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ABSTRACT

Multi-modal transformers are rapidly gaining attention in video captioning tasks.
Existing multi-modal methods extract a fixed number of frames, but this has a few
critical challenges. If a limited number of frames is extracted, it is challenging to
retrieve sufficient information for caption generation. Conversely, extracting an
excessive number of frames can lead to the frames containing redundant informa-
tion. We refer the aforementioned challenges as information loss and excessive
information similarity, respectively. This paper proposes the new model-agnostic
module selection framework that can choose a module with an appropriate size
through the flow selector and token selector. The proposed framework can select
an appropriate size of features for each video data during training and inference.
Using this framework, we moderate the issues of information loss and excessive
information similarity that arise from extracting a fixed number of frames. In ad-
dition, we further moderate the excessive information similarity issue in each flow
by adding diversity promoting losses. Our numerical experiments with two dif-
ferent datasets demonstrate that the proposed framework significantly improves
the performances of three different existing representative/state-of-the-art video
captioning models.

1 INTRODUCTION

The video captioning task generates a description for a provided video in natural language (Li et al.,
2021b; Wang et al., 2019). To improve video captioning performances, it is pivotal to introduce
multi-modal transformers (Sun et al., 2019). Many recent studies extract an identical number of
frames regardless of video, to use a consistent input size for transformer-based models (Chen et al.,
2023; Yang et al., 2023). Selecting a fixed number of frames can be divided into sparse and dense
sampling methods, and each approach has its own limitations.

Video feature extractor

Small generator

Module & token selectors

Large generator

OR

Figure 1: Overview of our framework

The sparse sampling approach extracts a small
number of frames in a random manner or with
some criterion (Fu et al., 2021; 2023; Wang
et al., 2022). For videos with abundant informa-
tion, if a sparse sampling method extracts a lim-
ited number of frames, caption generation per-
formances can degrade (Lin et al., 2022). We
refer to this issue as the information loss limita-
tion. In particular, CLIPBERT (Lei et al., 2021)
argues that extracting numerous frames from
videos can cause excessive information similar-
ity issues, and dense sampling is not essential
for the visual language task. Nevertheless, its
applicability to the video captioning task remains questionable. In video captioning, recent high-
performance models predominantly adopt the dense sampling approach. (Kuo et al., 2023; Xu et al.,
2023) The dense sampling approach extracts many frames. For example, SWINBERT (Lin et al.,
2022) shows that extracting more frames from videos yielded enhanced results compared to prior
sparse sampled approaches. However, for videos with little information (e.g., video with little dy-
namics), the dense sampling approach could extract similar frames, i.e., superfluous information. We
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refer to this issue as excessive information similarity. To address the excessive information similar-
ity issue, SWINBERT uses a learnable sparse attention mask. Yet, there exists a room for improving
video captioning performances with different approaches. Recent video captioning models in both
approaches extract a fixed number of frames for all videos. Extracting a fixed number of frames can
cause information loss when sparsely sampling frames from videos with rich information, and lead
to the excessive similarity issue when densely sampling frames from videos with poor information.

This paper proposes the new Model-Agnostic Module Selection framework (MAMS) that is ap-
plicable to existing captioning models. It diversifies the size/complexity of existing models and
chooses a module with appropriate size. The contributions of the paper are summarized as follows:

• The proposed framework selects a module with an appropriate size, among caption gen-
eration models with different sizes. See the overview of the proposed framework in Fig-
ure 1(c). We first extract a substantial amount of video features and then construct a sub-
set/subsets using a token selector/token selectors. We process each subset of features in
the corresponding module. In addition, we determine which module is appropriate using a
module selector(s). Different from existing models that extract a fixed number of frames,
the proposed framework selects/uses an appropriate number of video features. Conse-
quently, it can moderate the aforementioned information loss and excessive information
similarity limitations in existing methods.

• To better address the excessive information similarity issue, we introduce diversity pro-
moting losses for each module.

• We applied the proposed framework to three representative/state-of-the-art models: Swin-
BERT (Lin et al., 2022), UniVL (Luo et al., 2020), and mPLUG-2 (Xu et al., 2023).
Our numerical experiments with the MSVD, MSRVTT and YOUCOOKII datasets show
that the proposed framework significantly improves all the existing models. In particular,
we achieved a new state of the arts benchmark by applying the proposed method to the
mPLUG-2 model that is the current state-of-the-art in the MSVD and MSRVTT datasets.

2 RELATED WORK

2.1 VIDEO CAPTIONING

The early approach in video captioning research was rule-based, directly extracting subjects, verbs,
and objects to construct sentences (Das et al., 2013; Kojima et al., 2002). subsequent methods
involved extracting sentences on a frame-by-frame basis and combining them (Bahdanau et al.,
2014; Sutskever et al., 2014). In recent research, the paradigm has shifted to consist of a feature
extractor and a generation module (Arnab et al., 2021). This paradigm initially began by using
fixed video feature embeddings to generate sentences (Aafaq et al., 2019; Pan et al., 2020; Pei et al.,
2019; Shi et al., 2020). Due to the different lengths of embeddings generated for each video, this
approach employed masking embeddings to align the input dimensions (Luo et al., 2020). This
paradigm has shifted from using fixed embeddings to an end-to-end approach in video extractors,
extracting features to enhance the captioning model. Recently, many studies have adopted these
methodologies (Chen et al., 2019; Li et al., 2021b; Liu et al., 2018; Zhang et al., 2021). we categorize
end-to-end methodologies into two primary approaches. The first approach uses sparse sampling,
selecting a limited number of frames from the video (Fu et al., 2021; 2023; Wang et al., 2022).
However, this method might risk losing information due to the small sample size. The second
approach applies dense sampling, extracting more frames from the video (Kuo et al., 2023; Xu
et al., 2023; Lin et al., 2022). This method, though, might face frame similarity issues. In this paper,
we propose a method that overcomes the limitations of these traditional methods.

2.2 VIDEO TRANSFORMER

Currently, the transformer architecture has demonstrated exceptional performance across various
research domains. Starting with its adoption in the image field through models like ViT and Swin-
Transformer, recently, video-based Transformer models such as ViViT, TimeSformer, and VidSwin
have consistently shown outstanding results in the video domain (Dosovitskiy et al., 2010; Liu et al.,
2021; Arnab et al., 2021; Bertasius et al., 2021; Liu et al., 2022). Recent top-performing models
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Figure 2: Overall architecture of MAMS

in video captioning incorporate a multi-modal structure that combines video transformers with text
transformers. These models extract embeddings from text using text transformers, notably BERT
and derive embeddings from video using the previously mentioned video transformers like ViT or
VidSwin. We then feed these extracted embeddings into another multi-modal transformer for further
learning. Most research has shifted towards employing the transformer architecture, which requires
fixed-length inputs. Consequently, video captioning models are adopting methods to extract frames
of the same fixed length from different videos (Devlin et al., 2018; Li et al., 2021a; 2022b;a).

3 METHOD

3.1 THE OVERALL ARCHITECTURE OF MAMS

In video captioning, the most popular architecture based on multi-modal transformers consists of
three major modules: 1) a video encoder that transforms a video to a token vector; 2) a text encoder
that transforms a set of texts to a token vector; and 3) a caption generator that creates captions.
In a nutshell, the proposed MAMS framework adds smaller caption generation module(s) to the
aforementioned architecture in parallel. By default, we add a smaller generation module compared
to the one in existing method and refer to two generation modules as large and small generation
models. We summarize the important features of MAMS below:

1. We calculate significance scores for all video tokens and frames. See ‘Significance scores
calculator’ in Figure 4.

2. We select either a large or small generation module by using calculated significance scores.
See ‘Module selector’ in Figure 4. If a large module is selected, we use all video tokens. As
the input to a large generation module, we concatenate video and text tokens. See ‘Large
generation module’ in Figure 4. If a small module is selected, we select only important
video tokens and use them as an input. See ‘Small generation module’ in Figure 4. We
apply the module selection process both in training and inference.

3.2 SIGNIFICANCE SCORES CALCULATION

In video captioning models, a video encoder transforms frames into video tokens. A generation
module then takes these video tokens to produce sentences. As adjacent frames are similar, it is
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Figure 3: Architecture of the proposed module and token selector

natural that their video tokens possess similar values. We assume, however, that their contributions
to caption generation are different.

To quantify the contribution of each token to caption generation, we define the token significance
score inspired by (Cao et al., 2023). Specifically, we define the pth token significance score at the
ith frame as follows:

ti,p =
ai,p · ∥xv

i,p∥∑
i,p ai,p · ∥xv

i,p∥
, i = 1, . . . , T, p = 1, . . . , P, (1)

where ai,p denotes the attention value between the special classification (CLS) token and the pth
video token at the ith frame, xv

i,p denotes the pth video token at the ith frame, T is the number of
total frames, and P is the number of tokens per each frame. We calculate {ai,p : ∀i, p} from the
first attention layer of a generation module. Considering the CLS token as representing the starting
point of the caption, the attention values between the CLS token and a video token can quantify the
contribution of video tokens to the entire caption (Cao et al., 2023). In (1), we additionally assume
that not only the attention values but also video tokens themselves influence caption generation, and
use the norm value of each token in computing the token significance score.

Using calculated {ti,p : ∀i, p} in (1), we define the significance score for the ith frame as follows:

fi =

P∑
p=1

ti,p, i = 1, . . . , T, (2)

where by default, we consider that a video encoder generates multiple tokens from a single frame.
Note that calculating the proposed scores in (1)–(2) does not require ground-truth labels. Calculat-
ing the defined quantities (1)–(2), we use them to select important tokens and frames for module
selection. Depending on the ratio of numbers of frames and tokens in video encoding, we modify
(2).

We construct a set of indices of important frames, Sfrm, and then a set of indices of important tokens,
Stk. In constructing Sfrm to select the most important T ′ frames, we use the gumbel-softmax (Jang
et al., 2016) operator to {fi : i = 1, . . . , T} T ′ times. (We later describe details of the proposed
algorithm using gumbel-softmax in Section 4.4.) In constructing Stk, we use all video token indices
from selected important frames with Sfrm, i.e., Stk = {(i, p) : i ∈ Sfrm, p = 1, . . . , P}.
In the next section, for module selection, we use Sfrm constructed by using (2). If a small module is
selected, we select important tokens based on Stk and use them as its input.
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3.3 MODULE SELECTION

3.3.1 INFERENCE

Using the frame significance scores for T frames, {fi : i = 1, . . . , T}, and Sfrm with |Sfrm| = T ′,
we evaluate the overall significance of T ′ selected frames by f̃ =

∑
i∈Sfrm fi, and select a caption

generation module with an appropriate size using f̃ . A higher f̃ value implies that selected important
frames have more “information.”

In the default setup that selects between small and large generation modules, we use the following
selection rule using f̃ defined above:

{
We select a small module, iff̃ > λ,
We select a large module, otherwise, (3)

where the decision threshold λ is defined by λ = T ′/T + ϵ. The decision rule in (3) implies the
following. The decision criterion f̃ > λ implies that selected important frames have sufficient
information, so we select a small module. Conversely, the condition f̃ ≤ λ implies that selected
frames have insufficient information, so we select a large module and use all frames.

After a module is selected, we select video tokens as follows:

• If a large module is selected, we use all the video tokens {xv
i,p : ∀i, p}.

• If a small module is selected, we select only important video tokens {xv
i,p : ∀(i, p) ∈ Stk}.

We construct the input to either model by concatenating selected video tokes above with text tokens.

3.3.2 TRAINING

We train both large and small modules using the loss function in the following format:

λlarge · Llarge + λsmall · Lsmall, (λlarge, λsmall) =

{
(1, 0), if f̃ ≤ λ,

(0, 1), if f̃ > λ,
(4)

where Llarge and Lsmall are losses for training a large and small generation model, respectively. By
setting the module selection weighting parameters (λlarge, λsmall) as in (4), we nullify either small or
large module training, ensuring that meaningful back propagation flows through only one module.

3.4 DIVERSITY PROMOTING LOSS

As the number of generation module choices is limited compared to the diversity of data, the pro-
posed module selection approach itself may have a limitation in mitigating the excessive information
similarity issue. To further moderate the excessive similarity issue, we proposed a new loss function
inspired by (Chen et al., 2022; Gong et al., 2021). We consider that transformer-based models often
use several attention layers, and tokens in different layers are with the same dimension.

First, we propose a new loss term that can promote the diversity between output tokens from the last
attention layer:

Lwithin = − 1

TP

T∑
i=1

P∑
j=1

log
exp(x̃⊤

i,jx̃i,j)

exp(x̃⊤
i,jx̃i,j) + exp(x̃⊤

i,j(
1

TP−1

∑
(i,j)̸=(k,l) x̃k,l)

, (5)

where x̃i,j is the jth token at the ith frame and {x̃i,j : ∀i, j} are output tokens from the last attention
layer. Second, we proposed a new loss term that can promote the diversity between input tokens to
the first attention layer and output tokens from the last attention layer:

5



Under review as a conference paper at ICLR 2024

Lcross = −
1

TP

T∑
i=1

P∑
j=1

log
exp(x̃⊤

i,jx
v
i,j)

exp(x̃⊤
i,jx

v
i,j) + exp(x̃⊤

i,j(
1

TP−1

∑
(i,j)̸=(k,l) x

v
k,l)

. (6)

The video tokens extracted from the video encoder undergo positional encoding and a multi-layer
perceptron layer for dimension alignment, before entering the first attention layer.

The below is the proposed caption generation loss function that can promote the diversity between
video tokens:

L = Lcap + λwithin · Lwithin + λcross · Lcross, (7)

where Lcap is a conventional caption generation loss used in existing models (e.g., in SwinBERT, the
combination of losses in (Lin et al., 2022; Devlin et al., 2018)), and λwithin and λcross are balancing
parameters of different loss terms.

In training a large model, we use (5)–(6) as they are; in training a small model, we replace T with
T ′ in (5)–(6). We incorporate these into the training form (4).

4 EXPERIMENTAL RESULTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP

We incorporated the following models into the proposed MAMS framework:

• Two representative models, SwinBERT and UniVL;
• The state-of-the-art model, mPLUG-2.

4.1.1 DATASETS

We conduct experiments with three different video captioning datasets. The Microsoft research
video description (MSVD) dataset (Chen & Dolan, 2011) is a widely used benchmark in video
captioning that has over 2,000 short video clips, each paired with an average of 40 human-annotated
textual descriptions. The Microsoft research video-to-text (MSRVTT) dataset (Xu et al., 2016)
is another representative benchmark in video captioning that features a diverse collection of over
10,000 video clips, and each matched with approximately 20 human-generated textual descriptions.
The YOUCOOKII (Zhou et al., 2018) dataset is the largest task-oriented video dataset in the vision
community. It contains 2,000 long untrimmed videos from 89 cooking recipes. On average, each
distinct recipe has 22 videos.

4.1.2 EVALUATION METRIC

The bilingual evaluation understudy (BLEU) metric (Papineni et al., 2002) (Bilingual Evaluation
Understudy) measures the extent to which machine-generated sentences match human references,
focusing on precision and n-gram overlap. The metric for evaluation of Translation with explicit
ordering (METEOR) (Banerjee & Lavie, 2005) evaluates sentence quality by considering syn-
onymy, stemming, and word order alignment in machine-generated text. The recall-oriented under-
study for gisting evaluation (ROUGE) metric (Lin & Och, 2004) assesses sentences by measuring
shared n-grams, common subsequences, and F1-scores, providing insight into content overlap. The
consensus-based image description evaluation (CIDEr) metric (Vedantam et al., 2015) evaluates the
sentence diversity and quality based on consensus judgments, capturing the richness and relevance
of machine-generated video descriptions.

4.1.3 IMPLEMENTATION DETAILS

We implemented the proposed framework using the PyTorch environment (Paszke et al., 2019) and
used NVIDIA RTX A100 GPUs for the experiments. For comparisons with the baseline models,
we kept all settings (e.g., such as batch size and epochs) consistent, except for learning rate. We
incorporated the MAMS methodology with minor variations, as each model is implemented in a
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slightly different setup. We provide detailed implementation specifics for each model in Appendix
A.2.

4.2 VIDEO CAPTIONING PERFORMANCE COMPARISONS BETWEEN DIFFERENT MODELS

Models MSVD MSRVTT

B4 M R C B4 M R C

*EMCL-Net (Jin et al., 2022) - - - - 45.3 30.2 63.2 54.6

*CLIP-DCD (Yang et al., 2022) - - - - 48.2 31.3 64.8 58.7

*TextKG Gu et al. (2023) 60.8 38.5 75.1 105.2 43.7 29.6 62.4 52.4

*CoCap (Shen et al., 2023) 60.1 41.4 78.2 121.5 44.4 30.3 63.4 57.2

*VIOLETv2 (Fu et al., 2023) - - - 139.2 - - - 58

SwinBERT (Lin et al., 2022) 58.2 41.3 77.5 120.6 41.9 29.9 62.1 53.8

SwinBERT + MAMS 62.8 41.9 79 127.3 43.8 29.5 62.9 55.2

(+4.6) (+0.6) (+1.5) (+6.7) (+1.9) (-0.4) (+0.8) (+1.4)

mPLUG-2 (Xu et al., 2023) 75.0 48.4 85.3 165.8 57.9 34.9 70.1 80.3

mPLUG-2 + MAMS 80.5 48.7 87.9 176.1 60.0 34.7 71.2 82.9
(+5.5) (+0.3) (+2.6) (+10.3) (+2.1) (-0.2) (+1.1) (+2.6)

Table 1: Result of MAMS Applied to SwinBERT and mPLUG-2 on MSVD & MSRVTT
Dataset We have selected EMCL-Net, CLIP-DCD, TextKG, CoCap, and VIOLETv2 as the bench-
mark models for comparison. These state-of-the-art video captioning models are trained exclusively
on the captioning data from MSVD and MSRVTT without additional data. The * indicates that the
results are taken from the paper. We denote B4 as BLEU4, M as METEOR, R as ROUGE, and C as
CIDEr.

Models YouCookII

B4 M R C

SwinBERT 9.0 15.6 37.3 109.0

SwinBERT + MAMS 12.5 15.9 40.8 116.7

UniVL Luo et al. (2020) 11.2 17.6 40.1 127.0

UniVL + MAMS 14.4 17.8 44.3 133.2

Table 2: Result of MAMS Applied to SwinBERT
and UniVL on YOUCOOKII Dataset

This section presents the results of applying
the MAMS methodology to existing video cap-
tioning models that have available official im-
plementations. Tables 1–2 show the proposed
MAMS framework significantly improves the
video captioning performances of the existing
models across all three datasets. Notably, in
experiments with the MSVD dataset, proposed
MAMS improved the BLEU and CIDEr met-
rics by 4.6 and 6.7, respectively. In experiments
with the MRVTT dataset, MAMS improved the
BLEU and CIDEr metrics by 1.7 and 1.4, re-
spectively. On the Youcook2 dataset, the im-
provement of using MAMS was 3.5 and 7.7 in
BLEU and CIDEr, respectively. The mPLUG model is the existing state-of-the-art benchmark in
the MSVD dataset without additional training data (excluding MaMMUTs of which official code
is unavailable) and in the MSRVTT. Incorporating mPLUG into the MAMS framework led to sig-
nificant improvements. For the MSVD dataset, the BLEU and CIDEr metric improvements were
4.5 and 10.3, respectively. For the MRVTT dataset, the incorporation improved the BLEU and
CIDEr metrics by 2.1 and 2.6, respectively. (The mPLUG model shows high performances with the
modified training method discussed in Section 4.6.) For the UniVL model that is a baseline for the
YOUCOOK dataset, using the MOMO framework led to 3.2 and 6.2 improvements in BLEU and
CIDEr, respectively.

4.3 ABLATION STUDY FOR DIVERSITY PROMOTING LOSS IN PROPOSED MAMS

As previously mentioned, extracting frames with a fixed number from every video leads to two ma-
jor issues: information loss and excessive information similarity. The MAMS framework moderated
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LOSS MSVD MSRVTT

Models Lcap Lwithin Lcross B4 M R C B4 M R C

SwinBERT ✓ × × 58.2 41.3 77.5 120.6 41.9 29.9 62.1 53.8

SwinBERT + MAMS ✓ × × 62.6 41.7 78.0 125.6 42.7 29.4 62.5 54.4

SwinBERT + MAMS ✓ ✓ × 62.3 42.1 78.8 126.0 42.6 30.1 62.7 54.7

SwinBERT + MAMS ✓ × ✓ 62.8 41.6 79.0 126.7 43.0 29.3 62.8 54.7

SwinBERT + MAMS ✓ ✓ ✓ 62.8 41.9 79.0 127.3 43.8 29.5 62.9 55.2

Table 3: Comparisons of MAMS framework variations with different diversity promoting losses for
SwinBERT

MSVD MSRVTT

Models B4 M R C B4 M R C

SwinBERT 58.2 41.3 77.5 120.6 41.9 29.9 62.1 53.8

SwinBERT + MAMS ( gradient-free ) 63.2 41.4 78.9 124.2 43.2 29.5 62.6 54.9

SwinBERT + MAMS ( gradient-based ) 62.8 41.9 79.0 127.3 43.8 29.5 62.9 55.2

Table 4: Impact of gradient flow in Gumbel algorithm on SwinBERT

these challenges and significantly improved the video captioning performances, by using conven-
tional models. Table 3 shows the significant performance improvements when using the MAMS
framework, as compared to the original SwinBERT model. To further moderate the issue of exces-
sive information similarity, we introduced two diversity promoting losses in Section 3.4: Lwithin and
Lcross. This approach can enhance the diversity in video tokens, further moderating the excessive
information similarity issue. Table 3 shows that employing Lwithin and Lcross independently or in
conjunction can achieve significant performance gains.

4.4 GUMBEL ALGORITHM IN MODULE SELECTOR

In the token selector within the MAMS methodology, there is an operation to extract the indices of
(T ′) important frames out of (T ) frames. Conventionally, methodologies commonly use the argmax
functions or the top-T ′ algorithm for hard selection tasks requiring index extraction (Yamazaki et al.,
2023; Seo et al., 2022; Shi et al., 2019). However, these conventional techniques pose a challenge
during training, as they do not allow gradients to flow. To address these limitations, many recent
studies (Tan et al., 2020; Dai et al., 2022; Cao et al., 2023) are adopting the Gumbel-Softmax algo-
rithm. We utilize the Gumbel-Softmax trick to allow gradient flow while selecting important frame
indices. Our algorithm, distinct from the Gumbel algorithms used in many other studies, imple-
ments a Gumbel algorithm through non-replacement. Explanations regarding non-replacement and
replacement extraction and the algorithm for the module & token selector utilizing the Gumbel-
Softmax are provided along with the pseudocode in Appendix A.3. In Table 4, ’gradient-free’ refers
to the results of experiments conducted in a setting where backpropagation is not allowed through
the Gumbel-Softmax, while ’gradient-based’ indicates a setting where backpropagation is enabled.
From the results, it is evident that the performance is superior in the gradient-based setting.

4.5 INFERENCE TIME COMPARISONS BETWEEN DIFFERENT VIDEO CAPTIONING MODELS

This section details the inference time when applying the MAMS methodology compared to the
original model. Table 5 shows three metrics. Inference Time per Video, the first metric, measures the
time taken from the code’s execution to generate a sentence for each video. In the MAMS-applied
sections of the table, two values are presented. The first value represents the time taken when the
small generation module is in use, and the second value indicates the time when the system selects
the large generation module. The second metric, Video Count, denotes the number of test videos
in each dataset. In the sections where MAMS is applied, the first value accounts for the number of
videos selected by the small generation module, and the second value represents those chosen by
the large generation module. Total Inference Time, the last metric, measures the entire time needed
to process the test dataset, from executing the code to generating sentences for all test videos. After

8



Under review as a conference paper at ICLR 2024

Model Dataset Inference Time per Video Video Counts Total Inference Time

SwinBERT MSVD 20.2 (-) 670 3020.23 (-)

SwinBERT + MAMS MSVD 14.1 (-30.2%) / 23.5 (+16.3%) 332/338 2398.22 (-20.6%)

SwinBERT MSRVTT 20.2 (-) 2990 467.56 (-)

SwinBERT + MAMS MSRVTT 14.1 (-30.2%) / 23.5 (+16.3%) 564 / 2426 420.34 (-10.1%)

Table 5: Results of the inference time for MAMS framework on SwinBERT, with percentage
changes in parenthesis.

MSVD MSRVTT

, Models B4 M R C B4 M R C

SwinBERT 58.2 41.3 77.5 120.6 41.9 29.9 62.1 53.8

SwinBERT + MAMS 62.8 41.9 79 127.3 43.8 29.5 62.9 55.2
SwinBERT + adaptive MAMS 63.2 41.6 79 125.8 43.3 29.7 62.8 54.9

mPLUG-2 75.0 48.4 85.3 165.8 57.9 34.9 70.1 80.3

mPLUG-2 + adaptive MAMS 80.5 48.7 87.9 176.1 60.0 34.7 71.2 80.9

Table 6: Impact of adaptive module selection on SwinBERT & mPLUG-2

applying MAMS, we note that the second value of Inference Time per Video exceeds the time taken
by the original model. This increase results from the additional computations needed during the
module and token select phases, even when using modules of the same size as the original model.
However, after applying MAMS, the first Inference Time per Video value significantly undercuts
the original model’s time. This is because, although the video undergoes the module token select
operation, choosing the smaller generation model results in less computation during the sentence
generation phase than the original model. Consequently, a review of the Total Inference Time shows
that integrating MAMS into the model yields a time-saving benefit.

4.6 A VARIATION OF MODULE SELECTOR TRAINING

This section describes a modified learning process achieved through the module selector. A single
video is trained on only one module in the MAMS approach. In our current experimental data, the
number of videos selecting the small generation module is well balanced with those selecting the
large one. However, if there is a tendency for the dataset to be biased towards one side, the affected
module may need to be trained more effectively. We introduce a revised training process to address
the issue of unbalanced learning while still allowing each data to select its module during inference.
In (4), the possible combinations for (λlarge, λsmall) are (1, 0) and (0, 1). However, in adaptive mod-
ule selection, the combinations (λlarge, λsmall) can be (1, 0), (1, 1), or (0, 1), with (1, 1) indicating
the training of both modules simultaneously. We have employed the Gumbel-Softmax operation
twice to implement this modified module selection algorithm. A detailed introduction to this algo-
rithm, along with the pseudocode, can be found in Appendix A.4. As observed in Table 6, there
is no significant difference between MAMS and the modified MAMS when applied to SwinBERT.
Furthermore, by applying it to the state-of-the-art model mPLUG-2, we have achieved the latest
benchmark performance metrics.

5 CONCLUSION

We pointed out the limitations in existing approaches of extracting a fixed number of frames in
different videos: information loss and excessive information similarity. We propose a new model-
agnostic framework using module selection to overcome these challenges. To further improve the
proposed solution, we introduce the diversity promoting loss. Our numerical experiments with dif-
ferent datasets show that the proposed MAMS framework significantly improves existing prominent
video captioning models. Our future work includes to improve the module selector training scheme
in Section 3.3.2, as its variation in Section 4.6 showed potential improvements.
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(T=16) Generated captions : a panda bear is climbing on a rock  
(T=32) Generated captions : panda is playing
GT 1 : a baby panda relaxes on some logs
GT 2 : a panda bear is laying down
BLEU score (16/32) : 102.4 / 70.4

(T=16) Generated captions : a man is jumping in a pool  
(T=32) Generated captions : a woman is jumping in a pool  

GT 1 : a man dives into a swimming pool
GT 2 : a man dives into a pool
BLEU score (16/32) : 89.0 / 17.8

Figure 4: Result of Motivation experiments in SwinBERT

A APPENDIX

A.1 MOTIVATION EXPERIMENTS

T ′ MSVD MSRVTT

4 50.2 31.7

8 57.4 38.4

16 59.2 42.0

32 61.5 42.5

64 60.5 43.0

128 59.8 41.6

Table 7: The results presented captioning performance with varied frame counts in SwinBERT.

The table 7 shows the results of experiments conducted with the SwinBERT model, excluding using
the learnable sparse mask. We ensured a fair comparison by maintaining consistent batch sizes and
providing sufficient epochs in a uniform experimental environment. From the table, we can derive
two key insights. First, the captioning performance typically improves with the increased number
of extracted frames. When the model pulls substantial information from the video, it becomes
more adept at generating accurate captions. Second, a noticeable performance decline occurs when
an excessive number of frames are extracted. The optimal performance for MSVD is observed
with 32 frames, while MSRVTT peaks at 64 frames. These observations lead us to conclude that
over-extraction of information can obstruct both the learning and inference processes, ultimately
diminishing the model’s overall performance.

The image displays the results of experiments conducted on the MSVD dataset using SwinBERT
models with 32-frame and 16-frame sizes, respectively. For the MSVD dataset, the 32-frame model
outperforms the 16-frame counterpart. However, as observed in the image, there are instances where
the 16-frame model yields better results than the 32-frame model We drew the following conclusions
considering both the experimental outcomes and these specific instances. Extracting a substantial
number of frames aids in conveying ample video information to the model, enabling the genera-
tion of more accurate captions. However, extracting excessive frames proves ineffective during the
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model’s learning and inference stages. Based on these findings, we identified the limitations and po-
tential for improvement in traditional video captioning models that extract a fixed number of frames
from every dataset. This discovery prompted the research presented in this paper.

A.2 IMPLEMENTATION DETAILS

A.2.1 UNIVL

Unlike the other two baseline models, the UniVL model trains on the features of given frames, not
by extracting frames from raw video. This means we already have extracted frames for each video
data at the outset. In the video encoder, we extract tokens, and during this process, we use masking
to adjust the length of the input or trim it if it overflows. To apply our model to UniVL, we design
the framework considering the masking tokens as one of the tokens. However, we should reasonably
view that the masking tokens do not impact sentence generation. We calculate the token significance
score with the tokens, excluding the masking ones. When conducting the operation, the number of
selected tokens will also vary for each video. We apply the UniVL technique directly, using masking
for the spaces that lack. However, since this is an input going into a small generation module, we
assume a maximum length of 16, unlike the large generation module that has set the maximum input
size to 32.

A.2.2 MPLUG-2

A unique aspect of the mPLUG-2 model is that it does not involve attention between the CLS and
video tokens during training. With this in mind, we redefine the formula in the method section to
represent the cumulative impact each video token exerts on each text token, not the CLS token. The
procedures proceed as described initially in the method section

A.2.3 SWINBERT

SwinBERT distinguishes itself from the UniVL and mPLUG-2 settings by extracting multiple tokens
from two frames. In applying MAMS to SwinBERT, we consider two frames to be one and execute
the operation. We extract tokens that correspond to these two frames during the token selection
process. This characteristic mandates that the variable T’ in MAMS be an even number exclusively
for SwinBERT. Another noteworthy feature involves applying the learnable attention mask even to
the first layer. For the implementation, we compute the formula using the original attention value
before integrating it with the learnable attention mask.

A.3 ALGORITHM OF THE GUMBEL SOFTMAX TRICK IN MODULE & TOKEN SELECTOR

As outlined in Algorithm 2, we introduced a tok-T ′ selection mechanism that employs the Gumbel-
softmax operation T ′ times. Several models in contemporary literature utilize a Gumbel softmax-
based trick for top-k selection. The majority of these implementations involve a sampling with a
value replacement strategy. While extracting the top-k indices, such a strategy applies the gumbel-
softmax operation k times. Due to the probabilistic nature of the gumbel-softmax computation,
extracting an exact set of top k indices is not guaranteed. Therefore, diverging from conventional
methods of restoring the original values, our implementation, as shown in Line 9 of the algorithm,
we replaces the values corresponding to the extracted indices with a small value0. Subsequently,
proceed with the Gumbel softmax operation. Nonetheless, we incorporated a while loop to account
for instances where precisely T ′ indices are not extracted, as shown in Lines 11-20 of the algorithm.
This ensures the extraction of an exact T ′ indices.

A.4 ALGORITHM OF MODIFY MODULE SELECTION

Looking at Equation 4, the candidates for (α, β) become (1, 0) and (0, 1) through the operation
involving f̃ and λ. ( f̃ is the overall significance score of the selected frame, as defined in Section
3.3.1 ) The modified module learning approach proceeds through an Adaptive Module Selection
function utilizing the Gumbel-Softmax function. The principle of the Adaptive Module Selection
function is as follows: If the value of f̃ is large, it indicates that the tokens extracted from the
selected frames are heavily influenced by the caption, meaning that the data is more suitable for the
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Algorithm 1 Get the selected frame index using Gumbel-softmax trick

1: INPUT: fs : frame score
2: OUTPUT: fs

idx : selected frame index
3: fs

idx ← all-zeros tensor of same shape as fs

4: for ∈ range(1, T ′) do
5: one hot← Gumbel-Softmax(fs)
6: mask← (fs

idx + one hot) ≤ 1
7: fs

idx ← fs
idx + one hot×mask

8: indices← max index of one hot
9: fs[indices]← 0

10: end for
11: while true do
12: one hot← Gumbel-Softmax(fs)
13: mask← (fs

idx + one hot) ≤ 1
14: fs

idx ← fs
idx + one hot×mask

15: indices← max index of one hot
16: fs[indices]← 0
17: if sum of fs

idx ≥ T ′ then
18: break
19: end if
20: end while

Algorithm 2 Get the selected frame index using Gumbel-softmax trick

1: INPUT: f̃
2: OUTPUT: Y : (1, 0)or(1, 1)or(0, 1)

3: X ← (f̃ , λ)
4: Y ← all zeros tensor of same shape asX
5: for ∈ range(1, 2) do
6: one hot← Gumbel-Softmax(X)
7: mask← (Y + one hot) ≤ 1
8: Y ← Y + one hot×mask
9: indices← max index of one hot

10: end for

16



Under review as a conference paper at ICLR 2024

small generation module. Taking this into account, we extract the outputs of (α, β) such as (1, 0),
(1, 1), and (0, 1) by performing the Gumbel-Softmax operation twice on the (f̃ , λ) values. Since
the Gumbel-Softmax operation is probabilistic, the probability of obtaining (α, β) = (1, 0) will be
higher if the S value is large. If the f̃ and λ values are similar, (1, 1) is more likely, and if the λ
value is large, (0, 1) is more likely. This operation implies that if S is large, training occurs in the
small generation module; if f̃ is small, training is directed toward the large generation module, and
training occurs in both modules if the value is ambiguous. The corresponding equation is as follows:
Lfinal = Llarge · α+ Lsmall · β, where(α, β) = modified module selector(f̃)
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