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ABSTRACT

Consistency modeling, a novel generative paradigm inspired by diffusion mod-
els, has gained traction for its capacity to facilitate real-time generation through
single-step sampling. While its advantages are evident, the understanding of its
underlying principles and effective algorithmic enhancements remain elusive. In
response, we present a unified framework for consistency generative modeling,
without resorting to the predefined diffusion process. Instead, it directly con-
structs a probability density path that bridges the two distributions. Building upon
this novel perspective, we introduce a more general consistency training objective
that encapsulates previous consistency models and paves the way for innovative,
consistency generation techniques. In particular, we introduce two novel models:
Poisson Consistency Models (PCMs) and Coupling Consistency Models (CCMs),
which extend the prior distribution of latent variables beyond the Gaussian form.
This extension significantly augments the flexibility of generative modeling. Fur-
thermore, we harness the principles of Optimal Transport (OT) to mitigate vari-
ance during consistency training, substantially improving convergence and gener-
ative quality. Extensive experiments on the generation of synthetic and real-world
datasets, as well as image-to-image translation tasks (I2I), demonstrate the effec-
tiveness of the proposed approaches.

1 INTRODUCTION
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Figure 1: Consistency generative modeling re-
lies on a probability density path {pt}Tt=0 bridg-
ing the prior and data distribution. By collecting
two points (e.g., xt and xt+∆t ≈ xt+vt(xt) ·∆t)
located on the same trajectory within this path, the
network are trained to map them to the initial point
(e.g., x0) for ensuring self-consistency.

Generative models represent a significant cat-
egory of machine learning techniques with the
capacity to approximate and generate samples
from complex, unknown probability distribu-
tions. Particularly, the realm of deep genera-
tive models has exhibited exceptional advance-
ments across a wide array of domains, such as
the generation of images (Dhariwal & Nichol,
2021; Ramesh et al., 2022), speeches (Lu et al.,
2022b; Popov et al., 2021), 3D assets (Poole
et al., 2022), molecules (Jing et al., 2022; Xu
et al., 2022a) and proteins (Liu et al., 2023; Yim
et al., 2023). Recent advancements primarily
stem from the utilization of the diffusion model
framework (Ho et al., 2020; Song et al., 2020b),
where the underlying principle involves pro-
gressively recovering samples from noise by
solving reverse-time stochastic or ordinary dif-
ferential equations (SDEs/ODEs). This intri-
cate procedure facilitates the extraction of sam-
ples that adhere to a desired target data dis-
tribution. However, the remarkable outcomes
achieved through these methods come at a cost
of iterative refinement, often necessitating 10 to
2000 iterations (Song et al., 2020a;b; Lu et al.,
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2022a; Karras et al., 2022) utilizing parameterized score networks. This constraint imposes limita-
tions, particularly concerning real-time applications (Ajay et al., 2022).

To address this challenge, the consistency modeling emerge as a promising paradigm. Specifi-
cally, Song et al. (2023) have observed that points existing on the identical solution trajectory of the
reverse-time ODE within diffusion models consistently correspond to the same initial point, giving
rise to a property termed self-consistency. Leveraging this key insight, consistency models harness
the capabilities of neural networks to directly establish a mapping between points at arbitrary time
instances and their corresponding positions at the initial moment of the trajectory. The training
process of these networks is designed to preserve this self-consistency property. Song et al. (2023)
propose two distinct approaches for determining the two specific points situated along a given trajec-
tory. The first approach involves distilling essential information from a pre-trained score (Liu et al.,
2016; Song & Ermon, 2019) network within diffusion models. Conversely, the second approach
endeavors to obviate the requirement for a pre-trained score network, instead opting for an unbiased
estimation of the score function. This paper primarily centers on the latter approach, as it embodies
an independent and self-reliant paradigm for generative modeling.

We argue that, despite consistency models offering the advantage of generating samples in a single
step, they are not without limitations. One primary drawback is the constraint imposed on the prior
distribution of latent variables in the consistency model, which is restricted to a Gaussian distribu-
tion due to its origin from a diffusion process. This constraint inherently restricts the flexibility of
generative modeling and its potential applications. Another limitation arises from the estimation
of the score function, which, although unbiased, can suffer from high variance. This high variance
adversely affects the performance of the consistency model trained using this approach.

To extend the idea of self-consistency and unlock the broader potential of consistency models, we
present a more general framework for consistency generative modeling through the lens of the conti-
nuity equation (Benamou & Brenier, 2000). In particular, we identify the foundational components
for consistency generative modeling: the probability density path connecting the prior and data dis-
tributions, and the associated velocity vector fields characterizing the movement of particles within
this path. The relationship between these components is briefly formulated as the continuity equa-
tion, a partial differential equation capturing the dynamic evolution of probability density over time.
By manipulating these components, such as designing diverse probability density paths and vector
fields, we enable the creation of novel consistency models. This key idea eschews the conventional
definition involving the reversal of a forward diffusion process (Song et al., 2020b; 2023), which
is conceptually simpler and opens up the possibility of exploring novel approaches to consistency
modeling.

The contributions of our work are highlighted as follows: (1) We provide a unified framework and
training objective to understand and explore consistency generation modeling. We demonstrate that
our framework encapsulates and improves upon previous methods; (2) Building upon the established
framework, we introduce novel consistent models for generation: the Poisson Consistency Model
(PCM) and the Coupling Consistency Model (CCM). The PCM draws inspiration from electrostatics
and exhibits robustness to step size of ODE solver, and the CCM liberates the reliance on simple
priors, enabling the facilitation of single-step generation from diverse source distributions; (3) We
also incorporate Optimal Transport (OT) (Villani et al., 2009) into our framework, demonstrating
its efficacy in reducing variance and instability during training. This integration leads to accelerated
training convergence and substantial enhancements in performance.

We performed comprehensive experiments on both synthetic and real-world datasets. These ex-
periments encompassed tasks such as unconditional generation of CIFAR-10/CelebA and unpaired
image-to-image translation (I2I) using AFHQ. The obtained experimental results affirm the robust-
ness of our consistency model and highlight the substantial improvements achieved by incorporating
our framework. Our approach displays promising advancements in single-step generation compared
to prior methods.

2 PRELIMINARIES

Consistency models are heavily drawn inspiration from the self-consistency property found in diffu-
sion models. In this section, we present preliminaries on diffusion models and consistency models.
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2.1 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2020b) firstly define a diffusion process {xt}Tt=0 that
gradually perturbs the sample x ∈ RD from pdata(x) into noise,

dx = f (x, t) dt+ g(t)dw (1)

where f(·, ·) : RD × [0, T ] → RD and g(·) : [0, T ] → R are the drift and diffusion coefficients,
w is the standard Wiener process. The marginal probability density of the variable xt is denoted
pt(x) and we clearly have p0(x) ≡ pdata(x) by definition. For some specially chosen f and g, the
transfer kernels p0jt(xt | x0) are of analytic form. Song et al. (2023) adopt the configurations in
Karras et al. (2022), setting f (x, t) = 0 and g(t) =

√
2t so that p0jt(xt | x0) = N (x0, t

2I). As
T becomes sufficiently large, the distribution of xT tends towards a tractable Gaussian distribution,
i.e., pT (x) ≈ N (0, T 2I). In this case, the process in Equation 1 has an associated reverse process
that can be described by an ordinary differential equation (ODE), running backward in time and
gradually recovering the samples of pdata(x) from the noise:

dx/dt = −∇ log pt (x) · t (2)

where∇ log pt (x) represents the score function (Liu et al., 2016). To numerically solve Equation 2,
a common approach is to train a neural network using the score matching objective (Vincent, 2011)
to approximate ∇ log pt (x). However, diffusion models have a bottleneck due to the requirement
of iterative access to the neural network, resulting in slower sampling speed.

2.2 CONSISTENCY MODELS

To alleviate the aforementioned limitations, a promising solution comes in the form of consistency
models (Song et al., 2023). These models are inspired by the remarkable observation that any pair
(xt, t), which belongs to the same trajectory of the solution to Equation 2, invariably corresponds
to the identical initial value x0 at t = 0 (i.e. self-consistency property). Therefore, the objective of
consistency models is precisely defined to preserve this property:

LCM

�
θ,θ�

�
:= Et,x0,p0jt(xtjx0) [λ(t)d (Fθ (xt+∆t, t+∆t) ,Fθ� (xt, t))] (3)

where Fθ(·, ·) : RD × [0, T ] → RD is the parameterized network learning mapping xt of any
t ∈ [0, T ] to x0, θ� denotes the exponential moving average (EMA) of the network parameters
θ for stabilize the training process, λ(·) : [0, T ] → R+ is a positive weighting function, and
d(·, ·) : Rd × Rd → R+ is the distance function, such as ℓ2 distance or Learned Perceptual Im-
age Patch Similarity (LPIPS) (Zhang et al., 2018). To compute xt+∆t, Song et al. (2023) propose
approximating ∇ log pt (x) in Equation 2 as −(xt − x0)/t

2 by Monte Carlo estimation, followed
by the application of the Euler solver:

xt+∆t = xt + [(xt − x0)/t] ·∆t, (4)

Once Equation 3 is minimized to obtain the optimal parameters θ�, we can generate samples with a
single inference step: ex0 = Fθ�(xT , T ), xT ∼ N (0, T 2I). (5)
Furthermore, consistency models also offer the flexibility of multi-step generation, allowing a trade-
off between generative quality and computational consumption. Please refer to the Appendix B.4
for more details.

3 A UNIFIED CONSISTENCY GENERATIVE MODELING FRAMEWORK

3.1 RETHINKING CONSISTENCY MODELS WITH THE CONTINUITY EQUATION

The right-hand side of Equation 2 actually represents a dynamic time-dependent vector field
vt(x) := −∇ log pt (x) · t, which elegantly characterizes the velocity of the particle x at mo-
ment t. As these particles follow this vector field, the probability density undergoes changes and
gives rise to a continuous path {pt(x)}Tt=0, which serves as a bridge between the initial distribution
p0(x) = pdata(x) and the target distribution pT (x) = N (0, T 2I). Thus, this path can seamlessly
transform a simple noise distribution into a complex and meaningful data distribution.

3



Under review as a conference paper at ICLR 2024

An essential property of this process is the conservation of probability mass over the entire sample
space and it ensures that samples move by a continuous motion without teleportation. This property
leads to the formulation of acontinuity equation, characterizing the mutual constraints on the density
pt and the vector �eldv t :

@pt (x)=@t= �r � (pt (x)v t (x)) (6)
wherer� represents the divergence operator. We �rst sample a particle within the pathpt and utilize
its v t to identify adjacent points along the same trajectory. Then, we can train the network that
minimizes the output disparity between these points. Building upon this concept, we de�ne a more
general consistency objective as:

L GCM
�
� ; � � �

:= Et;p t (x ) [� (t)d (F � (x + v t (x) � � t; t + � t) ; F � � (x ; t))] (7)
where we opt to use the Euler solver due to its simplicity. By considering different types of proba-
bility pathspt and their correspondingv t , we can construct various models for generative modeling
purposes. However, the primary challenge we encounter while training using Equation 7 lies in
establishing thept that is easy to sample from and the tractablev t , as direct access to them is often
unavailable when dealing with high-dimensional distributions of real-world data.

Inspired by recent advances in Flow-based models (Lipman et al., 2022; Tong et al., 2023; Pooladian
et al., 2023), we propose a convenient way to bypass the direct handling ofpt andv t . Speci�cally,
we consider leveraging conditional probability density pathspt (x j z) and its vector �eldsv t (x j z)
that satisfy Equation 6. We then derivept andv t through marginalization w.r.t a given variablez.
Mathematically, it can be expressed as:

pt (x) =
Z

pt (x j z)q(z)dz v t (x) =
Z

v t (x j z)pt (x j z)
pt (x)

q(z)dz (8)

Remarkably, the marginalpt andv t derived from the above equations consistently satisfy Equa-
tion 6 (proven in Appendix A.1). This result establishes a signi�cant link between conditional and
marginal probability density paths. Consequently, we can decompose complex and intractable prob-
ability density paths into simpler conditional forms that rely solely on a variablez. In the following
subsection, we instantiate several consistency models by de�ning speci�cpt (x j z) andv t (x j z).

3.2 DIFFUSION CONSISTENCYMODELS

The Diffusion Consistency Model (DCM) introduced by Song et al. (2023) can be viewed as a
specialized instance of the framework outlined above. We de�ne the prior distributionq(z) =
pdata(x), and the conditional probability density path aspt (x j z) = N (z; t2I ); t 2 [0; T]. Notably,
this choice results in a probability path wherep0(x) =

R
p0(x j z)q(z)dz = pdata(x), andp1(x) =R

p1(x j z)q(z)dz = N (0; T2I ). Utilizing the reparameterization trick (Kingma & Welling, 2013),
we can express the samples frompt (x j z) as x = z + t� , � � N (0; I ). In this context, the
closed-form of the conditional vector �eldv t (x j z) can be obtained by the following theorem:
Theorem 1. Let pt (x j z) be a conditional probability path, and the sample from it is denoted as
x = � t (z) + � t (z)� , where� is a random variable independent oft. Then, the conditional vector
�eld that inducespt (x j z) has the form:

v t (x j z) =
d log � t (z)

dt
(x � � t (z)) +

d� t (z)
dt

: (9)

The above conclusion extends the Theorem 3 of Lipman et al. (2022) to encompass more general
conditions beyond Gaussian probability paths. Plugging the given components into Equation 9 and
marginalizingv t (x j z) by Equation 8, we can derive,

v t (x) =
Z

v t (x j x0)pt (x j x0)
pt (x)

pdata(x0)dx0 =
Z

(x � x0)pt (x j x0)
tEx 0 [pt (x j x0)]

pdata(x0)dx0

= Ex 0 � pdata[! (x0; x)(x � x0)=t]
(10)

where! (x0; x) = exp
�

� kx � x 0 k2
2

2t 2

�
=Ex 0 [exp

�
� kx � x 0 k2

2
2t 2

�
]. While computing the expectation

term mentioned above analytically poses a signi�cant challenge, we can estimate it effectively using
Monte Carlo methods. Given a set of samplesf x i

0gm
i =1 � pdata, we approximate it as follows,

v t (x) �
mX

i =1

e! (x i
0; x)(x � x i

0)=t (11)
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Here,e! (x i
0; x) = exp

�
�

kx � x i
0 k2

2
2t 2

�
=

P m
j =1 exp

�
�

kx � x j
0 k2

2
2t 2

�
is an empirical estimation of! by

self-normalization (Hesterberg, 1995). When employing a single sample for Monte Carlo estima-
tion, the resultingv t (x) is the same as Equation 4, employed in Song et al. (2023). Nonetheless,
the utilization of multiple samples has the potential to signi�cantly reduce the variance in our vector
�eld estimation. We refer the reader to Appendix B.1 for detailed training algorithm of the DCM.

3.3 POISSONCONSISTENCYMODELS

The Poisson �elds of electrostatics can also offer inspiration for the development of generative
models. Xu et al. (2022b) propose an intriguing analogy whereD-dimensional samples can be
viewed as charges situated on ther = 0 plane within an augmented(D +1) -dimensional space, with
r representing the additional dimension. As these charges move along the generated electric �eld
lines, they demonstrate a uniform distribution on a hemisphere with an in�nite radius, regardless
of the initial charge distribution atr = 0 . Leveraging this physical analogy, we can design the
following novel consistency model. Let us denote the augmented data asx̂ := ( x; r ). We introduce
the conditional variablêz := ( z; 0) = ( x0; 0), x0 � pdata, and de�ne the conditional probability
pathpt (x̂ j ẑ ) as the uniform distribution on a hemisphere centered atẑ with a radius oft. Notably,
as the radius grows, any data point can be perceived as lying at the origin of the coordinate system.
This property ensures that thept (x̂ ) approximately follows a uniform distribution over the(D + 1) -
dimensional hemisphere for larget.

Remarkably, we can employ the approach introduced by Xu et al. (2022b) to replace the anchor vari-
ablet with the physically meaningful augmented dimensionr . Speci�cally, we get ther -dependent
conditional probability pathspr (x j z) by radially projecting a uniform distribution over the surface
of a hemisphere onto a hyperplane consisting of points with the samer ,

pr (x j z) / 1=(jjx � zjj2
2 + r 2)

D +1
2 (12)

In this context, we generate the pathpr (x j z) by constructing samples in the form ofx = z +
r
p

y=(1 � y)dunit, wherey � Beta(D=2; 1=2), anddunit is a unit vector sampled from a uniform
distribution across angular space. We defer detailed derivations to the Appendix A.3. Consideringr
ast in Theorem 1, we can obtain ther -dependent vector �eld,

vr (x) = � (x)Ex 0 � pdata[
x � x0

r (jjx � x0jj2
2 + r 2)

D +1
2

] (13)

where� (x) = 1 =Ex 0 [ 1

( jj x � x 0 jj 2
2 + r 2 )

D +1
2

]. Then, we parameterize a network to learn the mapping of

samples within the path to corresponding values on ther = 0 plane. The training objective for the
Poisson Consistency Model (PCM) can be de�ned as follows:

Er;q (z) ;p r (x jz) [� (r )d (F � (x + vr (x) � � r; r + � r ) ; F � � (x ; r ))] (14)

whereq(z) = pdata(x), r 2 [0; rmax], andr max is suf�ciently large to ensurepr max(x) / 1=(jjx jj2
2 +

r 2
max)

D +1
2 . Once the network is trained, samples can be generated using a single step of inference:

ex0 = F � � (x r max; rmax); x r max � pr max: (15)

The conditional probability pathpr (x j z) of the PCM shows heavier tails compared to the DCM.
As demonstrated by Xu et al. (2023), this characteristic enhances the robustness to estimation errors
of the ODE solver, especially in the case of larger step sizes. We present the training algorithm of
the PCM in Appendix B.2.

3.4 COUPLING CONSISTENCYMODELS

In previous consistency models, the source (prior) distribution has commonly been constrained to
a speci�c simple density, such as Gaussian distribution, which inherently limits the �exibility of
generative modeling. To address this constraint, we introduce the Coupling Consistency Model
(CCM). Firstly, we de�nez as a tuple of random variables, denoted asz := ( x0; x1), and the
distribution q(z) := ptarget(x0)psource(x1), wherepsource and ptarget correspond to the source and
target distributions, respectively. We futher introduce a conditional probability density aspt (x j
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z) = N (tx1 + (1 � t)x0; � 2
f I ), representing a linear path as proposed by Lipman et al. (2022).

Here,t 2 [0; 1] and� f being a �xed hyperparameter. Clearly, we have the following relationship:

p0(x) =
Z

p0(x j z)q(z)dz =
Z

N (x0 ; � 2
f I )ptarget(x0)dx0 = ptarget(x) 
 N (0; � 2

f I ) (16)

p1(x) =
Z

p1(x j z)q(z)dz =
Z

N (x1 ; � 2
f I )psource(x1)dx1 = psource(x) 
 N (0; � 2

f I ) (17)

where
 denotes the convolution operation. As� 2
f ! 0, the abovept can form a path connecting

arbitrary two probability densities. Then, we can construct the samples frompt (x j z) as x =
tx1 + (1 � t)x0 + � 2

f � , and� � N (0; I ). By applying the results from Theorem 1, we estimate the
vector �eld using the following expression:

v t (x) = Ex 0 ;x 1 [
 (x0; x1; x)(x1 � x0)] (18)

where
 (x0; x1; x) = exp
�

� kt x 1 +(1 � t )x 0 � x k2
2

2� 2
f

�
=Ex 0 ;x 1 [exp

�
� kt x 1 +(1 � t )x 0 � x k2

2
2� 2

f

�
]. In practice,

for small values of� f , it is expected that most of the
 values will be close to zero. Therefore, we
estimate the vector �eld by considering only thex0 andx1 used to compute the mean ofpt (x j z).
We now delineate the training objectives of the CCM,

Et;q (z) ;p t (x jz) [� (t)d (F � (x + ( x1 � x0) � � t; t + � t) ; F � � (x ; t))] (19)

whereq(z) = ptarget(x0)psource(x1), pt (x j z) = N (tx1 + (1 � t)x0; � 2
f I ). While CCM extends

consistency generative modeling to more general source distributions, it is essential to acknowledge
that the independent sampling ofx0 andx1 can lead to high variance in estimating the vector �eld.
To further address this limitation, we have made a noteworthy observation: Equations 16 and 17
remain valid, as long as the joint distributions� (x0; x1) satisfy

R
� (x0; x1)dx1 = ptarget(x0) andR

� (x0; x1)dx0 = psource(x1). With this in mind, we propose an extension ofq(z) to a coupling
� (x0; x1) instead of independent distribution, thereby enhancing the model's capabilities. We note
that the vector �eld de�ned in Equation 19 introduces the difference term(x1 � x0). Therefore, an
intuitive choice for� is to leverage the solution of the optimal transport (OT) problem, which aligns
the nearest pair(x0; x1) from the two distributions, akin to (Pooladian et al., 2023), resulting in a
lower-variance estimation ofv t . Mathematically, the OT problem is formulated as follows,

� � = argmin
� 2 �

E� (x 0 ;x 1 ) [c(x0; x1)] (20)

Here,� represents the set of coupling probabilities with marginals matchingpsourceandptarget, and
c(�; �) : RD � RD ! R+ is employed to quantify the transport cost, with the squared Euclidean
distance being our chosen metric. The following theorem highlights the signi�cance of using OT to
construct the coupling, enhancing the estimation of the vector �eld.

Theorem 2. Let � � is the optimal transport plan of Equation 20, the priorq(z) := � � and the
conditional probability densitypt (x j z) := N (tx1 +(1 � t)x0; � 2

f I ); t 2 [0; 1]. Assume(x0; x1) �
q(z) andx � pt (x j z), v t (x) is the vector �eld de�ned in Equation 8. As� f ! 0, we have,

k(x1 � x0) � v t (x)k2
2 ! 0 (21)

Solving Equation 20 at the distribution level is challenging due to the unavailability of analytical
marginal distributions. Instead, we pair samples within a training batch by solving the discrete form
of the OT problem, which can be effectively accomplished using the network simplex method (Peyré
et al., 2019). For detailed training steps, please refer to the algorithm summarized in Appendix B.

4 RELATED WORK

Diffusion models and consistency models.The diffusion models (Ho et al., 2020; Song et al.,
2020b) serve as a generative model drawing inspiration from thermodynamics. A primary challenge
in the diffusion model pertains to the time consumption incurred by the iterative denoising steps that
are necessitated. To mitigate this limitation, considerable efforts have been dedicated to expediting
the diffusion model, leading to two principal avenues of exploration. The �rst involves training

6



Under review as a conference paper at ICLR 2024

an auxiliary network through distillation (Zheng et al., 2023; Luhman & Luhman, 2021; Salimans
& Ho, 2022), while the second entails the proposition of advanced numerical solvers or sampling
methods (Lu et al., 2022a; Zhang & Chen, 2022). The concept of consistency models (Song et al.,
2023) emerged from the consistency property within the probabilistic �ow ODE of the reverse dif-
fusion process. They are used for single-step sampling by learning a mapping to an initial point.
Recent work by Daras et al. (2023) also delves into harnessing the consistency of reverse-time SDE
to augment the diffusion model's capabilities.

Probability density path modeling. Chen et al. (2018) introduce an innovative class of continuous-
time generative models termed Continuous Normalized Flows (CNFs). These models harness ODEs
parameterized by neural networks to generate probability density paths through maximum likelihood
training (Grathwohl et al., 2018). However, the training process for such models typically necessi-
tates ODE numerical simulations, leading to computational inef�ciencies. Recently, Flow Matching
was proposed by Lipman et al. (2022), offering a novel approach by enabling the generation of de-
sired probability density paths without the need for numerical simulations during training. These
advances serve as the inspiration for our work. We generalize it into a more versatile form and
extend the concept of probability density path modeling to the realm of consistency models.

OT for generative modeling. Generative modeling and optimal transport (OT) represent two inti-
mately connected domains. The incorporation of OT regularization has substantially enriched the
performance of Generative Adversarial Networks (GANs) and Flow-based models (Yang & Karni-
adakis, 2020; Onken et al., 2021). Notably, Pooladian et al. (2023) and Tong et al. (2023) harnessed
OT techniques for Flow Matching, effectively mitigating the computational expenses associated with
sampling. In our work, we use the tools of OT to obtain a coupling, which enhances the vector �eld
estimation in consistency training. In parallel work, De Bortoli et al. (2021) and Chen et al. (2021)
delved into the Schrödinger bridge problem, interpreting the diffusion model through the lens of
optimal transport with entropy regularization.

5 EXPERIMENTS

In this section, we conduct a variety of generative experiments to demonstrate the effectiveness of
our proposed models within our framework. First, we faithfully reproduced the Diffusion Consis-
tency Model (DCM) outlined in Song et al. (2023), using the PyTorch (Paszke et al., 2019) library.
We also extended the DCM to its multi-sample Monte Carlo variants (DCM-MS). Furthermore, we
implemented the Poisson Consistency Model (PCM) and the Coupling Consistency Model (CCM),
along with its variant incorporating optimal transport (CCM-OT). We begin with 2D toy experi-
ments (Section 5.1), which illustrate the model's capacity to �t diverse distributions visually. Subse-
quently, we delve into image generation experiments using the CIFAR-10 (Krizhevsky et al., 2009)
and CelebA (Yang et al., 2015) benchmark dataset (Section 5.2). Finally, we evaluate the perfor-
mance of our framework in handling unpaired image-to-image translation tasks (I2I) on the AFHQ
dataset(Choi et al., 2020) (Section 5.3). In practice, we gradually reduce the step size of the Eu-
ler solver during training. We refer the readers to the Appendix C for more detailed experimental
setups.

5.1 2DTOY EXPERIMENTS

Table 1: Comparison of different mod-
els on the 2D dataset.

Method Wasserstein-2 distance(#)
swiss roll two moons roll-moons

DCM 0.289 0.188 -
DCM-MS 0.247 0.155 -
PCM 0.225 0.136 -
CCM 0.251 0.169 0.289
CCM-OT 0.105 0.065 0.158

In our experiments, we utilize two classic toy datasets:
the Swiss roll and two moons datasets (Pedregosa et al.,
2011). We de�ne thed(�; �) within the consistency ob-
jective as the squared̀2 distance. During the training
phase, we employ a time-dependent fully-connected neu-
ral network architecture, comprising three hidden layers
with 64 neurons each. To assess the quality of the gener-
ated distributions, we compute the Wasserstein-2 distance
between these distributions and the ground truth distribu-
tion using a dataset of 10k points.

Result: As illustrated in Table 1, both the DCM-MS and PCM models demonstrate a modest im-
provement over the standard DCM model across all experimental scenarios. Our �ndings consis-
tently show that the CCM-OT model outperforms all other models, highlighting the ef�cacy of
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incorporating OT principles for generating coupled samples. We also observed similar results in
generating moons from roll distribution (Column 3 in Table 1).

Furthermore, we present some visualizations of the generated results in Figure 2. These visual
representations depict the ability of CCM-OT to produce distributions that closely resemble the
ground truth, underscoring its exceptional capability to capture intricate data patterns. In contrast,
the original DCM model appears to struggle, due to the high variance associated with its estimated
vector �eld, resulting in numerous out-of-distribution points.

Figure 2: Randomly generated samples by DCM and CCM-OT, red dots indicate the ground truth
data and blue dots indicate generated data.

5.2 IMAGE GENERATION

Figure 3: FID on CIFAR-10 throughout
training.

Next, we conduct image generation experiments utilizing
the CIFAR-10 and CelebA64 � 64 datasets. In terms
of the experimental setup and network architecture, we
mostly follow the work of Song et al. (2023). Due to
constraints in computational resources, we make adjust-
ments by reducing the batchsize and optimization step.
We report two key metrics for evaluation: the Frechet In-
ception Distance (FID) (Heusel et al., 2017) and the In-
ception Score (IS) (Salimans et al., 2016). Additionally,
we employ the number of function evaluations (NFE) as a
measure of inference speed. In particular, we use LPIPS
loss as the metricd(�; �) since it performs better on image
tasks as outlined in Song et al. (2023).

Result: In Table 2, we report the sample quality of various models on CIFAR-10. We �nd that the
PCM excels in terms of IS. Meanwhile, the CCM-OT model outperforms other consistency models
in terms of FID, establishing itself as the leading model for single-step generation. Note that there
is a discrepancy between our reported FID and that of Song et al. (2023) for DCM. Our results
show a slight decrease compared to Song et al. (2023), and this discrepancy can be attributed to our
use of a smaller batch size. However, we emphasize that we have meticulously maintained similar
hyperparameters across all models to ensure a fair and equitable comparison. While our models
exhibit notable performance, there remains room for improvement, particularly compared to models
requiring multiple iterations. We believe that further enhancing our framework's performance can
be achieved by increasing the batchsize or exploring advanced network architectures.

Figure 3 illustrates the progression of the FID throughout the training process, computed on 1K
samples. It shows that DSM-MS and CCM-OT exhibit faster convergence and ultimately achieve
superior performance compared to DSM and CCM. This improvement can be attributed to the more
accurate estimation of the vector �eld, leading to reduced instability in the training. The FID of PCM
decreases fastest during the initial training phase, since its heavier-tailed distribution compared to the
Gaussian density, which enhances the robustness against the large step size of Euler solvers. These
�ndings align with our theoretical analysis. Additionally, our framework also retains the �exibility
of multi-step generation to strike a balance between generation quality and calculation consumption.
As reported in Table 3, all models exhibit enhancement as the NFE is increased. With more steps,
our proposed approaches still have an advantage on both datasets.
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