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ABSTRACT

Consistency modeling, a novel generative paradigm inspired by diffusion mod-
els, has gained traction for its capacity to facilitate real-time generation through
single-step sampling. While its advantages are evident, the understanding of its
underlying principles and effective algorithmic enhancements remain elusive. In
response, we present a unified framework for consistency generative modeling,
without resorting to the predefined diffusion process. Instead, it directly con-
structs a probability density path that bridges the two distributions. Building upon
this novel perspective, we introduce a more general consistency training objective
that encapsulates previous consistency models and paves the way for innovative,
consistency generation techniques. In particular, we introduce two novel models:
Poisson Consistency Models (PCMs) and Coupling Consistency Models (CCMs),
which extend the prior distribution of latent variables beyond the Gaussian form.
This extension significantly augments the flexibility of generative modeling. Fur-
thermore, we harness the principles of Optimal Transport (OT) to mitigate vari-
ance during consistency training, substantially improving convergence and gener-
ative quality. Extensive experiments on the generation of synthetic and real-world
datasets, as well as image-to-image translation tasks (I2I), demonstrate the effec-
tiveness of the proposed approaches.

1 INTRODUCTION
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Figure 1: Consistency generative modeling re-
lies on a probability density path {pt}Tt=0 bridg-
ing the prior and data distribution. By collecting
two points (e.g., xt and xt+∆t ≈ xt+vt(xt) ·∆t)
located on the same trajectory within this path, the
network are trained to map them to the initial point
(e.g., x0) for ensuring self-consistency.

Generative models represent a significant cat-
egory of machine learning techniques with the
capacity to approximate and generate samples
from complex, unknown probability distribu-
tions. Particularly, the realm of deep genera-
tive models has exhibited exceptional advance-
ments across a wide array of domains, such as
the generation of images (Dhariwal & Nichol,
2021; Ramesh et al., 2022), speeches (Lu et al.,
2022b; Popov et al., 2021), 3D assets (Poole
et al., 2022), molecules (Jing et al., 2022; Xu
et al., 2022a) and proteins (Liu et al., 2023; Yim
et al., 2023). Recent advancements primarily
stem from the utilization of the diffusion model
framework (Ho et al., 2020; Song et al., 2020b),
where the underlying principle involves pro-
gressively recovering samples from noise by
solving reverse-time stochastic or ordinary dif-
ferential equations (SDEs/ODEs). This intri-
cate procedure facilitates the extraction of sam-
ples that adhere to a desired target data dis-
tribution. However, the remarkable outcomes
achieved through these methods come at a cost
of iterative refinement, often necessitating 10 to
2000 iterations (Song et al., 2020a;b; Lu et al.,
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2022a; Karras et al., 2022) utilizing parameterized score networks. This constraint imposes limita-
tions, particularly concerning real-time applications (Ajay et al., 2022).

To address this challenge, the consistency modeling emerge as a promising paradigm. Specifi-
cally, Song et al. (2023) have observed that points existing on the identical solution trajectory of the
reverse-time ODE within diffusion models consistently correspond to the same initial point, giving
rise to a property termed self-consistency. Leveraging this key insight, consistency models harness
the capabilities of neural networks to directly establish a mapping between points at arbitrary time
instances and their corresponding positions at the initial moment of the trajectory. The training
process of these networks is designed to preserve this self-consistency property. Song et al. (2023)
propose two distinct approaches for determining the two specific points situated along a given trajec-
tory. The first approach involves distilling essential information from a pre-trained score (Liu et al.,
2016; Song & Ermon, 2019) network within diffusion models. Conversely, the second approach
endeavors to obviate the requirement for a pre-trained score network, instead opting for an unbiased
estimation of the score function. This paper primarily centers on the latter approach, as it embodies
an independent and self-reliant paradigm for generative modeling.

We argue that, despite consistency models offering the advantage of generating samples in a single
step, they are not without limitations. One primary drawback is the constraint imposed on the prior
distribution of latent variables in the consistency model, which is restricted to a Gaussian distribu-
tion due to its origin from a diffusion process. This constraint inherently restricts the flexibility of
generative modeling and its potential applications. Another limitation arises from the estimation
of the score function, which, although unbiased, can suffer from high variance. This high variance
adversely affects the performance of the consistency model trained using this approach.

To extend the idea of self-consistency and unlock the broader potential of consistency models, we
present a more general framework for consistency generative modeling through the lens of the conti-
nuity equation (Benamou & Brenier, 2000). In particular, we identify the foundational components
for consistency generative modeling: the probability density path connecting the prior and data dis-
tributions, and the associated velocity vector fields characterizing the movement of particles within
this path. The relationship between these components is briefly formulated as the continuity equa-
tion, a partial differential equation capturing the dynamic evolution of probability density over time.
By manipulating these components, such as designing diverse probability density paths and vector
fields, we enable the creation of novel consistency models. This key idea eschews the conventional
definition involving the reversal of a forward diffusion process (Song et al., 2020b; 2023), which
is conceptually simpler and opens up the possibility of exploring novel approaches to consistency
modeling.

The contributions of our work are highlighted as follows: (1) We provide a unified framework and
training objective to understand and explore consistency generation modeling. We demonstrate that
our framework encapsulates and improves upon previous methods; (2) Building upon the established
framework, we introduce novel consistent models for generation: the Poisson Consistency Model
(PCM) and the Coupling Consistency Model (CCM). The PCM draws inspiration from electrostatics
and exhibits robustness to step size of ODE solver, and the CCM liberates the reliance on simple
priors, enabling the facilitation of single-step generation from diverse source distributions; (3) We
also incorporate Optimal Transport (OT) (Villani et al., 2009) into our framework, demonstrating
its efficacy in reducing variance and instability during training. This integration leads to accelerated
training convergence and substantial enhancements in performance.

We performed comprehensive experiments on both synthetic and real-world datasets. These ex-
periments encompassed tasks such as unconditional generation of CIFAR-10/CelebA and unpaired
image-to-image translation (I2I) using AFHQ. The obtained experimental results affirm the robust-
ness of our consistency model and highlight the substantial improvements achieved by incorporating
our framework. Our approach displays promising advancements in single-step generation compared
to prior methods.

2 PRELIMINARIES

Consistency models are heavily drawn inspiration from the self-consistency property found in diffu-
sion models. In this section, we present preliminaries on diffusion models and consistency models.
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2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2020b) firstly define a diffusion process {xt}Tt=0 that
gradually perturbs the sample x ∈ RD from pdata(x) into noise,

dx = f (x, t) dt+ g(t)dw (1)

where f(·, ·) : RD × [0, T ] → RD and g(·) : [0, T ] → R are the drift and diffusion coefficients,
w is the standard Wiener process. The marginal probability density of the variable xt is denoted
pt(x) and we clearly have p0(x) ≡ pdata(x) by definition. For some specially chosen f and g, the
transfer kernels p0|t(xt | x0) are of analytic form. Song et al. (2023) adopt the configurations in
Karras et al. (2022), setting f (x, t) = 0 and g(t) =

√
2t so that p0|t(xt | x0) = N (x0, t

2I). As
T becomes sufficiently large, the distribution of xT tends towards a tractable Gaussian distribution,
i.e., pT (x) ≈ N (0, T 2I). In this case, the process in Equation 1 has an associated reverse process
that can be described by an ordinary differential equation (ODE), running backward in time and
gradually recovering the samples of pdata(x) from the noise:

dx/dt = −∇ log pt (x) · t (2)

where∇ log pt (x) represents the score function (Liu et al., 2016). To numerically solve Equation 2,
a common approach is to train a neural network using the score matching objective (Vincent, 2011)
to approximate ∇ log pt (x). However, diffusion models have a bottleneck due to the requirement
of iterative access to the neural network, resulting in slower sampling speed.

2.2 CONSISTENCY MODELS

To alleviate the aforementioned limitations, a promising solution comes in the form of consistency
models (Song et al., 2023). These models are inspired by the remarkable observation that any pair
(xt, t), which belongs to the same trajectory of the solution to Equation 2, invariably corresponds
to the identical initial value x0 at t = 0 (i.e. self-consistency property). Therefore, the objective of
consistency models is precisely defined to preserve this property:

LCM

(
θ,θ−) := Et,x0,p0|t(xt|x0) [λ(t)d (Fθ (xt+∆t, t+∆t) ,Fθ− (xt, t))] (3)

where Fθ(·, ·) : RD × [0, T ] → RD is the parameterized network learning mapping xt of any
t ∈ [0, T ] to x0, θ− denotes the exponential moving average (EMA) of the network parameters
θ for stabilize the training process, λ(·) : [0, T ] → R+ is a positive weighting function, and
d(·, ·) : Rd × Rd → R+ is the distance function, such as ℓ2 distance or Learned Perceptual Im-
age Patch Similarity (LPIPS) (Zhang et al., 2018). To compute xt+∆t, Song et al. (2023) propose
approximating ∇ log pt (x) in Equation 2 as −(xt − x0)/t

2 by Monte Carlo estimation, followed
by the application of the Euler solver:

xt+∆t = xt + [(xt − x0)/t] ·∆t, (4)

Once Equation 3 is minimized to obtain the optimal parameters θ∗, we can generate samples with a
single inference step:

x̃0 = Fθ∗(xT , T ), xT ∼ N (0, T 2I). (5)
Furthermore, consistency models also offer the flexibility of multi-step generation, allowing a trade-
off between generative quality and computational consumption. Please refer to the Appendix B.4
for more details.

3 A UNIFIED CONSISTENCY GENERATIVE MODELING FRAMEWORK

3.1 RETHINKING CONSISTENCY MODELS WITH THE CONTINUITY EQUATION

The right-hand side of Equation 2 actually represents a dynamic time-dependent vector field
vt(x) := −∇ log pt (x) · t, which elegantly characterizes the velocity of the particle x at mo-
ment t. As these particles follow this vector field, the probability density undergoes changes and
gives rise to a continuous path {pt(x)}Tt=0, which serves as a bridge between the initial distribution
p0(x) = pdata(x) and the target distribution pT (x) = N (0, T 2I). Thus, this path can seamlessly
transform a simple noise distribution into a complex and meaningful data distribution.
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An essential property of this process is the conservation of probability mass over the entire sample
space and it ensures that samples move by a continuous motion without teleportation. This property
leads to the formulation of a continuity equation, characterizing the mutual constraints on the density
pt and the vector field vt :

∂pt(x)/∂t = −∇ · (pt(x)vt(x)) (6)
where∇· represents the divergence operator. We first sample a particle within the path pt and utilize
its vt to identify adjacent points along the same trajectory. Then, we can train the network that
minimizes the output disparity between these points. Building upon this concept, we define a more
general consistency objective as:

LGCM

(
θ,θ−) := Et,pt(x) [λ(t)d (Fθ (x+ vt(x) ·∆t, t+∆t) ,Fθ− (x, t))] (7)

where we opt to use the Euler solver due to its simplicity. By considering different types of proba-
bility paths pt and their corresponding vt, we can construct various models for generative modeling
purposes. However, the primary challenge we encounter while training using Equation 7 lies in
establishing the pt that is easy to sample from and the tractable vt, as direct access to them is often
unavailable when dealing with high-dimensional distributions of real-world data.

Inspired by recent advances in Flow-based models (Lipman et al., 2022; Tong et al., 2023; Pooladian
et al., 2023), we propose a convenient way to bypass the direct handling of pt and vt. Specifically,
we consider leveraging conditional probability density paths pt(x | z) and its vector fields vt(x | z)
that satisfy Equation 6. We then derive pt and vt through marginalization w.r.t a given variable z.
Mathematically, it can be expressed as:

pt(x) =

∫
pt(x | z)q(z)dz vt(x) =

∫
vt(x | z)pt(x | z)

pt(x)
q(z)dz (8)

Remarkably, the marginal pt and vt derived from the above equations consistently satisfy Equa-
tion 6 (proven in Appendix A.1). This result establishes a significant link between conditional and
marginal probability density paths. Consequently, we can decompose complex and intractable prob-
ability density paths into simpler conditional forms that rely solely on a variable z. In the following
subsection, we instantiate several consistency models by defining specific pt(x | z) and vt(x | z).

3.2 DIFFUSION CONSISTENCY MODELS

The Diffusion Consistency Model (DCM) introduced by Song et al. (2023) can be viewed as a
specialized instance of the framework outlined above. We define the prior distribution q(z) =
pdata(x), and the conditional probability density path as pt(x | z) = N (z, t2I), t ∈ [0, T ]. Notably,
this choice results in a probability path where p0(x) =

∫
p0(x | z)q(z)dz = pdata(x), and p1(x) =∫

p1(x | z)q(z)dz = N (0, T 2I). Utilizing the reparameterization trick (Kingma & Welling, 2013),
we can express the samples from pt(x | z) as x = z + tϵ, ϵ ∼ N (0, I). In this context, the
closed-form of the conditional vector field vt(x | z) can be obtained by the following theorem:
Theorem 1. Let pt(x | z) be a conditional probability path, and the sample from it is denoted as
x = βt(z) + αt(z)ϵ, where ϵ is a random variable independent of t. Then, the conditional vector
field that induces pt(x | z) has the form:

vt (x | z) =
d logαt (z)

dt
(x− βt (z)) +

dβt (z)

dt
. (9)

The above conclusion extends the Theorem 3 of Lipman et al. (2022) to encompass more general
conditions beyond Gaussian probability paths. Plugging the given components into Equation 9 and
marginalizing vt(x | z) by Equation 8, we can derive,

vt(x) =

∫
vt(x | x0)pt(x | x0)

pt(x)
pdata(x0)dx0 =

∫
(x− x0)pt(x | x0)

tEx0 [pt(x | x0)]
pdata(x0)dx0

=Ex0∼pdata [ω(x0,x)(x− x0)/t]

(10)

where ω(x0,x) = exp
(
−∥x−x0∥2

2

2t2

)
/Ex0

[exp
(
−∥x−x0∥2

2

2t2

)
]. While computing the expectation

term mentioned above analytically poses a significant challenge, we can estimate it effectively using
Monte Carlo methods. Given a set of samples {xi

0}mi=1 ∼ pdata, we approximate it as follows,

vt(x) ≈
m∑
i=1

ω̃(xi
0,x)(x− xi

0)/t (11)
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Here, ω̃(xi
0,x) = exp

(
−∥

x−xi
0∥22

2t2

)
/
∑m

j=1 exp

(
−∥

x−xj
0∥22

2t2

)
is an empirical estimation of ω by

self-normalization (Hesterberg, 1995). When employing a single sample for Monte Carlo estima-
tion, the resulting vt(x) is the same as Equation 4, employed in Song et al. (2023). Nonetheless,
the utilization of multiple samples has the potential to significantly reduce the variance in our vector
field estimation. We refer the reader to Appendix B.1 for detailed training algorithm of the DCM.

3.3 POISSON CONSISTENCY MODELS

The Poisson fields of electrostatics can also offer inspiration for the development of generative
models. Xu et al. (2022b) propose an intriguing analogy where D-dimensional samples can be
viewed as charges situated on the r = 0 plane within an augmented (D+1)-dimensional space, with
r representing the additional dimension. As these charges move along the generated electric field
lines, they demonstrate a uniform distribution on a hemisphere with an infinite radius, regardless
of the initial charge distribution at r = 0. Leveraging this physical analogy, we can design the
following novel consistency model. Let us denote the augmented data as x̂ := (x, r). We introduce
the conditional variable ẑ := (z, 0) = (x0, 0), x0 ∼ pdata, and define the conditional probability
path pt(x̂ | ẑ) as the uniform distribution on a hemisphere centered at ẑ with a radius of t. Notably,
as the radius grows, any data point can be perceived as lying at the origin of the coordinate system.
This property ensures that the pt(x̂) approximately follows a uniform distribution over the (D+1)-
dimensional hemisphere for large t.

Remarkably, we can employ the approach introduced by Xu et al. (2022b) to replace the anchor vari-
able t with the physically meaningful augmented dimension r. Specifically, we get the r-dependent
conditional probability paths pr(x | z) by radially projecting a uniform distribution over the surface
of a hemisphere onto a hyperplane consisting of points with the same r,

pr(x | z) ∝ 1/(||x− z||22 + r2)
D+1

2 (12)

In this context, we generate the path pr(x | z) by constructing samples in the form of x = z +

r
√
y/(1− y)dunit, where y ∼ Beta(D/2, 1/2), and dunit is a unit vector sampled from a uniform

distribution across angular space. We defer detailed derivations to the Appendix A.3. Considering r
as t in Theorem 1, we can obtain the r-dependent vector field,

vr(x) = η(x)Ex0∼pdata [
x− x0

r(||x− x0||22 + r2)
D+1

2

] (13)

where η(x) = 1/Ex0
[ 1

(||x−x0||22+r2)
D+1

2

]. Then, we parameterize a network to learn the mapping of

samples within the path to corresponding values on the r = 0 plane. The training objective for the
Poisson Consistency Model (PCM) can be defined as follows:

Er,q(z),pr(x|z) [λ(r)d (Fθ (x+ vr(x) ·∆r, r +∆r) ,Fθ− (x, r))] (14)

where q(z) = pdata(x), r ∈ [0, rmax], and rmax is sufficiently large to ensure prmax(x) ∝ 1/(||x||22 +
r2max)

D+1
2 . Once the network is trained, samples can be generated using a single step of inference:

x̃0 = Fθ∗(xrmax , rmax), xrmax ∼ prmax . (15)

The conditional probability path pr(x | z) of the PCM shows heavier tails compared to the DCM.
As demonstrated by Xu et al. (2023), this characteristic enhances the robustness to estimation errors
of the ODE solver, especially in the case of larger step sizes. We present the training algorithm of
the PCM in Appendix B.2.

3.4 COUPLING CONSISTENCY MODELS

In previous consistency models, the source (prior) distribution has commonly been constrained to
a specific simple density, such as Gaussian distribution, which inherently limits the flexibility of
generative modeling. To address this constraint, we introduce the Coupling Consistency Model
(CCM). Firstly, we define z as a tuple of random variables, denoted as z := (x0,x1), and the
distribution q(z) := ptarget(x0)psource(x1), where psource and ptarget correspond to the source and
target distributions, respectively. We futher introduce a conditional probability density as pt(x |
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z) = N (tx1 + (1 − t)x0, σ
2
fI), representing a linear path as proposed by Lipman et al. (2022).

Here, t ∈ [0, 1] and σf being a fixed hyperparameter. Clearly, we have the following relationship:

p0(x) =

∫
p0(x | z)q(z)dz =

∫
N (x0, σ

2
fI)ptarget(x0)dx0 = ptarget(x)⊗N (0, σ2

fI) (16)

p1(x) =

∫
p1(x | z)q(z)dz =

∫
N (x1, σ

2
fI)psource(x1)dx1 = psource(x)⊗N (0, σ2

fI) (17)

where ⊗ denotes the convolution operation. As σ2
f → 0, the above pt can form a path connecting

arbitrary two probability densities. Then, we can construct the samples from pt(x | z) as x =
tx1 + (1− t)x0 + σ2

f ϵ, and ϵ ∼ N (0, I). By applying the results from Theorem 1, we estimate the
vector field using the following expression:

vt(x) = Ex0,x1
[γ(x0,x1,x)(x1 − x0)] (18)

where γ(x0,x1,x) = exp
(
−∥tx1+(1−t)x0−x∥2

2

2σ2
f

)
/Ex0,x1

[exp
(
−∥tx1+(1−t)x0−x∥2

2

2σ2
f

)
]. In practice,

for small values of σf , it is expected that most of the γ values will be close to zero. Therefore, we
estimate the vector field by considering only the x0 and x1 used to compute the mean of pt(x | z).
We now delineate the training objectives of the CCM,

Et,q(z),pt(x|z) [λ(t)d (Fθ (x+ (x1 − x0) ·∆t, t+∆t) ,Fθ− (x, t))] (19)

where q(z) = ptarget(x0)psource(x1), pt(x | z) = N (tx1 + (1 − t)x0, σ
2
fI). While CCM extends

consistency generative modeling to more general source distributions, it is essential to acknowledge
that the independent sampling of x0 and x1 can lead to high variance in estimating the vector field.
To further address this limitation, we have made a noteworthy observation: Equations 16 and 17
remain valid, as long as the joint distributions π(x0,x1) satisfy

∫
π(x0,x1)dx1 = ptarget(x0) and∫

π(x0,x1)dx0 = psource(x1). With this in mind, we propose an extension of q(z) to a coupling
π(x0,x1) instead of independent distribution, thereby enhancing the model’s capabilities. We note
that the vector field defined in Equation 19 introduces the difference term (x1 − x0). Therefore, an
intuitive choice for π is to leverage the solution of the optimal transport (OT) problem, which aligns
the nearest pair (x0,x1) from the two distributions, akin to (Pooladian et al., 2023), resulting in a
lower-variance estimation of vt. Mathematically, the OT problem is formulated as follows,

π∗ = argmin
π∈Π

Eπ(x0,x1)[c(x0,x1)] (20)

Here, Π represents the set of coupling probabilities with marginals matching psource and ptarget, and
c(·, ·) : RD × RD → R+ is employed to quantify the transport cost, with the squared Euclidean
distance being our chosen metric. The following theorem highlights the significance of using OT to
construct the coupling, enhancing the estimation of the vector field.
Theorem 2. Let π∗ is the optimal transport plan of Equation 20, the prior q(z) := π∗ and the
conditional probability density pt(x | z) := N (tx1+(1−t)x0, σ

2
fI), t ∈ [0, 1]. Assume (x0,x1) ∼

q(z) and x ∼ pt(x | z), vt(x) is the vector field defined in Equation 8. As σf → 0, we have,

∥(x1 − x0)− vt(x)∥22 → 0 (21)

Solving Equation 20 at the distribution level is challenging due to the unavailability of analytical
marginal distributions. Instead, we pair samples within a training batch by solving the discrete form
of the OT problem, which can be effectively accomplished using the network simplex method (Peyré
et al., 2019). For detailed training steps, please refer to the algorithm summarized in Appendix B.

4 RELATED WORK

Diffusion models and consistency models. The diffusion models (Ho et al., 2020; Song et al.,
2020b) serve as a generative model drawing inspiration from thermodynamics. A primary challenge
in the diffusion model pertains to the time consumption incurred by the iterative denoising steps that
are necessitated. To mitigate this limitation, considerable efforts have been dedicated to expediting
the diffusion model, leading to two principal avenues of exploration. The first involves training
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an auxiliary network through distillation (Zheng et al., 2023; Luhman & Luhman, 2021; Salimans
& Ho, 2022), while the second entails the proposition of advanced numerical solvers or sampling
methods (Lu et al., 2022a; Zhang & Chen, 2022). The concept of consistency models (Song et al.,
2023) emerged from the consistency property within the probabilistic flow ODE of the reverse dif-
fusion process. They are used for single-step sampling by learning a mapping to an initial point.
Recent work by Daras et al. (2023) also delves into harnessing the consistency of reverse-time SDE
to augment the diffusion model’s capabilities.

Probability density path modeling. Chen et al. (2018) introduce an innovative class of continuous-
time generative models termed Continuous Normalized Flows (CNFs). These models harness ODEs
parameterized by neural networks to generate probability density paths through maximum likelihood
training (Grathwohl et al., 2018). However, the training process for such models typically necessi-
tates ODE numerical simulations, leading to computational inefficiencies. Recently, Flow Matching
was proposed by Lipman et al. (2022), offering a novel approach by enabling the generation of de-
sired probability density paths without the need for numerical simulations during training. These
advances serve as the inspiration for our work. We generalize it into a more versatile form and
extend the concept of probability density path modeling to the realm of consistency models.

OT for generative modeling. Generative modeling and optimal transport (OT) represent two inti-
mately connected domains. The incorporation of OT regularization has substantially enriched the
performance of Generative Adversarial Networks (GANs) and Flow-based models (Yang & Karni-
adakis, 2020; Onken et al., 2021). Notably, Pooladian et al. (2023) and Tong et al. (2023) harnessed
OT techniques for Flow Matching, effectively mitigating the computational expenses associated with
sampling. In our work, we use the tools of OT to obtain a coupling, which enhances the vector field
estimation in consistency training. In parallel work, De Bortoli et al. (2021) and Chen et al. (2021)
delved into the Schrödinger bridge problem, interpreting the diffusion model through the lens of
optimal transport with entropy regularization.

5 EXPERIMENTS

In this section, we conduct a variety of generative experiments to demonstrate the effectiveness of
our proposed models within our framework. First, we faithfully reproduced the Diffusion Consis-
tency Model (DCM) outlined in Song et al. (2023), using the PyTorch (Paszke et al., 2019) library.
We also extended the DCM to its multi-sample Monte Carlo variants (DCM-MS). Furthermore, we
implemented the Poisson Consistency Model (PCM) and the Coupling Consistency Model (CCM),
along with its variant incorporating optimal transport (CCM-OT). We begin with 2D toy experi-
ments (Section 5.1), which illustrate the model’s capacity to fit diverse distributions visually. Subse-
quently, we delve into image generation experiments using the CIFAR-10 (Krizhevsky et al., 2009)
and CelebA (Yang et al., 2015) benchmark dataset (Section 5.2). Finally, we evaluate the perfor-
mance of our framework in handling unpaired image-to-image translation tasks (I2I) on the AFHQ
dataset(Choi et al., 2020) (Section 5.3). In practice, we gradually reduce the step size of the Eu-
ler solver during training. We refer the readers to the Appendix C for more detailed experimental
setups.

5.1 2D TOY EXPERIMENTS

Table 1: Comparison of different mod-
els on the 2D dataset.

Method Wasserstein-2 distance(↓)
swiss roll two moons roll-moons

DCM 0.289 0.188 -
DCM-MS 0.247 0.155 -
PCM 0.225 0.136 -
CCM 0.251 0.169 0.289
CCM-OT 0.105 0.065 0.158

In our experiments, we utilize two classic toy datasets:
the Swiss roll and two moons datasets (Pedregosa et al.,
2011). We define the d(·, ·) within the consistency ob-
jective as the squared ℓ2 distance. During the training
phase, we employ a time-dependent fully-connected neu-
ral network architecture, comprising three hidden layers
with 64 neurons each. To assess the quality of the gener-
ated distributions, we compute the Wasserstein-2 distance
between these distributions and the ground truth distribu-
tion using a dataset of 10k points.

Result: As illustrated in Table 1, both the DCM-MS and PCM models demonstrate a modest im-
provement over the standard DCM model across all experimental scenarios. Our findings consis-
tently show that the CCM-OT model outperforms all other models, highlighting the efficacy of
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incorporating OT principles for generating coupled samples. We also observed similar results in
generating moons from roll distribution (Column 3 in Table 1).

Furthermore, we present some visualizations of the generated results in Figure 2. These visual
representations depict the ability of CCM-OT to produce distributions that closely resemble the
ground truth, underscoring its exceptional capability to capture intricate data patterns. In contrast,
the original DCM model appears to struggle, due to the high variance associated with its estimated
vector field, resulting in numerous out-of-distribution points.

Figure 2: Randomly generated samples by DCM and CCM-OT, red dots indicate the ground truth
data and blue dots indicate generated data.

5.2 IMAGE GENERATION

Figure 3: FID on CIFAR-10 throughout
training.

Next, we conduct image generation experiments utilizing
the CIFAR-10 and CelebA 64 × 64 datasets. In terms
of the experimental setup and network architecture, we
mostly follow the work of Song et al. (2023). Due to
constraints in computational resources, we make adjust-
ments by reducing the batchsize and optimization step.
We report two key metrics for evaluation: the Frechet In-
ception Distance (FID) (Heusel et al., 2017) and the In-
ception Score (IS) (Salimans et al., 2016). Additionally,
we employ the number of function evaluations (NFE) as a
measure of inference speed. In particular, we use LPIPS
loss as the metric d(·, ·) since it performs better on image
tasks as outlined in Song et al. (2023).

Result: In Table 2, we report the sample quality of various models on CIFAR-10. We find that the
PCM excels in terms of IS. Meanwhile, the CCM-OT model outperforms other consistency models
in terms of FID, establishing itself as the leading model for single-step generation. Note that there
is a discrepancy between our reported FID and that of Song et al. (2023) for DCM. Our results
show a slight decrease compared to Song et al. (2023), and this discrepancy can be attributed to our
use of a smaller batch size. However, we emphasize that we have meticulously maintained similar
hyperparameters across all models to ensure a fair and equitable comparison. While our models
exhibit notable performance, there remains room for improvement, particularly compared to models
requiring multiple iterations. We believe that further enhancing our framework’s performance can
be achieved by increasing the batchsize or exploring advanced network architectures.

Figure 3 illustrates the progression of the FID throughout the training process, computed on 1K
samples. It shows that DSM-MS and CCM-OT exhibit faster convergence and ultimately achieve
superior performance compared to DSM and CCM. This improvement can be attributed to the more
accurate estimation of the vector field, leading to reduced instability in the training. The FID of PCM
decreases fastest during the initial training phase, since its heavier-tailed distribution compared to the
Gaussian density, which enhances the robustness against the large step size of Euler solvers. These
findings align with our theoretical analysis. Additionally, our framework also retains the flexibility
of multi-step generation to strike a balance between generation quality and calculation consumption.
As reported in Table 3, all models exhibit enhancement as the NFE is increased. With more steps,
our proposed approaches still have an advantage on both datasets.
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Table 2: Sample quality on CIFAR-10.

Method CIFAR-10
FID(↓) IS(↑) NFE(↓)

NCSN (Song & Ermon, 2019) 25.32 8.87 1001
DDPM (Ho et al., 2020) 3.17 9.46 1000
Score ODE (Song et al., 2020b) 5.29 9.20 194
Score SDE (Song et al., 2020b) 2.20 9.89 2000
EDM (Karras et al., 2022) 1.98 9.82 36

Glow (Kingma & Dhariwal, 2018) 48.9 3.92 1
Residual Flow (Chen et al., 2019) 46.4 - 1
GLFlow (Xiao et al., 2019) 44.6 - 1
DenseFlow (Grcić et al., 2021) 34.9 - 1

DCM 18.4 7.15 1
DCM-MS 15.7 7.46 1
PCM 14.5 8.06 1
CCM 18.3 7.40 1
CCM-OT 13.5 7.94 1

Table 3: Effect of NFE with different meth-
ods.

Method FID(↓)
NFE = 1 NFE = 2 NFE = 5

CIFAR-10

DCM 18.4 13.6 10.9
DCM-MS 15.7 12.1 11.2
PCM 14.5 12.6 10.2
CCM 18.3 18.5 12.9
CCM-OT 13.5 13.7 10.6

CelebA64

DCM 41.0 27.3 25.3
DCM-MS 38.3 22.2 18.2
PCM 32.9 17.8 16.1
CCM 38.3 34.2 30.4
CCM-OT 30.8 28.0 25.5

5.3 UNPAIRED IMAGE-TO-IMAGE TRANSLATION

In this section, we conduct unpaired I2I experiments using the AFHQ dataset to validate the efficacy
of our proposed CCM. Specifically, we focus on the task of Cat→Dog and Wild→Dog translation.
All images are uniformly scaled to 256×256. The models are trained with 32 batchsize, and a total
of 400K optimization iterations are executed.

Result: We present qualitative results generated by CCM-OT in Figure 4. It shows that CCM-
OT can preserve domain-independent information such as background, hair color, and posture while
modifying domain-specific features like ears, eyes, and noses. We empirically observe that CCM-OT
consistently outperforms CCM, achieving better visual quality in terms of authenticity and fidelity
(Refer to Figure 8 and Figure 9 in Appendix D). The CCM-OT model enhances the model by ef-
fectively aligning similar samples in two domains through OT, rendering it a promising single-step
approach for I2I. Note that we directly compute the ℓ2 distance for OT in the original pixel space.
Exploring the alternative spaces, such as latent spaces based on disentangled representation (Higgins
et al., 2016; Sanchez et al., 2020), is a potential avenue for future research.

(a) Cat→Dog (b) Wild →Dog

Figure 4: Translation samples on AFHQ 256× 256 by CCM-OT.

6 CONCLUSION

In this paper, we introduce a unified and comprehensive framework for consistency generative mod-
eling. Our framework not only provides insights into existing models but also introduces novel
approaches that enhance the versatility and practicality of generative modeling. Additionally, we in-
corporate OT to improve the performance of these models further. Through empirical experiments,
we validate the effectiveness of our proposed framework across a range of generative tasks. Our
framework can facilitate single-step generative models, opening up new possibilities for imaginative
applications of generative systems. In future research, our aim is to refine and optimize our model
to achieve even greater performance gains.
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A PROOFS

A.1 PROOF THAT MARGINAL PATH AND VECTOR FIELD IN EQUATION 8 SATISFIES THE
CONTINUITY EQUATION

Note that pt(x | z) and vt(x | z) satisfy the continuity equation, from which we can derive this:

∂pt(x | z)/∂t = −∇ · (pt(x | z)vt(x | z)) (22)

Then,

∂pt(x)/∂t =

∫
(∂pt(x | z)/∂t)q(z)dz

=

∫
(−∇ · (pt(x | z)vt(x | z)))q(z)dz by Equation 22

= −∇ · (
∫

(pt(x | z)vt(x | z)) q(z)dz)

= −∇ · (pt(x)
∫

pt(x | z)vt(x | z)
pt(x)

q(z)dz)

= −∇ · (pt(x)vt(x)) by the definition of vt(x)

(23)

The first and third equations above utilize the Leibniz Rule, also known as the product rule for differ-
entiation under the integral sign, allows you to exchange the order of integration and differentiation
when certain regularity conditions are satisfied.

A.2 PROOF OF THEOREM 1

As x represents samples drawn from the probability path pt(x | z), which is governed by the
conditional vector field vt(x | z), we can leverage the definition of a dynamic time-dependent
vector field to establish the following equation:

dx

dt
= vt(x | z) (24)

Next, by differentiating the expression x = βt(z) + αt(z)ϵ with respect to time t, we obtain:

vt(x | z) =
dx

dt
=

dβt(z)

dt
+

dαt(z)

dt
ϵ (25)

By utilizing the relationship x = βt(z) + αt(z)ϵ, we can express ϵ in terms of x and αt(z) for
αt(z) > 0 as follows:

ϵ =
x− βt(z)

αt(z)
(26)

Plugging Equation 26 in Equation 25, we derive the final expression for vt(x | z):

vt(x | z) =
dβt(z)

dt
+

dαt(z)

dt

x− βt(z)

αt(z)

=
d logαt(z)

dt
(x− βt(z)) +

dβt(z)

dt

(27)

A.3 PROOF FOR THE CONDITIONAL PROBABILITY DENSITY PATH W.R.T. r OF PCM

We obtain the r-dependent conditional probability density paths by radially projecting a uniform
distribution on the surface of a hemisphere onto a hyperplane consisting of points with the same r.
Specifically, we use the radio of infinitesimal element to estimate pr(x | z). As depicted in Figure 5,
we denote the uniform distribution on the surface of a hemisphere as

pt(x̂ | ẑ) =
2

SD(1)rD
(28)
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Figure 5: Illustration for calculating conditional density w.r.t. r.

where SD(1) represents the geometric constant for surface area of the unit D-sphere. By projecting
dΩ1 onto dΩ3, we have the following equation for the probability mass,

pt(x̂ | ẑ)dΩ1 = pr(x | z)dΩ3 (29)

Based on the projective geometry, we have the following conclusion for the radio of infinitesimal
element,

dΩ1

dΩ2
= (

r√
(||x− z||22 + r2)

)D
dΩ2

dΩ3
= cos θ =

r√
(||x− z||22 + r2)

(30)

Then, we have:

pr(x | z) = pt(x̂ | ẑ)
dΩ1

dΩ3

= pt(x̂ | ẑ)
dΩ1

dΩ2

dΩ2

dΩ3

=
2

SD(1)rD
(

r√
(||x− z||22 + r2)

)D
r√

(||x− z||22 + r2)

=
2r

SD(1)(
√

(||x− z||22 + r2))D+1

∝ 1/(||x− z||22 + r2)
D+1

2 (31)

Note that Xu et al. (2023) suggested that the above prior can be further generalized by increasing
the number of augmented dimensions, denoted as K. Similarly, we can replace the number of
augmented dimensions 1 to K,

pr(x | z) ∝ 1/(||x− z||22 + r2)
D+K

2 (32)

where K can be used as a hyperparameter to control the degree of heavy-tailedness of pr(x | z), in
our practice of toy and image experiments, we take K to be 5 and 128, respectively, and we find that
it works well.

The above distribution can be sampled as follows:

dunit = d/∥d∥, d ∼ N (0, I);

n = y/1− y, y ∼ Beta(D/2,K/2);

x = (z+ r
√
ndunit) ∼ pr(x | z) (33)

where the first step samples the unit vector dunit from a uniform distribution on the angle, and the
second step samples a norm n obeying an inverted Beta distribution for scaling dunit.

We now prove this conclusion. The density of the inverted Beta distribution is,

p(n) ∝ n
D
2 −1(1 + n)−

D+K
2 (34)
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And then, by change-of-variable, we have the density for n′ := r
√
n,

p (n′) ∝ n
D
2 −1 (1 + n)

−D
2 −K

2
2n′

r2

∝ n′n
D
2 −1

(1 + n)
D+K

2

=
(n′/r)

D−1

(1 + ((n′)2/r2))
D+K

2

∝ (n′)D−1

(1 + ((n′)2/r2))
D+K

2

∝ (n′)D−1

((n′)2 + r2)
D+K

2

(35)

As n′ can be interpreted as the norm ∥x − z∥2, we can express x as z + n′dunit, which follows the
distribution pr(x | z) ∝ 1/(||x− z||22 + r2)

D+K
2 .

A.4 PROOF OF THEOREM 2

Note that (x0,x1) ∼ q(z) := π∗ and x ∼ pt(x | x0,x1). Since π∗ is the solution of the OT problem
in Equation 20, for any (x′

0,x
′
1) ∼ π∗ but is distinct with (x0,x1), as σf → 0, we have,

KL(pt(x | x0,x1)∥pt(x | x′
0,x

′
1))→∞ (36)

Otherwise, it indicates that the point (1− t)x0 + tx1 coincides with (1− t)x′
0 + tx′

1. According to
the trigonometric inequality, we have,

∥x0 − x′
1∥2 + ∥x′

0 − x1∥2 < ∥x0 − x1∥2 + ∥x′
0 − x′

1∥2 (37)

The above conclusion clearly contradicts that π∗ is an optimal transport plan. Referring back to
Equation 36, it shows that when (x0,x1) and t are determined, the values of x are also determined.
Thus, we can derive that,

pt(x0,x1 | x) = 1 pt(x
′
0,x

′
1 | x) = 0 (38)

That is, the distribution pt(z | x) is a Dirac distribution. From the definition of vt(x),

vt(x) =

∫
vt(x | z)pt(x | z)

pt(x)
q(z)dz

=

∫
vt(x | z)pt(z | x)dz

=

∫
vt(x | z)δ(z− [x0,x1])dz

= x1 − x0 (39)

In summary, as the variance σf → 0, we have

∥(x1 − x0)− vt(x)∥22 → 0 (40)
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B TRAINING AND SAMPLING DETAILS FOR PROPOSED MODELS

In this section, we will introduce the training algorithms for the four different consistency models
described in Sections 3.2 to 3.4 of the main text, i.e., Diffusion Consistency Model (DCM), Poisson
Consistency Model (PCM) and Coupling Consistency Model (CCM) and their variants. In addition,
we also introduce the multistep sampling algorithm.

B.1 ALGORITHM FOR DCM AND DCM-MS

Training algorithms for DCM and DCM-MS are presented in Algorithm 1 and Algorithm 2, re-
spectively. In practical applications, we discretize the time horizon [0, T ] into N − 1 sub-intervals,
where the boundaries are defined as t0 = 0 and tN = T . To ensure practical performance, we
adopt the step schedule denoted as N(·) and the Exponential Moving Average (EMA) decay rate
schedule denoted as µ(·), as introduced by Song et al. (2023). Here, UJ1, N − 1K represents the
uniform distribution over the set 1, 2, · · · , N − 1, and d(·, ·) is a metric function that adheres to the
properties ∀x,y : d(x,y) ≤ 0 and d(x,y) = 0 if and only if x = y. These schedule choices and
metric properties play a crucial role in the practical implementation of our proposed algorithms. We
highlight in blue where there are differences in the algorithms.

Algorithm 1 Training procedure for DCM
1: Input: initial model parameters θ, learning rate η, step schedule N(·), EMA decay rate schedule

µ(·), metric function d(·, ·) and weighting function λ(·)
2: θ− ← θ and k ← 0
3: repeat
4: Sample n ∼ UJ1, N(k)− 1K and {xi

0}mi=1 ∼ pdata
5: Sample {xi ∼ ptn(x | xi

0)}mi=1

6: vtn(x
i)←

(
xi − xi

0

)
/tn,∀xi

7: L(θ, θ−)←
∑m

i=1 λ(tn)d(Fθ(x
i + vtn(x

i) · (tn+1 − tn), tn+1),Fθ−(xi, tn))
8: θ ← θ − η∇θL(θ, θ−)
9: θ− ← stopgrad(µ(k)θ− + (1− µ(k))θ)

10: k ← k + 1
11: until convergence

Algorithm 2 Training procedure for DCM-MS
1: Input: initial model parameters θ, learning rate η, step schedule N(·), EMA decay rate schedule

µ(·), metric function d(·, ·) and weighting function λ(·)
2: θ− ← θ and k ← 0
3: repeat
4: Sample n ∼ UJ1, N(k)− 1K and {xi

0}mi=1 ∼ pdata
5: Sample {xi ∼ ptn(x | xi

0)}mi=1

6: vtn(x
i)←

∑m
j=1 ω̃

(
xj
0,x

i
)(

xi − xj
0

)
/tn,∀xi

7: L(θ, θ−)←
∑m

i=1 λ(tn)d(Fθ(x
i + vtn(x

i) · (tn+1 − tn), tn+1),Fθ−(xi, tn))
8: θ ← θ − η∇θL(θ, θ−)
9: θ− ← stopgrad(µ(k)θ− + (1− µ(k))θ)

10: k ← k + 1
11: until convergence
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B.2 ALGORITHM FOR PCM

The following algorithm is the training procedure for PCM, and in practice, we divide [0, rmax] into
sub-intervals in a similar way as t and generalize the number of augmented dimensions to K as
discussed in Appendix A.3. We also use sampling to estimate the vector field,

vr(x) ≈ η̃(x)

m∑
i=1

[
x− xi

0

r(||x− xi
0||22 + r2)

D+K
2

] (41)

where η̃(x) = 1/
∑m

i=1[
1

(||x−xi
0||22+r2)

D+K
2

] is the empirical estimation of η.

Algorithm 3 Training procedure for PCM
1: Input: initial model parameters θ, learning rate η, step schedule N(·), EMA decay rate schedule

µ(·), metric function d(·, ·) and weighting function λ(·)
2: θ− ← θ and k ← 0
3: repeat
4: Sample n ∼ UJ1, N(k)− 1K and {xi

0}mi=1 ∼ pdata
5: Sample {xi ∼ prn(x | xi

0)}mi=1

6: vrn(x
i)← η̃(xi)

∑m
j=1[

xi−xj
0

rn(||xi−xj
0||22+r2)

D+K
2

],∀xi

7: L(θ, θ−)←
∑m

i=1 λ(rn)d(Fθ(x
i + vrn(x

i) · (rn+1 − rn), rn+1),Fθ−(xi, rn))
8: θ ← θ − η∇θL(θ, θ−)
9: θ− ← stopgrad(µ(k)θ− + (1− µ(k))θ)

10: k ← k + 1
11: until convergence

B.3 ALGORITHM FOR CCM AND CCM-OT

The following algorithm is the training flow for CCM/CM-OT, which differs in whether or not OT
is used to generate coupled samples (highlighted in blue), where the calculation of OT can be done
using POT library (Flamary et al., 2021) implementation. We denote UJ{xi

0}mi=1K as the uniform
distribution w.r.t. each xi

0.

Algorithm 4 Training procedure for CCM/CCM-OT
1: Input: initial model parameters θ, learning rate η, step schedule N(·), EMA decay rate schedule

µ(·), metric function d(·, ·) and weighting function λ(·)
2: θ− ← θ and k ← 0
3: repeat
4: Sample n ∼ UJ1, N(k)− 1K and {xi

0}mi=1 ∼ psource, {xi
1}mi=1 ∼ ptarget

5: π∗ ← OT(UJ{xi
0}mi=1K,UJ{xi

1}mi=1K)
6: Sample {(xi

0,x
i
1)}mi=1 ∼ π∗

7: Sample {xi ∼ ptn(x | xi
0,x

i
1)}mi=1

8: vtn(x
i)← xi − xi

0,∀xi

9: L(θ, θ−)←
∑m

i=1 λ(tn)d(Fθ(x
i + vtn(x

i) · (tn+1 − tn), tn+1),Fθ−(xi, tn))
10: θ ← θ − η∇θL(θ, θ−)
11: θ− ← stopgrad(µ(k)θ− + (1− µ(k))θ)
12: k ← k + 1
13: until convergence
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B.4 ALGORITHM FOR MULTI-STEP SAMPLING

The following algorithm, as introduced in Song et al. (2023), initiates at p1 and generates samples
from p0 through a multi-step forward process. This algorithm is directly applicable to models such
as DCM, DCM-MS, and PCM. For CCM and CCM-OT, a simple modification is required, replacing
the 7th line with xτn = (1−

√
τ2n − α2)x̃0 +

√
τ2n − α2x.

In our CIFAR-10 generation experiments, for DCM, DCM-MS, CCM, and CCM-OT, we configured
the p1 as N (0, I). However, for PCM, we generated samples from p1 using the following form:
x =

√
y/(1− y)dunit.

Algorithm 5 Multi-step sampling
1: Input:trained consistency model Fθ, sequence of anchor variable, τ1 > τ2 > · · · > τN , the

distributions p1 accessible by samples, α is a small value for avoiding numerical instability
2: x ∼ p1
3: xτ1 ← τ1x
4: x̃0 ← Fθ(xτ1 , τ1)
5: for n = 1 to N do
6: x ∼ p1
7: xτn ← x̃0 +

√
τ2n − α2x

8: x̃0 ← Fθ(xτn , τn)
9: end for

10: Return:x̃0
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C EXPERIMENTAL DETAILS

We implemented all algorithms for training and evaluation using PyTorch (Paszke et al., 2019) 2.0.0,
and all experiments were performed on 4 NVIDIA 3090 GPUs. For the Swiss roll, two moons, and
CIFAR10 generation experiments, we set the source distribution of CCM/CCM-OT to a standard
normal distribution. We use the RAdam (Liu et al., 2020) optimizer in training and keep the learning
rate fixed. We set the weighted function λ(·) as the constant 1. In addition to the toy experiments,
we used Mixed-Precision Training for both the CIFAR10 and AFHQ experiments to speed up and
reduce memory. The detailed network structure, dataset preprocess and hyperparameter settings are
described below.

C.1 NETWORK ARTITECTURE

In the toy experiments, we just used a simple MLP as our model, this MLP has three layers con-
taining 64 neurons per layer and added RELU activation functions after each layer, we concatenate
anchor variables, e.g. time, on the input to the network. For the CIFAR-10 generation experiments,
we refer to the network in earlier work on consistency modeling, please see Dhariwal & Nichol
(2021) for a detailed description. For the experiments on AFHQ, we selected the DDPM++ network
proposed in Song et al. (2020b) as the model.

We have introduced residual connectivity (Karras et al., 2022) to augment the model, specifically,
the output of the model can be expressed as,

Fθ(x, τ) = cskip(τ)x+ cout(τ)fθ(cin(τ)x, τ) (42)

where fθ is the output of networks. cskip, cout and cin represent scaling factors for residual, network
output and input. They are each defined as follows,

cskip (τ) =
σ2

data

(τ − α)2 + σ2
data

, cout (t) =
σdata (τ − α)√
σ2

data + τ2
, cin (t) =

1√
σ2

data + τ2
(43)

Here, α represents a small constant introduced to prevent numerical instability, while σdata is set
to 0.5 in accordance with previous research (Karras et al., 2022). In practical terms, as outlined
in Appendix B, we implement a step schedule denoted as N(·) and an EMA decay rate schedule
represented by µ(·) to optimize and enhance the training process. These schedules are defined as
follows

N(k) =

[√
k

kmax

(
(Nmax + 1)

2 −N2
min

)
+N2

min − 1

]
+ 1

µ(k) = exp

(
Nmin logµ0

N(k)

)
,

(44)

Here, we introduce two key parameters: Nmin and Nmax, which represent the pre-defined minimum
and maximum discrete steps, respectively. At the outset of training, N(k) starts with a small value,
leading to a substantial bias but limited variance, thereby facilitating rapid convergence. As the train-
ing progresses, N(k) gradually increases, resulting in reduced deviation towards the end of training,
while concurrently introducing a larger variance to enhance the final performance. Additionally, we
employ the parameter u0 to denote the initial value of EMA decay rate. Over the course of training,
this rate progressively converges towards 1.

C.2 DATASET DETAILS

Toy Datasets: We utilized Scikit-learn (Pedregosa et al., 2011) to generate a total of 50,000 samples
per target distribution for training purposes and an additional 10,000 samples for testing. Prior to
conducting our experiments, we applied Z-score normalization as a preprocessing step to all the gen-
erated samples. Our primary objective was to create distributions resembling a Swiss roll and two
moons. To evaluate the quality of these generated distributions, we employed the Wasserstein-2 dis-
tance metric to quantify their similarity to the ground truth distribution. Additionally, we conducted
experiments that involved transforming moons into rolls, allowing us to assess the adaptability of
our CCM and CCM-OT models to arbitrary source distributions.
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CIFAR-10 (Krizhevsky et al., 2009): Images in CIFAR-10 were preprocessed by rescaling pixel
values to the range [-1, 1], and horizontal flipping was applied for data augmentation. Training
utilized the 50,000-image training dataset, with 50,000 images generated for FID calculation.

CelebA 64 (Yang et al., 2015): CelebA images underwent preprocessing steps including rescaling
pixel values to [-1, 1], center cropping to 140 × 140, and resizing to 64 × 64. Models were trained
on the training dataset, and FID was computed on a test set with 10,000 generated images.

AFHQ (Choi et al., 2020): The AFHQ dataset encompasses high-resolution images featuring an-
imal faces across three distinct domains: cats, dogs, and wild animals, each displaying significant
variability. The training dataset comprised 5,153 cat images, 4,739 dog images, and 4,738 wild
animal images. Additionally, for each domain, there were 500 test images available. In preparation
for our experiments, we rescaled the pixel values of all images to the range [-1, 1] and resized them
to 256 × 256 pixels. We also applied horizontal flipping for data augmentation. Specifically, our
experiments focused on translating between the Cat→Dog and Wild→Dog domains.

C.3 TRAINING OVERHEAD ANALYSIS

Our proposed methods can be compared to the original DCM, potentially introducing additional
computational overheads. We conducted a training time analysis on the CIFAR-10 dataset with a
batch size of 256. Results showed a modest 1.8% increase in training time related to batch summa-
tion of vector fields for both the DCM-MS and PCM models. For the CCM-OT model, incorporating
optimal transport for sample pairing led to a 3.3% rise in training time. Importantly, these operations
occur independently of the network and, in our evaluation, did not significantly prolong computation
times in practical training scenarios. Given the observed improvements in model performance, we
consider the impact on overall computational efficiency to be reasonable.
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C.4 HYPERPARAMETERS

The hyperparameters for each model during training are shown below,

Table 4: Hyperparameter for toy experiments.

Hyperparameter Toy datasets
DCM/DCM-MS PCM CCM/CCM-OT

Batch size 512 512 512
Learning rate 1e-3 1e-3 1e-3
Nmin 2 2 2
Nmax 100 100 100
µ0 0.95 0.95 0.95
FP16 precision No No No
Training iterations 50K 50K 50K
α 0.02 0.02 0.0001
T/rmax 80.0 80.0 0.9999

Table 5: Hyperparameter for the Cifar-10 and AFHQ experiments.

Hyperparameter CIFAR-10 AFHQ
DCM/DCM-MS PCM CCM/CCM-OT CCM/CCM-OT

Batch size 256 256 256 32
Learning rate 2e-4 2e-4 2e-4 1e-5
Nmin 2 2 2 2
Nmax 150 150 150 150
µ0 0.95 0.95 0.95 0.95
FP16 precision Yes Yes Yes Yes
Training iterations 400K 400K 400K 400K
α 0.02 0.02 0.0001 0.0001
T/rmax 80.0 80.0 0.9999 0.9999

Table 6: Hyperparameter for CelebA experiments.

Hyperparameter Toy datasets
DCM/DCM-MS PCM CCM/CCM-OT

Batch size 64 64 64
Learning rate 2e-4 2e-4 2e-4
Nmin 2 2 2
Nmax 150 150 150
µ0 0.95 0.95 0.95
FP16 precision Yes Yes Yes
Training iterations 200K 200K 200K
α 0.02 0.02 0.0001
T/rmax 80.0 80.0 0.9999
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D EXTENDED SAMPLES

(a) DCM (FID=18.4) (b) DCM-MS (FID=15.7)

(c) CCM (FID=18.3) (d) CCM-OT (FID=13.5)

(e) PCM (FID=14.5)

Figure 6: Uncurated samples from CIFAR-10 32 × 32. All corresponding samples use the same
seed.
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(a) DCM (b) DCM-MS

(c) CCM (d) CCM-OT

(e) PCM

Figure 7: Uncurated samples from CelebA 64× 64. All corresponding samples use the same seed.
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Figure 8: More qualitative results on Cat→Dog by CCM and CCM-OT.
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Figure 9: More qualitative results on Wild→Dog by CCM and CCM-OT.
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