\top}(AA^{\top} + \lambda I_m)^{-1} \qquad \forall \lambda > 0,$$

Eq. 24 is equivalently

$$x_0^* = \hat{x}_0 + A^{\mathsf{T}} \left(A A^{\mathsf{T}} + \frac{\sigma_y^2}{r_t^2} I_m \right)^{-1} (y - A \hat{x}_0),$$
 (25)

which can be preferable in memory when m < n (e.g. super-resolution).

A.1.2 ON JACOBIAN-FREE APPROXIMATIONS

In Section 3.2.2 we proposed a MAP-based likelihood surrogate computed with respect to the prior mean \hat{x}_0 , thereby obviating the need to evaluate the Jacobian $J_t := \partial \hat{x}_0/\partial x_t$, which would otherwise require backpropagating through the denoiser at every step. This design trades exactness for efficiency: strictly speaking, the correct conditional score with respect to x_t does involve J_t via the chain rule. Indeed, for any differentiable functional $L(\hat{x}_0)$,

$$\nabla_{x_t} L(\hat{x}_0) = J_t^\top \nabla_{\hat{x}_0} L(\hat{x}_0). \tag{26}$$

The impact of neglecting J_t has been examined in prior work. For example, Chung et al. (2024) identify conditions under which J_t can be replaced by a low-cost operation, while Poole et al. (2022) observed that omitting J_t can simplify and stabilize optimization, particularly in low-noise regimes (both findings are consistent with our experience). From a geometric standpoint, J_t may induce an anisotropic linear transform that can rotate and rescale the vector $\nabla_{\hat{x}_0} L(\hat{x}_0)$; including it everywhere may unintentionally overweight directions amplified by J_t , whereas discarding it everywhere can underrepresent how changes in x_t influence the measurement-consistency objective.

Our scheme strikes a practical balance. APS cleanly separates magnitude and direction: the step size is governed by d_t (a MAP-based residual that is computed in \hat{x}_0 -space without J_t), while the direction is provided by g_t , which may incorporate J_t when a Jacobian-aware likelihood surrogate is used (e.g., DPS or Π GDM). In other words, we avoid injecting the anisotropy of J_t into the scale of

the update—mitigating over/under-shoot due to ill-conditioning—yet we still allow J_t to influence the *direction* through g_t when this is available and beneficial.

A further benefit is architectural agnosticism: the MAP-based d_t depends only on the measurement model and on \hat{x}_0 , not on the particular score-parameterization. Consequently, the same construction applies across Variance–Preserving (VP), Variance–Exploding (VE), or probability-flow/flow-based samplers, and is thus future-compatible with alternative priors.

In summary, while omitting J_t is theoretically inexact, using a Jacobian-free magnitude (d_t) together with a potentially Jacobian-aware direction (g_t) yields an effective and stable compromise that preserves computational tractability at high resolution and integrates cleanly with existing likelihood surrogates ((Chung et al., 2024; Poole et al., 2022)).

For completeness, we include an ablation in Section A.2.2 that examines the impact of alternative surrogate choices for both d_t and g_t .

A.2 ADDITIONAL RESULTS

A.2.1 ADDITIONAL ABLATIONS

Stochasticity. Many posterior samplers set $\eta=1$ (see Section 2.2), allowing fresh noise to mitigate artifacts that arise when enforcing consistency with noisy observations. We evaluate APS across a range of η values and compare against ΠGDM . Figure 6 shows that, whereas ΠGDM benefits primarily from highly stochastic updates (large η), APS exhibits markedly weaker dependence on η , maintaining similar performance across stochasticity levels.

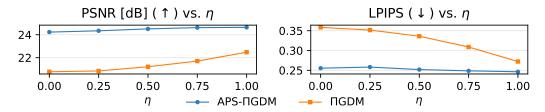


Figure 6: Sensitivity to stochasticity (η) . PSNR/LPIPS for SR×4 as a function of η . APS maintains similar performance across stochasticity levels, whereas Π GDM is more sensitive to the amount of injected noise.

A.2.2 DIFFERENT CHOICES FOR g_t AND d_t

Our method combines two complementary surrogates to regularize posterior updates: the *direction* is set by g_t , and the *magnitude* by d_t , with a correlation-based correction that attenuates risky steps when the two disagree. It is nevertheless natural to consider alternative assignments. In this section we vary both ingredients by choosing

$$(g_t, d_t) \in \{dps, pgdm, map\} \times \{dps, pgdm, map\},\$$

and, in addition, evaluate a symmetric variant that steps along the average direction $(g_t + d_t)/2$ (thereby sharing both role and responsibility between the two surrogates). We evaluate each combination on 100 images from the ImageNet-256 validation set for SR×4 with $\sigma_y = 0.05$.

The results of our experiments are given in Table 3.

For clarity, the three surrogates used to instantiate $\tilde{\epsilon}_{\theta}(x_t, t, y)$ are:

$$\tilde{\epsilon}_{\theta}^{\Pi\text{GDM}}(x_t, t, y) = \epsilon_{\theta}(x_t, t) + \frac{\bar{\alpha}_t}{r_t^2} \left(\frac{\partial \hat{x}_0}{\partial x_t} \right)^{\top} A^{\top} \left(A A^{\top} + \frac{\sigma_y^2}{r_t^2} I \right)^{-1} \left(y - A \hat{x}_0 \right), \tag{27}$$

$$\tilde{\epsilon}_{\theta}^{\text{DPS}}(x_t, t, y) = \epsilon_{\theta}(x_t, t) + \bar{\alpha}_t \left(\frac{\partial \hat{x}_0}{\partial x_t}\right)^{\top} A^{\top} (y - A\hat{x}_0), \tag{28}$$

$$\tilde{\epsilon}_{\theta}^{\text{MAP}}(x_t, t, y) = \epsilon_{\theta}(x_t, t) + \frac{\sqrt{\bar{\alpha}_t}}{\sqrt{1 - \bar{\alpha}_t}} A^{\top} \left(A A^{\top} + \frac{\sigma_y^2}{r_t^2} I \right)^{-1} \left(A \hat{x}_0 - y \right). \tag{29}$$

	g_t d_t		PSNR [dB] (†)	LPIPS (↓)	Time/Image [s] [†]
	DPS DPS		23.43	0.340	9.4
	DPS	ПGDM	22.63	0.501	17.8
	DPS	MAP	24.72	0.266	9.5
	ПGDM	DPS	20.42	$\overline{0.445}$	18.0
	ПGDM	ПGDM	24.43	0.354	9.4
	ПGDM	MAP	24.65	0.249	9.5
	MAP	DPS	$\overline{20.42}$	0.445	9.8
	MAP	ПGDМ	21.04	0.576	9.5
	MAP	MAP	22.14	0.399	5.3
	$g_t + d_t)/2$		PSNR [dB] (†)	LPIPS (↓)	Time/Image [s] [†]
	ПGDM , DPS		24.02	0.335	18.0
	MAP , ΠGDM		22.84	0.426	9.5
DPS, MAP		MAP	22.16	0.435	9.7
, 1,11111					

Table 3: Ablation over pairings of direction (g_t) and magnitude (d_t) , and the averaged.

A.3 REPRODUCIBILITY

ΠGDM implementation details. As no official implementation of ΠGDM is publicly available, we reimplemented it based on the description in (Song et al., 2023) and the publicly released RED-diff code (Mardani et al., 2023)². Note that our notation (and code) follow the VP–DDPM parameterization, whereas both Song et al. (2023) and Mardani et al. (2023) use a Variance–Exploding (VE) formulation. To verify correctness, we cross-validated our reimplementation against results reported in Song et al. (2023) on overlapping setups. In particular, both implementations yield an LPIPS of 0.122 on clean bicubic $SR \times 4$, confirming consistency. Notice that when using any likelihood surrogate for g_t , it is normalized, removing any time-constants scaling.

Our code will be released upon acceptance.

[†] Experiments were run on NVIDIA L40S GPUs. Runtimes depend on hardware and settings, so values should be interpreted comparatively rather than absolutely.

²https://github.com/NVlabs/RED-diff/blob/master/algos/pgdm.py

A.4 ADDITIONAL VISUAL RESULTS

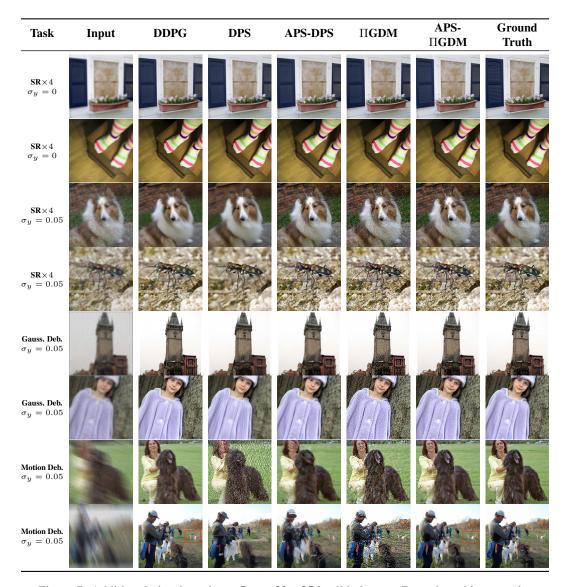


Figure 7: Additional visual results on ImageNet-256 validation set. Best viewed in zoom-in.