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Abstract

Mutual information (MI) is a central quantity of interest in information theory and
machine learning, but estimating it accurately and efficiently remains challenging.
In this paper, we propose a novel approach that exploits Bayesian self-consistency
to improve the data efficiency of variational MI estimators. Our method incor-
porates a principled variance penalty that encourages consistency in marginal
likelihood estimates, ultimately leading to more accurate MI estimation and poste-
rior approximation with fewer gradient steps. We demonstrate the effectiveness of
our method on two tasks: (1) MI estimation for correlated Gaussian distributions;
and (2) Bayesian experimental design for the Michaelis-Menten model. Our results
demonstrate that our self-consistent estimator converges faster whilst producing
higher quality MI and posterior estimates compared to baselines.

1 Introduction
Estimating dependencies between random variables is a fundamental problem in science and en-
gineering. Mutual information (MI) is a general information-theoretic metric to quantify pairwise
relationships that manifest themselves beyond the covariance matrix [15]. Additionally, estimating
and optimizing MI is fundamental to many machine learning problems and tasks, such as representa-
tion learning [5, 28], understanding neural networks [26], Bayesian optimization and active learning
[10, 14, 18], and Bayesian experimental design [17, 23], to name just a few.

Despite its favorable theoretical properties, estimating MI involves nesting of expectations, rendering
the problem doubly intractable [22, 29]. As a result, its optimization is extremely challenging,
especially in high-dimensional settings [27]. Recent advances in representation learning have
proposed computationally tractable variational surrogate objectives, parameterized by neural networks
[2, 20, 21, 28]. These approaches promise improved scalability not only in terms of dimensionality
but also in handling complex data distributions and large-scale datasets. However, as McAllester &
Stratos [19] show, MI estimation becomes challenging not only with increasing dimensionality, but
also with the magnitude of the MI itself. They prove that any distribution-free estimator requires an
exponential number of samples, which clearly does not scale in a computationally feasible way.

In many applications of probabilistic modeling, however, we have access to at least one closed-form
distribution. In Bayesian analysis, this could be the prior distribution over a set of parameters θ which
expresses our knowledge about plausible (latent) parameter values before observing data. In such
cases, the limitations of distribution-free estimators [19, 25] no longer apply, opening up opportunities
for more efficient estimators. In line with this research stream, we investigate a novel self-consistency
penalty that has the potential to improve the sample efficiency and estimation quality of variational
MI estimators. By encouraging self-consistency [16, 24] in the probabilistic joint model p(x, y),
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even when parts of the model are approximated with surrogate distributions, we demonstrate that
we can further enhance the sample efficiency of variational MI estimators. This penalty is designed
as a simple plug-in for existing variational estimators, requiring minimal modifications to current
implementations. The trade-off for this improved efficiency is a slight increase in computational
cost during training, though importantly, it does not require additional samples from real-world
observations or expensive simulators or extra computation during inference time.

2 Background
Mutual information (MI) is a fundamental concept in information theory, measuring the amount of
information shared between two random variables. For random variables X and Y , the MI is the
Kullback-Leibler (KL) divergence between their joint probability and the product of their marginals:

I(X;Y ) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
= Ep(x,y)

[
log

p(y | x)
p(y)

]
= Ep(x,y)

[
log

p(x | y)
p(x)

]
. (1)

Estimating MI in practice is computationally costly, particularly when dealing with high-dimensional
or continuous variables, with various estimation techniques developed to address these challenges.

If one of the conditional distributions, for instance, p(y | x), is available in closed-form, we can
approximate the marginal distribution p(y) = Ep(x)[p(y | x)] using L samples xl ∼ p(x). This gives
us the Nested Monte Carlo (NMC) estimator (also known as double-loop Monte Carlo or DLMC):

UNMC(L) := Ex0,y0,x1:L∼p(x0)p(y|x0)
∏

ℓ p(x)

[
log

p(y0 | x0)
1
L

∑L
ℓ=1 p(y0 | xℓ)

]
. (2)

The concavity of log(·) means that NMC is biased, providing an upper bound on the MI. To obtain a
corresponding lower bound and thus “sandwich” the true MI, we can modify the NMC estimator by
including the probability of the “positive” sample from the numerator to the “negative” (or contrastive)
samples in the denominator. This leads to the Prior Contrastive Estimator (PCE [9]):

LPCE(L) := Ex0,y0,x1:L∼p(x)p(y|x0)
∏

ℓ p(x)

[
log

p(y0 | x0)
1

L+1

∑L
ℓ=0 p(y0 | xℓ)

]
. (3)

Both bounds are asymptotically consistent, converging to the the true MI in the limit as L → ∞.
Optimal convergence efficiency is achieved by setting L ∝

√
N , where N is the number of samples

we use to approximate the outer expectation. This, at best, gives us an overall convergence rate of
O(C−1/3), where C = NL is the total computational budget, which is considerably worse than
O(C−1/2) for conventional Monte Carlo. One way to improve the efficiency of these basic estimators
is to introduce a variational proposal distribution qv(x | y) and apply importance sampling to the x
values, potentially leading to a more accurate approximation of the marginal p(y):

p(y) ≈ 1

L

L∑
ℓ=1

p(xℓ)p(y | xℓ)

qv(xℓ | y)
(4)

Substituting Eq. 4 into the denominator of Eq. 2 yields the Variational Nested Monte Carlo (VNMC)
estimator, which we denote by UVNMC(qv;L). Similarly, adjusting for the positive sample and
substituting in Eq. 3, we obtain the Variational Prior Contrastive Estimator (VPCE), which we denote
as LVPCE(qv;L). For clarity, the estimators are given in Appendix A.

These variational estimators preserve the upper and lower bound properties of their non-variational
counterparts whilst offering an improved estimation efficiency. Specifically, in addition to asymptotic
consistency as L → ∞, VNMC and VPCE can also achieve finite sample unbiasedness (with L = 1)
for the optimal proposal, which equals the posterior q∗v(xℓ | y) = p(xℓ | y).

3 Method
By rearranging Bayes’ rule, we can express the marginal distribution (i.e., the evidence in Bayesian
inference) of y as p(y) = p(x) p(y | x) p(x | y)−1. An important observation that follows directly
is the self-consistency of the marginal p(y) when evaluated based on different values of x. In other
words, for any set of values x1, . . . xK we have:

p(x) p(y | x)
p(x | y)

= const ∀x =⇒ p(x1) p(y | x1)

p(x1 | y)
= . . . =

p(xK) p(y | xK)

p(xK | y)
(5)

2



2 4 6 8 10 12 14 16 18 20 22
Dimension (D)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

VPCE

2 4 6 8 10 12 14 16 18 20 22
Dimension (D)

SC-VPCE (Ours)

E
st

im
at

ed
 M

I /
 T

ru
e 

M
I

Gradient steps
200
300
400
500
600
700
800
900
1000
True MI

Figure 1: Correlated Gaussian Distributions. Comparison of MI estimation accuracy between
baseline VPCE and our self-consistent VPCE (SC-VPCE) across various dimensions. Our method
achieves near-perfect MI estimation with approximately 25% fewer gradient steps. Results shown
use a batch size of N = 16, L = 4 negative samples, and K = 8 self-consistency samples during
training. Each curve represents the average of five independent runs.

However, if we replace the posterior p(x | y) with an approximation q(x | y), Eq. 5 will not hold
exactly, with different xk yielding different p(y) values. This variance is undesirable, as it is a direct
result of approximation error. Thus, a high-quality approximate posterior q(x | y) minimizes the
variance of p(y). Recently, [24] used this insight to propose a variance penalty that improves the
sample efficiency of neural posterior estimation in amortized Bayesian inference,

LSC(qv; y) := Varx̃∼q(x)

(
log p(x̃) + log p(y | x̃)− log qv(x̃ | y)

)
, (6)

where q(x) is an easy-to-sample proposal distribution whose choice has non-trivial consequences for
the empirical behavior of Eq. 6. Building on these results, we explore the utility of self-consistency
in the context of MI estimation and optimization.

4 Empirical Evaluation
In this section, we report preliminary results validating our self-consistent estimation algorithm.
Our experiments focus on two key areas: mutual information estimation and Bayesian optimal
experimental design. The main baseline we compare against is the VPCE estimator. We use identical
neural network architectures and hyperparameters for all methods to ensure a fair comparison. To
provide a controlled setting for these initial investigations, we assume access to an analytic likelihood
function throughout our experiments. We note that a likelihood function can be learned within the
same optimization scheme [24], and we plan to extend our approach to such scenarios in future work.

Metrics The main focus on two key aspects of MI estimators: accuracy and data efficiency,
particularly in high MI regimes. Whilst quick and accurate MI estimation is desirable in the context
of optimization, obtaining high-quality amortized posteriors is also of paramount interest due to their
practical utility in downstream tasks, such as marginal likelihood estimation or cross-validation. To
this end, we use the squared maximum mean discrepancy (MMD; [11]) distance between a “ground-
truth” reference posterior p(x | y), estimated with HMC [3, 12], and our approximation q(x | y):
MMD2(p || q) = Ex,x′∼p(x|y)[κ(x, x

′)]+Ex,x′∼q(x|y)[κ(x, x
′)]−2Ex∼p(x|y),x′∼q(x|y)[κ(x, x

′)], (7)

where κ(·, ·) is a positive definite kernel. Further evaluation metrics encompass (1) the relative error
in estimated mutual information; and (2) the estimation error of the log posterior density p(x | y).

4.1 Mutual Information Estimation: Correlated Gaussian Distributions

This experiment serves as a proof-of-concept in a controlled setting where closed-form values for
all quantities of interest are known, allowing for a principled evaluation. We follow a similar
experimental setup to that in Poole et al. [21] and consider D-dimensional correlated Gaussian
random vectors X and Y with some correlation ρ.

Setup We evaluate both VPCE and our self-consistent VPCE across various dimensionalities
D ∈ {2, 4, . . . , 20} and ρ = 0.98, resulting in MIs between 3.0 and 36. We train the estimators
with batch size of 16 and set the number of negative samples to L = 4. We use K = 8 self-
consistency samples to estimate the variance in Eq. 6. We track the estimated mutual information
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and posterior quality over the course of 1000 gradient steps. We train a simple Gaussian proposal
with a learnt mean and standard deviation: qv(· | y) = N (· | α+ β y, σ). To ensure robustness, we
repeat the training and evaluation procedures five times with different seeds and report the averages.
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Figure 2: Correlated Gaussians. Our SC-
VPCE converges much faster to the true pos-
terior, as measured by KL divergence.

Results As shown in Figure 1, the VPCE baseline
requires about 800 gradient steps to achieve accurate
MI estimates. In contrast, our SC-VPCE achieves
the same performance with only 600 gradient steps,
which amounts to a 25% relative increase in sampling
efficiency. Furthermore, since we have access to the
true posterior in closed form for this analytical exper-
iment, we can compute the KL divergence exactly,
providing a precise measure of posterior quality. Fig-
ure 2 illustrates that our self-consistent VPCE yields
essentially perfect approximations of the posterior
distribution (measured by KL divergence) while be-
ing approximately 50% more sample-efficient than
the VPCE baseline.

4.2 Bayesian Experimental Design: Michaelis-Menten Model
Originally rooted in statistics [4, 17], Bayesian experimental design (BED), has recently seen renewed
interest, particularly in the engineering and machine learning communities [1, 8, 13, 23]. The objective
in BED is to choose experiments that yield the most informative data about underlying model
parameters θ. Denoting the experiment parameters by ξ and the outcome of the experiment by y, the
optimal design ξ∗ maximizes the mutual information between y and θ, i.e. ξ∗ = argmaxξ I(θ; y | ξ).
We consider a static experimental design problem, where the goal is to learn the parameters in
the Michaelis-Menten model [6]. Michaelis-Menten is a non-linear model that is widely used in
biology and chemistry to describe the relationship between the (scaled) concentration of a sub-
strate ξ ∈ [0, 1] and the rate of an enzymatic reaction θ = (θ1, θ2) ∈ R2. The outcome y
of an experiment with design ξ is modelled probabilistically as y | ξ, θ ∼ N (f(ξ; θ), σ2) with
f(ξ; θ) = θ1(ξS)

b/θb2+(ξS)b, where S and b are a fixed scaling factors. The prior on the parameters
of interest is p(θ1) = N (θ1; 0.5, 0.1

2), p(θ2) = N (θ2; 0.5, 0.1
2).

Gradient steps K MMD (×10−3) MI

500 64 7.28 2.721
500 32 7.49 2.723
500 16 7.24 2.729
500 0 10.23 2.766

1000 64 4.14 2.764
1000 32 4.06 2.724
1000 16 5.24 2.753
1000 0 6.49 2.836

2000 64 3.98 2.750
2000 32 2.55 2.723
2000 16 3.42 2.726
2000 0 4.28 2.837

Table 1: Michaelis-Menten Model.

Setup We use the SC-VPCE lower bound to learn
10 designs ξ1, . . . , ξ10 using a batch size of N = 32,
L = 32 contrastive samples, and vary the number
of self-consistency samples K ∈ [64, 32, 16, 0], with
K = 0 corresponding to the VPCE baseline. We use
b = 6, S = 400, and observation noise σ = 10.0.
We choose an expressive neural-based proposal dis-
tribution, namely a neural spline flow (NSF) [7] that
learns an invertible transformation from a Gaussian
base distribution to the target posterior distribution
p(x | y). The posterior density is tractable via the
change-of-variables formula [16]. The NSF qν is pa-
rameterized by a total of 5 980 learnable parameters ν,
spread across 2 neural transformation blocks with 32
hidden features. MMD computations are performed
over 50 simulations, using the learned design.

Results As the number of gradient steps increases from 500 to 2000, we observe a general trend of
decreasing MMD values, indicating improved posterior quality (see Table 1). Our method consistently
achieves lower MMD values, indicating superior posterior estimates. We observe that the MI values
remain relatively stable, suggesting that the designs quickly converge to their optimum.

5 Conclusion
In this paper, we presented a method to integrate self-consistency losses into variational MI estimators.
Compared to baselines, our data-efficient estimator requires fewer gradient steps to converge and
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produces better posterior distributions, which can be useful for downstream tasks. In future work we
plan to reduce the required modeling assumptions by extending our method to learned likelihoods.
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A VNMC and VPCE
The variational nested Monte Carlo (VNMC) upper bound is given by:

UVNMC(qv;L) := Ex0,y0,x1:L∼p(x)p(y|x0)
∏

qv(x1:L|y0)

log p(y0 | x0)
1
L

∑L
ℓ=1

p(xℓ)p(y0|xℓ)
qv(xℓ|y0)

 . (8)

The corresponding variational PCE lower bound is given by:

LVPCE(qv;L) := Ex0,y0,x1:L∼p(x)p(y|x0)
∏

qv(x1:L|y0)

log p(y0 | x0)
1

L+1

∑L
ℓ=0

p(xℓ)p(y0|xℓ)
qv(xℓ|y0)

 . (9)

B Further Experiment Details Results
B.1 Mutual Information Estimation: Correlated Gaussian Distributions

Proposal parameterisation Since the true posterior is Gaussian, we train a simple Gaussian
proposal distribution with a learnt mean and standard deviation, i.e. qv(· | y) = N (· | α+ β y, σ),
where α, β and σ are learnt parameters.

Figure 3: Correlated Gaussians: Estimated, qv(x | y), and actual, p(x | y), posterior log-
probabilities computed on a test set.

Figure 4: Correlated Gaussians. Estimated, log p̂(y) = log p(x) + log p(y | x)− log qv(x | y) and
actual, p(y), marginal log-probabilities computed on a test set.

7


	Introduction
	Background
	Method
	Empirical Evaluation
	Mutual Information Estimation: Correlated Gaussian Distributions
	Bayesian Experimental Design: Michaelis-Menten Model

	Conclusion
	VNMC and VPCE
	Further Experiment Details Results
	Mutual Information Estimation: Correlated Gaussian Distributions


